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Abstract

The backward induction (or subgame-perfect) equilibrium of a perfect information game
is shown to be the unique evolutionarily stable outcome for dynamic models consisting of
selection and mutation, when the mutation rate is low and the populations are large.
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1. Introduction
1.1. Background

A fascinating meeting of ideas has occurred in the last two decades between
evolutionary biology and game theory. Now this may seem strange at first. The
players in game-theoretic models are usually assumed to be fully rational, whereas
genes and other vehicles of evolution are assumed to behave in ways that are
entirely mechanistic. Nonetheless, once a player is replaced by a population of
individuals, and a mixed strategy corresponds to the proportions of the various
strategies in the population, the formal structures in the two fields turn out to be
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very closely related. This has led to many ideas flowing back and forth. On the

one hand, game-theoretic constructs—at times quite sophisticated—find their way
into evolutionary arguments; on the other, the basic paradigm of natural selection
is used to justify and provide foundations for many aspects of rational behavior.

For a discussion of these issues, including a historical overview, the reader is
referred to Hammerstein and Selten (1994) and to Aumann (1998).

The basic analogous notions in the two fields are “strategic equilibrium”
(introduced by Nash, 1950) and “evolutionarily stable strategy” (introduced by
Maynard Smith and Price, 1973). Roughly speaking, when a game is played by
populations of individuals (with identical payoff functions), then evolutionarily
stable strategies in essence yield a Nash equilibrium point. This type of relation
has been established in a wide variety of setups, both static and dynamic (see
the books of Hofbauer and Sigmund, 1998; Weibull, 1995; and Vega-Redondo,
1997).

Evolutionary models are based on two main ingredients: selection and
mutation. Selection is a process whereby better strategies prevail; in contrast,
mutation, which is relatively rare, generates strategies at random, be they better
or worse. It is the combination of the two that allows for natural adaptation: New
mutants undergo selection, and only the better ones survive. Of course, selection
includes many possible mechanisms, be they biological (the payoff determines the
number of descendants, and thus the share of better strategies increases), social
(imitation, learning), individual (experimentation, stimulus response), and so on.
What matters is that the process is “adaptive” or “improving,” in the sense that the
proportion of better strategies is likely to increase.

Such (stochastic) dynamic evolutionary models have been extensively ana-
lyzed in various classes of games in strategic (or normal) form, starting with Kan-
dori et al. (1993) and Young (1993) (see also Foster and Young, 1990 and the
books of Young, 1998 and Fudenberg and Levine, 1998). It turns out that certain
Nash equilibria—Ilike the risk-dominant ones—are more stable than others.

Here we considegamesin extensive form, where a most complete description
of the game is given, exactly specifying the rules, the order of moves, the
information of the players, and so on. Specifically, we look at the simplest
such gamedinite games of perfect information. In these games, an equilibrium
point can always be obtained by a so-called “backward induction” argument:
Starting from the final nodes, each player chooses a best reply given the (already
determined) choices of all the players that move after him. This results in an
equilibrium point also in each subgame (i.e., the game starting at any node of the
original game), whether that subgame is reached or not. Such a point is called
a subgame-perfect equilibrium, or a backward induction equilibrium, a notion
introduced by Selten (1965, 1975).

Since mutations are essentially small perturbations that make everything possi-
ble (i.e., every pure strategy has positive probability), and, as the perturbations go
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to zero, this yields in the limit the subgame-perfect equilibrium pdiritss only

natural to expect that evolutionary models with low mutation rates should lead to
these same points. However, the literature until now has found the above claim to
be false in general: Evolutionary models do not necessarily pick out the backward
induction equilibria. Specifically, except for special classes of games, equilibria
other than the backward induction ones also turn out to be “evolutionarily sta-
ble” (see Noldeke and Samuelson, 1993; Gale et al., 1995; Cressman and Schlag,
1998; and the books of Samuelson, 1997 and Fudenberg and Levine, 1998).

1.2. Examples

Even without specifying exactly how selection and mutation operate, we can
get some intuition by considering a few examples. The first one is the classical
example of the two-person ganig of Fig. 1. It possesses two Nash equilibria
in pure strategiesb = (b1, %) and ¢ = (c1, ¢?); the first, b, is the backward
induction equilibrium. Assume that at each one of the two nodes 1 and 2 there
is a population of individuals playing the game in that role. The populations
are distinct, and each individual plays a pure action at his Adfl@veryone
atnode 1 play$! and everyone at node 2 plai% then any mutant in population
1 that playsc! will get a payoff of 1 instead of 2, so selection will wipe him
out; the same goes for any mutant at node 2. Therefore the backward induction
equilibrium b is “stable.” Now assume that we are in thequilibrium: All the
individuals at 1 play! and all the individuals at 2 play?. Again, a mutant at
1 loses relative to his population: Instead of 1 he gets O (since the individuals at
2 that he will meet play:?). But now a mutant at 2 that playg gets the same
payoff as a-2-individual, so selection has no effect at node 2. Since node 2 is not

Fig. 1. The gamdT.

1 Recall that these are games of perfect information, where “rembling-hand perfection” is the
same as “subgame perfection.”

2 We say, for example, that an individual at node 2 “pla%if he is programmed (by his “genes”)
to play b2 whenever he is in a situation to choose (betweeandb?).
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Fig. 2. The gamd™.

reached, all actions at 2 yield the same payoff; there is no “evolutionary pressure”
at 2. Mutations in the population at 2, because they are not wiped out, keep
accumulating (there is “genetic drift”). Eventually, a state will be reached where
more than half the population at 2 consistsbéfindividuals? At this point the
actionb! at 1 gets a higher expected payoff than the aatlgrand thus selection

at 1 favorshbl. So the proportion of! at node 1 becomes positive (and increases),
which renders node 2 reachable. Once 2 is reached, evolutionary pressure there—
i.e., selection—becomes effective, and it moves population 2 towards the better
strategyb?. This only increases the advantagébbverc!, and the whole system

gets to theb = (b1, b2) equilibrium.

To summarize: Inl1, evolutionary dynamics lead necessarily &9 the
backward induction equilibrium; in other worda,is the evolutionarily stable
equilibrium.

The next example is the three-player gaiieof Fig. 2 (see Néldeke and
Samuelson, 1993; or Samuelson, 1997, Example 8.2). The backward induction
equilibrium isb = (b1, b2, b3); the other pure Nash equilibrium—which is not
perfect—isc = (ct, ¢2, ¢3). Let us start from a state where all individuals at
each nodé play their backward induction actigd. Nodes 1 and 2 are reached,
whereas node 3 is not. Therefore there is no selection operating at node 3, and
mutations move the population at 3 randomly. As long as the proportiéd of
is at least 23, the system is in equilibrium. Once it goes beloy82-which,
again, must happen eventually—the best reply of 2 becarfieselection then
moves the population at 2 toward. But then node 3 is no longer unreached,
so selection starts affecting the population at 3, moving it toward the best reply

3 The assumption is that mutations have positive—though small—probability at each period. This
yields a “random walk,” and any proportion bf andc? will occur eventually (with probability one).
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Fig. 3. The gamd.

there,b3. Thus, as soon as the proportionidfdrops below 23, the evolutionary
dynamic immediately pushes it back up; itis as if there were a “reflecting barrier”
below the 23 mark. Selection at 2 then moves back towafdMeanwhile the
population at 1, which is playinktt, can move only a little, if at aft. Therefore we
have essentially shown that the equilibrium componefib—whereb’ is played

ati = 1,2 andb® is played at 3 with proportion at leasy2—is evolutionarily
stable. Moreover, sindeand its component must eventually be reached from any
state—by appropriate mutations—it follows that other equilibria, in partiaylar
arenot stable. This conclusion differs from the result of N6ldeke and Samuelson
(2993): In their model, the non-subgame-perfect equilibréiuaiso belongs to the
stable set; see (a) in Section 5.3 for a more extensive discussion.

Consider now another three-player game: the gdmeiven in Fig. 3. The
backward induction equilibrium iz, at which both nodes 2 and 3 are unreached.
The populations at 2 and 3 therefore move by mutations. Eventually, when the
proportion ofb? at node 2 gets below/5, selection at 1 will move the population
at 1 fromb? to ¢1. At that point both 2 and 3 are reached, and which action of
2 is the best reply at 2 depends on the composition of the population at 3. If less
than 910 of them play® (which is possible, and even quite probabtgyen that
only random mutations have affected 3 until now), tlkétis the best reply at 2,
and selection keeps decreasing the proportiob?ofAgain, it is quite probable

4 Only when the proportion 52 drops below 12 will selection affect node 1.

5 we say that two (mixed) Nash equilibria belong to the sasmlibrium component if their
equilibrium paths coincide, and they differ only at unreached nodes (for generic games, this
corresponds to a “connected component”).

6 We take “quite probable” to mean that the probability of its happening is positive and bounded
away from zero (as the rate of mutation goes to zero).
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for the proportion of? to get all the way down to 0 (from/5) long before the
proportion of 3 at 3 will have increased to/20. What this discussion shows
is that, in the gamé3, the non-subgame-perfect equilibriunftogether with its
equilibrium component) cannot be ruled out; evolutionary dynamic systems may
well be in such states a positive fraction of the time.

However, we claim that such behavaannot occur if the populationsarelarge
enough.”

1.3. This paper

As stated above, the games studied in this paper are finite extensive-
form games with perfect information. We assume that the backward induction
equilibrium is unique; this holds when the game is generic (i.e., in almost every
game). At each node there is a distinct population of individuals that play the game
in the role of the corresponding player. Each individual is fully characterized by
his action, i.e., by the pure choice that he makes at his node (of course, this goes
into effect only if his node is reach&d We will refer to such a population game
as a “gene-normal form” (it parallels the “agent-normal form”).

