
Games and Economic Behavior 41 (2002) 227–264
www.elsevier.com/locate/geb

Evolutionary dynamics and backward induction

Sergiu Hart

Center for Rationality and Interactive Decision Theory, Department of Economics,
Department of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Received 14 June 2000

Abstract

The backward induction (or subgame-perfect) equilibrium of a perfect information game
is shown to be the unique evolutionarily stable outcome for dynamic models consisting of
selection and mutation, when the mutation rate is low and the populations are large.
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1. Introduction

1.1. Background

A fascinating meeting of ideas has occurred in the last two decades between
evolutionary biology and game theory. Now this may seem strange at first. The
players in game-theoretic models are usually assumed to be fully rational, whereas
genes and other vehicles of evolution are assumed to behave in ways that are
entirely mechanistic. Nonetheless, once a player is replaced by a population of
individuals, and a mixed strategy corresponds to the proportions of the various
strategies in the population, the formal structures in the two fields turn out to be
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very closely related. This has led to many ideas flowing back and forth. On the
one hand, game-theoretic constructs—at times quite sophisticated—find their way
into evolutionary arguments; on the other, the basic paradigm of natural selection
is used to justify and provide foundations for many aspects of rational behavior.
For a discussion of these issues, including a historical overview, the reader is
referred to Hammerstein and Selten (1994) and to Aumann (1998).

The basic analogous notions in the two fields are “strategic equilibrium”
(introduced by Nash, 1950) and “evolutionarily stable strategy” (introduced by
Maynard Smith and Price, 1973). Roughly speaking, when a game is played by
populations of individuals (with identical payoff functions), then evolutionarily
stable strategies in essence yield a Nash equilibrium point. This type of relation
has been established in a wide variety of setups, both static and dynamic (see
the books of Hofbauer and Sigmund, 1998; Weibull, 1995; and Vega-Redondo,
1997).

Evolutionary models are based on two main ingredients: selection and
mutation.Selection is a process whereby better strategies prevail; in contrast,
mutation, which is relatively rare, generates strategies at random, be they better
or worse. It is the combination of the two that allows for natural adaptation: New
mutants undergo selection, and only the better ones survive. Of course, selection
includes many possible mechanisms, be they biological (the payoff determines the
number of descendants, and thus the share of better strategies increases), social
(imitation, learning), individual (experimentation, stimulus response), and so on.
What matters is that the process is “adaptive” or “improving,” in the sense that the
proportion of better strategies is likely to increase.

Such (stochastic) dynamic evolutionary models have been extensively ana-
lyzed in various classes of games in strategic (or normal) form, starting with Kan-
dori et al. (1993) and Young (1993) (see also Foster and Young, 1990 and the
books of Young, 1998 and Fudenberg and Levine, 1998). It turns out that certain
Nash equilibria—like the risk-dominant ones—are more stable than others.

Here we considergames in extensive form, where a most complete description
of the game is given, exactly specifying the rules, the order of moves, the
information of the players, and so on. Specifically, we look at the simplest
such games:finite games of perfect information. In these games, an equilibrium
point can always be obtained by a so-called “backward induction” argument:
Starting from the final nodes, each player chooses a best reply given the (already
determined) choices of all the players that move after him. This results in an
equilibrium point also in each subgame (i.e., the game starting at any node of the
original game), whether that subgame is reached or not. Such a point is called
a subgame-perfect equilibrium, or a backward induction equilibrium, a notion
introduced by Selten (1965, 1975).

Since mutations are essentially small perturbations that make everything possi-
ble (i.e., every pure strategy has positive probability), and, as the perturbations go



S. Hart / Games and Economic Behavior 41 (2002) 227–264 229

to zero, this yields in the limit the subgame-perfect equilibrium points,1 it is only
natural to expect that evolutionary models with low mutation rates should lead to
these same points. However, the literature until now has found the above claim to
be false in general: Evolutionary models do not necessarily pick out the backward
induction equilibria. Specifically, except for special classes of games, equilibria
other than the backward induction ones also turn out to be “evolutionarily sta-
ble” (see Nöldeke and Samuelson, 1993; Gale et al., 1995; Cressman and Schlag,
1998; and the books of Samuelson, 1997 and Fudenberg and Levine, 1998).

1.2. Examples

Even without specifying exactly how selection and mutation operate, we can
get some intuition by considering a few examples. The first one is the classical
example of the two-person gameΓ1 of Fig. 1. It possesses two Nash equilibria
in pure strategies:b = (b1, b2) and c = (c1, c2); the first, b, is the backward
induction equilibrium. Assume that at each one of the two nodes 1 and 2 there
is a population of individuals playing the game in that role. The populations
are distinct, and each individual plays a pure action at his node.2 If everyone
at node 1 playsb1 and everyone at node 2 playsb2, then any mutant in population
1 that playsc1 will get a payoff of 1 instead of 2, so selection will wipe him
out; the same goes for any mutant at node 2. Therefore the backward induction
equilibriumb is “stable.” Now assume that we are in thec equilibrium: All the
individuals at 1 playc1 and all the individuals at 2 playc2. Again, a mutant at
1 loses relative to his population: Instead of 1 he gets 0 (since the individuals at
2 that he will meet playc2). But now a mutant at 2 that playsb2 gets the same
payoff as ac2-individual, so selection has no effect at node 2. Since node 2 is not

Fig. 1. The gameΓ1.

1 Recall that these are games of perfect information, where “trembling-hand perfection” is the
same as “subgame perfection.”

2 We say, for example, that an individual at node 2 “playsb2” if he is programmed (by his “genes”)
to playb2 whenever he is in a situation to choose (betweenc2 andb2).
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Fig. 2. The gameΓ2.

reached, all actions at 2 yield the same payoff; there is no “evolutionary pressure”
at 2. Mutations in the population at 2, because they are not wiped out, keep
accumulating (there is “genetic drift”). Eventually, a state will be reached where
more than half the population at 2 consists ofb2-individuals.3 At this point the
actionb1 at 1 gets a higher expected payoff than the actionc1, and thus selection
at 1 favorsb1. So the proportion ofb1 at node 1 becomes positive (and increases),
which renders node 2 reachable. Once 2 is reached, evolutionary pressure there—
i.e., selection—becomes effective, and it moves population 2 towards the better
strategyb2. This only increases the advantage ofb1 overc1, and the whole system
gets to theb = (b1, b2) equilibrium.

To summarize: InΓ1, evolutionary dynamics lead necessarily tob, the
backward induction equilibrium; in other words,b is the evolutionarily stable
equilibrium.

The next example is the three-player gameΓ2 of Fig. 2 (see Nöldeke and
Samuelson, 1993; or Samuelson, 1997, Example 8.2). The backward induction
equilibrium isb = (b1, b2, b3); the other pure Nash equilibrium—which is not
perfect—isc = (c1, c2, c3). Let us start from a state where all individuals at
each nodei play their backward induction actionbi . Nodes 1 and 2 are reached,
whereas node 3 is not. Therefore there is no selection operating at node 3, and
mutations move the population at 3 randomly. As long as the proportion ofb3

is at least 2/3, the system is in equilibrium. Once it goes below 2/3—which,
again, must happen eventually—the best reply of 2 becomesc2; selection then
moves the population at 2 towardc2. But then node 3 is no longer unreached,
so selection starts affecting the population at 3, moving it toward the best reply

3 The assumption is that mutations have positive—though small—probability at each period. This
yields a “random walk,” and any proportion ofb2 andc2 will occur eventually (with probability one).



S. Hart / Games and Economic Behavior 41 (2002) 227–264 231

Fig. 3. The gameΓ3.

there,b3. Thus, as soon as the proportion ofb3 drops below 2/3, the evolutionary
dynamic immediately pushes it back up; it is as if there were a “reflecting barrier”
below the 2/3 mark. Selection at 2 then moves back towardb2. Meanwhile the
population at 1, which is playingb1, can move only a little, if at all.4 Therefore we
have essentially shown that the equilibrium component5 of b—wherebi is played
at i = 1,2 andb3 is played at 3 with proportion at least 2/3—is evolutionarily
stable. Moreover, sinceb and its component must eventually be reached from any
state—by appropriate mutations—it follows that other equilibria, in particularc,
arenot stable. This conclusion differs from the result of Nöldeke and Samuelson
(1993): In their model, the non-subgame-perfect equilibriumc also belongs to the
stable set; see (a) in Section 5.3 for a more extensive discussion.

Consider now another three-player game: the gameΓ3 given in Fig. 3. The
backward induction equilibrium isb, at which both nodes 2 and 3 are unreached.
The populations at 2 and 3 therefore move by mutations. Eventually, when the
proportion ofb2 at node 2 gets below 1/5, selection at 1 will move the population
at 1 fromb1 to c1. At that point both 2 and 3 are reached, and which action of
2 is the best reply at 2 depends on the composition of the population at 3. If less
than 9/10 of them playb3 (which is possible, and even quite probable,6 given that
only random mutations have affected 3 until now), thenc2 is the best reply at 2,
and selection keeps decreasing the proportion ofb2. Again, it is quite probable

4 Only when the proportion ofb2 drops below 1/2 will selection affect node 1.
5 We say that two (mixed) Nash equilibria belong to the sameequilibrium component if their

equilibrium paths coincide, and they differ only at unreached nodes (for generic games, this
corresponds to a “connected component”).

6 We take “quite probable” to mean that the probability of its happening is positive and bounded
away from zero (as the rate of mutation goes to zero).
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for the proportion ofb2 to get all the way down to 0 (from 1/5) long before the
proportion ofb3 at 3 will have increased to 9/10. What this discussion shows
is that, in the gameΓ3, the non-subgame-perfect equilibriumc (together with its
equilibrium component) cannot be ruled out; evolutionary dynamic systems may
well be in such states a positive fraction of the time.

However, we claim that such behaviorcannot occur if the populations are large
enough.7

1.3. This paper

As stated above, the games studied in this paper are finite extensive-
form games with perfect information. We assume that the backward induction
equilibrium is unique; this holds when the game is generic (i.e., in almost every
game). At each node there is a distinct population of individuals that play the game
in the role of the corresponding player. Each individual is fully characterized by
his action, i.e., by the pure choice that he makes at his node (of course, this goes
into effect only if his node is reached8). We will refer to such a population game
as a “gene-normal form” (it parallels the “agent-normal form”).

The games are analyzed in a dynamic framework. The model is as follows:
At each period, one individual is chosen at random9 in each population. His
current action, call itai , may then change by selection, by mutation, or it may
not change at all. Selection replacesai by another action which, against the
other populations currently playing the game (i.e., “against the field”), yields a
higher payoff thanai . Of course, this can only be if such a better action exists
(if there are many, one of them is chosen at random). Mutation replacesai by
an arbitrary action, chosen at random. Finally, all the choices at each node are
made independently. This model—which we refer to as the “basic model”—is
essentially a most elementary process that provides for both adaptive selection
and mutation. It turns out that the exact probabilities of all the above choices do
not matter; what is essential is that all of them be bounded away from zero (this
is the “general model”).

Such dynamics yield an ergodic system10 whose long-run behavior is well
described by the corresponding unique invariant distribution, which, for each
state, gives the (approximate) frequency of that state’s occurrence during any
large time interval. The mutations are rare; we are therefore interested in those

7 How large may depend on the mutation rate.
8 This action is thus the individual’s “genotype”—the hard-wired programming by the genes; it

becomes his “phenotype”—his actual revealed behavior—when his node is reached and it is his turn
to play.

