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We exhibit and characterize an entire class of simple adaptive strategies, in the
repeated play of a game, having the Hannan-consistency property: in the long-run,
the player is guaranteed an average payoff as large as the best-reply payoff to the
empirical distribution of play of the other players; i.e., there is no ``regret.'' Smooth
fictitious play (Fudenberg and Levine [1995, J. Econ. Dynam. Control 19,
1065�1090]) and regret-matching (Hart and Mas-Colell [2000, Econometrica 68,
1127�1150]) are particular cases. The motivation and application of the current
paper come from the study of procedures whose empirical distribution of play is,
in the long run, (almost) a correlated equilibrium. For the analysis we first develop
a generalization of Blackwell's (1956, Pacific J. Math. 6, 1�8) approachability
strategy for games with vector payoffs. Journal of Economic Literature Classification
Numbers: C7, D7, C6. � 2001 Academic Press
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1. INTRODUCTION

Consider a game repeated through time. We are interested in strategies
of play which, while simple to implement, generate desirable outcomes.
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Such strategies, typically consisting of moves in ``improving'' directions, are
usually referred to as adaptive.

In Hart and Mas-Colell [16] we presented simple adaptive strategies
with the property that, if used by all players, the empirical distribution of
play is, in the long run, (almost) a correlated equilibrium of the game (for
other procedures leading to correlated equilibria, see3 Foster and Vohra
[8] and Fudenberg and Levine [14]. From this work we are led��for
reasons we will comment upon shortly��to the study of a concept
originally introduced by Hannan [15]. A strategy of a player is called
Hannan-consistent if it guarantees that his long-run average payoff is as large
as the highest payoff that can be obtained (i.e., the one-shot best-reply
payoff) against the empirical distribution of play of the other players. In
other words, a strategy is Hannan-consistent if, given the play of the
others, there is no regret in the long run for not having played (constantly)
any particular action. As a matter of terminology, the regret of player i for an
action4 k at period t is the difference in his average payoff up to t that results
from replacing his actual past play by the constant play of action k. Hannan-
consistency thus means that all regrets are nonpositive as t goes to infinity.

In this paper we concentrate on the notion of Hannan-consistency,
rather than on its stronger conditional version which characterizes con-
vergence to the set of correlated equilibria (see Hart and Mas-Colell [16]).
This is just to focus on essentials. The extension to the conditional setup
is straightforward; see Section 5 below.5

Hannan-consistent strategies have been obtained by several authors:
Hannan [15], Blackwell [4] (see also Luce and Raiffa [20, pp. 482�483]),
Foster and Vohra [7, 9], Fudenberg and Levine [12], Freund and
Schapire [11], and Hart and Mas-Colell [16, Section 4(c)].6 The strategy
of Fudenberg and Levine [12] (as well as those of Hannan [15], Foster
and Vohra [7, 9], and Freund and Schapire [11]) is a smoothed out
version of fictitious play. (We note that fictitious play��which may be
stated as ``at each period play an action with maximal regret''��is by
itself not Hannan-consistent.) In contrast, the strategy of Hart and
Mas-Colell [16, Section 4(c)], called ``regret-matching,'' prescribes, at
each period, play probabilities that are proportional to the (positive)
regrets. That is, if we write D(k) for the regret of i for action k at time t
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3 For these and the other topics discussed in this paper, the reader is referred also to the
book of Fudenberg and Levine [13] and the survey of Foster and Vohra [10] (as well as to
the other papers in the special issue of Games and Economic Behavior 29 [1999]).

4 Think of this as the ``regret for not having played k in the past.''
5 Note that conditional regrets have been used by Foster and Vohra [8] to prove the

existence of calibrated forecasts.
6 See also Ban~ os [2] and Megiddo [21] and, in the computer science literature, Littlestone

and Warmuth [18], Auer et al. [1], and the book of Borodin and El-Yaniv [5].



(as defined above) and D+ (k) for the positive regret (i.e., D(k) when
D(k)>0 and 0 when D(k)�0), then the probability of playing action k at
period t+1 is simply D+ (k)��k$ D+ (k$).

Clearly, a general examination is called for. Smooth fictitious play and
regret-matching should be but particular instances of a whole class of
adaptive strategies with the Hannan-consistency property. In this paper we
exhibit and characterize such a class. It turns out to contain, in particular,
a large variety of new simple adaptive strategies.

In Hart and Mas-Colell [16] we have introduced Blackwell's [3]
approachability theory for games with vector payoffs as the appropriate
basic tool for the analysis: the vector payoff is simply the vector of regrets.
In this paper, therefore, we proceed in two steps. First, in Section 2, we
generalize Blackwell's result: Given an approachable set (in vector payoff
space), we find the class of (``directional'') strategies that guarantee that the
set is approached. We defer the specifics to that section. Suffice it to say
that Blackwell's strategy emerges as the particular quadratic case of a con-
tinuum of strategies where continuity and, interestingly, integrability
feature decisively.

Second, in Section 3, we apply the general theory to the regret
framework and derive an entire class of Hannan-consistent strategies. A
feature common to them all is that, in the spirit of bounded rationality,
they aim at ``better'' rather than ``best'' play. We elaborate on this aspect
and carry out an explicit discussion of fictitious play in Section 4. Section 5
discusses a number of extensions, including conditional regrets and
correlated equilibria.

2. THE APPROACHABILITY PROBLEM

2.1. Model and Main Theorem

In this section we will consider games where a player's payoffs are
vectors (rather than, as in standard games, scalar real numbers), as introduced
by Blackwell [3]. This setting may appear unnatural at first. However, it
has turned out to be quite useful: the coordinates may represent different
commodities or contingent payoffs in different states of the world (when
there is incomplete information), or, as we will see below (in Section 3),
regrets in a standard game.

Formally, we are given a game in strategic form played by a player i
against an opponent &i (which may be Nature and�or the other players).
The action sets are the finite7 sets S i for player i and S&i for &i. The
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payoffs are vectors in some Euclidean space. We denote the payoff function
by8 A: S#S i_S &i � Rm; thus A(si, s&i) # Rm is the payoff vector when i
chooses si and &i chooses s&i. As usual, A is extended bilinearly to mixed
actions, thus9 A: 2(S i)_2(S&i) � Rm.

Let time be discrete, t=1, 2, ..., and denote by st=(s i
t , s&i

t ) # S i_S &i the
actions chosen by i and &i, respectively, at time t. The payoff vector in
period t is at :=A(st), and a� t :=(1�t) �{�t a{ is the average payoff vector
up to t. A strategy10 for player i assigns to every history of play ht&1=
(s{){�t&1 # (S)t&1 a (randomized) choice of action _ i

t #_ i
t (ht&1) # 2(S i) at

time t, where [_ i
t (ht&1)](si) is, for each si in S i, the probability that i plays

si at period t following the history ht&1 .
Let C/Rm be a convex and closed11 set. The set C is approachable by

player i (cf. Blackwell [3]; see Remark 3 below) if there is a strategy of i
such that, no matter what &i does,12 dist(a� t , C) � 0 almost surely as
t � �. Blackwell's result can then be stated as follows.