The games are analyzed in a dynamic framework. The model is as follows:
At each period, one individual is chosen at random each population. His
current action, call iz‘, may then change by selection, by mutation, or it may
not change at all. Selection replac&s by another action which, against the
other populations currently playing the game (i.e., “against the field”), yields a
higher payoff thar:’. Of course, this can only be if such a better action exists
(if there are many, one of them is chosen at random). Mutation reptécieg
an arbitrary action, chosen at random. Finally, all the choices at each node are
made independently. This model—which we refer to as the “basic model’—is
essentially a most elementary process that provides for both adaptive selection
and mutation. It turns out that the exact probabilities of all the above choices do
not matter; what is essential is that all of them be bounded away from zero (this
is the “general model”).

Such dynamics yield an ergodic systéhwhose long-run behavior is well
described by the corresponding unique invariant distribution, which, for each
state, gives the (approximate) frequency of that state’s occurrence during any
large time interval. The mutations are rare; we are therefore interested in those

7 How large may depend on the mutation rate.

8 This action is thus the individual's “genotype’—the hard-wired programming by the genes; it
becomes his “phenotype”™—his actual revealed behavior—when his node is reached and it is his turn
to play.

9 Uniformly, i.e., each individual has the same probability of being chosen.

10 jrreducible (mutations make every state reachable from any other state) and aperiodic.
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states which occur with positive frequency, however low the mutation'tatée
call such states “evolutionarily stable.” A preliminary result is that the backward
induction equilibrium is always evolutionarily stable. However, as the examples
show, other Nash equilibria may be evolutionarily stable as well.

We therefore add another factor: The populations are large. This yields:

Main Result: The backward induction equilibrium becomes in the limit the
only evolutionarily stable outcome as the mutation rate decreases to zero
and the populations increase to infinity (provided that the expected number
of mutations per generation does not go to zero).

In other words: Evolutionary dynamic systems, consisting of adaptive selection
and rare mutations, lead in large populations to most of the individuals most of
the time playing their backward induction strategy. Observe that this applies to
reached as well as to unreached nodes; for example, in game have most

of the individuals at all nodes—including node 3—playingb’. Evolutionary
stability in large populations picks out not merely the equilibrium component of
butb itself.}? The intuition for the role of the large population assumption will be
provided in Section 4.1 below. Suffice it to say here that it has to do with a change
of action (whether by mutation or selection) being much less likely fgeaific
individual than for anarbitrary individual in a large population. This leads to
considerations of “sequential” rather than “simultaneous” mutations. As a further
consequence, unlike in most of the evolutionary game-theoretic literstanar,
result doesot rely on comparing different powers of the infinitesimal mutation
rate (which require extremely long waiting times); single mutations suffice.

We conclude this introduction with two comments. First, two almost diamet-
rically opposed approaches lead to the backward induction equilibrium. One ap-
proach (Aumann, 1995), in the realm of full rationality, assumes that all players
are rational (i.e., they never play anything which they know is not optimal), and
moreover that this fact is commonly known to them (i.e., each player knows that
everyone is rational, and also knows that everyone knows that everyone is ratio-
nal, and so on). The other approach (of this paper), in the realm of evolutionary

11 More precisely, states whose probability, according to the invariant distribution, is bounded away
from zero as the probability of mutation goes to zero; these are called “stochastically stable states” by
Young (1993, 1998).

12 Actually, an arbitrarily small neighborhood bf

13 Exceptions are Noldeke and Samuelson (1993) and the “modified co-radius” of Ellison (2000).

14 The static notion of an “evolutionarily stable strategy” is also based on single mutations.
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dynamics, is essentially machine-like and requires no conscious optimization or
rationality® It is striking that such disparate models convet§e.

Second, note that the backward induction equilibrium is by no means the
conclusive outcome: Substantial assumptions are needed, like large populations,
or common knowledge of rationality.

The paper is organized as follows: Section 2 presents the model: the extensive-
form game (in Section 2.1), the associated population game (in Section 2.2), and
the evolutionary dynamics (in Section 2.3). The results are stated in Section 3,
which also includes the proof of some preliminary results for fixed populations
(in Section 3.1). The Main Result, stated in Section 3.2, is proved in Section 4.
The intuition behind our resultis presented in Section 4.1, followed by an informal
outline of the proof (in Section 4.2). We conclude in Section 5 with a discussion of
various issues, including relations to the existing literature and possible extensions
and generalizations of our results.

2. Themode
2.1. Thegame

Let I be a finite extensive-form game with perfect information. We are thus
given a rooted tree; each non-terminal vertex correspondsmiova. It may be
a chance move, with fixed positive probabilities for its outgoing branches; or a
move of one of the players, in which case the vertex is calledde. The set of
nodes is denotedN . It is convenient to view the game in “agent-normal form:” At
each node there is a different agent, and a player consists of a number of agents
with identical payoff functions. For each node= N, the agent there—called
“agenti"—has a set of choiced’, which is the set of outgoing branchesiat
We refer toa’ in A’ as anaction of i, and we putd :=[],_y A’ for the set of
N-tuples of actions. At each terminal vertexiéaf) there are associated payoffs
to all agents; 1ét’ u’: A — R be the resulting payoff function of agenti.e.,
for eacha = (aj)jeN € A: if there are no chance moves, thefia) is the payoff
of i at the leaf that is reached when every ageatN chooses:/; if there are
chance moves, it is the appropriate expectation). Of coursanidj are agents of
the same player, theri = /. As usual, the payoff functions are extended multi-
linearly torandomized (or mixed) actions; thus : X — R, whereX :=[];cy X’

andX’ == A(AD) = {x! e R Y i ai x!, =1}, the unit simplex ont’, is the set
of probability distributions oven'.

15 The biological mechanisms of selection are entirely automatic; other selection processes (like
learning, imitation, and so on) may well use some form of rationality or “bounded rationality.”

16 For an interesting discussion of these matters, see Aumann (1998) (in particular, pages 191-195).

17 R is the real line.
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For each nodeé € N, let N(i) be the set of nodes that are successors (not
necessarily immediate) éfin the tree, and lef” (i) be the subgame df starting
atthe nodeé. For example, if ke N is therootthenv(1l) = N\{1}andI"(1) =T
in general,j € N(i) if and only if the unique path from the root tp goes
throughi, and the set of nodes @f(i) is N(i) U {i}.

An N-tuple of randomized actions= (x/);cy € X is aNash equilibrium of
I if8 ui(x) > ul(y', x~7) for everyi € N and everyy’ € X'. It is moreover
a subgame-perfect (or backward induction) equilibrium of I if it is a Nash
equilibrium in each subgamg (i), for all i € N. This is equivalent to eack’
being a best reply afin I (i) when everyj € N (i) playsx/. Such an equilibrium
is therefore obtained blyackward induction, starting from the final nodes (those
nodes with no successors, i.e., withi (i) = ) and going towards the root. We
will denote by EQ and Bl the set of Nash equilibria and the set of backward
induction equilibria, respectively, of the ganfie thusBIl c EQ C X.

At this point it is useful to point out the distinction between a best reply of
i in the whole gamd™—which we call aglobal best reply—and a best reply of
i in the subgaméd™(i)—which we call alocal best reply. Thus a local best re-
ply is always a global best reply, but the converse is not necessarily%éie.
is reached (i.e., when all agents on the path from the rootniake the choice
along the path with positive probability), then the two notions coincideidfot
reached, then the payoff éfin I' is independent of his action, and thus every
action inA’ (and every mixed action ixX?) is a global best reply af—but not
necessarily a local best reply. The difference between a Nash equilibrium and
a subgame-perfect equilibrium is precisely that in the former each action of an
agent that is played with positive probability is a global best reply to the others’
(mixed) actions, whereas in the latter it is additionally a local best reply.

The classical result of Kuhn (1953) states that there always exiptgea
backward induction equilibrium; the proof constructs it by backward induction.
We assume here that the gaifiehas aunique backward induction equilibrium,
which must therefore be pure; we denoté i (b');cy € A, and refer tab’ as
the “backward induction action éf” This uniqueness is true generically, i.e., for
almost every game. For instance, when there are no chance moves, it suffices for
each player to have different payoffs at different leaves.

2.2. The gene-normal form

We now consider gopulation game associated td™: At each node € N
there is a non-empty populatiad (i) of individuals playing the game in the role
of agenti. We assume thahe populationsat different nodes are distinct:

MO NM()=9 forallis ;. (2.1)

18 We writex~ for the (|N| — 1)-tuple of actions of the other agents, i.e% = (x/) jen\ (i}
19 One should not confuse these with the parallel notions for optima (where global implies local).
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This assumption is not completely innocuous; see the discussion below and also

(b) in Section 5.2. Each individual € M (i) is characterized by a pure action

in A", yvhich we denote byuj] e A'; pute' = (wg)gemi) andw = (0');ey. FOr

eacha’ € A, lef?®

. o eM(): o =a

x=xl (o) = lta 1 d
M @@)]

=X (2.2)

be the proportion of populatio¥ (i) that plays the actioa’; thenx’ = x/ (o') :=

(x;, (@) 4icai € X' may be viewed as a mixed action of The payoff of an
individualg € M (i) is defined as his average payoff against the other populations,
i.e.,u' (o), x™"); we shall slightly abuse notation by writing this &g/, ™).

We refer to the above model as thene-normal form of I (by (2.1), it is the
counterpart, in population games, of the “agent-normal form”).

This model is clear and needs no explanation when all the playefsare
distinct (i.e., when each player plays at most onc€ )nWhen however a player
may play more than once (and thus have more than one agent), then a “biological”
interpretation is as follows: Each one of the player’s decisions (i.e., each one of
his agents) is controlled by a “gene,” whose various “alleles” correspond to
the possible choices at noddi.e., the set of alleles of gerieis preciselyA?).