9 Uniformly, i.e., each individual has the same probability of being chosen.
10 Irreducible (mutations make every state reachable from any other state) and aperiodic.
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states which occur with positive frequency, however low the mutation rate.11 We
call such states “evolutionarily stable.” A preliminary result is that the backward
induction equilibrium is always evolutionarily stable. However, as the examples
show, other Nash equilibria may be evolutionarily stable as well.

We therefore add another factor: The populations are large. This yields:

Main Result: The backward induction equilibrium becomes in the limit the
only evolutionarily stable outcome as the mutation rate decreases to zero
and the populations increase to infinity (provided that the expected number
of mutations per generation does not go to zero).

In other words: Evolutionary dynamic systems, consisting of adaptive selection
and rare mutations, lead in large populations to most of the individuals most of
the time playing their backward induction strategy. Observe that this applies to
reached as well as to unreached nodes; for example, in gameΓ2 we have most
of the individuals at all nodesi—including node 3—playingbi . Evolutionary
stability in large populations picks out not merely the equilibrium component ofb,
butb itself.12 The intuition for the role of the large population assumption will be
provided in Section 4.1 below. Suffice it to say here that it has to do with a change
of action (whether by mutation or selection) being much less likely for aspecific
individual than for anarbitrary individual in a large population. This leads to
considerations of “sequential” rather than “simultaneous” mutations. As a further
consequence, unlike in most of the evolutionary game-theoretic literature,13 our
result doesnot rely on comparing different powers of the infinitesimal mutation
rate (which require extremely long waiting times); single mutations suffice.14

We conclude this introduction with two comments. First, two almost diamet-
rically opposed approaches lead to the backward induction equilibrium. One ap-
proach (Aumann, 1995), in the realm of full rationality, assumes that all players
are rational (i.e., they never play anything which they know is not optimal), and
moreover that this fact is commonly known to them (i.e., each player knows that
everyone is rational, and also knows that everyone knows that everyone is ratio-
nal, and so on). The other approach (of this paper), in the realm of evolutionary

11 More precisely, states whose probability, according to the invariant distribution, is bounded away
from zero as the probability of mutation goes to zero; these are called “stochastically stable states” by
Young (1993, 1998).

12 Actually, an arbitrarily small neighborhood ofb.
13 Exceptions are Nöldeke and Samuelson (1993) and the “modified co-radius” of Ellison (2000).
14 The static notion of an “evolutionarily stable strategy” is also based on single mutations.
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dynamics, is essentially machine-like and requires no conscious optimization or
rationality.15 It is striking that such disparate models converge.16

Second, note that the backward induction equilibrium is by no means the
conclusive outcome: Substantial assumptions are needed, like large populations,
or common knowledge of rationality.

The paper is organized as follows: Section 2 presents the model: the extensive-
form game (in Section 2.1), the associated population game (in Section 2.2), and
the evolutionary dynamics (in Section 2.3). The results are stated in Section 3,
which also includes the proof of some preliminary results for fixed populations
(in Section 3.1). The Main Result, stated in Section 3.2, is proved in Section 4.
The intuition behind our result is presented in Section 4.1, followed by an informal
outline of the proof (in Section 4.2). We conclude in Section 5 with a discussion of
various issues, including relations to the existing literature and possible extensions
and generalizations of our results.

2. The model

2.1. The game

Let Γ be a finite extensive-form game with perfect information. We are thus
given a rooted tree; each non-terminal vertex corresponds to amove. It may be
a chance move, with fixed positive probabilities for its outgoing branches; or a
move of one of the players, in which case the vertex is called anode. The set of
nodes is denotedN . It is convenient to view the game in “agent-normal form:” At
each node there is a different agent, and a player consists of a number of agents
with identical payoff functions. For each nodei ∈ N , the agent there—called
“agent i”—has a set of choicesAi , which is the set of outgoing branches ati.
We refer toai in Ai as anaction of i, and we putA := ∏

i∈N Ai for the set of
N -tuples of actions. At each terminal vertex (aleaf ) there are associated payoffs
to all agents; let17 ui :A → R be the resulting payoff function of agenti (i.e.,
for eacha = (aj )j∈N ∈ A: if there are no chance moves, thenui(a) is the payoff
of i at the leaf that is reached when every agentj ∈ N choosesaj ; if there are
chance moves, it is the appropriate expectation). Of course, ifi andj are agents of
the same player, thenui ≡ uj . As usual, the payoff functions are extended multi-
linearly torandomized (or mixed) actions; thusui :X → R, whereX := ∏

i∈N Xi

andXi :=∆(Ai)= {xi ∈ R
Ai

+ :
∑

ai∈Ai xi
ai

= 1}, the unit simplex onAi , is the set

of probability distributions overAi .

15 The biological mechanisms of selection are entirely automatic; other selection processes (like
learning, imitation, and so on) may well use some form of rationality or “bounded rationality.”

16 For an interesting discussion of these matters, see Aumann (1998) (in particular, pages 191–195).
17

R is the real line.
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For each nodei ∈ N , let N(i) be the set of nodes that are successors (not
necessarily immediate) ofi in the tree, and letΓ (i) be the subgame ofΓ starting
at the nodei. For example, if 1∈ N is the root thenN(1)=N\{1} andΓ (1)= Γ ;
in general,j ∈ N(i) if and only if the unique path from the root toj goes
throughi, and the set of nodes ofΓ (i) is N(i) ∪ {i}.

An N -tuple of randomized actionsx = (xi)i∈N ∈ X is aNash equilibrium of
Γ if 18 ui(x) � ui(yi, x−i ) for every i ∈ N and everyyi ∈ Xi . It is moreover
a subgame-perfect (or backward induction) equilibrium of Γ if it is a Nash
equilibrium in each subgameΓ (i), for all i ∈ N . This is equivalent to eachxi

being a best reply ofi in Γ (i) when everyj ∈ N(i) playsxj . Such an equilibrium
is therefore obtained bybackward induction, starting from the final nodes (those
nodesi with no successors, i.e., withN(i) = ∅) and going towards the root. We
will denote byEQ and BI the set of Nash equilibria and the set of backward
induction equilibria, respectively, of the gameΓ ; thusBI ⊂ EQ ⊂X.

At this point it is useful to point out the distinction between a best reply of
i in the whole gameΓ —which we call aglobal best reply—and a best reply of
i in the subgameΓ (i)—which we call alocal best reply. Thus a local best re-
ply is always a global best reply, but the converse is not necessarily true.19 If i

is reached (i.e., when all agents on the path from the root toi make the choice
along the path with positive probability), then the two notions coincide. Ifi is not
reached, then the payoff ofi in Γ is independent of his action, and thus every
action inAi (and every mixed action inXi) is a global best reply ofi—but not
necessarily a local best reply. The difference between a Nash equilibrium and
a subgame-perfect equilibrium is precisely that in the former each action of an
agent that is played with positive probability is a global best reply to the others’
(mixed) actions, whereas in the latter it is additionally a local best reply.

The classical result of Kuhn (1953) states that there always exists apure
backward induction equilibrium; the proof constructs it by backward induction.
We assume here that the gameΓ has aunique backward induction equilibrium,
which must therefore be pure; we denote itb = (bi)i∈N ∈ A, and refer tobi as
the “backward induction action ofi.” This uniqueness is true generically, i.e., for
almost every game. For instance, when there are no chance moves, it suffices for
each player to have different payoffs at different leaves.

2.2. The gene-normal form

We now consider apopulation game associated toΓ : At each nodei ∈ N

there is a non-empty populationM(i) of individuals playing the game in the role
of agenti. We assume thatthe populations at different nodes are distinct:

M(i)∩M(j)= ∅ for all i �= j. (2.1)

18 We writex−i for the(|N | − 1)-tuple of actions of the other agents, i.e.,x−i = (xj )j∈N\{i}.
19 One should not confuse these with the parallel notions for optima (where global implies local).



236 S. Hart / Games and Economic Behavior 41 (2002) 227–264

This assumption is not completely innocuous; see the discussion below and also
(b) in Section 5.2. Each individualq ∈ M(i) is characterized by a pure action
in Ai , which we denote byωi

q ∈ Ai ; putωi = (ωi
q )q∈M(i) andω = (ωi)i∈N . For

eachai ∈ Ai , let20

xi
ai

≡ xi
ai

(
ωi

) := |{q ∈M(i): ωi
q = ai}|

|M(i)| (2.2)

be the proportion of populationM(i) that plays the actionai ; thenxi ≡ xi(ωi) :=
(xi

ai
(ωi))ai∈Ai ∈ Xi may be viewed as a mixed action ofi. The payoff of an

individualq ∈M(i) is defined as his average payoff against the other populations,
i.e.,ui(ωi

q, x
−i ); we shall slightly abuse notation by writing this asui(ωi

q ,ω
−i ).

We refer to the above model as thegene-normal form of Γ (by (2.1), it is the
counterpart, in population games, of the “agent-normal form”).

This model is clear and needs no explanation when all the players inΓ are
distinct (i.e., when each player plays at most once inΓ ). When however a player
may play more than once (and thus have more than one agent), then a “biological”
interpretation is as follows: Each one of the player’s decisions (i.e., each one of
his agentsi) is controlled by a “gene,” whose various “alleles” correspond to
the possible choices at nodei (i.e., the set of alleles of genei is preciselyAi).
The genes of different nodesi and j of the same player are distinct (i.e., at
different locations, or “loci”); were it the same gene, then the player would behave
identically at the two nodes—and the appropriate representation would place the
two nodesi andj in the same information set.21,22

2.3. The dynamics

We come now to the dynamic model. Astate ω of the system specifies the
pure action of each individual in each population; i.e.,ω = (ωi)i∈N , where
ωi = (ωi

q)q∈M(i) andωi
q ∈ Ai for eachi ∈ N and eachq ∈ M(i). Let Ω :=∏

i∈N(Ai)M(i) be the state space. We consider discrete-time stochastic systems:
Starting with an initial state23 ω1 ∈ Ω , a sequence of statesω1,ω2, . . . ,ωt , . . .

in Ω is generated, according to certain probabilistic rules. These so-called
“transition probabilities” specify, for eacht = 1,2, . . . , the probabilities
P [ωt+1 = ω̃ | ω1, . . . ,ωt ] that ωt+1 equals a statẽω ∈ Ω , given the history

20 |Z| denotes the number of elements of a finite setZ.
21 One would thus get a game of imperfect information, where information sets are not necessarily

singletons. Moreover, observe that here a path may intersect an information set more than once; we
are thus led naturally to “games of imperfect recall.”

22 A case where, say, the decision ati is controlled by the two genes in locations 1 and 2, and the
decision atj by the two genes in locations 2 and 3, is not considered here.

23 As we shall see below, the process is irreducible and aperiodic; thus, in the long run, the starting
state does not matter. Hence there will be no need to specify it.
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ω1,ω2, . . . ,ωt . Our processes will bestationary Markov chains: The transi-
tion probabilities depend only onωt , the state in the previous period (and de-
pend neither on the other past statesω1, . . . ,ωt−1, nor on the “calendar time”
t). That is, there is a stochastic matrix24 Q = (Q[ω̃ | ω])ω̃,ω∈Ω such that
P [ωt+1 = ω̃ | ω1, . . . ,ωt ] =Q[ω̃ | ωt ] for everyω1, . . . ,ωt , ω̃ ∈ Ω and t = 1,
2, . . . . The matrixQ is called theone-step transition probability matrix.