Blackwell's Approachability Theorem. (1) A convex and closed
set C is approachable if and only if every half-space H containing C is
approachable.

(2) A half-space H is approachable if and only if there exists a mixed
action of player i such that the expected vector payoff is guaranteed to lie in
H; i.e., there is _i # 2(S i) such that A(_i, s&i) # H for all s&i # S&i.

The condition for C to be approachable may be restated as follows
(since, clearly, it suffices to consider in (1) only ``minimal'' half-spaces con-
taining C): For every * # Rm there exists _ i # 2(S i) such that

* } A(_i, s&i)�w(*) :=sup [* } y : y # C] for all s&i # S&i (2.1)
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8 R is the real line and Rm is the m-dimensional Euclidean space. For x=(xk)m
k=1 and

y=(xk)m
k=1 in Rm, we write x� y when xk� yk for all k, and x>> y when xk> yk for all k.

The nonnegative, nonpositive, positive, and negative orthants of Rm are, respectively, Rm
+ :=

[x # Rm : x�0], Rm
& :=[x # Rm : x�0], Rm

++ :=[x # Rm : x>>0], and Rm
&& :=[x # Rm : x<<0].

9 Given a finite set Z, we write 2(Z) for the set of probability distributions on Z, i.e., the
( |Z|&1)-dimensional unit simplex 2(Z) :=[ p # RZ

+ : �z # Z p(z)=1] (the notation |Z| stands
for the cardinality of the set Z).

10 We use the term ``action'' for a one-period choice and the term ``strategy'' for a multi-
period choice.

11 A set is approachable if and only if its closure is approachable; we thus assume without
loss of generality that the set C is closed.

12 We emphasize that the strategies of the opponents (&i) are not in any way restricted; in
particular, they may randomize and, furthermore, correlate their actions. All the results in this
paper hold against all possible strategies of &i, and thus, a fortiori, for any specific class of
strategies (like independent mixed strategies, and so on). Moreover, requiring independence
over j{i will not increase the set of strategies of i that guarantee approachability, since the
worst &i can do may always be taken to be pure (and thus independent).



(w is the ``support function'' of C; note that only those *{0 with w(*)<�
matter for (2.1)). Furthermore, the strategy constructed by Blackwell that
yields approachability uses, at each step t where the current average payoff
a� t&1 is not in C, a mixed choice _i

t satisfying (2.1) for that vector
*#*(a� t&1) which goes to a� t&1 from that point y in C that is closest to
a� t&1 (see Fig. 1). To get some intuition, note that the next-period expected
payoff vector b :=E[at | ht&1] lies in the half-space H, and thus satisfies
* } b�w(*)<* } a� t&1 , which implies that

* } (E[a� t | ht&1]&a� t&1)=* } \1
t

b+
t&1

t
a� t&1&a� t&1+=

1
t

* } (b&a� t&1)<0.

Therefore the expected average payoff E[a� t | ht&1] moves from a� t&1 in the
``general direction'' of C; in fact, it is closer than a� t&1 to C. Hence
E[a� t | ht&1] converges to C, and so does the average payoff a� t (by the Law
of Large Numbers).

Fix an approachable convex and closed set C. We will now consider
general strategies of player i which��like Blackwell's strategy above��are
defined in terms of a directional mapping, that is, a function 4: Rm"C � Rm

FIG. 1. Approaching the set C by Blackwell's strategy.
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FIG. 2. A 4-strategy.

that associates to every x � C a corresponding ``direction'' 4(x). Given such
a mapping 4, a strategy of player i is called a 4-strategy if, whenever a� t&1

does not lie in C, it prescribes using at time t a mixed action _i
t that

satisfies

4(a� t&1) } A(_i
t , s&i)�w(4(a� t&1)) for all s&i # S &i (2.2)

(see Fig. 2: a 4-strategy guarantees that, when x=a� t&1 � C, the next-
period expected payoff vector b=E[at | ht&1] lies in the smallest half-space
H with normal 4(x) that contains C); notice that there is no requirement
when a� t&1 # C. We are interested in finding conditions on the mapping 4
such that, if player i uses a 4-strategy, then the set C is guaranteed to be
approached, no matter what &i does.

We introduce three conditions on a directional mapping 4, relative to
the given set C.

(D1) 4 is continuous.

(D2) 4 is integrable, namely there exists a Lipschitz function13

P: Rm � R such that {P(x)=,(x) 4(x) for almost every x � C, where
,: Rm"C � R++ is a continuous positive function.

(D3) 4(x) } x>w(4(x)) for all x � C.
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FIG. 3. The directional mapping 4 and level sets of the potential P.

See Fig. 3. The geometric meaning of (D3) is that the point x is strictly
separated from the set C by 4(x). Note that (D3) implies that all * with
w(*)=�, as well as *=0, are not allowable directions. Also, observe that
the combination of (D1) and (D2) implies that P is continuously differen-
tiable on Rm"C (see Clarke [6, Corollary to Proposition 2.2.4 and
Theorem 2.5.1]). We will refer to the function P as the potential of 4.

The main result of this section is

Theorem 2.1. Suppose that player i uses a 4-strategy, where 4 is a
directional mapping satisfying (D1), (D2), and (D3) for the approachable
convex and closed set C. Then the average payoff vector is guaranteed to
approach the set C; that is, dist(a� t , C) � 0 almost surely as t � �, for any
strategy of &i.

Before proving the theorem (in the next subsection), we state a number
of comments.

Remarks. 1. The conditions (D1)�(D3) are independent of the game
A (they depend on C only). That is, given a directional mapping 4 satisfying
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(D1)�(D3), a 4-strategy is guaranteed to approach C for any game A for
which C is approachable (of course, the specific choice of action depends
on A, according to (2.2)). It is in this sense that we refer to the 4-strategies
as ``universal.''

2. The action sets Si and S &i need not be finite; as we will see in the
proof, it suffices for the range of A to be bounded.

3. As in Blackwell's result, our proof below yields uniform approach-
ability: For every = there is t0 #t0 (=) such that E [dist(a� t , C)]<= for all
t>t0 and all strategies of &i (i.e., t0 is independent of the strategy of &i).

4. The conditions on P are invariant under strictly increasing
monotone transformations (with positive derivative); that is, only the level
sets of P matter.

5. If the potential P is a convex function and C=[ y : P( y)�c] for
some constant c, then (D3) is automatically satisfied: P(x)>P( y) implies
{P(x) } x>{P(x) } y.

6. Given a norm & }& on Rm, consider the resulting ``distance from C ''
function P(x) :=miny # C &x& y&. If P is a smooth function (which is
always the case when either the norm is smooth��i.e., the corresponding
unit ball has smooth boundary��or when the boundary of C is smooth),
then the mapping 4={P satisfies (D1)�(D3) (the latter by the previous
Remark 5). In particular, the Euclidean l2-norm yields precisely the
Blackwell strategy, since then {P(x) is proportional to x& y(x), where y(x)
# C is the point in C closest to x. The lp -norm is smooth for 1<p<�;
therefore it yields strategies that guarantee approachability for any
approachable set C. However, if the boundary of C is not smooth��for
instance, when C is an orthant, an important case in applications��then
(D1) is not satisfied in the extreme cases p=1 and p=� (see Fig. 4; more
on these two cases below).