The genes of different nodesand j of the same player are distinct (i.e., at
differentlocations, or “loci”); were it the same gene, then the player would behave
identically at the two nodes—and the appropriate representation would place the
two nodes and; in the same information sét: 22

2.3. Thedynamics

We come now to the dynamic model. #ate w of the system specifies the

pure action of each individual in each population; i®.= (o);en, Where

o' = (0})qemi) andw} € A’ for eachi € N and eachy € M(i). Let 2 :=

[Tien (ADM® be the state space. We consider discrete-time stochastic systems:
Starting with an initial staf® w1 € £2, a sequence of states, wy, ..., oy, ...

in 2 is generated, according to certain probabilistic rules. These so-called
“transition probabilities” specify, for each = 1,2,..., the probabilities
Plw;41 = @ | w1,...,w;] that w,41 equals a staté € §2, given the history

20 | z| denotes the number of elements of a finiteZet

21 one would thus get a game of imperfect information, where information sets are not necessarily
singletons. Moreover, observe that here a path may intersect an information set more than once; we
are thus led naturally to “games of imperfect recall.”

22 A case where, say, the decisionids controlled by the two genes in locations 1 anca@d the
decision atj by the two genes in locations 2 andi8 not considered here.

23 As we shall see below, the process is irreducible and aperiodic; thus, in the long run, the starting
state does not matter. Hence there will be no need to specify it.
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w1, w2, ...,w;. Our processes will betationary Markov chains. The transi-
tion probabilities depend only of,, the state in the previous period (and de-
pend neither on the other past stat®s. .., w;—1, nor on the “calendar time”
1). That is, there is a stochastic mafixQ = (Q[& | ®))a.wep Such that
Plogt1=d | w1,...,0] = Q@ | w;] for everyws,...,w;, @€ 2 andt =1,
2,.... The matrixQ is called theone-step transition probability matrix.

We present first a simple dynamic model, which we call blasic model.
Assume that all populations are of equal size, say= |M(i)| for each
ieN. Let u >0 ando > 0 be given, such thatt + o < 1. The one-step
transition probabilitie[® | w] are given by the following process, performed
independently for eache N:

Choose an individua} (i) € M (i) at random: Allm individuals inM (i) have
the same probability in of being chosen.

. Putcbg = a)f] foreachy € M (i), g # q(i);i.e., all individuals inM (i) except
g (i) do not change their actions.

Choose one ofSE(i) (“selection”), MU (i) (“mutation”) and NC() (“no
change”), with probabilities, «, and 1— 1 — o, respectively.

If selectionSE(i) was chosen, then define

B'=B'(q(i),0):={a' e A" u'(a',0™") > ui(a);(i), o} (23)

this is the set of “better actions”—those actions at nodeat are strictly
better inI", against the populations at the other nodes, than the aﬂyg)n
of the chosen individuaj (). If B' is not empty, then the new actidrj,(l.) of
q (i) is a randomly chosen better actiah;(l.) := a' with probability 1/| B|
for eacha’ € B'. If B is empty, then there is no changeqiti)’s action:
Oy(i) = Viy’ _ _

o If mutation MU (i) was chosen, theﬁ);(i) is a random action id’; i.e.,
@' . :=a' with probability 1/|A’| for eacha’ € A'.

O)

e If no-changeNC(i) was chosen, then the action @i) does not change:
Dyiy =Dy
q() - q@)”

For example, in the gamé&y of Section 1.2 (see Fig. 1; herg = {1, 2},
Al = {1, b1}, A% = {2, b?)}), with populations of sizem = 3, let w =
(e, e, eby, (B2, b2, ¢?)) and & = (b1, ¢, by, (b2, b2, b?)), then Q[& | w] =
(1/3) - (u/2+ o) - (1/3) - (11/2). Indeed, the probability thaf(1) = 1 is 1/3;
thenc! changes té? either by mutation, with probability - (1/2), or by selection
(since B = {b1}), with probabilityc; similarly, the probability thag (2) = 3 is

2 e, Qlo| @] =0foralld,we 2 andy ;.o Old | w] =1 for everyw € 2.
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1/3, and then:? changes t@? by mutation only (since8? = ), with probability

w-(1/2).
A few remarks are now in order.

Remarks.

1. We have assumed that in each period there is at most one individual in each
population that may change his action. This defines what is meant by “one
period:” It is a time interval which is small enough that the probability of
more than one individual changing his action in the same period is (relatively)
negligible?® This is a standard construct in stochastic setups (recall, for
instance, the construction of Poisson processes). Our assumption may thus be
viewed as essentially nothing more than a convenient rescaling offire.
we shall see below (in particular in Section 4.1), our arguments are based on
comparing occurrence times, and are thus independent of the units in which
time is measured.

2. The difference between mutation and selection is that mutation is “blind"—in
the sense thadll actions are possible—whereas selection is “directional”—
only better actions are possible. We emphasize that “better” is understood,
as it should be, with respect to the payoffs in the whole game, i.e., “globally
better.” Of course, “selection” may stand for various processes of adaptation,
imitation, learning, experimentation, and so on. Our selection thus assumes
that better actions fare better; it is befter-reply selection dynamic.” It is
also a “strictly aggregate monotonic” mechaniéfrin the sense that, for
eachi, if we hold all populations except fixed, then selection at never
decreases the average payoff of populaticand it has a positive probability
of strictly increasing it whenever there are individuals who are not playing
a best-reply action. See also the general model below, where the selection
probability of a better action may be proportional to its current proportion in
the population.

3. Actions are compared (see (2.3)) according to thegrage payoffs against
the other populations. This is a standard assumption in the literature. It is
correct, for instance, if everyone plays against everyone else; i.exs, "8l
combinations (of one individual from each population) play the game. When
the populations are large—as is the case here—it is also approximately
correct when each individual plays against random samples from the other
populations’®

25 Our results do not need simultaneous mutations; these may indeed be ignored.

26 O, alternatively, as an appropriate discretization of a continuous-time process.

27 This is called a “strict myopic adjustment dynamic” in Swinkels (1993).

28 The larger the population, the shorter the period (see Remark 1 above); it may thus be difficult to
play against everyone in one period. See also (g) in Section 5.1.
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4. The basic dynamic is determined by two parameét®is, ando. As we
shall see below, what really matters is thatbe small relative too;
formally, « — 0 whileo > 0 is fixed: Mutations are rare relative to selection.
Equivalently, we could well taker = 1 — u, and thus have only one
parameter. We have preferred to add the no-change case since it allows
for more general interpretations. For instance, the no-change periods may
be viewed as “payoff accumulation” periods, or as “selection realization”
periods (i.e., periods during which actual selection octurs

5. The one-step transition probabilities are defined to be independent over the
nodes; this just means that the transitions @maditionally independent. In
general, the evolution of one population will depend substantially on that of
other populations.

The basic model is essentially a most simple model that captures the
evolutionary paradigm of selection and mutation. It may appear however as too
specific. Therefore we now present a general class of dynamic models, which turn
out to lead to the same results.

The general model is as follows: We are given anutation rate parameter
u > 0 and populationd/ (i) at all nodes € N, which may be a different size
at different nodes. The process is a stationary Markov chain, whose one-step
transition probability matrixQ = (Q[® | w])4.wes Satisfies:

e Conditional independence ovee N, i.e.’t
Qlé|wl=]] Q@ (2.4)
ieN

e For eachi € N, one individualg (i) € M (i) is chosen, such that there exist
constantsxl, y2 > 0 with

< 0[q() =q|w] < —L2— foreachy e M(i): and (2.5)

IM(l)I |M@0)]

Q[a)q =a); fOI’allqu(l)\{q(l)} ‘w]:l. (2.6)
e There exists a constafit> 0 such that, for eache N,

O[@) ;) =a' |w] > Bxl;(w) foreachd’ € B', (2.7)

whereB’ = Bi(¢(i), w) is the set of strictly better actions, as defined in (2.3).

29 Once the gamé and the population size are given.

30 This may help to justify the fact that our selection mechanism is not continuous (any “better”
action has probability bounded away from zero, whereas an “equally good” action has zero
probability): Indeed, selection makes even a slightly better action “win,” given enough time.

31 For eachw € 2, we view Q[ | w] as a probability distribution ove®; derived probabilities—
like its marginals, etc.—will also be denoted By- | w].
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e There exist constants;, a2 > 0 such that, for eache N,
0[@);)=a'|w] > a1pn foreacha’ € A’; and (2.8)
Q[cf);(l-) =a' ‘ w] < aop foreacha’ ¢ B, a' # wg(-). (2.9)

Without loss of generality, all paramete#s, o2, 8, y1, Y2 are taken to be
the same for all € N (if needed, replace them by the appropriate maximum or
minimum overi). To see that the basic model is a special case of the general
model, takeyy = y» =1, B = o/|A?|, anday = ap = 1/|A].

Notice that we now allow selection to switch to better actions with probabilities
that are proportional to their current proportions in the populatfoH, for
instance, (2.7) is satisfied as an equality and, say, the best-reply actisn
currently played byk individuals, then the probability that a chosen ndn-
individual will switch to a' by selection isgk/|M(i)| (rather than> g =
o/|A!|, as in the basic model). Whenis small, this probability becomes low
(and converges to 0 witlk). Moreover, ifa’ is not currently present in the
population, then selection cannotintroduc®ié* Such dynamics are appropriate
in particular inimitation-type models (where the “visibility” of an action depends
onits prevalence in the population). For a simple example, suppose that the chosen
individual samples a random individual in his population, and switches to his
action (with probabilitys > 0) if it currently yields a higher payoff than his own.
Note that in this casel the proportion in the population of a better actign

increases by selectlon at arate thatis proportlonm to

The general model thus assumes that: (i) the probabilities that various
individuals in the same population will be chosen are compar&b(@) the
(relative®®) effect of selection—towards better actions—is bounded away from
zero (independently gf); and (iii) the effect of mutation—whereby every action
is possible—is of the ordet. The reader is referred to Sections 5.1 and 5.2 for
further generalizations.