We present first a simple dynamic model, which we call thebasic model.
Assume that all populations are of equal size, saym = |M(i)| for each
i ∈ N . Let µ > 0 and σ > 0 be given, such thatµ + σ � 1. The one-step
transition probabilitiesQ[ω̃ | ω] are given by the following process, performed
independently for eachi ∈N :

• Choose an individualq(i) ∈M(i) at random: Allm individuals inM(i) have
the same probability 1/m of being chosen.

• Putω̃i
q := ωi

q for eachq ∈ M(i), q �= q(i); i.e., all individuals inM(i) except
q(i) do not change their actions.

• Choose one ofSE(i) (“selection”), MU(i) (“mutation”) and NC(i) (“no
change”), with probabilitiesσ , µ, and 1−µ− σ , respectively.

• If selectionSE(i) was chosen, then define

Bi ≡ Bi
(
q(i),ω

) := {
ai ∈Ai : ui

(
ai,ω−i

)
> ui

(
ωi
q(i),ω

−i
)}; (2.3)

this is the set of “better actions”—those actions at nodei that are strictly
better inΓ , against the populations at the other nodes, than the actionωi

q(i)

of the chosen individualq(i). If Bi is not empty, then the new actioñωi
q(i) of

q(i) is a randomly chosen better action:ω̃i
q(i) := ai with probability 1/|Bi|

for eachai ∈ Bi . If Bi is empty, then there is no change inq(i)’s action:
ω̃i
q(i) :=ωi

q(i).

• If mutation MU(i) was chosen, theñωi
q(i) is a random action inAi ; i.e.,

ω̃i
q(i)

:= ai with probability 1/|Ai| for eachai ∈Ai .
• If no-changeNC(i) was chosen, then the action ofq(i) does not change:
ω̃i
q(i) :=ωi

q(i).

For example, in the gameΓ1 of Section 1.2 (see Fig. 1; hereN = {1,2},
A1 = {c1, b1}, A2 = {c2, b2}), with populations of sizem = 3, let ω =
((c1, c1, c1), (b2, b2, c2)) and ω̃ = ((b1, c1, c1), (b2, b2, b2)), thenQ[ω̃ | ω] =
(1/3) · (µ/2 + σ) · (1/3) · (µ/2). Indeed, the probability thatq(1) = 1 is 1/3;
thenc1 changes tob1 either by mutation, with probabilityµ ·(1/2), or by selection
(sinceB1 = {b1}), with probabilityσ ; similarly, the probability thatq(2) = 3 is

24 I.e.,Q[ω̃ | ω] � 0 for all ω̃,ω ∈ Ω and
∑

ω̃∈Ω Q[ω̃ | ω] = 1 for everyω ∈Ω.
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1/3, and thenc2 changes tob2 by mutation only (sinceB2 = ∅), with probability
µ · (1/2).

A few remarks are now in order.

Remarks.
1. We have assumed that in each period there is at most one individual in each

population that may change his action. This defines what is meant by “one
period:” It is a time interval which is small enough that the probability of
more than one individual changing his action in the same period is (relatively)
negligible.25 This is a standard construct in stochastic setups (recall, for
instance, the construction of Poisson processes). Our assumption may thus be
viewed as essentially nothing more than a convenient rescaling of time.26 As
we shall see below (in particular in Section 4.1), our arguments are based on
comparing occurrence times, and are thus independent of the units in which
time is measured.

2. The difference between mutation and selection is that mutation is “blind”—in
the sense thatall actions are possible—whereas selection is “directional”—
only better actions are possible. We emphasize that “better” is understood,
as it should be, with respect to the payoffs in the whole game, i.e., “globally
better.” Of course, “selection” may stand for various processes of adaptation,
imitation, learning, experimentation, and so on. Our selection thus assumes
that better actions fare better; it is a “better-reply selection dynamic.” It is
also a “strictly aggregate monotonic” mechanism,27 in the sense that, for
eachi, if we hold all populations excepti fixed, then selection ati never
decreases the average payoff of populationi, and it has a positive probability
of strictly increasing it whenever there are individuals who are not playing
a best-reply action. See also the general model below, where the selection
probability of a better action may be proportional to its current proportion in
the population.

3. Actions are compared (see (2.3)) according to theiraverage payoffs against
the other populations. This is a standard assumption in the literature. It is
correct, for instance, if everyone plays against everyone else; i.e., allm|N |
combinations (of one individual from each population) play the game. When
the populations are large—as is the case here—it is also approximately
correct when each individual plays against random samples from the other
populations.28

25 Our results do not need simultaneous mutations; these may indeed be ignored.
26 Or, alternatively, as an appropriate discretization of a continuous-time process.
27 This is called a “strict myopic adjustment dynamic” in Swinkels (1993).
28 The larger the population, the shorter the period (see Remark 1 above); it may thus be difficult to

play against everyone in one period. See also (g) in Section 5.1.
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4. The basic dynamic is determined by two parameters,29 µ and σ . As we
shall see below, what really matters is thatµ be small relative toσ ;
formally,µ→ 0 whileσ > 0 is fixed: Mutations are rare relative to selection.
Equivalently, we could well takeσ = 1 − µ, and thus have only one
parameter. We have preferred to add the no-change case since it allows
for more general interpretations. For instance, the no-change periods may
be viewed as “payoff accumulation” periods, or as “selection realization”
periods (i.e., periods during which actual selection occurs30).

5. The one-step transition probabilities are defined to be independent over the
nodes; this just means that the transitions areconditionally independent. In
general, the evolution of one population will depend substantially on that of
other populations.

The basic model is essentially a most simple model that captures the
evolutionary paradigm of selection and mutation. It may appear however as too
specific. Therefore we now present a general class of dynamic models, which turn
out to lead to the same results.

The general model is as follows: We are given amutation rate parameter
µ > 0 and populationsM(i) at all nodesi ∈ N , which may be a different size
at different nodes. The process is a stationary Markov chain, whose one-step
transition probability matrixQ = (Q[ω̃ | ω])ω̃,ω∈Ω satisfies:

• Conditional independence overi ∈ N , i.e.,31

Q[ω̃ | ω] =
∏
i∈N

Q
[
ω̃i

∣∣ ω]
. (2.4)

• For eachi ∈ N , one individualq(i) ∈ M(i) is chosen, such that there exist
constantsγ1, γ2 > 0 with

γ1

|M(i)| � Q
[
q(i)= q

∣∣ ω]
� γ2

|M(i)| for eachq ∈ M(i); and (2.5)

Q
[
ω̃i
q = ωi

q for all q ∈M(i)
∖{

q(i)
} ∣∣ ω] = 1. (2.6)

• There exists a constantβ > 0 such that, for eachi ∈N ,

Q
[
ω̃i
q(i) = ai

∣∣ ω]
� βxi

ai
(ω) for eachai ∈Bi, (2.7)

whereBi ≡ Bi(q(i),ω) is the set of strictly better actions, as defined in (2.3).

29 Once the gameΓ and the population sizem are given.
30 This may help to justify the fact that our selection mechanism is not continuous (any “better”

action has probability bounded away from zero, whereas an “equally good” action has zero
probability): Indeed, selection makes even a slightly better action “win,” given enough time.

31 For eachω ∈ Ω, we viewQ[· | ω] as a probability distribution overΩ ; derived probabilities—
like its marginals, etc.—will also be denoted byQ[· | ω].
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• There exist constantsα1, α2 > 0 such that, for eachi ∈N ,

Q
[
ω̃i
q(i) = ai

∣∣ ω]
� α1µ for eachai ∈Ai; and (2.8)

Q
[
ω̃i
q(i) = ai

∣∣ ω]
� α2µ for eachai /∈Bi, ai �= ωi

q(i). (2.9)

Without loss of generality, all parametersα1, α2, β , γ1, γ2 are taken to be
the same for alli ∈ N (if needed, replace them by the appropriate maximum or
minimum overi). To see that the basic model is a special case of the general
model, takeγ1 = γ2 = 1, β = σ/|Ai |, andα1 = α2 = 1/|Ai|.

Notice that we now allow selection to switch to better actions with probabilities
that are proportional to their current proportions in the population.32 If, for
instance, (2.7) is satisfied as an equality and, say, the best-reply actionai is
currently played byk individuals, then the probability that a chosen non-ai-
individual will switch to ai by selection isβk/|M(i)| (rather than� β =
σ/|Ai|, as in the basic model). Whenk is small, this probability becomes low
(and converges to 0 withk). Moreover, if ai is not currently present in the
population, then selection cannot introduce it.33,34 Such dynamics are appropriate
in particular inimitation-type models (where the “visibility” of an action depends
on its prevalence in the population). For a simple example, suppose that the chosen
individual samples a random individual in his population, and switches to his
action (with probabilityβ > 0) if it currently yields a higher payoff than his own.
Note that in this casexi

ai
, the proportion in the population of a better actionai ,

increases by selection at a rate that is proportional toxi
ai

.
The general model thus assumes that: (i) the probabilities that various

individuals in the same population will be chosen are comparable;35 (ii) the
(relative36) effect of selection—towards better actions—is bounded away from
zero (independently ofµ); and (iii) the effect of mutation—whereby every action
is possible—is of the orderµ. The reader is referred to Sections 5.1 and 5.2 for
further generalizations.

3. The results

3.1. Preliminary results

A general model with a one-step transition matrixQ satisfying (2.4)–(2.9)
yields a Markov chain which isirreducible, since the probability of reaching any

32 This condition was suggested by Ilan Eshel.
33 A requirement suggested by Karl Schlag.
34 To understand why this weakening of the selection mechanism does not affect our main result,

the reader is referred to Footnote 53 and Lemma 4.6.
35 I.e., the ratiosQ[q(i) = q | ω]/Q[q(i) = q ′ | ω] are uniformly bounded.
36 I.e., the change inxi relative toxi .
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stateω′ ∈ Ω from any other stateω ∈ Ω is positive (as follows from (2.5) and
(2.8), by using an appropriate sequence of mutations). Hence there exists a unique
invariant distribution π onΩ ; i.e., a uniqueπ ∈ ∆(Ω) satisfyingπ = πQ, or

π[ω̃] =
∑
ω∈Ω

π[ω]Q[ω̃ | ω]

for everyω̃ ∈ Ω . The Markov chain is moreoveraperiodic, since, for instance,
the probability of staying at a Nash equilibrium state is positive. Therefore the
long-run behavior of the process is well described byπ , in the following two
senses:

• In any long enough period of time, the relative frequency of visits at a stateω

is approximatelyπ[ω]; i.e., for everyω ∈ Ω ,

lim
T2−T1→∞

|{t : T1 < t � T2, ωt = ω}|
T2 − T1

= π[ω].

• The probability that the stateω occurs at a periodt is approximatelyπ[ω] for
larget ; i.e., for everyω ∈ Ω ,

lim
t→∞P [ωt = ω] = π[ω].

The two properties hold regardless of the initial state; moreover, they hold not
only for single statesω but also for any set of statesΘ ⊂Ω .