FIG. 4. The lp -potential for an orthant C.
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7. When C=Rm
& and P is given by (D2), condition (D3) becomes

{P(x) } x>0 for every x � C, which means that P is increasing along any
ray from the origin that goes outside the negative orthant.

2.2. Proof of Theorem 2.1

We begin by proving two auxiliary results. The first applies to functions
Q that satisfy conditions similar to but stronger than (D1)�(D3); the
second allows us to reduce the general case to such a Q. The set C, the
mappings 4 and P, and the strategy of i (which is a 4-strategy) are fixed
throughout. Also, let K be a convex and compact set containing in its
interior the range of A (recall that S is finite).

Lemma 2.2. Let Q: Rm � R be a continuously differentiable function that
satisfies

(i) Q(x)�0 for all x;

(ii) Q(x)=0 for all x # C;

(iii) {Q(x) } x&w({Q(x))�Q(x) for all x # K"C; and

(iv) {Q(x) is nonnegatively proportional to 4(x) (i.e., {Q(x)=,(x)
4(x) where ,(x)�0) for all x � C.

Then limt � � Q(a� t)=0 a.s. for any strategy of &i.

Proof. We have a� t&a� t&1=(1�t)(at&a� t&1); thus, writing x for a� t&1 ,

Q(a� t)=Q(x)+{Q(x) }
1
t

(at&x)+o \1
t+ , (2.3)

since Q is (continuously) differentiable. Moreover, the remainder o(1�t) is
uniform, since all relevant points lie in the compact set K. If x � C then
player i plays at time t so that

{Q(x) } E[at | ht&1]�w({Q(x)) (2.4)

(by (2.2) and (iv)); if x # C then {Q(x)=0 (by (i) and (ii)), and (2.4) holds
too. Taking conditional expectation in (2.3) and then substituting (2.4)
yields

E[Q(a� t) | ht&1]�Q(x)+
1
t

w({Q(x))&{Q(x) } x)+o \1
t+

�Q(x)&
1
t

Q(x)+o \1
t+ ,
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where we have used (iii) when x � C and (i), (ii) when x # C. Thus

E[Q(a� t) | ht&1]�
t&1

t
Q(a� t&1)+o \1

t+ .

This may be rewritten as14

E[`t | ht&1]�o(1), (2.5)

where `t :=tQ(a� t)&(t&1) Q(a� t&1). Hence lim supt�� (1�t) �{�t E[`{ | h{&1]
�0. The Strong Law of Large Numbers for Dependent Random Variables
(see Loe� ve [19, Theorem 32.1.E]) implies that (1�t) �{�t (`{&E[`{ | h{&1])
� 0 a.s. as t � � (note that the `t 's are uniformly bounded, as can
be immediately seen from (2.3), `t=Q(a� t&1)+{Q(a� t&1) } (at&a� t&1)
+o(1), and from the fact that everything happens in the compact set K).
Therefore lim supt � � (1�t) �{�t `{�0. But 0�Q(a� t)=(1�t) �{�t `{ , so
limt � � Q(a� t)=0. K

Lemma 2.3. The function P satisfies:

(c1) If the boundary of C is connected, then there exists a constant c
such that

P(x)=c, if x # bd C;

P(x)>c, if x � C.

(c2) If the boundary of C is not connected, then there exists a
* # Rm"[0] such that15 C = [x # Rm : &w(&*) � * } x � w(*)] (where
w(*)<� and w(&*)<�), and there are constants c1 and c2 such that

P(x)=c1 , if x # bd C and * } x=w(*);

P(x)=c2 , if x # bd C and (&*) } x=w(&*);

P(x)>c1 , if x � C and * } x>w(*);

P(x)>c2 , if x � C and (&*) } x>w(&*).

Proof. Let x0 , x1 # bd C and denote by *j , for j=0, 1, an outward unit
normal to C at xj ; thus &*j &=1 and *j } xj=w(*j).
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14 Recall that the remainder term o(1�t) was uniform; that is, for every =>0 there is t0 (=)
such that o(1)<= is guaranteed for all t>t0 (=).

15 This is a general fact about convex sets: The only case where the boundary of a convex
closed set C/Rm is not path-connected is when C is the set of points lying between two
parallel hyperplanes. We prove this in Steps 1�3 below, independently of the function P.



Step 1. If *1 { &*0 , we claim that there is a path on bd C connect-
ing x0 and x1 , and moreover that P(x0)=P(x1). Indeed, there exists a
vector16 z # Rm such that *0 } z>0 and *1 } z>0. The straight line segment
connecting x0 and x1 lies in C; we move it in the direction z until it
reaches the boundary of C. That is, for each ' # [0, 1], let y(') :=
'x1+(1&') x0+:(') z, where :(') :=max[; : 'x1+(1&') x0+;z # C];
this maximum exists by the choice of z. Note that y( } ) is a path on bd C

connecting x0 and x1 .
It is easy to verify that :(0)=:(1)=0 and that :: [0, 1] � R+ is a con-

cave function, and thus differentiable a.e. For each k=1, 2, ..., define
yk (') :=y(')+(1�k) z; then yk ( } ) is a path in Rm"C, the region where P is
continuously differentiable. Let '� # (0, 1) be a point of differentiability of
:( } ), thus also of y( } ), yk ( } ), and P( yk ( } )); we have dP( yk ('� ))�d'
={P( yk ('� )) } y$k ('� )={P( yk ('� )) } y$('� ). By (D3), {P( yk ('� )) } yk ('� )>
w({P( yk ('� )))�{P( yk ('� )) } y(') for any ' # [0, 1] (the second inequality
since y(') # C). Thus, for any accumulation point q of the bounded17 sequence
({P( yk ('� )))�

k=1 we get q } y('� )�q } y(') for all ' # [0, 1]. Therefore q } y(')
is maximized at '='� , which implies that q } y$('� )=0. This holds for any
accumulation point q, hence limk � � dP( yk ('� ))�d'=0 for almost every '� .
Therefore

P(x1)&P(x0)=P( y(1))&P( y(0))=lim
k

[P( yk (1))&P( yk (0))]

=lim
k |

1

0

dP( yk ('))
d'

d'=|
1

0
lim

k

dP( yk ('))
d'

d'=0

(again, P is Lipschitz, so dP( yk ('))�d' are uniformly bounded).

Step 2. If *1=&*0 and there is another boundary point x2 with out-
ward unit normal *2 different from both &*0 and &*1 , then we get paths
on bd C connecting x0 to x2 and x1 to x2 , and also P(x0)=P(x2) and
P(x1)=P(x2)��thus we get the same conclusion as in Step 1.

Step 3. If *1=&*0 and no x2 and *2 as in Step 2 exist, it follows that
the unit normal to every point on the boundary of C is either *0 or &*0 ;
thus C is the set bounded between the two parallel hyperplanes *0 }
x=w(*0) and &*0 } x=w(&*0). In particular, the boundary of C is not
connected, and we are in Case (c2). Note that in this case when x0 and x1

lie on the same hyperplane then P(x0)=P(x1) by Step 1 (since *1=
*0 {&*0).
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Step 4. If it is case (c1)��thus not (c2)��then the situation of Step 3
is not possible; thus for any two boundary points x0 and x1 we get
P(x0)=P(x1) by either Step 1 or Step 2.