3. Theresults
3.1. Preliminary results

A general model with a one-step transition matgxsatisfying (2.4)—(2.9)
yields a Markov chain which igreducible, since the probability of reaching any

32 This condition was suggested by llan Eshel.

33 A requirement suggested by Karl Schlag.

34 To understand why this weakening of the selection mechanism does not affect our main result,
the reader is referred to Footnote 53 and Lemma 4.6.

35 |e., the ratiosQ[g (i) = ¢ | 1/Qlq(i) = q' | ] are uniformly bounded.

36 |.e., the change in’ relative tox!.
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statew’ € £2 from any other state € £2 is positive (as follows from (2.5) and
(2.8), by using an appropriate sequence of mutations). Hence there exists a unique
invariant distribution = on £2; i.e., a uniquer € A(£2) satisfyingr =7 Q, or

rlo]= ) 7lw]Qld]e]
wes2
for every® € §2. The Markov chain is moreoveperiodic, since, for instance,
the probability of staying at a Nash equilibrium state is positive. Therefore the
long-run behavior of the process is well describedyyin the following two
senses:

e In any long enough period of time, the relative frequency of visits at a state
is approximatelyr[w]; i.e., for everyw € 2,
{1: T1 <1 < T2, 0 = o}

lim =rlw].
Tp—T1—o0 o —T1

e The probability that the state occurs at a periodis approximatelyr [w] for
larger; i.e., for everyw € 2,

tlergo Plo; =w] =7[w].

The two properties hold regardless of the initial state; moreover, they hold not
only for single states but also for any set of statés C 2.

We are interested in the behavior of the process when the mutation rate
is low, i.e., in the limit of the invariant distributiomr asu — 0 and all the
other parameters (the ganie the population size$M (i)| and the constants
a1, a2, B, y1, y2) are fixed. We call a state € 2 evolutionarily stable if
its invariant probabilityrr [w] is bounded away from zero as— 0, i.e., i’
liminf,_on[w] > 0. Recall that each state< 2 may be viewed as aN-tuple
of mixed actionsc(w) = (x! (@'));en € X (see (2.2)). The invariant distribution
7 on §2 therefore induces a probability distribut®n? := 7 o (x) 1 overX; i.e.,
a[Y]:=n[{we 2: x(w) € Y}] for every (measurabld) c X. We therefore call
anN-tuple of mixed actions € X evolutionarily stableif there are evolutionarily
stable states € £2 with x(w) = x, i.e., if liminf,_ o7 [x] > 0. The following
result states that the backward induction equilibribing always evolutionarily
stable.

37 This is called “stochastic stability” (Foster and Young, 1990 and Young, 1993, 1998), “long-run
equilibrium” (Kandori et al., 1993), “in the support of the limit distribution” (Samuelson, 1997 and
Fudenberg and Levine, 1998).

38 (x)~1:X — £ denotes the inverse of the mapping$2 — X. We could have equivalently
defined the dynamics directly on the spacef mixed action profiles (by identifying all stateswith
the samex(w) and taking the expected transition probabilities); we found however that our (more
primitive) model is more transparent.
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Theorem 3.1. For each u > O, let 7, be the unique invariant distribution of
adynamic process given by a one-step transition matrix Q = Q,, satisfying (2.4)—
(2.9). Then

liminf ,[b] > 0.
n—0

Proof. Assume without loss of generality th@t, — Qo andn,, — mo asu — 0
(take a convergent subsequence if needed; recall that the statesdpadmite
and fixed). The invariance propetty, = =, O, becomesrg = mgQo in the limit;
thusmg is an invariant distribution 0 (but Qg is in general not irreducible, so
its invariant distribution need not be unique). N@y allows no mutations (by
(2.9) andu — 0), so only selection applies.

First, we claim that

Qo is acyclic; (3.2)

i.e., there are nowg,wsi,...,ws,...,or € 2 satisfying w; # w;—1 and
QOolw; | w—1] > 0 for everyr =1, ..., T andwr = wp. Indeed, at a final node
i € N (i.e., whenN (i) = 0), selection can only increase the sum of the “local’
payoffs (in I"(/)) of the populationM (i), i.e.* 3" ¢ u'rq (@}); therefore
o} = ol implies thatw] = o}, for all ¢; i.e., the population atnever moves. The
same applies at any nodeor which there were no changes at all its descen-
dant nodesV (i); backward induction thus yieldsf = wg forallr and alli € N,
a contradiction.

Let 20 := {w € 2: Qolw | w] = 1} be the set of absorbing states @b.
Eq. (3.1) implies that, unde®o, an absorbing state must always be reached:

mo[$20] = 1. (3.2)

In other words, onlyQo-absorbing states may be evolutionarily stable.

Let w, ' € £20 be two absorbing states; df can be reached frorms by one
mutation step in one population followed by any number of selection steps, then
we will say thatw’ is one-mutation-reachablefrom w. We claim that®

if o' is one-mutation-reachable from

then molw] >0 implies no[w'] > 0. (3.3)
Indeed, the invariance property, =, Q, implies* =, =, Q% for any
integerk > 1, and thus

mul0] = 10100 | 1+ 1[0l Qule” | 0] QF e | o],

39 we writeu}(i) for the payoff function of in the subgame™(i).
40 This is shown in a general setup by Samuelson (1997), Proposition 7.7(ii).

41 gk the kth power of the one-step transition probability matgx gives precisely thé-steps
transition probabilities.
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whereo” satisfiesQ,[ow” | ] > c1u for somecy > 0 (by (2.5) and (2.8); this is
the mutation step) anQ’g‘l[w’ | "] = c2 > 0 (these are the selection steps; thus
Qo rather thanQ,,). Also, sincew’ is a Qp-absorbing state, it can change only by
mutations, ch’;[w’ | '] > 1— c3u for an appropriate constary > 0 (by (2.9)).
Thereforecaurm, [@'] > cipumy o] Qﬁ—l[a/ | 0”1, which, after dividing by and
then lettingu — 0, yields

C1 _ Cc1C2
molw'] > ool 0 o' | 0" = ~, ol > 0.

and thusrg[e’] > 0.

Leti € N be a final node. We claim that there is an absorbing states2g
with mo[w] > 0, at which all the population at plays the backward induction
actiond’. If not, letw € £2g be such thatg[w] > 0 and the proportiom]ii (w) of b
is maximal (among all such € £2¢ with 7o[w] > 0; recall thatro[£20] = 1). Thus
x;’)i (w) < 1. Consider a mutation of a nad-individual intos’ (and no changes at
all nodesj # i; recall thatw € £2p), followed by any number of selection periods
until a stateo’ € 29 is (necessarily) reached. By (3.3), we hawsiw’] > O.

But xli,. (') > xli,. (w), since the first mutation step increased this proportion, and
the selection steps could not have decreased it; this contradicts our chaice of
Therefore there are stateses $2g with mg[w] > 0 andxl’;i (w) = 1.

The same argument applies at any nodeN for which there are absorbing
statesw € £2g with mg[w] > 0 andxli_, (w) =1forall j € N@) (just choose from
among these states one with maxim?l(w)). Therefore, by backward induction,

we getmolwp] > 0 for that statew, € £29 with x;)i (wp) =1 for all i € N—thus
wo[b] > 0. O

Remarks.

1. Evolutionarily stable states must be absorbing states for the dynamic without
mutations Qg (cf. (3.2)). Clearly, every Nash equilibrium state &o-
absorbing; but in the general case, where selection cannot induce a switch
to a better action unless it is currently present in the population, other
states may also be absorbing: For instance, all states corresponding to pure
action profiles (i.e.w wherex(w) is pure)*? In fact, profiles that are not
Nash equilibria may well be evolutionarily stable. For an example, consider
dynamics which satisfy (2.7) as an equality, applied to the following two-
person gamd?: It is like the gamer™ of Fig. 1 in the Introduction, except
that we invert the sign of all the payoffs of player 2 (and thus the backward
induction equilibrium is nowc?, c?), with payoffs(1, —2)). A mixed profile
x = (€L 1—¢gY), (62,1 - £2)), where&! denotes the proportion ef —we
will write this asx = (¢1, £2) for short—is a Nash equilibrium whenever

42 \\e thank an anonymous referee for pointing this out.
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g1 =1 and&? > 1/2. In contrast, the set afg-absorbing profiles contains
all x with 1 =1 (i.e., forany £2), as well as the puréd, 1) and (0, 0) (i.e.,
(b1, b%) and(bt, c?)). Now Theorem 3.1 implies thalp[b] = 7o[(1, 1)] > O.
One mutation (in population 2) leads frofh 1) to*3 (1, 1 — 1/m), which is
an absorbing state. Therefore, by (3.3), weamsi(1,1 — 1/m)] > 0. In the
same manner it then follows from this thag[(1, 1 — 2/m)] > 0, and so on,
up to7o[(1, 0)] > 0—but(1, 0) (i.e., (¢!, b?)) is not a Nash equilibriurft*

If one assumes that there exists a consgant 0 such that

Ola);) e B |0] =8, (3.4)

wheneverB’ # @, then only Nash equilibria can be fixed points of the
selection mechanismi € £2o implies*® x (w) € EQ. From (3.2) we thus have:
If the dynamic satisfies (2.4)—(2.9) and (3.4), then

lim #,[EQ] = 1.
n—0

Note that the basic dynamic satisfies (3.4).