We are interested in the behavior of the process when the mutation rate
is low, i.e., in the limit of the invariant distributionπ as µ → 0 and all the
other parameters (the gameΓ , the population sizes|M(i)| and the constants
α1, α2, β , γ1, γ2) are fixed. We call a stateω ∈ Ω evolutionarily stable if
its invariant probabilityπ[ω] is bounded away from zero asµ → 0, i.e., if37

lim infµ→0π[ω] > 0. Recall that each stateω ∈ Ω may be viewed as anN -tuple
of mixed actionsx(ω) = (xi(ωi))i∈N ∈ X (see (2.2)). The invariant distribution
π onΩ therefore induces a probability distribution38 π̂ := π ◦ (x)−1 overX; i.e.,
π̂[Y ] := π[{ω ∈ Ω : x(ω) ∈ Y }] for every (measurable)Y ⊂ X. We therefore call
anN -tuple of mixed actionsx ∈X evolutionarily stable if there are evolutionarily
stable statesω ∈ Ω with x(ω) = x, i.e., if lim infµ→0 π̂[x] > 0. The following
result states that the backward induction equilibriumb is always evolutionarily
stable.

37 This is called “stochastic stability” (Foster and Young, 1990 and Young, 1993, 1998), “long-run
equilibrium” (Kandori et al., 1993), “in the support of the limit distribution” (Samuelson, 1997 and
Fudenberg and Levine, 1998).

38 (x)−1 :X → Ω denotes the inverse of the mappingx :Ω → X. We could have equivalently
defined the dynamics directly on the spaceX of mixed action profiles (by identifying all statesω with
the samex(ω) and taking the expected transition probabilities); we found however that our (more
primitive) model is more transparent.
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Theorem 3.1. For each µ > 0, let πµ be the unique invariant distribution of
a dynamic process given by a one-step transition matrix Q ≡Qµ satisfying (2.4)–
(2.9). Then

lim inf
µ→0

π̂µ[b]> 0.

Proof. Assume without loss of generality thatQµ →Q0 andπµ → π0 asµ → 0
(take a convergent subsequence if needed; recall that the state spaceΩ is finite
and fixed). The invariance propertyπµ = πµQµ becomesπ0 = π0Q0 in the limit;
thusπ0 is an invariant distribution ofQ0 (butQ0 is in general not irreducible, so
its invariant distribution need not be unique). NowQ0 allows no mutations (by
(2.9) andµ→ 0), so only selection applies.

First, we claim that

Q0 is acyclic; (3.1)

i.e., there are noω0,ω1, . . . ,ωt , . . . ,ωT ∈ Ω satisfying ωt �= ωt−1 and
Q0[ωt | ωt−1] > 0 for everyt = 1, . . . , T andωT = ω0. Indeed, at a final node
i ∈ N (i.e., whenN(i) = ∅), selection can only increase the sum of the “local”
payoffs (inΓ (i)) of the populationM(i), i.e.,39 ∑

q∈M(i) u
i
Γ (i)(ω

i
q); therefore

ωi
T = ωi

0 implies thatωi
t = ωi

0 for all t ; i.e., the population ati never moves. The
same applies at any nodei for which there were no changes at all its descen-
dant nodesN(i); backward induction thus yieldsωi

t = ωi
0 for all t and alli ∈ N ,

a contradiction.
Let Ω0 := {ω ∈ Ω : Q0[ω | ω] = 1} be the set of absorbing states ofQ0.

Eq. (3.1) implies that, underQ0, an absorbing state must always be reached:

π0[Ω0] = 1. (3.2)

In other words, onlyQ0-absorbing states may be evolutionarily stable.
Let ω,ω′ ∈ Ω0 be two absorbing states; ifω′ can be reached fromω by one

mutation step in one population followed by any number of selection steps, then
we will say thatω′ is one-mutation-reachable fromω. We claim that40

if ω′ is one-mutation-reachable fromω,

then π0[ω]> 0 implies π0[ω′] > 0. (3.3)

Indeed, the invariance propertyπµ = πµQµ implies41 πµ = πµQ
k
µ for any

integerk � 1, and thus

πµ[ω′] � πµ[ω′]Qk
µ[ω′ | ω′] + πµ[ω]Qµ[ω′′ | ω]Qk−1

µ [ω′ | ω′′],

39 We writeui
Γ (i)

for the payoff function ofi in the subgameΓ (i).
40 This is shown in a general setup by Samuelson (1997), Proposition 7.7(ii).
41 Qk, the kth power of the one-step transition probability matrixQ, gives precisely thek-steps

transition probabilities.
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whereω′′ satisfiesQµ[ω′′ | ω] � c1µ for somec1 > 0 (by (2.5) and (2.8); this is
the mutation step) andQk−1

0 [ω′ | ω′′] = c2 > 0 (these are the selection steps; thus
Q0 rather thanQµ). Also, sinceω′ is aQ0-absorbing state, it can change only by
mutations, soQk

µ[ω′ | ω′] � 1− c3µ for an appropriate constantc3 > 0 (by (2.9)).
Thereforec3µπµ[ω′] � c1µπµ[ω]Qk−1

µ [ω′ | ω′′], which, after dividing byµ and
then lettingµ→ 0, yields

π0[ω′] � c1

c3
π0[ω]Qk−1

0 [ω′ | ω′′] = c1c2

c3
π0[ω] > 0,

and thusπ0[ω′] > 0.
Let i ∈ N be a final node. We claim that there is an absorbing stateω ∈ Ω0

with π0[ω] > 0, at which all the population ati plays the backward induction
actionbi . If not, letω ∈Ω0 be such thatπ0[ω] > 0 and the proportionxi

bi
(ω) of bi

is maximal (among all suchω ∈ Ω0 with π0[ω]> 0; recall thatπ0[Ω0] = 1). Thus
xi
bi
(ω) < 1. Consider a mutation of a non-bi-individual intobi (and no changes at

all nodesj �= i; recall thatω ∈ Ω0), followed by any number of selection periods
until a stateω′ ∈ Ω0 is (necessarily) reached. By (3.3), we haveπ0[ω′] > 0.
But xi

bi
(ω′) > xi

bi
(ω), since the first mutation step increased this proportion, and

the selection steps could not have decreased it; this contradicts our choice ofω.
Therefore there are statesω ∈Ω0 with π0[ω]> 0 andxi

bi
(ω)= 1.

The same argument applies at any nodei ∈ N for which there are absorbing
statesω ∈ Ω0 with π0[ω] > 0 andxj

bj
(ω) = 1 for all j ∈ N(i) (just choose from

among these states one with maximalxi
bi
(ω)). Therefore, by backward induction,

we getπ0[ωb] > 0 for that stateωb ∈ Ω0 with xi
bi
(ωb) = 1 for all i ∈ N—thus

π̂0[b]> 0. ✷
Remarks.
1. Evolutionarily stable states must be absorbing states for the dynamic without

mutationsQ0 (cf. (3.2)). Clearly, every Nash equilibrium state isQ0-
absorbing; but in the general case, where selection cannot induce a switch
to a better action unless it is currently present in the population, other
states may also be absorbing: For instance, all states corresponding to pure
action profiles (i.e.,ω wherex(ω) is pure).42 In fact, profiles that are not
Nash equilibria may well be evolutionarily stable. For an example, consider
dynamics which satisfy (2.7) as an equality, applied to the following two-
person gameΓ ′

1: It is like the gameΓ1 of Fig. 1 in the Introduction, except
that we invert the sign of all the payoffs of player 2 (and thus the backward
induction equilibrium is now(c1, c2), with payoffs(1,−2)). A mixed profile
x = ((ξ1,1 − ξ1), (ξ2,1 − ξ2)), whereξ i denotes the proportion ofci—we
will write this as x = (ξ1, ξ2) for short—is a Nash equilibrium whenever

42 We thank an anonymous referee for pointing this out.
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ξ1 = 1 andξ2 � 1/2. In contrast, the set ofQ0-absorbing profiles contains
all x with ξ1 = 1 (i.e., forany ξ2), as well as the pure(0,1) and(0,0) (i.e.,
(b1, b2) and(b1, c2)). Now Theorem 3.1 implies that̂π0[b] = π̂0[(1,1)]> 0.
One mutation (in population 2) leads from(1,1) to43 (1,1− 1/m), which is
an absorbing state. Therefore, by (3.3), we getπ̂0[(1,1 − 1/m)] > 0. In the
same manner it then follows from this thatπ̂0[(1,1− 2/m)] > 0, and so on,
up to π̂0[(1,0)]> 0—but(1,0) (i.e.,(c1, b2)) is not a Nash equilibrium.44

If one assumes that there exists a constantβ ′ > 0 such that

Q
[
ω̃i
q(i) ∈ Bi

∣∣ ω]
� β ′, (3.4)

wheneverBi �= ∅, then only Nash equilibria can be fixed points of the
selection mechanism:ω ∈ Ω0 implies45 x(ω) ∈ EQ. From (3.2) we thus have:
If the dynamic satisfies (2.4)–(2.9) and (3.4), then

lim
µ→0

π̂µ[EQ] = 1.

Note that the basic dynamic satisfies (3.4).
2. It is not difficult to show that in the gameΓ1 of Fig. 1 in the Introduction

one obtains limµ→0 π̂µ[b] = π̂0[b] = 1. However, in other games we may
have limsupµ→0 π̂µ[b] < 1; in fact, limsupµ→0 π̂µ[C(b)] < 1, whereC(b)
is the equilibrium component ofb. For example, consider the basic dynamic
in the game46 Γ3 of Fig. 3. All the equilibria in the component ofb—
i.e., all x = (ξ1, ξ2, ξ3) with ξ1 = 0 andξ2 � 4/5, whereξ i denotes the
proportion ofci—have positivêπ0, since they are reached by a chain of single
mutations fromb (this follows by repeatedly applying (3.3), similar to the
arguments for the gameΓ ′

1 given above). In particular,47 π̂0[(0,4/5,1)]> 0.
Now (1,1,4/5) is one-mutation-reachable from(0,4/5,1):(

0,
4

5
,1

)
MU(2)

(
0,

4

5
+ 1

m
,1

)
SE(1,3)

(
1

m
,

4

5
+ 1

m
,1− 1

m

)
SE(1,2,3)

(
2

m
,

4

5
+ 2

m
,1− 2

m

)
· · · SE(1,2,3)

(
1

5
,1,

4

5

)
SE(1)

(
1

5
+ 1

m
,1,

4

5

)
· · · SE(1)

(
1,1,

4

5

)
.

43 We writem for the size of populationM(2). To streamline the argument, we are ignoring the
distinction between a stateω and its corresponding pair of mixed actionsx = x(ω) (given by (2.2)).

44 In fact, the same argument then yieldsπ̂0[(0,0)] > 0 (start with a mutation in population 1), and
thenπ̂0[(0,1)] > 0 (a mutation in population 2); thuŝπ0[x] > 0 for all absorbing profilesx.

45 If the converse also holds, then the selection is calledNash-compatible in Samuelson (1997),
(7.8).

46 The gameΓ2 of Fig. 2 is discussed in Section 5.3 (a).
47 Assume for simplicity that all populations are of sizem which is a multiple of 5.
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Therefore the equilibrium(1,1,4/5)—which is in the component ofc—has
positiveπ̂0 (and thus so do all the other equilibria there).48

3.2. The main result

As the examples show, when the populations are fixed, equilibria other than the
backward induction equilibriumb (including some that are very different fromb)
may be evolutionarily stable. We now consider the case where the populations
increase, i.e.,|M(i)| → ∞ for i ∈ N . Put m = (|M(i)|)i∈N for the vector of
population sizes; we will refer tom as thepopulation profile. As m → ∞, the
state space changes and becomes infinite in the limit; we need therefore49 to
consider (arbitrary small) neighborhoods ofBI = {b} in the set of mixed actions
X: For everyε > 0, put BIε := {x ∈ X: xi

bi
� 1 − ε for all i ∈ N}. That is,

x belongs to theε-neighborhoodBIε of b if in all populations most of the
individuals play their backward induction action; we emphasize that this holds
for all i ∈ N—whether nodei is reached or not.