Step 5. Given x � C, let x0 # bd C be the point in C that is closest to
x. Then the line segment from x to x0 lies outside C, i.e., y(') :=
'x+(1&') x0 � C for all ' # (0, 1]. By (D3) and x0 # C, it follows that
{P( y(')) } y(')>w({P( y(')))�{P( y(')) } x0 , or, after dividing by '>0,
that {P( y(')) } (x&x0)>0, for all ' # (0, 1]. Hence P(x)&P(x0)=
�1

0 {P( y(')) } y$(') d'=�1
0 {P( y(')) } (x&x0) d'>0, showing that P(x)>c

in Case (c1) and P(x)>c1 or P(x)>c2 in Case (c2). K

We can now prove the main result of this section.

Proof of Theorem 2.1. First, use Lemma 2.3 to replace P by P1 as
follows: When the boundary of C is connected (Case (c1)), define
P1 (x) :=(P(x)&c)2 for x � C and P1 (x) :=0 for x # C; when the boundary
of C is not connected (Case (c2)), define P1 (x) :=(P(x)&c1)2 for x � C

with * } x>w(*), P1 (x) :=(P(x)&c2)2 for x � C with (&*) } x>w(&*),
and P1 (x) :=0 for x # C. It is easy to verify: P1 is continuously differen-
tiable; {P1 (x) is positively proportional to {P(x) and thus to 4(x) for
x � C; P1 (x)�0 for all x; and P1 (x)=0 if and only if x # C.

Given =>0, let k�2 be a large enough integer such that

{P1 (x) } x&w({P1 (x))
P1 (x)

�
1
k

(2.6)

for all x in the compact set K & [x : P1 (x)�=] (the minimum of the above
ratio is attained and it is positive by (D3)). Put18 Q(x) :=([P1 (x)&=]+)k.
Then Q is continuously differentiable (since k�2) and it satisfies all the
conditions of Lemma 2.2. To check (iii): When Q(x)=0 we have {Q(x)=0,
and when Q(x)>0 we have

{Q(x) } x&w({Q(x))=k(P1 (x)&=)k&1 [{P1 (x) } x&w({P1 (x))]

�(P1 (x)&=)k&1 P1 (x)

�Q(x)

(the first inequality follows from (2.6)).
By Lemma 2.2, it follows that the 4-strategy guarantees a.s.

limt � � Q(a� t)=0, or lim supt � � P1 (a� t)�=. Since =>0 is arbitrary, this
yields a.s. limt � � P1 (a� t)=0 or a� t � C. K
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Remark. P may be viewed (up to a constant, as in the definition of P1

above) as a generalized distance to the set C (compare with Remark 6 in
Subsection 2.1).

2.3. Counterexamples

In this subsection we provide counterexamples showing the indispen-
sability of the conditions (D1)�(D3) for the validity of Theorem 2.1. The
first two examples refer to (D1), the third to (D2), and the last one to
(D3).

Example 2.4. The role of (D1): Consider the following two-dimen-
sional vector payoff matrix A

C1 C2

R1 (0, &1) (0, 1)

R2 (1, 0) (&1, 0)

Let i be the Row player and &i the Column player. The set C :=R2
& is

approachable by the Row player since w(*)<� whenever *�0, and then
the mixed action _Row (*) :=(*1 �(*1+*2), *2 �(*1+*2)) of the Row player
yields * } A(_Row (*), #)=0=w(*) for any action # of the Column player.

We define a directional mapping 4� on R2"R2
& ,

4� (x) :={(1, 0),
(0, 1),

if x1>x2 ;
if x1�x2 .

Clearly 4� is not continuous, i.e., it does not satisfy (D1); it does however
satisfy (D3) and (D2) (with P(x)=max[x1 , x2], the l� -potential; see
Remark 6 in Subsection 2.1). Consider a 4� -strategy for the Row player
that, when x :=a� t&1 � C, plays _Row (4� (x)) at time t; that is, he plays R1
when x1>x2 , and R2 when x1�x2 . Assume that the Column player
plays19 C2 when x1>x2 and C1 when x1�x2 . Then, starting with, say,
a1=(0, 1) � C, the vector payoff at will always be either (0, 1) or (1, 0),
thus on the line x1+x2=1, so the average a� t does not converge to
C=R2

& .
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Example 2.5. The role of (D1), again: The same as in Example 2.4, but
now the directional mapping is 41 , defined on R2"R2

& by

(1, 1), if x1>0 and x2>0;

41 (x) :={(1, 0), if x1>0 and x2�0;

(0, 1), if x1�0 and x2>0.

Again, the mapping 41 is not continuous��it does not satisfy (D1)��but it
satisfies (D3) and (D2) (with P(x) :=[x1]++[x2]+ , the l1-potential).
Consider a 41 -strategy for the Row player where at time t he plays
_Row (41 (x)) when x :=a� t&1 � C, and assume that the Column player plays
C1 when x1�0 and x2>0, and plays C2 otherwise. Thus, if x � C then
at is

FIG. 5. The deterministic dynamic in Example 2.4.
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v (0, 1) or (&1, 0) with equal probabilities, when x1>0 and x2>0;

v (0, 1), when x1>0 and x2�0;

v (1, 0), when x1�0 and x2>0.

In all cases the second coordinate of at is nonnegative; therefore, if we
start with, say, a1=(0, 1) � C, then, inductively, the second coordinate
of a� t&1 will be strictly positive, so that a� t&1 � C for all t. But then
E[at | ht&1] # D :=conv[(&1�2, 1�2), (0, 1), (1, 0)], and D is disjoint from
C and at a positive distance from it. Therefore (1�t) �{�t E [a{ | h{&1] # D

and so, by the Strong Law of Large Numbers, lim a� t=lim (1�t) �{�t a{

# D too (a.s.), so a� t does not approach20 C.
To get some intuition, consider the deterministic system where at is

replaced by E[at | ht&1]. Then the point (0, 1�3) is a stationary point for
this dynamic. Specifically (see Fig. 5), if a� t&1 is on the line segment joining
(&1�2, 1�2) with (1, 0), then E[a� t | ht&1] will be there too, moving toward
(&1�2, 1�2) when a� t&1 is in the positive orthant and toward (1, 0) when it
is in the second orthant.

Example 2.6. The role of (D2): Consider the following two-dimen-
sional vector payoff matrix A

C1 C2 C3 C4

R1 (0, 1) (0, 0) (0, &1) (0, 0)

R2 (&1, 0) (0, 0) (1, 0) (0, 0)

R3 (0, 0) (0, &1) (0, 0) (0, 1)
.