2. It is not difficult to show that in the gamg; of Fig. 1 in the Introduction
one obtains lim_07,[b] = Ag[b] = 1. However, in other games we may
have lim sug_my%,l[b] < 1;in fact, lim supﬁoy%,l[C(b)] < 1, whereC(b)
is the equilibrium component @f. For example, consider the basic dynamic
in the gamé&® I3 of Fig. 3. All the equilibria in the component di—
i.e., allx = (¢1,£2,£3) with £1 = 0 and£2 < 4/5, whereg! denotes the
proportion ofc:—have positivetg, since they are reached by a chain of single
mutations fromb (this follows by repeatedly applying (3.3), similar to the
arguments for the gamg/ given above). In particuldY, 70[(0, 4/5, 1)] > O.
Now (1, 1, 4/5) is one-mutation-reachable fro(@, 4/5, 1):

4 4 1 14 1 1
0.z.1) ™2 (oz+—1)FE (22421 =
5 5 m m5 m m

E123 (2 4 2 2 123 (1, 4
EZ |l T O e S
m 5 m m 5 5

1 1 4 4
S (242 2). FD (11 7).
5 m 5 5

43 We write m for the size of populatiorM (2). To streamline the argument, we are ignoring the
distinction between a state and its corresponding pair of mixed actians- x () (given by (2.2)).

44 |n fact, the same argument then yielti (0, 0)] > O (start with a mutation in population 1), and
thenzp[(0, 1)] > O (a mutation in population 2); thug[x] > O for all absorbing profiles.

45 |f the converse also holds, then the selection is caNash-compatible in Samuelson (1997),
(7.8).

46 The gamel, of Fig. 2 is discussed in Section 5.3 (a).

47 assume for simplicity that all populations are of sizewhich is a multiple of 5.
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Therefore the equilibriungl, 1, 4/5)—which is in the component af—has
positiveso (and thus so do all the other equilibria thef@).

3.2. Themain result

As the examples show, when the populations are fixed, equilibria other than the
backward induction equilibriurh (including some that are very different frai
may be evolutionarily stable. We now consider the case where the populations
increase, i.e.|M(i)] - oo for i € N. Putm = (|M (i)]);cny for the vector of
population sizes; we will refer tm as thepopulation profile. As m — oo, the
state space changes and becomes infinite in the limit; we need théPefore
consider (arbitrary small) neighborhoodsRif= {4} in the set of mixed actions
X: For everys > 0, putBl, :={x € X: x/, >1— ¢ foralli € N}. That is,
x belongs to thes-neighborhoodB I, of & if in all populations most of the
individuals play their backward induction action; we emphasize that this holds
for all i e N—whether nodé is reached or not.

Theorem 3.2 (Main Theorem). For every mutation rate « > 0 and population
profile m= (|IM(@i)|)ien, l&t m,m be the unique invariant distribution of a
dynamic process given by a one-step transition matrix Q = Q, m satisfying
(2.4)—(2.9) Then, for every ¢ > 0and § > 0,
lim Au,mlBle]l=1,
u—0, m—o0
um=48

where m := min;cy |M (i)|. Moreover, there exists a constant ¢, depending on the
game, on the dynamics parameters a1, a2, 8, y1, y2, and on ¢, 8, such that >°

Eym[x);(@)]>1—cpu foralieN, and (3.5)
nuym[xlij,-(a)) >1-—cforalieN|>1-cpu, (3.6)
forall u > 0andall m=(M(@i)|);en With |Mi)| > 6/uforall i e N.

Thus, as the mutation rate is low and the populations are large, the proportion
of each population that does not play the backward induction action is small.
Hence, in the long run, the dynamic system is most of the time in states where
almost every individual plays his backward induction action.

48 Computations (using MAPLE) fon =1,2, ..., 8 yield the following (approximate) values for
70[C (b)], respectively: 0.89, 0.83, 0.821, 0.825, 0.8302, 0.8333, 0.8391, 0.8444.

49 The probability of a single point may become 0 in the limit. For example/if is much smaller
thanp (i.e., if um — oo), then we may well gef [b] — 0. Indeed, consider the simplest case of a
one-person game. The transition probability from the stgfevhere everyone plays, to any state
w1 where all but one individual play, is of the order ofu, whereas the transition from, to wg has
probability of the order of 1m.

50 E;,,m denotes the expectation with respect to the probability distributjoi.
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Remarks.

1. The only assumption made on the relative rates of convergenpeaoid
m is thatum > § > 0, i.e., thatum is bounded away from 0. It follows in
particular that lim._olim,—c 7, m[Bl:] = 1 (but this need not hold for
the other iterative limit lim,_, o lim,_.0). To interpret the condition opm,
define a “generation” to be that period of time in which each individual gets
one opportunity to change his action; in our model, it is almostages. Then
the requirement is that the expected number of mutations per generation be
bounded away from 0. (See also (e) in Section 5.2.)

2. No assumptions are made on the relative population di¥8%)|; one
population may well be much larger than anotteHowever, the mutation
rates in the different populations are assumed to be of the same order of
magnitude—see (2.8) and (2.9).

3. The estimates we get in (3.5) and (3.6) involve the mutationgabeit no
higher powers ofu (as is the case in much of the existing literature, in
particular in evolutionary dynamics for games in strategic form). This means
that the effect ofi multaneous mutations (whose probability—a power of—
is relatively small) may indeed be ignored. Thus our result does not rely on
the fact that, whenu is small, 100 simultaneous mutations are much more
probable than 101 simultaneous mutations (both of these events are extremely
improbable)?? Our proof therefore does not use any of the techniques based
on “counting mutations.”

4. Proof of the Main Theorem
4.1. Aninformal argument

We begin by presenting informally the main ideas of the proof of our result; in
particular, we explain the role of large populations. We do so for the simpler basic
model; similar arguments apply to the general mddel.

51 However, notice that we have assumed that changes occur in the various populations with similar
frequencies (e.g., in the basic model, one mutation penderiods). If the populations are significantly
different, one may want to modify this assumption: For example, if one population is 100 times larger
than another, then one change in the latter corresponds to 100 changes in the former. As long as the
populations are comparable (i.e., the ratjos(i)|/|M (j)| are bounded away from 0 angb), this
modification will not affect the results.

52 |n a sense, the comparison here is between different coefficiepigia., of « to the power 1),
rather than between the first powersiofvith non-zero coefficient.

53 The general model allows the effect of selection to be much weaker; for instance, if no individual
currently plays the best-reply action, then the probability of switching to it may be only of the order
of u rather thano. However, as we will show in Lemma 4.6, most of the time the proportion of
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Clearly, if a node is reached (i.e., if at every node along the path from the
root toi there are individuals playing the action that corresponds to the path), then
mutationMU (i) ati has probability of the order qf, which is much smalléf
than the probability of selectidBE(i) ati. Therefore, at reached nodes most of the
individuals play their best-reply actions. The problem is how to obtain a similar
conclusion at thenreached nodes.

Consider first the three-player gamg of Fig. 2 in the Introduction. Assume
that the dynamic system is in a state where all individuals at nodes 1 and 2 play
bl andb?, respectively; thus node 3 is not reached. Then seleSiiB) does
not affect the population at 3; only mutatidfld (3) does. Mutation by itself will
lead in the long run to a distribution close tb/2, 1/2) (since each individual is
eventually chosen, and then his action is replaced with equal probabilities by
or b3). However, there are alsoutations at node 2 that yield ac? action, with
a frequency ofe/2. After such a mutation, the probability that the action of the
mutant individual will revert tob? is at most(1/m)p (since his probability of
being chosen is /im; here p = o + 1/2); thus, it will take on the average
m/p periods for it to happen. Therefore, over a long stretch of time, Bay
periods, the number of periods that there ig2ain population 2 is abodf
(u/2)(m/p)T = umT/(2p). These are periods at which 3 is reached and thus
selectionSE(3)—into h3—is effective. At the same time, mutatidfiJ (3) occurs
at 3inroughlyuT periods. Comparing the two implies that, when the population
is large (i.e., asn — o0), selection has a much greater effect than mutation.
Therefore, in the long run, we will get most of the population at nhode 3 playing
b3—even though 3 may be unreached most of the time.

Consider next the four-person garfigof Fig. 4. Assume again that everyone
playsb’ at nodes 1 and 2, and thus both 3 and 4 are not reached. In the same way
as in the previous example, we get the following: At node 4, mutatidog4)
occur with a frequency oft, whereas selectio®E(4) there—which requires
mutations atboth nodes 2 and 3 in order for 4 to be reached—occurs with a
frequency of(u/2)%m/(2p) = um/(8p) (indeed, the probability of a mutation
at 2 intoc? is u/2; the same goes for a mutation intd at 3; and then it takes
about(m/p)/2 =m/(2p) periods until at least one of the mutants reverts). But we

individuals who playb’ is bounded away from 0, and thus the actual effect of selection towérds
is in fact similar to that of the basic model. The difficulties in obtaining our resuhialdie in the
introduction ofb? and in keeping its proportion positive (mutations ensure that), but rather in making
this proportion close to 1.

54 We take the term f is much smaller thag” to mean that the ratigf/g goes to 0 ag. — 0 and
m — 00.

55 An event whose probability ip every period will occur on averagel” times during? periods,
or once every Ap periods. In our arguments we shall go back and forth between the two computations
as needed.

56 More precisely, mitumT/(2p), T} (When /2 > p/m, changes fromb? into ¢2 are more
frequent than those frow? into 2, and thus there will almost always b#-individuals).
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Fig. 4. The gamé .

cannot say that?m is much larger thap (we only assumed thaim is bounded
away from zero), so we cannot conclude that, at node 4, selection “overpowers”
mutation. Without this happening at 4, there is no reason for the populations at the
higher nodes (like 3) to choose their backward induction action either. Moreover,
when a node is even further away from the equilibrium path—sagdes away—

the previous argument will work out only jf*m is much larger thap.

A more careful analysis is thus called upon at this point.