Theorem 3.2 (Main Theorem). For every mutation rate µ > 0 and population
profile m = (|M(i)|)i∈N , let πµ,m be the unique invariant distribution of a
dynamic process given by a one-step transition matrix Q ≡ Qµ,m satisfying
(2.4)–(2.9). Then, for every ε > 0 and δ > 0,

lim
µ→0, m→∞

µm�δ

π̂µ,m[BIε] = 1,

where m := mini∈N |M(i)|. Moreover, there exists a constant c, depending on the
game, on the dynamics parameters α1, α2, β , γ1, γ2, and on ε, δ, such that 50

Eµ,m
[
xi
bi
(ω)

]
� 1− cµ for all i ∈N, and (3.5)

πµ,m
[
xi
bi
(ω)� 1− ε for all i ∈ N

]
� 1− cµ, (3.6)

for all µ> 0 and all m =(|M(i)|)i∈N with |M(i)| � δ/µ for all i ∈ N .

Thus, as the mutation rate is low and the populations are large, the proportion
of each populationi that does not play the backward induction action is small.
Hence, in the long run, the dynamic system is most of the time in states where
almost every individual plays his backward induction action.

48 Computations (using MAPLE) form = 1,2, . . . ,8 yield the following (approximate) values for
π̂0[C(b)], respectively: 0.89, 0.83, 0.821, 0.825, 0.8302, 0.8333, 0.8391, 0.8444.

49 The probability of a single point may become 0 in the limit. For example, if 1/m is much smaller
thanµ (i.e., if µm → ∞), then we may well get̂π [b] → 0. Indeed, consider the simplest case of a
one-person game. The transition probability from the stateω0 where everyone playsb, to any state
ω1 where all but one individual playb, is of the order ofµ, whereas the transition fromω1 to ω0 has
probability of the order of 1/m.

50 Eµ,m denotes the expectation with respect to the probability distributionπµ,m.
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Remarks.
1. The only assumption made on the relative rates of convergence ofµ and

m is thatµm � δ > 0, i.e., thatµm is bounded away from 0. It follows in
particular that limµ→0 limm→∞ π̂µ,m[BIε] = 1 (but this need not hold for
the other iterative limit limm→∞ limµ→0). To interpret the condition onµm,
define a “generation” to be that period of time in which each individual gets
one opportunity to change his action; in our model, it is aboutm stages. Then
the requirement is that the expected number of mutations per generation be
bounded away from 0. (See also (e) in Section 5.2.)

2. No assumptions are made on the relative population sizes|M(i)|; one
population may well be much larger than another.51 However, the mutation
rates in the different populations are assumed to be of the same order of
magnitude—see (2.8) and (2.9).

3. The estimates we get in (3.5) and (3.6) involve the mutation rateµ but no
higher powers ofµ (as is the case in much of the existing literature, in
particular in evolutionary dynamics for games in strategic form). This means
that the effect ofsimultaneous mutations (whose probability—a power ofµ—
is relatively small) may indeed be ignored. Thus our result does not rely on
the fact that, whenµ is small, 100 simultaneous mutations are much more
probable than 101 simultaneous mutations (both of these events are extremely
improbable).52 Our proof therefore does not use any of the techniques based
on “counting mutations.”

4. Proof of the Main Theorem

4.1. An informal argument

We begin by presenting informally the main ideas of the proof of our result; in
particular, we explain the role of large populations. We do so for the simpler basic
model; similar arguments apply to the general model.53

51 However, notice that we have assumed that changes occur in the various populations with similar
frequencies (e.g., in the basic model, one mutation per 1/µ periods). If the populations are significantly
different, one may want to modify this assumption: For example, if one population is 100 times larger
than another, then one change in the latter corresponds to 100 changes in the former. As long as the
populations are comparable (i.e., the ratios|M(i)|/|M(j)| are bounded away from 0 and∞), this
modification will not affect the results.

52 In a sense, the comparison here is between different coefficients ofµ (i.e., ofµ to the power 1),
rather than between the first powers ofµ with non-zero coefficient.

53 The general model allows the effect of selection to be much weaker; for instance, if no individual
currently plays the best-reply action, then the probability of switching to it may be only of the order
of µ rather thanσ . However, as we will show in Lemma 4.6, most of the time the proportion of
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Clearly, if a nodei is reached (i.e., if at every node along the path from the
root toi there are individuals playing the action that corresponds to the path), then
mutationMU(i) at i has probability of the order ofµ, which is much smaller54

than the probability of selectionSE(i) ati. Therefore, at reached nodes most of the
individuals play their best-reply actions. The problem is how to obtain a similar
conclusion at theunreached nodes.

Consider first the three-player gameΓ2 of Fig. 2 in the Introduction. Assume
that the dynamic system is in a state where all individuals at nodes 1 and 2 play
b1 andb2, respectively; thus node 3 is not reached. Then selectionSE(3) does
not affect the population at 3; only mutationMU(3) does. Mutation by itself will
lead in the long run to a distribution close to(1/2,1/2) (since each individual is
eventually chosen, and then his action is replaced with equal probabilities byc3

or b3). However, there are alsomutations at node 2 that yield ac2 action, with
a frequency ofµ/2. After such a mutation, the probability that the action of the
mutant individual will revert tob2 is at most(1/m)ρ (since his probability of
being chosen is 1/m; hereρ = σ + µ/2); thus, it will take on the average55

m/ρ periods for it to happen. Therefore, over a long stretch of time, sayT

periods, the number of periods that there is ac2 in population 2 is about56

(µ/2)(m/ρ)T = µmT/(2ρ). These are periods at which 3 is reached and thus
selectionSE(3)—into b3—is effective. At the same time, mutationMU(3) occurs
at 3 in roughlyµT periods. Comparing the two implies that, when the population
is large (i.e., asm → ∞), selection has a much greater effect than mutation.
Therefore, in the long run, we will get most of the population at node 3 playing
b3—even though 3 may be unreached most of the time.

Consider next the four-person gameΓ4 of Fig. 4. Assume again that everyone
playsbi at nodes 1 and 2, and thus both 3 and 4 are not reached. In the same way
as in the previous example, we get the following: At node 4, mutationsMU(4)
occur with a frequency ofµ, whereas selectionSE(4) there—which requires
mutations atboth nodes 2 and 3 in order for 4 to be reached—occurs with a
frequency of(µ/2)2m/(2ρ) = µ2m/(8ρ) (indeed, the probability of a mutation
at 2 intoc2 is µ/2; the same goes for a mutation intoc3 at 3; and then it takes
about(m/ρ)/2 =m/(2ρ) periods until at least one of the mutants reverts). But we

individuals who playbi is bounded away from 0, and thus the actual effect of selection towardsbi

is in fact similar to that of the basic model. The difficulties in obtaining our result donot lie in the
introduction ofbi and in keeping its proportion positive (mutations ensure that), but rather in making
this proportion close to 1.

54 We take the term “f is much smaller thang” to mean that the ratiof/g goes to 0 asµ → 0 and
m → ∞.

55 An event whose probability isp every period will occur on averagepT times duringT periods,
or once every 1/p periods. In our arguments we shall go back and forth between the two computations
as needed.

56 More precisely, min{µmT/(2ρ),T } (when µ/2 � ρ/m, changes fromb2 into c2 are more
frequent than those fromc2 into b2, and thus there will almost always bec2-individuals).
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Fig. 4. The gameΓ4.

cannot say thatµ2m is much larger thanµ (we only assumed thatµm is bounded
away from zero), so we cannot conclude that, at node 4, selection “overpowers”
mutation. Without this happening at 4, there is no reason for the populations at the
higher nodes (like 3) to choose their backward induction action either. Moreover,
when a node is even further away from the equilibrium path—say,k nodes away—
the previous argument will work out only ifµkm is much larger thanµ.

A more careful analysis is thus called upon at this point.
Let us consider the first time that there is ac3-individual in population 3; this

happens (by mutation) on the average once every 2/µ periods. If, at that point,
there is ac2 action in population 2, then 4 is reached and we are done. If not, then,
as long as there is noc2 in population 2, node 3 is not reached. Therefore, the only
way that thec3-individual can revert tob3 is by mutation at 3; the probability of
that happening is(1/m)(µ/2) = µ/(2m) (since thatspecific individual must be
chosen out ofM(3), and then undergo mutation). At the same time, the probability
of getting ac2-individual in population 2—by mutation—isµ/2. Sinceµ/2 is
much larger thanµ/(2m) for largem, in general the latter will happen much later
than the former (and therefore can be essentially ignored). Thus altogether we
have to wait at most on the order of 2/µ periods for the mutation at 3, and then
another 2/µ periods for the mutation at node 2; in sum, 4/µ periods until node
4 is reached (compare this to 4/µ2 in the previous—unsuccessful—argument).
Once 4 is reached, it takes on the order ofm/(2ρ) periods for either thec2- or
thec3-individual to revert, so selectionSE(4) operates at node 4 with a frequency
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of approximately(µ/4)m/(2ρ) = µm/(8ρ). Whenm → ∞, this is much larger
than the mutation rateµ; so, again, selection “wins” at57 4. Once this has been
established, it follows that most of the population at node 4 playsb4 most of the
time, and we are essentially58 left with a three-player game (likeΓ2); the proof is
completed by (backward) induction.59

The crux of the argument is that, after a mutation in population 3 has generated
a c3, this c3 action is “stuck” there for a long time60—at least until a mutation
generates ac2 in population 2. Thus, what appeared to requiresimultaneous
mutations (with a frequency of the order ofµk for somek � 2), turns out instead
to rely onsequential mutations (with a frequency of the order ofµ).61

It should now be clear what role the large populations play: The smaller a group
of individuals is, the (relatively) less probable it is that a change of action will
occur in that group. This is particularly true when comparing aspecific individual
(like the c3-mutant in the analysis of gameΓ4, or thec2-mutant inΓ2), to any
individual in a whole population (population 3 inΓ4, or population 2 inΓ2).

Finally, to understand the use of the condition thatµm � δ > 0, note that
the above arguments show that the effect of selection is of the order ofµm,
whereas that of mutation isµ. The possibility that a non-negligible fraction
of the population does not play the backward induction action, albeit an event
of low probability for largem, cannot be ignored. A simple estimate62 shows
this probability to be of the order of at most 1/m. When this event occurs at
some descendant node, it may affect selection at the current node—away from
the backward induction action. However, as long as 1/m is at most a constant
timesµ—which is the case whenµm � δ > 0—this effect, like that of random
mutations, is again small relative toµm for largem.

57 This argument clearly generalizes; for a node that is at distancek from the equilibrium path,
the frequency of selection is of the order ofµm/(2k2ρ), which, asm → ∞, is much larger than the
mutation rateµ.

58 See the last paragraph in this subsection.
59 Similar arguments apply to the three-player gameΓ3 of Fig. 3. When less than 90% of population

3 playsb3, in order for 3 to be reached one needs mutants at 2 and at 1, and the computations are
exactly as for node 4 inΓ4. When the 90% proportion ofb3 is exceeded, thenb2 becomes a best reply
of 2, so a mutant is needed only at 1—and the estimates are as for node 3 inΓ2.