R4 (0, 0) (&1, 0) (0, 0) (1, 0)

Again, the Row player is i and the Column player is &i. Let C :=[(0, 0)].
For every * # R2"[(0, 0)], put +1 :=|*1|�( |*1|+|*2 | ) and +2 :=|*2 |�( |*1|+
|*2 | ) and define a mixed action _Row (*) for the Row player and a pure
action c(*) for the Column player, as follows:

v If *1�0 and *2�0 then _Row (*) :=(+1 , +2 , 0, 0) and c(*) :=C1.

v If *1<0 and *2�0 then _Row (*) :=(0, 0, +1 , +2) and c(*) :=C2.
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v If *1<0 and *2<0 then _Row (*) :=(+1 , +2 , 0, 0) and c(*) :=C3.

v If *1�0 and *2<0 then _Row (*) :=(0, 0, +1 , +2) and c(*) :=C4.

It is easy to verify that in all four cases:

(a1) * } A(_Row (*), #)�0=w(*) for any action # of the column
player; and

(a2) A(_Row (*), c(*))=( |*1|+|*2 | )&1 *� , where *� :=(&*2 , *1).

Condition (a1) implies, by (2.1), that C is approachable by the Row player;
and Condition (a2) means that A(_Row (*), c(*)) is 90% counterclockwise
from *.

Consider now the directional mapping 4 given by 4(x) :=(x1+:x2 ,
x2&:x1), where :>0 is a fixed constant.21 Then (D1) and (D3) hold (for
the latter, we have x } 4(x)=(x1)2+(x2)2>0=w(4(x)) for all x � C), but
integrability (D2) is not satisfied. To see this, assume that {P(x)=,(x)
4(x) for all x � C, where ,(x)>0 is a continuous function. Consider the
path y(') :=(sin ', cos ') for ' # [0, 2?]. We have 0=P( y(2?))&P( y(0))
=�2?

0 (dP( y('))�d') d'=�2?
0 {P( y(')) } y$(') d'. But the integrand equals

(,( y('))) (sin '+: cos ', cos '&: sin ') } (cos ', &sin ')=:,( y(')) which
is everywhere positive, a contradiction.

We claim that if the Row player uses the 4-strategy where at time t he
plays22 _Row (4(a� t&1)), and if the Column player chooses c(4(a� t&1)), then
the distance to the set C=[(0, 0)] does not approach 0. Indeed, let
bt := E[at | ht&1]; then the strategies played imply that the vector
bt=A(_Row (4(a� t&1)), c(4(a� t&1))) is perpendicular to 4(a� t&1) and makes
an acute angle with the vector a� t&1 . Specifically,23 bt } a� t&1=; &bt&&a� t&1&,
where ; :=:�- 1+:2�1. Therefore

(E[t &a� t& | ht&1])2�&E[ta� t | ht&1]&2

=(t&1)2 &a� t&1&2+2(t&1) bt } a� t&1+&bt &2

�(t&1)2 &a� t&1&2+2(t&1) ; &bt &&a� t&1&+;2 &bt &2

=((t&1) &a� t&1&+; &bt&)2.
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21 This will provide a counterexample for any value of :, showing that it is not an isolated
phenomenon.

22 For all * except those on the two axes (i.e., *1=0 or *2=0), the mixed action _Row (*)
is uniquely determined by (2.2). If the Row player were to play in these exceptional cases
another mixed action satisfying (2.2), it is easy to verify that the Column player could respond
appropriately so that C is not approached. Thus, no 4-strategy guarantees approachability.

23 Writing b for bt ; x for a� t&1 ; and * for 4(a� t&1)=4(x), we have x=(1+:2)&1 (*+:*� )
(recall the definition of 4 and invert), thus b } x=(|*1|+|*2 | )&1 *� } (1+:2)&1 (*+:*� )=
:(1+:2)&1 ( |*1|+|*2 | )&1 &*&2 (we have used (a2), * } *� =0, and &*&=&*� &). Now &b&=(|*1|
+|*2 | )&1 &*& and &x&=(1+:2)&1�2 &*&, thus completing the proof.



Now &bt &�1�- 2 (for instance, see (a2)), and we have thus obtained

E[t &a� t &&(t&1) &a� t&1& | ht&1]�;�- 2>0,

from which it follows that lim inf &a� t&=lim inf(1�t) �{�t [{ &a� {&&({&1)
&a� {&1&]�;�- 2>0 a.s., again by the Strong Law of Large Numbers. Thus
the distance of the average payoff vector a� t from the set C=[(0, 0)] is,
with probability one, bounded away from 0 from some time on.

To get some intuition for this result, note that direction of movement
from a� t&1 to E[a� t | ht&1] is at a fixed angle % # (0, ?�2) from a� t&1 , which,
if the dynamic were deterministic, would generate a counterclockwise spiral
that goes away from (0, 0).

Example 2.7. The role of (D3): Consider the two-dimensional vector
payoff matrix A

R1 (0, 1)

R2 (&1, 0)

(where i is the Row player and &i has one action). The set C := R2
& is

approachable by the Row player (by playing ``R2 forever''). Consider the
directional mapping 4 defined on R2"R2

& by 4(x) :=(1, 0). Then (D1) and
(D2) are satisfied (with P(x) :=x1), but (D3) is not: 4(0, 1) } (0, 1)=0=
w(4(0, 1)). Playing ``R1 forever'' is a 4-strategy, but the payoff is (0, 1) � C.

3. REGRETS

3.1. Model and Preliminary Results

In this section we consider standard N-person games in strategic form
(with scalar payoffs for each player). The set of players is a finite set N, the
action set of each player i is a finite set S i, and the payoff function of i is
ui: S � R, where S :=> j # N S j; we will denote this game (N, (S i) i , (ui) i)
by 1.

As in the previous section, the game is played repeatedly in discrete time
t=1, 2, ...; denote by s i

t # S i the choice of player i at time t, and put
st=(s i

t) i # N # S. The payoff of i in period t is U i
t :=u i (st), and U� i

t :=
(1�t) �{�t U i

{ is his average payoff up to t.
Fix a player i # N. Following Hannan [15], we consider the regrets of

player i; namely, for each one of his actions k # S i, the change in his average
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payoff if he were always to choose k (while no one else makes any change
in his realized actions):

D i
t (k) :=

1
t

:
t

{=1

ui (k, s&i
{ )&U� i

t=ui (k, z&i
t )&U� i

t ,

where z&i
t # 2(S &i) is the empirical distribution of the actions chosen by

the other players in the past.24 A strategy of player i is called Hannan-
consistent if, as t increases, all regrets are guaranteed��no matter what the
other players do��to become almost surely nonpositive in the limit; that is,
with probability one, lim supt � � D i

t (k)�0 for all k # S i.
Following Hart and Mas-Colell [16], it is useful to view the regrets of

i as an m-dimensional vector payoff, where m :=|S i|. We thus define
A#Ai: S � Rm, the i-regret vector-payoff game associated to 1, by

Ak (si, s&i) :=ui (k, s&i)&ui (si, s&i) for all k # S i,

and

A(si, s&i) :=(Ak (si, s&i))k # S i ,

for all s=(si, s&i) # S i_S&i=S. Rewriting the regret as

D i
t (k)=

1
t

:
{�t

[ui (k, s&i
{ )&ui (s i

{ , s&i
{ )]

shows that the vector of regrets at time t is just the average of the A vector
payoffs in the first t periods: D i

t=(1�t) �{�t A(s{). The existence of a
Hannan-consistent strategy in 1 is thus equivalent to the approachability
by player i of the nonpositive orthant RSi

& in the vector-payoff game A, and
a strategy is Hannan-consistent if and only if it guarantees that RSi

& is
approached.