Let us consider the first time that there is%individual in population 3; this
happens (by mutation) on the average once evgpy [2eriods. If, at that point,
there is a2 action in population 2, then 4 is reached and we are done. If not, then,
as long as there is n& in population 2, node 3 is not reached. Therefore, the only
way that thec3-individual can revert té® is by mutation at 3; the probability of
that happening i$1/m)(/2) = u/(2m) (since thatspecific individual must be
chosen out oM (3), and then undergo mutation). At the same time, the probability
of getting ac?-individual in population 2—by mutation—ig /2. Sinceu/2 is
much larger tham/(2m) for largem, in general the latter will happen much later
than the former (and therefore can be essentially ignored). Thus altogether we
have to wait at most on the order of 2 periods for the mutation at 3, and then
another Z2u periods for the mutation at node 2; in sumigdperiods until node
4 is reached (compare this tg42 in the previous—unsuccessful—argument).
Once 4 is reached, it takes on the ordengf(2p) periods for either the?- or
thec®-individual to revert, so selectic®E(4) operates at node 4 with a frequency
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of approximately(u/4)m/(2p) = um/(8p). Whenm — oo, this is much larger
than the mutation ratg; so, again, selection “wins” 2t 4. Once this has been
established, it follows that most of the population at node 4 ptéymost of the
time, and we are essentialfjleft with a three-player game (like>); the proof is
completed by (backward) inducti&s.

The crux of the argument is that, after a mutation in population 3 has generated
a c3, this ¢ action is “stuck” there for a long tin§8—at least until a mutation
generates @2 in population 2. Thus, what appeared to requsimultaneous
mutations (with a frequency of the order gf* for somek > 2), turns out instead
to rely onsequential mutations (with a frequency of the order gf).61

It should now be clear what role the large populations play: The smaller a group
of individuals is, the (relatively) less probable it is that a change of action will
occur in that group. This is particularly true when comparisgexific individual
(like the c3-mutant in the analysis of gam@,, or thec?-mutant inI>), to any
individual in a whole population (population 3 ify, or population 2 in»).

Finally, to understand the use of the condition that > § > 0, note that
the above arguments show that the effect of selection is of the ordemof
whereas that of mutation ig. The possibility that a non-negligible fraction
of the population does not play the backward induction action, albeit an event
of low probability for largem, cannot be ignored. A simple estim&eshows
this probability to be of the order of at mosf#. When this event occurs at
some descendant node, it may affect selection at the current node—away from
the backward induction action. However, as long @s: Is at most a constant
times u—which is the case whenm > § > 0—this effect, like that of random
mutations, is again small relative ton for largem:.

57 This argument clearly generalizes; for a node that is at distarfcem the equilibrium path,
the frequency of selection is of the order;oﬁ/(ZkZp), which, asm — oo, is much larger than the
mutation rateu.

58 See the last paragraph in this subsection.

59 Similar arguments apply to the three-player gafgef Fig. 3. When less than 90% of population
3 playsb3, in order for 3 to be reached one needs mutants at 2 andatdlthe computations are
exactly as for node 4 iiy. When the 90% proportion @ is exceeded, theb? becomes a best reply
of 2, so a mutant is needed only at 1—and the estimates are as for nod®.3 in

60 |t is a so-called “neutral mutation” that does not affect the payoffs.

61 This kind of argument may also explain how matching mutations occur in interacting populations,
i.e., mutations that yield no advantage to their own population, unless there are compatible mutations
in the other populations. The computations above show that, in large populations, the frequency of
such events may well be much higher than commonly thought: of the orgerather than a power
of u.

62 Using Markov’s inequality. More refined probabilistic computations may well lead to weaker
conditions. See also (e) in Section 5.2.
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4.2. An outline of the proof

We now provide an outline that may help the reader to follow the formal proof
given in the next subsection. The proof proceeds by backward induction, starting
from the final nodes and working back towards the root; see Proposition 4.5. The
main claims that are proved for each nadee as follows:

1. The probability thab’ is not the local best reply af is low (this happens
only when a sizeable proportion of the population at some descendant node
j does not choosk’, which, by induction, has low probability); in fact, this
probability is of the order ofi; see (4.4).

2. Whenb' is the local best reply of, the expected proportion of population
that does not play’ wheni is reached is small; again, it is of the ordern.of
(this holds since, with high probability, selection towatdshas probability
which is bounded away from 0, while mutation has probability see
Lemma 4.6 and Eq. (4.6).

3. Whenb' is the local best reply af, the ratio between the expected proportion
of populationi that does not plag’ wheni is reached, and the same expected
proportion when is not reached, is of the order pfn; see (4.13). This is
the central step in the proof, and its essence is the “sequential mutations”
argument above; see Proposition 4.1. Together with the previous claim, it
follows that the expected proportion of populatibthat does not play’
wheni is not reached is of the order of ik; see (4.10).

4. Adding the above three estimates and noting that £ (1/6)u implies that
the expected proportion of populatiorthat does not play’ is of the order
of u, which yields (3.5) and (3.6).

4.3. The proof

We now prove the Main Theorem. Fix § > 0; the mutation ratex > 0;
the population profilem = (m');exy with um > 8, wherem' := |[M(i)| and
m :=min;ey m'; and the transition probability matri@ that satisfies (2.4)—(2.9).
Let = be the resulting unique invariant distribution over the state sgaceake
the stataw € £2 to be distributed according te, and leto € £2 be the next state,
given by the one-step transition probabiliti@sw | w]; theno is also distributed
according t6% 7. From now on all probability statements and expectations will
be according to this distribution.

63 In other words:(w, @) € §2 x £2 is distributed as two subsequent states of the Markov process,
andw is distributed according to the invariant distributien(and thus so i®).
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Before proceeding with the proof, we introduce a number of useful notations:

e Foreachnodée N, putY’:=1— xli,. (w) (the mappingc: 2 — X is given
by (2.2)); this is the proportion of populatiéthat doesiot play the backward
induction action in statev. Similarly, putY’ := 1 — X,l,i (w) for the same
proportion in the next-period state. The random variable¥’ and Y' are
identically distributed (their distribution i o (1 — x;']i)*l); thus in particular
E[Y]1=E[Y'].

e Given two nodeg, j € N such that is a descendant gf (i.e.,i € N(j)), let
R’ be an indicator random variable, defined as 1 if noéereached from
node; in statew, and 0 otherwise; i.eR/' = 1 if and only if for everyk € N
on the path frony toi there is at least one individuale M (k) whose choice
w,’; is the action that leads towarélswhen is the root we will writeR’ for
the indicator that is reached. Againk’- is defined in the same way far.

e When everyone plays the backward induction action—i.e., wihes: 0 for
all j e N—the unique local best reply for eacte N is b’ (recall thatb is
the unique backward induction equilibrium). Therefore there exists-a
(appropriately small) such that is the unique local best reply affor all
i € NwhenY/ < Aforall j € N (i.e., when the proportion of the individuals
at each node that daot play the backward induction action is less thign
This A depends on the game only, and will be fixed from now on.

e Let L’ be an indicator random variable, defined as 1 in stgifleY/ < A for
all j € N(i), and 0 otherwise. Thus, whelii = 1 the backward induction
actiond' is the uniqueocal best reply ofi in statew, i.e.,uf.; (b', ") >
U (@', N ®) for everya’ € A’, a' # b'. We denote byL! the indicator
thatY/ < A for all j € N(i). Wheni is a final node (i.e., whelV (i) = ) we
haveL =L =1.

We note that selectioBE(i) has an effect only whenis reached, i.e., when
R' =1; if i is not reached, i.e., iR" = 0, then all actions of yield the same
payoff in I" and only mutatiorMU (i) affectse’. If R' =1 andL’ = 1 then
b' is the global best reply af, and thus certainly a “better action” for a “néh-
individual” (i.e.,b' € B' (q(i), ) Whenwf](l.) # b'). Since these arguments will be
used repeatedly in the proof, for convenience we state the following implications
of (2.4)—(2.9) her&®

Plays =a'|w] > a1 foreverya' e A", (4.1)

64 We use the “bigo” notation: f(x) = O(g(x)) if there exists a constam < oo such that
|f(x)| < K|g(x)| for all x in the relevant region. Thug(x, m) = O(x) means that there exists
K such that f (i, m)| < Ku forall 0 < u < 1 and all vectorsn = (;ni);eN with integer coordinates
m' >8/uforallieN.
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If R' =0 thenP[&} ) # ol | 0] = 0w (4.2)
If L'R" = 1andw, ;, #b' thenP[@] , =b' o] > B(1-Y'). (4.3)

The crucial argument in our proof is the following proposition.

Proposition 4.1. Consider the path from the root to a node i € N; without loss
of generality, assume that the nodes along thispathare 1,2, ..., i — 1,7 (in that
order, with 1 the root). Let Z be a non-negative bounded random variable that
depends on®® (&%) reqijun- Then

E[Z(1-R)] < 0(%)15[21@] + 0(}%)

i—1

+> O(E[Z(1- R)] - E[Z(1- R'1))).

j=1

Proof. Foreachj =1,2,....i—1,letc/ € A/ be the choice along the given path
(i.e., towardsj + 1), and pu191(w) =|{ge M(j): a)q = c/}|/m/, the proportion
of individuals at nodej that choose/; denoteV/ := 0/ (w) and Vii= =07 (®).
We first prove three lemmata.

Lemma4.2.

E[Z(1— Ri)RT] = o(i)E[Z‘Ri].

m

Proof. For eachw with R =1, to getR/: = 0 there must be some node
with j <k <i and V¥ = 0. But vk 0 (sinceR’ =1), so in factVk = 1/m*
(since|V¥ — V¥ is 0 or Im*). HenceP[V* = 0| w] < yo/m* = 0(1/m) (by
(2. 5) since the singlef-individual must be chosen). TherefaPg¢R/ = 0| w] <
p Iy P[V" 0| w] = 0(1/m), from which it follows that

1

E[Z(1— R)| o] = P[RH =0 0]E[Z | 0] = 0(—

m

)elZ 1)

(we have used the conditional independence condition (ﬁ&):depends on
nodes before, whereasZ depends o and nodes after). Thus

E[Z(1- RM) | R =1] = O(%)E[z R =1],

65 \We thank an anonymous referee fgr pointing out that an assumpti&w\mls missing here. It
may be shown that the result also hold€ifs replaced byZ which depends omw = (wk)keN (note:
no restrictions here on which coordinates).
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and
E[Z(1-R'"R'] = E[Z(1- R*) | R" =1]P[R" =1] + 0P[R’ = 0]
:0(11—11) [Z| R =1]P[R' =1]
LOLEE
Lemma 4.3.
E[?(l—ﬁj'i)(l—Rj)Rj’i]:0(}%).