60 It is a so-called “neutral mutation” that does not affect the payoffs.
61 This kind of argument may also explain how matching mutations occur in interacting populations,

i.e., mutations that yield no advantage to their own population, unless there are compatible mutations
in the other populations. The computations above show that, in large populations, the frequency of
such events may well be much higher than commonly thought: of the order ofµ rather than a power
of µ.

62 Using Markov’s inequality. More refined probabilistic computations may well lead to weaker
conditions. See also (e) in Section 5.2.
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4.2. An outline of the proof

We now provide an outline that may help the reader to follow the formal proof
given in the next subsection. The proof proceeds by backward induction, starting
from the final nodes and working back towards the root; see Proposition 4.5. The
main claims that are proved for each nodei are as follows:

1. The probability thatbi is not the local best reply ofi is low (this happens
only when a sizeable proportion of the population at some descendant node
j does not choosebj , which, by induction, has low probability); in fact, this
probability is of the order ofµ; see (4.4).

2. Whenbi is the local best reply ofi, the expected proportion of populationi
that does not playbi wheni is reached is small; again, it is of the order ofµ

(this holds since, with high probability, selection towardsbi has probability
which is bounded away from 0, while mutation has probabilityµ); see
Lemma 4.6 and Eq. (4.6).

3. Whenbi is the local best reply ofi, the ratio between the expected proportion
of populationi that does not playbi wheni is reached, and the same expected
proportion wheni is not reached, is of the order ofµm; see (4.13). This is
the central step in the proof, and its essence is the “sequential mutations”
argument above; see Proposition 4.1. Together with the previous claim, it
follows that the expected proportion of populationi that does not playbi

wheni is not reached is of the order of 1/m; see (4.10).
4. Adding the above three estimates and noting that 1/m� (1/δ)µ implies that

the expected proportion of populationi that does not playbi is of the order
of µ, which yields (3.5) and (3.6).

4.3. The proof

We now prove the Main Theorem. Fixε, δ > 0; the mutation rateµ > 0;
the population profilem = (mi)i∈N with µm � δ, wheremi := |M(i)| and
m := mini∈N mi ; and the transition probability matrixQ that satisfies (2.4)–(2.9).
Let π be the resulting unique invariant distribution over the state spaceΩ . Take
the stateω ∈ Ω to be distributed according toπ , and letω̃ ∈ Ω be the next state,
given by the one-step transition probabilitiesQ[ω̃ | ω]; thenω̃ is also distributed
according to63 π . From now on all probability statements and expectations will
be according to this distribution.

63 In other words:(ω, ω̃) ∈ Ω × Ω is distributed as two subsequent states of the Markov process,
andω is distributed according to the invariant distributionπ (and thus so is̃ω).
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Before proceeding with the proof, we introduce a number of useful notations:

• For each nodei ∈ N , putY i := 1− xi
bi
(ω) (the mappingx :Ω → X is given

by (2.2)); this is the proportion of populationi that doesnot play the backward
induction action in stateω. Similarly, put Ỹ i := 1 − xi

bi
(ω̃) for the same

proportion in the next-period statẽω. The random variablesY i and Ỹ i are
identically distributed (their distribution isπ ◦ (1− xi

bi
)−1); thus in particular

E[Ỹ i] =E[Y i].
• Given two nodesi, j ∈ N such thati is a descendant ofj (i.e., i ∈ N(j)), let
Rj,i be an indicator random variable, defined as 1 if nodei is reached from
nodej in stateω, and 0 otherwise; i.e.,Rj,i = 1 if and only if for everyk ∈ N

on the path fromj to i there is at least one individualq ∈ M(k) whose choice
ωk
q is the action that leads towardsi. Whenj is the root we will writeRi for

the indicator thati is reached. Again,̃Rj,i is defined in the same way forω̃.
• When everyone plays the backward induction action—i.e., whenY j = 0 for

all j ∈ N—the unique local best reply for eachi ∈ N is bi (recall thatb is
the unique backward induction equilibrium). Therefore there exists aλ > 0
(appropriately small) such thatbi is the unique local best reply ofi for all
i ∈ N whenY j < λ for all j ∈ N (i.e., when the proportion of the individuals
at each node that donot play the backward induction action is less thanλ).
Thisλ depends on the game only, and will be fixed from now on.

• Let Li be an indicator random variable, defined as 1 in stateω if Y j < λ for
all j ∈ N(i), and 0 otherwise. Thus, whenLi = 1 the backward induction
actionbi is the uniquelocal best reply ofi in stateω, i.e.,uiΓ (i)(b

i,ωN(i)) >

uiΓ (i)(a
i,ωN(i)) for everyai ∈ Ai, ai �= bi . We denote bỹLi the indicator

that Ỹ j < λ for all j ∈N(i). Wheni is a final node (i.e., whenN(i)= ∅) we
haveLi ≡ L̃i ≡ 1.

We note that selectionSE(i) has an effect only wheni is reached, i.e., when
Ri = 1; if i is not reached, i.e., ifRi = 0, then all actions ofi yield the same
payoff in Γ and only mutationMU(i) affectsωi . If Ri = 1 andLi = 1 then
bi is the global best reply ofi, and thus certainly a “better action” for a “non-bi-
individual” (i.e.,bi ∈ Bi(q(i),ω) whenωi

q(i) �= bi ). Since these arguments will be
used repeatedly in the proof, for convenience we state the following implications
of (2.4)–(2.9) here64

P
[
ω̃i
q(i) = ai

∣∣ ω]
� α1µ for everyai ∈Ai. (4.1)

64 We use the “big-O” notation: f (x) = O(g(x)) if there exists a constantK < ∞ such that
|f (x)| � K|g(x)| for all x in the relevant region. Thusf (µ,m) = O(µ) means that there exists
K such that|f (µ,m)| �Kµ for all 0<µ< 1 and all vectorsm = (mi)i∈N with integer coordinates
mi � δ/µ for all i ∈ N.
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If Ri = 0 thenP
[
ω̃i
q(i) �= ωi

q(i)

∣∣ ω] =O(µ). (4.2)

If LiRi = 1 andωi
q(i) �= bi thenP

[
ω̃i
q(i) = bi

∣∣ ω]
� β

(
1− Y i

)
. (4.3)

The crucial argument in our proof is the following proposition.

Proposition 4.1. Consider the path from the root to a node i ∈ N; without loss
of generality, assume that the nodes along this path are 1,2, . . . , i − 1, i (in that
order, with 1 the root). Let Z̃ be a non-negative bounded random variable that
depends on65 (ω̃k)k∈{i}∪N(i) . Then

µE
[
Z̃

(
1−Ri

)]
� O

(
1

m

)
E

[
Z̃Ri

] +O

(
µ

m

)

+
i−1∑
j=1

O
(
E

[
Z̃

(
1−Rj,i

)] −E
[
Z̃

(
1− R̃j,i

)])
.

Proof. For eachj = 1,2, . . . , i−1, letcj ∈Aj be the choice along the given path
(i.e., towardsj +1), and putθj (ω) := |{q ∈ M(j): ωj

q = cj }|/mj , the proportion
of individuals at nodej that choosecj ; denoteV j := θj (ω) and Ṽ j := θj (ω̃).
We first prove three lemmata.

Lemma 4.2.

E
[
Z̃

(
1− R̃j,i

)
Ri

] =O

(
1

m

)
E

[
Z̃Ri

]
.

Proof. For eachω with Ri = 1, to getR̃j,i = 0 there must be some nodek
with j � k < i and Ṽ k = 0. But V k > 0 (sinceRi = 1), so in factV k = 1/mk

(since|Ṽ k − V k| is 0 or 1/mk). HenceP [Ṽ k = 0 | ω] � γ2/m
k = O(1/m) (by

(2.5), since the singleck-individual must be chosen). ThereforeP [R̃j,i = 0 | ω] �∑i−1
k=j P [Ṽ k = 0 | ω] =O(1/m), from which it follows that

E
[
Z̃

(
1− R̃j,i

) ∣∣ ω] = P
[
R̃j,i = 0

∣∣ ω]
E

[
Z̃

∣∣ ω] =O

(
1

m

)
E

[
Z̃

∣∣ ω]
(we have used the conditional independence condition (2.4):R̃j,i depends on
nodes beforei, whereas̃Z depends oni and nodes afteri). Thus

E
[
Z̃

(
1− R̃j,i

) ∣∣Ri = 1
] =O

(
1

m

)
E

[
Z̃

∣∣Ri = 1
]
,

65 We thank an anonymous referee for pointing out that an assumption onZ̃ was missing here. It
may be shown that the result also holds ifZ̃ is replaced byZ which depends onω = (ωk)k∈N (note:
no restrictions here on which coordinates).
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and

E
[
Z̃

(
1− R̃j,i

)
Ri

] = E
[
Z̃

(
1− R̃j,i

) ∣∣ Ri = 1
]
P

[
Ri = 1

] + 0P
[
Ri = 0

]
= O

(
1

m

)
E

[
Z̃

∣∣Ri = 1
]
P

[
Ri = 1

]
= O

(
1

m

)
E

[
Z̃Ri

]
. ✷

Lemma 4.3.

E
[
Z̃

(
1− R̃j,i

)(
1−Rj

)
Rj,i

] =O
(µ
m

)
.

Proof. For eachω ∈ Ω with Rj = 0 and Rj,i = 1 (i.e., j is not reached,
and i is reached fromj ), to get R̃j,i = 0 there must be some nodek with
j � k < i and Ṽ k = 0. But Rj,i = 1 implies thatV k > 0, and thusV k =
1/mk. ThereforeP [Ṽ k = 0 | ω] � (γ2/m

k)O(µ) = O(µ/m) (by (2.5) and
(4.2): the singleck-individual must be chosen, and its action can change
by mutation only, sincej , and thusa fortiori k, is not reached). Hence
P [R̃j,i = 0 | ω] �

∑i−1
k=j P [Ṽ k = 0|ω] = O(µ/m), from which the result

follows. ✷
Lemma 4.4.

E
[
Z̃

(
1− R̃j,i

)(
1−Rj,j+1)Rj+1,i]

� (1− α1µ)E
[
Z̃

(
1−Rj,j+1)Rj+1,i] +O

(µ
m

)
.

Proof. Take ω ∈ Ω with Rj,j+1 = 0 (i.e., V j = 0), andRj+1,i = 1. To get
R̃j,i = 0 there must be some nodek with j � k < i and Ṽ k = 0. Now
P [Ṽ j > 0|ω] = P [ω̃j

q(j) = cj | ω] � α1µ (this follows fromV j = 0 and (4.1)),

andP [Ṽ k = 0 | ω] � γ2/m
k � γ2/m for k = j + 1, . . . , i − 1 (by (2.5), since

Rj+1,i = 1 impliesV k > 0). Therefore, by (2.4),

P
[
R̃j,i = 1

∣∣ ω] = P
[
Ṽ k > 0 for all j � k < i − 1

∣∣ ω]
� (α1µ)(1− γ2/m)i−j−1

henceP [R̃j,i = 0 | ω] � (1 − α1µ) + O(µ/m), and the result follows as in the
proof of Lemma 4.2. ✷

The proof of Proposition 4.1 can now be completed.