We now present two important results that apply in all generality to the
regret setup.

Proposition 3.1. For any ( finite) N-person game 1, the nonpositive
orthant RSi

& is approachable by player i in the i-regret vector-payoff
associated game.

This proposition follows immediately from the next one. Observe that
the approachability of RSi

& is equivalent, by the Blackwell condition (2.1),
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24 That is, z&i
t (s&i) :=|[{�t : s&i
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to the following: For every * # 2(S i) there exists _i (*) # 2(S i), a mixed
action of player i, such that

* } A(_i (*), s&i)�0 for all s&i # S &i (3.1)

(indeed, w(*) equals 0 for *�0 and it is infinite otherwise). That is, the
expected regret obtained by playing _i (*) lies in the half-space (through the
origin) with normal *. In this regret setup, the mixture _i (*) may actually
be chosen in a simple manner:

Proposition 3.2. For any ( finite) N-person game 1 and every * # 2(S i),
condition (3.1) is satisfied by _i (*)=*.

Proof. Given * # 2(S i), a _i#(_ i
k)k # Si # 2(S i) satisfies (3.1) if and only if

:
k # Si

*k :
j # S i

_ i
j [ui (k, s&i)&ui ( j, s&i)]�0 (3.2)

for all s&i # S &i. This may be rewritten as

:
k # Si

u i (k, s&i) \*k :
j # S i

_ i
j&_ i

k :
j # S i

*j+= :
k # S i

ui (k, s&i)(*k&_ i
k)�0.

Therefore, by choosing _i so that all coefficients in the square brackets
vanish��that is, by choosing _ i

k=*k��we guarantee (3.2) and thus (3.1) for
all s&i. K

3.2. Regret-Based Strategies

The general theory of Section 2 is now applied to the regret situation.
A stationary regret-based strategy for player i is a strategy of i such that
the choices depend only on i 's regret vector; that is, for every history ht&1 ,
the mixed action of i at time t is a function25 of D i

t&1 only: _ i
t=

_i (D i
t&1) # 2(S i). The main result of this section is

Theorem 3.3. Consider a stationary regret-based strategy of player i
given by a mapping _i: RS i

� 2(S i) that satisfies the following:

(R1) There exists a continuously differentiable function P: RSi
� R

such that _ i (x) is positively proportional to {P(x) for every x � RSi

& ; and

(R2) _i (x) } x>0 for every x � RS i

& .

Then this strategy is Hannan-consistent for any ( finite) N-person game.
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Proof. Apply Theorem 2.1 for C=RSi

& together with Propositions 3.1
and 3.2: (D1) and (D2) yield (R1), and (D3) yields (R2). K

We have thus obtained a wide class of strategies that are Hannan-con-
sistent. It is noteworthy that these are ``universal'' strategies: the mapping
_i is independent of the game (see also the ``variable game'' case in
Section 5).

Condition (R2) says that when D i
t&1 � RS i

&��i.e., when some regret is
positive��the mixed choice _ i

t of i satisfies _ i
t } D i

t&1>0. This is equivalent to

ui (_ i
t , z&i

t&1)>U� i
t&1 . (3.3)

That is, the expected payoff of i from playing _ i
t against the empirical dis-

tribution z&i
t&1 of the actions chosen by the other players in the past is

higher than his realized average payoff. Thus _ i
t is a better reply, where

``better'' is relative to the obtained payoff. By comparison, fictitious play
always chooses an action that is a best reply to the empirical distribution
z&i

t&1 . For more on this ``better vs best'' issue, see Subsection 4.2 below and
Hart and Mas-Colell [16, Section 4(e)].

We now describe a number of interesting special cases, in order of
increasing generality.

1. l2-potential: P(x)=(�k # Si ([xk]+)2)1�2. This yields (after normaliza-
tion) 4(x)=(1�&[x]+&1)[x]+ for x � RSi

& , and the resulting strategy is _ i
t(k)

=[Di
t&1 (k)]+��k$ # Si [Di

t&1 (k$)]+ when Di
t&1 � RSi

& . This is the Hannan-
consistent strategy introduced in Hart and Mas-Colell [16, Theorem B],
where the play probabilities are proportional to the positive regrets.

2. lp -potential: P(x)=(�k # Si ([xk]+) p)1�p for some 1<p<�. This
yields _i

t (k)=([Di
t&1 (k)]+) p&1��k$ # Si ([D i

t&1 (k$)]+) p&1, i.e., play proba-
bilities that are proportional to a fixed positive power ( p&1>0) of the
positive regrets.

3. Separable potential: A separable strategy is one where _ i
t is propor-

tional to a vector whose kth coordinate depends only on the kth regret; i.e.,
_i

t is proportional to a vector of the form (�k (D i
t&1 (k)))k # S i . Conditions

(R1) and (R2) result in the following requirements:26 For each k in S i, the
function �k : R � R is continuous; �k (xk)>0 for xk>0; and �k (xk)=0
for xk�0. The corresponding potential is P(x)=�k # Si 9k (xk), where
9k (x) :=�x

&� �k ( y) dy. Note that, unlike the previous two cases, the func-
tions �k may differ for different k, and they need not be monotonic (thus
a higher regret may not lead to a higher probability).
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Finally, observe that in all of the above cases, actions with negative or
zero regret are never chosen. This need no longer be true in the general
(nonseparable) case; see Subsection 4.2 below.

3.3. Counterexamples

The counterexamples of Subsection 2.3 translate easily into the regret
setup.

v The role of ``better'' (R2). Consider the one-person game

R1 0

R2 1
.

The resulting regret game is given in Example 2.7. The strategy of playing
``R1 forever'' satisfies condition (R1) but not condition (R2) (or (3.3)), and
it is indeed not Hannan-consistent.

v The role of continuity in (R1). Consider the simplest two-person
coordination game (a well-known stumbling block for many strategies)

C1 C2

R1 (1, 1) (0, 0)

R2 (0, 0) (1, 1)
.

The resulting regret game for the Row player is precisely the vector-payoff
game of Examples 2.4 and 2.5, where we looked at the approachability
question for the nonpositive orthant. The two strategies we considered there
��which we have shown not to be Hannan-consistent��are not continuous.
They correspond to the l� - and the l1 -potentials, respectively, which are
not differentiable. (Note in particular that the l� -case yields ``fictitious
play,'' which is further discussed in Subsection 4.1 below.)

v The role of integrability in (R1). The vector-payoff game of our
Example 2.6 can easily be seen to be a regret game. However, the
approachable set there was not the nonpositive orthant. In order to get a
counterexample to the result of Theorem 3.3 when integrability is not
satisfied, one would need to resort to additional dimensions, that is, more
than two strategies; we do not do it here, although it is plain that such
examples are easy��though painful��to construct.
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4. FICTITIOUS PLAY AND BETTER PLAY

4.1. Fictitious Play and Smooth Fictitious Play

As we have already pointed out, fictitious play may be viewed as a
stationary regret-based strategy, corresponding to the l� -mapping (the
directional mapping generated by the l� -potential). It does not guarantee
Hannan-consistency (see Example 2.4 and Subsection 3.3); the culprit for
this is the lack of continuity (i.e., (D1)).