Proof. For eachw € 2 with R/ =0 and R/ =1 (i.e., j is not reached,
andi is reached fromj), to get R/ = 0 there must be some nodewith

j <k<iandVk=0 But R/ =1 implies thatV* > 0, and thusV¥ =
1/mk. Therefore P[V¥ = 0| w] < (y2/mM)O(w) = O(u/m) (by (2.5) and
(4.2): the singlec-individual must be chosen, and its action can change
by mutation only, sincej, and thusa fortiori &, is not reached). Hence
PRV =0 o] < Y4 P[V" Olw] = O(u/m), from which the result
follows. O

Lemma4.4.
E[Z(1- RM) (1 R RIF]

E[Z
_ 7(1— Ri-J+l\pi+Lli ®
<A-awE[Z(1- RIYR] 4 o(L).

Proof. Take w € 2 with R/t =0 (ie., V/ = 0) and R/T1i = 1. To get
R/ =0 there must be some node with j < k < i and Vk = 0. Now
P[V/ > Olw] = P[wq(,-) = ¢/ | ] > aqu (this follows fromV/ =0 and (4.1)),
and P[V¥ = 0| w] < yo/m* < ya/mfork=j+1,...,i — 1 (by (2.5), since
R/*Li =1 impliesV* > 0). Therefore, by (2.4),

P[RV =1|w] = P[V*>0forall j <k <i—1]|o]
> () (1 —yo/m)' 7t

henceP[R/ = 0| w] < (1 — a1p) + O(u/m), and the result follows as in the
proof of Lemma4.2. O

The proof of Proposition 4.1 can now be completed.
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Proof of Proposition 4.1 (continued). We have(1 — R/)R/ = R/ — R" and
(1— R/ RIALI = Ri+Li_ RJi Adding the inequalities of Lemmata 4.2—4.4
together with

E[Z(1- Ri)(1- RITM)] < B[Z(1- RITH)]
yields

E[Z(1-R')] < 0(1 N+ @ - E[Z(RITH — RIY]
m
+E[Z(1- RJ+1’)]+O(%>.
Rearranging terms gives

o - 1\ o~ . m
J+Li _ pji - i Ll
arnE[Z(R R < 0<m)E[ZR]+O(m>
+(E[Z(1- R - E[Z(1— k7).
Adding these inequalities fof = 1,2,...,i — 1 and noting thatR’' = 1 and
R = R completes the proof. O

The next proposition proves the Main Theorem. The argument is divided into
8 steps.

Proposition 4.5. For each nodei € N:

P[L'=0]=0w); (4.4)
P[)N’i<Y’]:P[Yi>Yi]:0(/L); (4.5)
E[Y'L'R'] = O(w); (4.6)
E[Y'L'R] = 0(w); (4.7)
E[VT - v'L|(a-r)]=0(%); (4.8)
E[V T (1- R)] = 0<%>; (4.9)
E[Y LI (1— Ri)] = 0(%); (4.10)
E[Y']=0w). (4.11)

Proof. The proof is by backward induction an Assume that (4.4)—(4.11) hold
for all® j € N(i); then each of the claims (4.4)—(4.11) fowill be proved in
turn.

66 The induction starts from final nodegor which N (i) = @ (and thus there is no assumption).
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Step 1: (4.4) holdsfor i. Indeed®” L’ = 0 implies that there ig € N (i) such that
Y/ > 1, hence

. . 1 .
P[L' =0] < T =A< Z 1=
[L'=0]< 3 Plr/>2]< Y FE[Y]=o0w.
JEN(D) JEN(D)
where we have used Markov’s inequafffyand (4.11) forj (by the induction
hypothesis).

Step 2: (4.5) holdsfor i. We haveE[Y!] = E[Y'] (recall thatr is the invariant
distribution), thus

0= E[F - ¥'] = <%>P[f/’i - Y]+ (—%)p[?i <71,

since the only possible values Bf — Y? are Q 1/m’, and—1/m’. Therefore
P[Y' > Y] =P[Y <Y].

To getYl > Y we need &' -individual to become noi! (i.e., “’q(z) =b' and

q(l) # b'). This can happen either by selection—which requiresiot to be

a best reply of (henceL! = 0)—or by mutation—with probability equal t0 (1)
(by (2.9)). Thus

P[Y > Y]<P[L'=0]+ 0w =0,
by (4.4) fori, proving (4.5) fori.

Step 3: (4.6) holdsfor i. The caseY’ < Y’ occurs when a nohti-action is
replaced by'; thus the chosen individuali) € M (i) is a nond’-individual (i.e.,
q(l) # b'), which happens with probabilitg y1Y? by (2.5). For every € 2

with L'R! =1, the probab|l|tyP[wq(l) = b'|w] of changing the action tb' is at
leastB(1—Y') by (2.7) or (4.3) (since the proportion 6f in the population is
1-Y"). Therefore

P[Y <Y'] > E[pny' (1-Y)) | L'R' = 1]P[L'R" = 1]

+0P[L'R" #1]
= BnE[Y'(1-Y')L'R],

which, by (4.5) fori, implies

E[Y'(1-Y')L'R'] = O(n),
mank Michihiro Kandori for pointing out an error in this proof in the first version of the

paper.
68 Markov's inequality is:P[Z > z] < (1/z) E[Z] for a non-negative random variahieandz > 0.
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and thus
E[Y'L'R'lyicy ] = O(w)/n= 0w (4.12)
foranyn > 0, wherelyi<,_, is the indicator that’ <1 — 1.
To complete the proof of Step 3 we need the following lemma, showing that
the probability thatr” is in a neighborhood of 1 is low; that is, most of the time
the proportion ob’ is bounded away froff 0.

Lemma 4.6. There exist constants > 0 and ¢ > 0 such that

P[Yi >1—n]=0(e").

Proof. The invariant distribution property implié%

k41 ~ k| kK
P[Y’:L}P[Y’:—. Y'= +. ]
m! m! m!
ok ~ k+1| .k
=P|:Y’=—.1|P|:Y1=L.'Yl=—.]
m! m! m!
foreveryk =0,1,...,m' — 1. We have, first,
[~ k . k+17 k+1
P Yl:ﬁ‘ylz + Zn + i
m m m

by (2.5) and (2.8); and second,

i

k
<ef1-—u
m

for an appropriate constant > 0, where we have used (2.5) and (2.9) (selection
can increas&’ only whenL! = 0), and thenP[L! = 0] = O(u) by (4.4) fori
(proved in Step 1). Therefore

o k+11 k+1 -k k
P|:Y’= +l i|y1 +l a1M<P|:Y’=—i]cl<l——i)M,
m m m m

plyi= it ‘Yizi <y2<1—mi>(a2M+P[Li:0])

69 This shows that in our model with large populations, (2.7) turns out to be effectively equivalent
to the stronger (3.4).
70 Let z be an invariant distribution of a Markov cha@® with state space&? which is partitioned
into two disjoint setsS and 7', then it can be checked that . ¢ 7 [s1O[T | s1=Y ;7 7[t1Q[S | 1]
(the “total flow"—i.e., the total invariant probability—fron§ to 7' equals the “total flow” fromT"
to S). In our case, také = {Y! > (k+ 1)/m'} andT = (Y < k/m'}.
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. k+1 mi —k .k
P Y= A <62 PYZ— N
m! k+1 m!

wherecz := c1/(y101). Letn > 0 be small enough so thag(m’ —k)/(k + 1) <
1/2 forall’* k > ko := | (1 — 2n)m’|. Then we get

k—k
PYizi. < 1 ’
m! 2

for all k > kg and thus

' 1\ k%o 1\ —1
PlYi=1-n]< > <§> <<§> ,

k>(1—n)m!

or

as claimed. O
Proof of Step 3 (continued). Lemma 4.6 yields
E[Y'L'R'lyi_y ,|<P[Y' >1—n]=0(e"),
which is at mos®© (1) since ¥m < (1/8) 1. Adding this to the estimate of (4.12)
gives (4.6) fori, thus completing Step 3.

Step 4: (4.7) holdsfor i. Write E[Y' L Rl = E[Y'L' (1~ L')R' |+ E[Y'L' L' R'].
The first term isO (u) by (4.4), and the second term is

E[Y'L'L'R] < E[Y'L'R|=E[Y'L'R'] + E[(Y' - Y))L'R]

< E[Y'L'R' + <%)P[?f > Y]

(since the only positive value df’ — Y’ is 1/m'). Applying (4.5) yields the
desired inequality.
Step 5: (4.8) holdsfor i. We have

E[|Y'T' - Y'L'|(1- R)]
<E[|Y —Y|L'(1- R+ E[Y'|L' - L|(1- R)]
< E[[7 - vi|(a- &) + E[|T - |2~ B)]

The first term is bounded byl/m’) P[Y! # Y!, R = 0] = (1/m’) O(n) =
O(n/m) (see (4.2)R" =0 implies that the change froiY to Y' is by mutation
only). For the second term, note thiat £ L' implies that there existg € N (i)

such thaty/ > A — 1/m/ (otherwiseY/ < A — 1/m/ and thus¥’/ < A for all

71 | x| denotes the largest integer thatdis.