254 S. Hart / Games and Economic Behavior 41 (2002) 227–264

Proof of Proposition 4.1 (continued). We have(1 − Rj)Rj,i = Rj,i − Ri and
(1−Rj,j+1)Rj+1,i =Rj+1,i −Rj,i . Adding the inequalities of Lemmata 4.2–4.4
together with

E
[
Z̃

(
1− R̃j,i

)(
1−Rj+1,i)] �E

[
Z̃

(
1−Rj+1,i)]

yields

E
[
Z̃

(
1− R̃j,i

)]
� O

(
1

m

)
E

[
Z̃Ri

] + (1− α1µ)E
[
Z̃

(
Rj+1,i −Rj,i

)]
+E

[
Z̃

(
1−Rj+1,i)] +O

(µ
m

)
.

Rearranging terms gives

α1µE
[
Z̃

(
Rj+1,i −Rj,i

)]
� O

(
1

m

)
E

[
Z̃Ri

] +O
(µ
m

)
+ (

E
[
Z̃

(
1−Rj,i

)] −E
[
Z̃

(
1− R̃j,i

)])
.

Adding these inequalities forj = 1,2, . . . , i − 1 and noting thatRi,i = 1 and
R1,i =Ri completes the proof. ✷

The next proposition proves the Main Theorem. The argument is divided into
8 steps.

Proposition 4.5. For each node i ∈N :

P
[
Li = 0

] =O(µ); (4.4)

P
[
Ỹ i < Y i

] = P
[
Ỹ i > Y i

] =O(µ); (4.5)

E
[
Y iLiRi

] =O(µ); (4.6)

E
[
Ỹ i L̃iRi

] =O(µ); (4.7)

E
[∣∣Ỹ i L̃i − Y iLi

∣∣(1−Ri
)] =O

(µ
m

)
; (4.8)

E
[
Ỹ i L̃i

(
1−Ri

)] =O

(
1

m

)
; (4.9)

E
[
Y iLi

(
1−Ri

)] =O

(
1

m

)
; (4.10)

E
[
Y i

] =O(µ). (4.11)

Proof. The proof is by backward induction oni. Assume that (4.4)–(4.11) hold
for all66 j ∈ N(i); then each of the claims (4.4)–(4.11) fori will be proved in
turn.

66 The induction starts from final nodesi for whichN(i) = ∅ (and thus there is no assumption).
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Step 1: (4.4) holds for i. Indeed,67Li = 0 implies that there isj ∈ N(i) such that
Y j � λ, hence

P
[
Li = 0

]
�

∑
j∈N(i)

P
[
Y j � λ

]
�

∑
j∈N(i)

1

λ
E

[
Y j

] =O(µ),

where we have used Markov’s inequality68 and (4.11) forj (by the induction
hypothesis).

Step 2: (4.5) holds for i. We haveE[Ỹ i] = E[Y i] (recall thatπ is the invariant
distribution), thus

0=E
[
Ỹ i − Y i

] =
(

1

mi

)
P

[
Ỹ i > Y i

] +
(

− 1

mi

)
P

[
Ỹ i < Y i

]
,

since the only possible values of̃Y i − Y i are 0, 1/mi , and−1/mi . Therefore

P
[
Ỹ i > Y i

] = P
[
Ỹ i < Y i

]
.

To get Ỹ i > Y i we need abi-individual to become non-bi (i.e., ωi
q(i) = bi and

ω̃i
q(i) �= bi). This can happen either by selection—which requiresbi not to be

a best reply ofi (henceLi = 0)—or by mutation—with probability equal toO(µ)

(by (2.9)). Thus

P
[
Ỹ i > Y i

]
� P

[
Li = 0

] +O(µ)=O(µ),

by (4.4) fori, proving (4.5) fori.

Step 3: (4.6) holds for i. The caseỸ i < Y i occurs when a non-bi-action is
replaced bybi ; thus the chosen individualq(i) ∈ M(i) is a non-bi-individual (i.e.,
ωi
q(i) �= bi), which happens with probability� γ1Y

i by (2.5). For everyω ∈ Ω

with LiRi = 1, the probabilityP [ω̃i
q(i) = bi|ω] of changing the action tobi is at

leastβ(1 − Y i) by (2.7) or (4.3) (since the proportion ofbi in the population is
1− Y i ). Therefore

P
[
Ỹ i < Y i

]
� E

[
βγ1Y

i
(
1− Y i

) ∣∣LiRi = 1
]
P

[
LiRi = 1

]
+ 0P

[
LiRi �= 1

]
= βγ1E

[
Y i

(
1− Y i

)
LiRi

]
,

which, by (4.5) fori, implies

E
[
Y i

(
1− Y i

)
LiRi

] =O(µ),

67 We thank Michihiro Kandori for pointing out an error in this proof in the first version of the
paper.

68 Markov’s inequality is:P [Z � z] � (1/z)E[Z] for a non-negative random variableZ andz > 0.
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and thus

E
[
Y iLiRi1Y i�1−η

] =O(µ)/η =O(µ) (4.12)

for anyη > 0, where1Y i�1−η is the indicator thatY i � 1− η.

To complete the proof of Step 3 we need the following lemma, showing that
the probability thatY i is in a neighborhood of 1 is low; that is, most of the time
the proportion ofbi is bounded away from69 0.

Lemma 4.6. There exist constants η > 0 and c > 0 such that

P
[
Y i > 1− η

] =O
(
e−cm

)
.

Proof. The invariant distribution property implies70

P

[
Y i = k + 1

mi

]
P

[
Ỹ i = k

mi

∣∣∣∣ Y i = k + 1

mi

]

= P

[
Y i = k

mi

]
P

[
Ỹ i = k + 1

mi

∣∣∣∣ Y i = k

mi

]

for everyk = 0,1, . . . ,mi − 1. We have, first,

P

[
Ỹ i = k

mi

∣∣∣∣ Y i = k + 1

mi

]
� γ1

k + 1

mi
α1µ

by (2.5) and (2.8); and second,

P

[
Ỹ i = k + 1

mi

∣∣∣∣ Y i = k

mi

]
� γ2

(
1− k

mi

)(
α2µ+ P

[
Li = 0

])
� c1

(
1− k

mi

)
µ

for an appropriate constantc1 > 0, where we have used (2.5) and (2.9) (selection
can increaseY i only whenLi = 0), and thenP [Li = 0] = O(µ) by (4.4) for i
(proved in Step 1). Therefore

P

[
Y i = k + 1

mi

]
γ1

k + 1

mi
α1µ� P

[
Y i = k

mi

]
c1

(
1− k

mi

)
µ,

69 This shows that in our model with large populations, (2.7) turns out to be effectively equivalent
to the stronger (3.4).

70 Let π be an invariant distribution of a Markov chainQ with state spaceΩ which is partitioned
into two disjoint setsS andT , then it can be checked that

∑
s∈S π [s]Q[T | s] = ∑

t∈T π [t]Q[S | t]
(the “total flow”—i.e., the total invariant probability—fromS to T equals the “total flow” fromT
to S). In our case, takeS = {Y i � (k + 1)/mi} andT = {Y i � k/mi}.



S. Hart / Games and Economic Behavior 41 (2002) 227–264 257

or

P

[
Y i = k + 1

mi

]
� c2

(
mi − k

k + 1

)
P

[
Y i = k

mi

]
,

wherec2 := c1/(γ1α1). Let η > 0 be small enough so thatc2(m
i − k)/(k + 1) �

1/2 for all71 k > k0 := �(1− 2η)mi�. Then we get

P

[
Y i = k

mi

]
�

(
1

2

)k−k0

for all k � k0 and thus

P
[
Y i > 1− η

]
�

∑
k>(1−η)mi

(
1

2

)k−k0

�
(

1

2

)ηmi−1

,

as claimed. ✷
Proof of Step 3 (continued). Lemma 4.6 yields

E
[
Y iLiRi1Y i>1−η

]
� P

[
Y i > 1− η

] =O
(
e−cm

)
,

which is at mostO(µ) since 1/m� (1/δ)µ. Adding this to the estimate of (4.12)
gives (4.6) fori, thus completing Step 3.

Step 4: (4.7) holds for i. WriteE[Ỹ i L̃iRi ] =E[Ỹ i L̃i (1−Li)Ri ]+E[Ỹ iL̃iLiRi ].
The first term isO(µ) by (4.4), and the second term is

E
[
Ỹ i L̃iLiRi

]
� E

[
Ỹ iLiRi

] =E
[
Y iLiRi

] +E
[(
Ỹ i − Y i

)
LiRi

]
� E

[
Y iLiRi

] +
(

1

mi

)
P

[
Ỹ i > Y i

]
(since the only positive value of̃Y i − Y i is 1/mi). Applying (4.5) yields the
desired inequality.

Step 5: (4.8) holds for i. We have

E
[∣∣Ỹ i L̃i − Y iLi

∣∣(1−Ri
)]

� E
[∣∣Ỹ i − Y i

∣∣L̃i
(
1−Ri

)] +E
[
Y i

∣∣L̃i −Li
∣∣(1−Ri

)]
� E

[∣∣Ỹ i − Y i
∣∣(1−Ri

)] +E
[∣∣L̃i −Li

∣∣(1−Ri
)]
.

The first term is bounded by(1/mi)P [Ỹ i �= Y i, Ri = 0] = (1/mi)O(µ) =
O(µ/m) (see (4.2):Ri = 0 implies that the change fromY i to Ỹ i is by mutation
only). For the second term, note thatL̃i �= Li implies that there existsj ∈ N(i)

such thatY j � λ − 1/mj (otherwiseY j < λ − 1/mj and thusỸ j < λ for all

71 �x� denotes the largest integer that is� x.
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j ∈ N(i), in which caseLi = L̃i = 1). Choosej ∈ N(i) to be a last such node;
thusY r < λ − 1/mr for all r ∈ N(j), henceLj = 1. Now L̃i �= Li implies that
ω̃k �= ωk for somek ∈ N(i) ∪ {i}, which, by (4.2), has conditional probability
equal toO(µ) for everyω with Ri = 0 and thusa fortiori Rk = 0. Therefore

E
[∣∣L̃i −Li

∣∣(1−Ri
)]

�
∑

j∈N(i)

P

[
L̃i �= Li, Y j � λ− 1

mj
, Lj = 1, Ri = 0

]

� O(µ)
∑

j∈N(i)

P

[
Y j � λ− 1

mj
, Lj = 1, Ri = 0

]

� O(µ)
∑

j∈N(i)

1

λ− 1
mj

E
[
Y jLj

(
1−Rj

)]
,

where we have used 1−Ri � 1−Rj together with Markov’s inequality. Applying
(4.10) for eachj ∈ N(i) completes the proof of (4.8) fori.

Step 6: (4.9) holds for i. TakeZ̃ = Ỹ i L̃i in Proposition 4.1. We have∣∣E[
Ỹ i L̃i

(
1−Rj,i

)] −E
[
Ỹ i L̃i

(
1− R̃j,i

)]∣∣
= ∣∣E[

Ỹ i L̃i
(
1−Rj,i

)] −E
[
Y iLi

(
1−Rj,i

)]∣∣
� E

[∣∣Ỹ i L̃i − Y iLi
∣∣(1−Rj,i

)]
� E

[∣∣Ỹ i L̃i − Y iLi
∣∣(1−Ri

)] =O
(µ
m

)
,

where we have used the fact thatπ is the invariant distribution, the inequality
1 − Rj,i � 1 − Ri (sinceRj,i = 0 impliesRi = 0), and finally (4.8) fori. Thus
each one of the right-most terms in the inequality obtained from Proposition 4.1
is O(µ/m), and therefore

µE
[
Ỹ i L̃i

(
1−Ri

)]
� O

(
1

m

)
E

[
Ỹ i L̃iRi

] +O
(µ
m

)
. (4.13)

Applying (4.7) fori completes the proof.