Before continuing the discussion it is useful to note a property of fic-
titious play: The play at time t does not depend on the realized average
payoff U� i

t&1 . Indeed, maxk D i
t&1 (k) = maxk ui (k, z&i

t&1) & U� i
t&1 , so an

action k # S i maximizes regret if and only if it maximizes the payoff against
the empirical distribution z&i

t&1 of the actions of &i. In the general
approachability setup of Section 2 (with C=RS i

&), this observation trans-
lates into the requirement that the directional mapping 4 be invariant to
adding the same constant to all coordinates. That is, writing e :=
(1, 1, ..., 1) # RS i

,

4(x)=4( y) for any x, y � RSi

& with x& y=:e for some scalar :.

(4.1)

Note that, as it should be, the l� -mapping satisfies this property (4.1).

Proposition 4.1. A directional mapping 4 satisfies (D2), (D3), and
(4.1) for C=Rm

& if and only if it is equivalent to the l� -mapping, i.e., its
potential P satisfies P(x)=,(maxk xk) for some strictly increasing function ,.

Proof. Since C=Rm
& , the allowable directions are *�0, *{0. Thus

{P(x)�0 for a.e. x � Rm
& by (D2), implying that the limit of {P(x) } x is

�0 as x approaches the boundary of Rm
& . But {P(x) } x>0 for a.e. x � Rm

&

by (D3), implying that the limit of {P(x) } x is in fact 0 as x approaches
bd Rm

& . Because P is Lipschitz, it follows that P is constant on bd Rm
& , i.e.,

P(x)=P(0) for every x # bd Rm
& . By (D3) again we have P(x)>P(0) for all

x � Rm
& . Adding to this the invariance condition (4.1) implies that the level

sets of P are all translates by multiples of e of bd Rm
&=[x # Rm :

maxk xk=0]. K

Since the l� -mapping does not guarantee that C=Rm
& is approached

(again, see Example 2.4 and Subsection 3.3), we have

Corollary 4.2. There is no stationary regret-based strategy that satisfies
(R1) and (R2) and is independent of realized average payoff.
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FIG. 6. The level sets of the potential of smooth fictitious play.

The import of the corollary (together with the indispensability of condi-
tions (R1) and (R2), as shown by the counterexamples in Subsection 3.3)
is that one cannot simultaneously have independence of realized payoffs
and guarantee Hannan-consistency in every game.

We must weaken one of the two properties. One possibility is to weaken
the consistency requirement to =-consistency, lim supt Di

t(k)�= for all k.
Fudenberg and Levine [12] propose a smoothing of fictitious play
that��like fictitious play itself��is independent of realized payoffs. In
essence, their function P is convex, smooth, and satisfies the property that
its level sets are obtained from each other by translations along the
e=(1, ..., 1) direction27 (see Fig. 6). The level set of P through 0 is therefore
smooth; it is very close to the boundary of the negative orthant but
unavoidably distinct from it. The resulting strategy approaches C=
[x : P(x) � P(0)] (recall Remark 5 in Subsection 2.1 : a set of the form
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[x : P(x)�c], for constant c, is approachable when c�P(0)��since it
contains RSi

&��and is not approachable when c<P(0)��since it does not
contain 0). The set C is strictly larger than RS i

& ; it is an =-neighborhood
of the negative orthant RS i

� . Thus one obtains only =-consistency.28 29

The other possibility is to allow the strategy to depend also on the
realized payoffs. Then there are strategies that are close to fictitious play
and guarantee Hannan-consistency in any game. Take, for instance, the
lp -potential strategy for large enough p (see Subsection 3.2).30

4.2. Better Play

All the examples presented until now satisfy an additional natural
requirement, namely, that only actions with positive regret are played
(provided, of course, that there are such actions). Formally, consider a
stationary regret-based strategy of player i that is given by a mapping
_i: RSi

� 2(S i) (see Theorem 3.3); we add to (R1) and (R2) the following
condition:31

(R3) For every x � RSi

&& , if xk<0 then [_i (x)]k=0.

Since x is the i-regret vector, (R3) means that _i gives probability 1 to
the set of actions with nonnegative regret (unless all regrets are negative,
in which case there is no requirement32). This may be rewritten as

[_ i
t]k>0 only if ui (k, z&i

t&1)�U� i
t&1 . (4.2)

That is, only those actions k are played whose payoff against the empirical
distribution z&i

t&1 of the opponents' actions is at least as large as the actual
realized average payoff U� i

t&1 ; in short, only the ``better actions.''33 For an
example where (R3) is not satisfied, see Fig. 7.
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28 Other smoothings have been proposed, including Hannan [15], Foster and Vohra [7,
9], and Freund and Schapire [11] (in the latter��which corresponds to exponential smoothing
��the strategy is nonstationary, i.e., it depends not only on the point in regret space but also
on the time t; of course, nonstationary strategies where = decreases with t may yield exact
consistency).

29 Smooth fictitious play may be equivalently viewed, in our framework, as first taking a
set C that is close to the negative orthant and has smooth boundary, and then using the
l� -distance from C as a potential (recall Remark 6 in Subsection 2.1).

30 This amounts to smoothing the norm and keeping C equal to the negative orthant,
whereas the previous construction smoothed the boundary of C and kept the l�-norm.
These are the two ``dual'' ways of generating a smooth potential (again, see Remark 6 in
Subsection 2.1).

31 Note that the condition needs to be satisfied not only for x � RS i

& , but also for x # bd RS i

& .
32 See Footnote 34 below.
33 Observe that (R2) (or (3.3)) is a requirement on the average over all played actions k,

whereas (R3) (or (4.2)) applies to each such k separately.



FIG. 7. (R3) is not satisfied.

The lp -potential strategies, for 1<p<�, and in fact all separable
strategies (see Subsection 3.2) essentially34 satisfy (R3). Fictitious play
(with the l�-potential) also satisfies (R3): the action chosen is a ``best'' one
(rather than just ``better''). At the other extreme, the l1-potential strategy
gives equal probability to all better actions, so it also satisfies (R3).
(However, these last two do not satisfy (R1).)

Using condition (R3) yields the following result, which is a generaliza-
tion of Theorem A of Monderer et al. [22] for fictitious play:

Proposition 4.3. Consider a stationary regret-based strategy of player i
given by a mapping _i: RS i

� 2(S i) that satisfies35 (R3). Then, in any ( finite)
N-person game, the maximal regret of i is always nonnegative:

max
k # S i

Di
t(k)�0 for all t.
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34 The condition in (R3) is automatically satisfied in these cases for x � RS i
; one needs to

impose it explicitly for x # bd RS i

& (where, until now, we had no requirements).
35 Note that (R1) and (R2) are not assumed.



Proof. The proof is by induction, starting with D i
0(k)=0 for all k.

Assume that maxk D i
t&1(k)�0 (or D i

t&1 � RS i

&&). By (R3), D i
t&1(k)�0 for

any k chosen at time t; since Ak (k, s&i
t )=0 it follows that D i

t(k)=
(1�t)((t&1) D i

t&1(k)+t0)�0. K

Thus, the vector of regrets never enters the negative orthant.36 Recall
that the result of Theorem 3.3 is that the vector of regrets approaches the
nonpositive orthant. To combine the two, we define better play as any
stationary regret-based strategy of player i that is given by a mapping _ i

satisfying (R1)�(R3). We thus have

Corollary 4.4. In any ( finite) N-person game, if player i uses a better
play strategy, then his maximal regret converges to 0 a.s.

lim
t � �

max
k # Si

D i
t(k)= lim

t � �
(max

k # S i
u i (k, z&i

t )&U� i
t)=0 a.s.

That is, the average payoff U� i
t of player i up to time t is close, as t � �,

to i 's best-reply payoff against the empirical distribution of the other
players' actions. In particular, in a two-person zero-sum game we obtain
the following.

Corollary 4.5. In any ( finite) two-person zero-sum game, if both
players use better-play strategies, then:

(i) For each player the empirical distribution of play converges to the
set of optimal actions.37

(ii) The average payoff converges to the value of the game.

Proof. Let 1 be the maximizer and 2 the minimizer, and denote by v
the minimax value of the game. Then maxk # S1 u1 (k, z2

t )�v, so by
Corollary 4.4 we have lim inft U� 1

t �v. The same argument for player 2
yields the opposite inequality, thus limt U� 1

t =v. Therefore limt maxk # S1

u1 (k, z2
t )=v (apply the Corollary again), hence any limit point of

the sequence z2
t must be an optimal action of player 2; similarly for

player 1. K

Thus, better play enjoys the same properties as fictitious play in two-
person zero-sum games (for fictitious play, see Robinson [24] for the con-
vergence to the set of optimal strategies, and Monderer et al. [22,
Theorem B] and Rivie� re [23] for the convergence of the average payoff).
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36 Therefore, at every period there are always actions with nonnegative regret��out of which
the next action is chosen (and so the condition x � RS i

&& in (R3) always holds).
37 That is, the set of mixed actions that guarantee the value.



5. DISCUSSION AND EXTENSIONS

In this section we discuss a number of extensions of our results.

5.1. Conditional Regrets

As stated in the Introduction, we have been led to the ``no regret''
Hannan-consistency property from considerations of ``no conditional regret''
that correspond to correlated equilibria (see Hart and Mas-Colell [16]).
Given two actions k and j of player i, the conditional regret from j to k is
the change that would have occurred in the average payoff of i if he had
played action k in all those periods where he did play j (and everything else
is left unchanged). That is,

DC i
t( j, k) :=

1
t

:
{�t : s i

{= j

[ui (k, s&i
{ )&ui (s{)]

for every38 j, k # S i. The vector of regrets DC i
t is now in RL, where

L :=S i_S i, and the empirical distribution of actions up to time t con-
stitutes a correlated equilibrium if and only if DC i

t�0. Thus, the set to be
approached is the nonpositive orthant RL

& . The corresponding game with
vector payoffs A is defined as follows: the ( j, k) coordinate of the vector
payoff A(si, s&i) # RL is ui (k, s&i)&ui ( j, s&i) when si= j, and it is 0
otherwise; hence DC i

t=(1�t) �{�t A(s{).
As in Propositions 3.1 and 3.2 (see Hart and Mas-Colell [16, Sec-

tion 3]), it can easily be verified that:

v C=RL
& is always approachable.

v For every * # RL
+ , the Blackwell approachability condition for

C=RL
& ((2.1) or (3.1)) holds for any mixed action _ i=(_ i

k)k # S i # 2(S i)
that satisfies

:
j # Si

_ i
j *( j, k)=_ i

k :
j # Si

*(k, j) for all k # S i. (5.1)

Viewing * as an S i_S i matrix, condition (5.1) says that _i is an invariant
vector for the (nonnegative) matrix *.

v For every * # RL
+ , there exists a _ i # 2(S i) satisfying (5.1).
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38 Note that each Hannan regret D i
t(k) is the sum of the conditional regrets DC i

t( j, k) over
j{k. Thus the set of distributions of N-tuples of actions that satisfy the Hannan no-regret
conditions includes the set of correlated equilibrium distributions. The inclusion is, in general,
strict (the two sets coincide when every player has only two actions).



Applying Theorem 2.1 yields a large class of strategies. For example (as
in Subsection 3.2), if P is the lp -potential for some 1<p<�, then _ i is an
invariant vector of the matrix of the p&1 powers of the nonnegative
regrets.39 In the more general separable case, _i is an invariant vector of the
matrix whose ( j, k) coordinate is �( j, k) (DC i

t&1( j, k)), where �( j, k) is any
real continuous function which vanishes for x�0 and is positive for x>0.
As in Hart and Mas-Colell [16, Theorem A], if every player uses a strategy
in this class (of course, different players may use different types of
strategies), then the empirical distribution of play converges to the set of
correlated equilibria of 1.

Since finding invariant vectors is by no means a simple matter, in Hart
and Mas-Colell [16] much effort is devoted to obtaining simple adaptive
procedures, which use the matrix of regrets as a one-step transition matrix.
To do the same here, one would use instead the matrix 4 (DC i

t&1).

5.2. Variable Game

We noted in Subsection 3.2 that our strategies are game-independent.
This allows us to consider the case where, at each period, a different game
is being played (for example, a stochastic game). The strategy set of player
i is the same set S i in all games, but he does not know which game is
currently being played. All our results��in particular, Theorem 3.3��con-
tinue to hold40 provided player i is told, after each period t, which game
was played at time t and what were the chosen actions s&i

t of the other
players. Indeed, as in Section 3, i can then compute the vector a :=
A(s i

t , s&i
t ) # RSi

, update his regret vector��D i
t=(1�t)((t&1) D i

t&1+a)��and
then play _i(D i

t) in the next period, where _i is any mapping satisfying (R1)
and (R2).

5.3. Unknown Game

When the player does not know the (fixed) game 1 that is played and
is told, at each stage, only his own realized payoff (but not the choices of
the other players)��in what may be referred to as a ``stimulus�response''
modelwHannan-consistency may nonetheless be obtained (see Foster and
Vohra [7, 9], Auer et al. [1], Fudenberg and Levine [13, Section 4.8],
Hart and Mas-Colell [16, Section 4(j); 17], and also Ban~ os [2] and
Megiddo [21] for related work). For instance, one can replace the
regrets��which cannot be computed here��with appropriate estimates.41
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39 For p=2 we get the matrix of regrets��which yields precisely Theorem A of Hart and
Mas-Colell [16].

40 Assuming the payoffs of i are uniformly bounded.
41 Specifically, use D� i

t (k) :=(1�t) �{�t : s i
{=k (1�[_ i

{]k) U i
{&U� i

t instead of D i
t (k) (see Hart

and Mas-Colell [17, Section 3(c)]).
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