Step 7: (4.10) holds for i. It follows immediately from (4.8) and (4.9) fori.

Step 8: (4.11) holds for i. Adding (4.6) and (4.10) fori yields

E
[
Y iLi

] =O(µ)+O

(
1

m

)
=O(µ),

since 1/m� (1/δ)µ. Together with

E
[
Y i

(
1−Li

)]
� P

[
Li = 0

] =O(µ)

by (4.4) fori, the proof is completed.✷
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Proof of Theorem 3.2 (Main Theorem). Inequality (4.11) of Proposition 4.5 is
precisely (3.5); applying Markov’s inequality then yields (3.6).✷

5. Discussion

It should be clear at this point that in order to single out the backward induction
equilibrium, the mutation rate must not be too low or too high relative to the
selection rate: If it is too low then the system can get “stuck” at other equilibria,
and if it is too high the system may be a completely random system. Studying
other dynamical models will hopefully help delineate in which cases the backward
induction outcome obtains, and in which cases it does not.

5.1. Other selection dynamics

Various generalizations and modifications of our dynamics may be considered.
Some will not affect the main result, while others may well invalidate it. We list
here several:

(a) Replace (2.7) with

Q
[
ω̃i
q(i) = ai

∣∣ ω]
� f

(
xi
ai
(ω)

)
,

wheref : [0,1] → [0,1] is a monotonic decreasing function withf (ξ) > 0
for all ξ > 0. For instance, in an “imitation” model, the chosen individual may
samples other individuals in his own population (rather than just one)—in
which case we can takef (ξ) = βξs. It may be shown that our result continues
to hold: The only change is in Step 3 of the proof of Proposition 4.5, where
we now haveP [Ỹ i < Y i] � γ1E[Y if (1− Y i)LiRi ], which implies

E
[
Y iLiRi1Y i�1−η

] =O(µ)/f (η)=O(µ);
thus (4.12) holds.

(b) Replace (2.7) with (3.4), i.e.,some better action has positive probability of
being chosen (rather thaneach). It seems that our result is still correct.72

(c) Assume that in each period one individual—fromall populations altogether—
may change its action. For example, in each period choose one individual at
random from

⋃
i∈N M(i); or, when the populations are of different sizes, first

choosei ∈ N at random, and then chooseq(i) in M(i) at random (only this

72 Consider for simplicity a final nodei; one shows first that the proportion of the worst action ati

must be small, after which the same is proven for the second-worst, and so on. Note that the proportion
of the best reply—which can change only by mutation—is bounded away from zero.
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chosen individual may change its action in the current period). We conjecture
that this modification will not affect the result.73

(d) Make the probability of selection depend on thepayoff differences. For
example,

Q
[
ω̃i
q(i) = ai

∣∣ ω] = βxi
ai
(ω)

[
ui

(
ai,ω−i

) − ui
(
ωi
q(i),ω

−i
)]
, (5.1)

for everyai ∈ Bi . That is, the probability that selection induces a switch to
a better action is proportional to how much better that action is, as measured
by the payoffs against the current populations at the other nodes. In contrast,
(2.7) only takes into account thesign of this difference (which is positive
if and only if ai ∈ Bi ). Equation (5.1) yields a dynamic in the well-known
class of “replicator dynamics.”74 Again, there are many variants here; we
conjecture that our result need not hold under75 (5.1) (though it might hold if
we instead use a positive power, strictly less than 1, of the payoff differences).

(e) Modify selection so that the proportion of the better actions will increase
with a probability that is close to 1 (i.e., of the order of 1− αµ). Note that
in our model if, say, actionai is currently better than actionci and 2/3 of
the population playai, then the probability that the proportion ofai will
increase (to 2/3+ 1/m) is of the order of 1/3 only (= the probability that a
ci -individual will be chosen). Some preliminary work indicates that our result
holds here too, at least in the case where there are exactly two actions at each
node.

(f) Change the probability that each individual inM(i) will be chosen, in such
a way that it still goes to zero as the population size|M(i)| goes to infinity,
though without necessarily being of the order of 1/|M(i)| as in76 (2.5).

(g) Specify various rules as to how the individuals are to be matched in each
period to play the game (recall Remark 3 in Section 2.3); for instance,
when all populations are of sizem, we may arrange all individuals intom
random matchings (rather than everyone playing against everyone else). Such
extensions might overcome the difficulty that an individual needs to play
against everyone in the other populations in a time period that converges to
zero as the populations increase.

73 The conditional independence condition (2.4), which is no longer true, has been used only in the
proofs of Lemmata 4.2 and 4.4.

74 Our selection may thus be called an “ordinal replicator dynamic.” Note that (5.1) is continuous
(with respect to changes in the other populations), whereas (2.7) is not.

75 Large populations decrease the effect of selection, since the difference in payoffs due to the action
of one individual at a previous node is small.

76 One then needs to work with expressions likeE[g(Y i)] instead ofE[Y i ], where g(Y i) is
the probability that a non-bi -individual is chosen when the proportion of such individuals in the
population isY i .
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5.2. Extensions

A number of directions for further study are:

(a) Non-unique backward induction equilibrium. Analyze the non-generic case
where there is more than one subgame-perfect equilibrium—for instance,
when some of the payoffs at the final nodes are equal. It seems that a subset
of BI, at times a strict subset, is obtained.

(b) Multiple agents and non-distinct populations. Study games where players
may move at more than one node, and thus the populations at different nodes
are no longer distinct (as in the gene-normal form). Note that difficulties may
arise since selection operates at the level of the player (rather than that of the
agent/gene).

(c) Games with imperfect information. Allow for general games in extensive
form (not necessarily of perfect information). Here we conjecture that all
evolutionarily stable equilibria will be subgame-perfect, but the converse
will no longer be true; evolutionary dynamics may well pick out certain
refinements rather than others.

(d) Other selection dynamics. This is discussed in Section 5.1.
(e) µm → 0 and the order of limits. Study the case where the number of

mutations per generation may go to zero (see Remark 1 in Section 3.2).
While our proof makes use of the conditionµm � δ > 0, we do not know
whether it is always necessary.77 It is thus possible that, for a certain class of
dynamics (like the basic dynamic, or those that satisfy (3.4)), one has in fact
limm→∞, µ→0 π̂[BIε] = 1 for the double limit (and thus also for the iterative
limit lim m limµ).

5.3. Related literature

This subsection discusses relations to other work on dynamic models in games
of extensive form (for games in strategic form, see the books referred to in
Section 1.1).

(a) Nöldeke and Samuelson. The closest paper to ours is Nöldeke and
Samuelson (1993) (see also Samuelson, 1997, Chap. 8). An important difference
between their model and ours is that each one of their individuals is characterized
not only by an action (like ours)but also by conjectures about the composition of
the populations at all nodes, whether reached or not. The dynamic then affects
actionsand conjectures. Our model is thus more basic; it is “operational” or

77 We note that the conditionµm� δ is usedonly in Steps 3 and 8 in the proof of Proposition 4.5, in
order to bound the probability that the backward induction action is not played at descendant nodes; it
is not used to show that nodes are reached with positive probability (recall also Section 4.1, particularly
the last paragraph there).
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“behavioristic” (only actual actions and payoffs matter), whereas theirs requires
in addition more sophisticated “cognitive” considerations (beliefs or conjectures).

Nöldeke and Samuelson show that, in general, equilibria other than the
backward induction are stable; for example, the equilibriumc in the gameΓ2

of Fig. 2. To see why this is so, notice, first, that the absorbing states in their
model are the “self-confirming equilibria,” which include the Nash equilibria as
well as additional points (which allow for arbitrary beliefs at unreached nodes).
Thus everyx = (ξ1, ξ2, ξ3) with ξ1 = ξ2 = 0, whereξ i denotes the proportion
of ci in populationi, constitutes a self-confirming equilibrium, whereas it is a
Nash equilibrium only ifξ3 � 1/3. Since all these absorbing states are connected
by a chain of single mutations from the backward induction equilibriumb (see
Theorem 3.1 and (3.3) in its proof), it follows that all of them—including
(0,0,1)—have positiveπ̂0-probability. But now starting at(0,0,1), after one
mutation in population 2, selection there will increaseξ2; if ξ2 > 1/2 occurs
beforeξ3 < 1/3, then selection will start affecting population 1 as well. There is
therefore a positive probability that a(1, ξ2, ξ3) equilibrium in the component of
c = (1,1,1) will eventually be reached by selection. This implies thatπ̂0[x] > 0
for all x there, in particular̂π0[c]> 0.

In our basic model, once the system leaves the equilibrium component ofb =
(0,0,0) and78 (0,0,1/3+ 1/m) is reached (by a sequence of single mutations),
selection starts affecting the population at 2, moving it towardsc2. This makes
node 3 reachable and then selection at 3 decreasesξ3. Whenm is large, the
probability is extremely low thatξ2 will increase from 0 to 1/2 + 1/m—which
is the crucial proportion for selection to start operating at node 1—beforeξ3

decreases from 1/3 + 1/m to 1/3 (indeed, the former requiresm/2 “steps,” the
latter only 1 step). Therefore, the system is led back to theb-component with very
high probability, and so, for large populations,π̂0 gives very small weight toc and
its component. In our general model, if(0,0,1/3+1/m) turns out, as in Nöldeke
and Samuelson, to be absorbing for the selection dynamicQ0 (recall Remark 1
in Section 3.1), then the same argument applies to(0,1/m,1/3 + 1/m); to go
from there to(0,0,1/3+ 1/m) however requires an additional argument (see for
instance (4.13)).

We note that for some variants of our dynamics—as in (e) in Section 5.1—it
can in fact be shown that̂π0[x] = 0 for all x in the equilibrium component ofc,
for every population sizem� 2. However, large populations would still be needed
to obtain the backward induction equilibrium in general—for instance, in game
Γ3 of Fig. 3.

78 Assume for simplicity thatm is divisible by 6.



S. Hart / Games and Economic Behavior 41 (2002) 227–264 263

Finally, it is possible79 that the Nöldeke and Samuelson model will also yield
the backward induction equilibrium for large populations; they did not consider
this setup.

(b) Population dynamics. The most relevant paper here is Cressman and
Schlag (1998), who consider continuous-time replicator dynamics (like (5.1)
in Section 5.1) for continuum populations (which would correspond to our
large populations limit). They study (interior) asymptotic stability (rather than
evolutionary or stochastic stability), and they show that only in simple games80

does the process select the backward induction equilibria. As we said in (d)
of Section 5.1, we conjecture that our result need not hold for such selection
mechanisms. Another related work is Swinkels (1993), which provides sufficient
conditions for myopic adjustment dynamics—a class that includes the replicator
dynamics—to lead to (Kohlberg–Mertens) stable sets.

(c) Fictitious play dynamics. There are a number of papers that provide
adaptive learning models, of the “fictitious play” variety, leading to the backward
induction equilibria: see Canning (1992), Theorem 4; Hendon et al. (1996),
Theorem 2; and Groes et al. (1999), Theorem 2. While these are not population
games (there is a single player in each role), their dynamics can nevertheless
be interpreted as population dynamics—see Hofbauer and Sigmund (1998),
Section 8.4. By comparison to the present paper, notice that in these models the
dynamic is a best-reply dynamic, and it isassumed that all nodes are reached
(the “beliefs” of the players—the counterpart of our population frequencies—
are completely mixed); in our model, this constitutes a substantial difficulty (see
Section 4.1).
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