258 S Hart / Games and Economic Behavior 41 (2002) 227-264

j € N(i), in which caseL’ = L/ = 1). Choosej € N(i) to be a last such node;
thusY” <1 —1/m’ for all r € N(j), henceL/ = 1. Now L # L' implies that
a* + o* for somek € N(i) U {i}, which, by (4.2), has conditional probability
equal toO (1) for everyw with R = 0 and thusa fortiori R* = 0. Therefore

E[IL" = L'](1- R)]

~ . . 1 . ,
l i J _ J — [ —
gZP[L;AL,Y > A mj,L_l,R_O}

jEN()
; 1 . .
<ow Y P[Yf >h-— LI=1 R =o]
jeN( "
E[Y/L/(1—R)],
jGN(l) mJ

where we have used-1R’ < 1— R/ together with Markov’s inequality. Applying
(4.10) for eachy € N (i) completes the proof of (4.8) far

Step 6: (4.9) holdsfor i. TakeZ = YL’ in Proposition 4.1. We have
|E[Y'L'(1— RI)] - E[Y'L' (1 - R)]|
=|E[Y'L'(1- R'')] - E[Y'L'(1- R')]|
F[ITPT —virf| (1 1)
i N
E[|VT -Y'L|(1-R)]= O(m)’

where we have used the fact thatis the invariant distribution, the inequality
1— R/ <1— R (sinceR/ =0 impliesR! = 0), and finally (4.8) fori. Thus
each one of the right-most terms in the inequality obtained from Proposition 4.1
is O(u/m), and therefore

~ . 1 ~ m
1 1 _ l < _ l l 1 L .
RE[V'T (1 R)]\0<m>E[YLR]+O(m>. (4.13)
Applying (4.7) fori completes the proof.
Step 7: (4.10) holdsfor i. It follows immediately from (4.8) and (4.9) far
Step 8: (4.11) holdsfor i. Adding (4.6) and (4.10) for yields
iri 1
E[Y'L'|=0(w + 0(%) = 0w,
since ¥m < (1/8)u. Together with

E[Y'(1-L")] < P[L'=0]=0(w)
by (4.4) fori, the proof is completed. O
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Proof of Theorem 3.2 (Main Theorem). Inequality (4.11) of Proposition 4.5 is
precisely (3.5); applying Markov's inequality then yields (3.6)n

5. Discussion

It should be clear at this point that in order to single out the backward induction
equilibrium, the mutation rate must not be too low or too high relative to the
selection rate: If it is too low then the system can get “stuck” at other equilibria,
and if it is too high the system may be a completely random system. Studying
other dynamical models will hopefully help delineate in which cases the backward
induction outcome obtains, and in which cases it does not.

5.1. Other selection dynamics

Various generalizations and modifications of our dynamics may be considered.
Some will not affect the main result, while others may well invalidate it. We list
here several:

(a) Replace (2.7) with
Ol@, ;) =d" | o] > f(x (@),

where f:[0, 1] — [0, 1] is a monotonic decreasing function wif(¢) > 0
forall ¢ > 0. Forinstance, in an “imitation” model, the chosen individual may
samples other individuals in his own population (rather than just one)—in
which case we can take(&) = B&°. It may be shown that our result continues
to hold: The only change is in Step 3 of the proof of Proposition 4.5, where
we now haveP[Y! < Y] > y1E[Y' f(1— Y')L!R'], which implies

E[Y'L'R'lyicy_] = OG)/f () = O(w);

thus (4.12) holds.

(b) Replace (2.7) with (3.4), i.espme better action has positive probability of
being chosen (rather thaach). It seems that our result is still corre&.

(c) Assume thatin each period one individual—fralpopulations altogether—
may change its action. For example, in each period choose one individual at
random from J; .y M (i); or, when the populations are of different sizes, first
choose € N at random, and then choogé€) in M (i) at random (only this

72 Consider for simplicity a final node one shows first that the proportion of the worst action at
must be small, after which the same is proven for the second-worst, and so on. Note that the proportion
of the best reply—which can change only by mutation—is bounded away from zero.
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chosen individual may change its action in the current period). We conjecture
that this modification will not affect the resuf.

Make the probability of selection depend on tpayoff differences. For
example,

Q[J)é(i) =d | w] = ﬁx‘ii (w)[ui(ai, w_i) — ui(wz(i), w_i)], (5.1)

for everya’ € B'. That is, the probability that selection induces a switch to

a better action is proportional to how much better that action is, as measured
by the payoffs against the current populations at the other nodes. In contrast,
(2.7) only takes into account theégn of this difference (which is positive

if and only if a’ € B'). Equation (5.1) yields a dynamic in the well-known
class of “replicator dynamics® Again, there are many variants here; we
conjecture that our result need not hold urd¢s.1) (though it might hold if

we instead use a positive power, strictly less than 1, of the payoff differences).
Modify selection so that the proportion of the better actions will increase
with a probability that is close to 1 (i.e., of the order ofXxu). Note that

in our model if, say, actiom’ is currently better than actiori and 2/3 of

the population play:’, then the probability that the proportion af will
increase (to 23+ 1/m) is of the order of 13 only (= the probability that a
c!-individual will be chosen). Some preliminary work indicates that our result
holds here too, at least in the case where there are exactly two actions at each
node.

Change the probability that each individual Mi(i) will be chosen, in such

a way that it still goes to zero as the population gi¥&i)| goes to infinity,
though without necessarily being of the order ¢fM (i)| as i/ (2.5).

Specify various rules as to how the individuals are to be matched in each
period to play the game (recall Remark 3 in Section 2.3); for instance,
when all populations are of size, we may arrange all individuals inte
random matchings (rather than everyone playing against everyone else). Such
extensions might overcome the difficulty that an individual needs to play
against everyone in the other populations in a time period that converges to
zero as the populations increase.

73 The conditional independence condition (2.4), which is no longer true, has been used only in the
proofs of Lemmata 4.2 and 4.4.

74

Our selection may thus be called an “ordinal replicator dynamic.” Note that (5.1) is continuous

(with respect to changes in the other populations), whereas (2.7) is not.

75

Large populations decrease the effect of selection, since the difference in payoffs due to the action

of one individual at a previous node is small.

76

One then needs to work with expressions li€gg(Y?)] instead of E[Y!], where g(Y?) is

the probability that a now! -individual is chosen when the proportion of such individuals in the
population isy’.
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5.2. Extensions
A number of directions for further study are:

(a) Non-unique backward induction equilibrium. Analyze the non-generic case
where there is more than one subgame-perfect equilibrium—for instance,
when some of the payoffs at the final nodes are equal. It seems that a subset
of BI, at times a strict subset, is obtained.

(b) Multiple agents and non-distinct populations. Study games where players
may move at more than one node, and thus the populations at different nodes
are no longer distinct (as in the gene-normal form). Note that difficulties may
arise since selection operates at the level of the player (rather than that of the
agent/gene).

(c) Games with imperfect information. Allow for general games in extensive
form (not necessarily of perfect information). Here we conjecture that all
evolutionarily stable equilibria will be subgame-perfect, but the converse
will no longer be true; evolutionary dynamics may well pick out certain
refinements rather than others.

(d) Other selection dynamics. This is discussed in Section 5.1.

(e) um — 0 and the order of limits. Study the case where the number of
mutations per generation may go to zero (see Remark 1 in Section 3.2).
While our proof makes use of the conditipsm > 6 > 0, we do not know
whether it is always necessdrylt is thus possible that, for a certain class of
dynamics (like the basic dynamic, or those that satisfy (3.4)), one has in fact
liMm - o0, u—07[Bl] =1 for the double limit (and thus also for the iterative
limit lim ,,, lim ).

5.3. Related literature

This subsection discusses relations to other work on dynamic models in games
of extensive form (for games in strategic form, see the books referred to in
Section 1.1).

(a) Noldeke and Samuelson. The closest paper to ours is Noéldeke and
Samuelson (1993) (see also Samuelson, 1997, Chap. 8). An important difference
between their model and ours is that each one of their individuals is characterized
not only by an action (like ourdjut also by conjectures about the compaosition of
the populations at all nodes, whether reached or not. The dynamic then affects
actionsand conjectures. Our model is thus more basic; it is “operational” or

77 \We note that the conditionm > § is usedonly in Steps 3 and 8 in the proof of Proposition 4.5, in
order to bound the probability that the backward induction action is not played at descendant nodes; it
is not used to show that nodes are reached with positive probability (recall also Section 4.1, particularly
the last paragraph there).
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“behavioristic” (only actual actions and payoffs matter), whereas theirs requires
in addition more sophisticated “cognitive” considerations (beliefs or conjectures).
Noldeke and Samuelson show that, in general, equilibria other than the
backward induction are stable; for example, the equilibritin the gamer»
of Fig. 2. To see why this is so, notice, first, that the absorbing states in their
model are the “self-confirming equilibria,” which include the Nash equilibria as
well as additional points (which allow for arbitrary beliefs at unreached nodes).
Thus everyx = (¢1, £2, £3) with €1 = £2 = 0, where&! denotes the proportion
of ¢! in populationi, constitutes a self-confirming equilibrium, whereas it is a
Nash equilibrium only i3 < 1/3. Since all these absorbing states are connected
by a chain of single mutations from the backward induction equilibriufeee
Theorem 3.1 and (3.3) in its proof), it follows that all of them—including
(0, 0, 1)—have positiverrp-probability. But now starting at0, 0, 1), after one
mutation in population 2, selection there will increase if €2 > 1/2 occurs
before&® < 1/3, then selection will start affecting population 1 as well. There is
therefore a positive probability that(a, £2, £3) equilibrium in the component of
¢ = (1,1, 1) will eventually be reached by selection. This implies thgtx] > 0
for all x there, in particulafio[c] > O.

In our basic model, once the system leaves the equilibrium componént of
(0,0,0) and’® (0,0, 1/3+ 1/m) is reached (by a sequence of single mutations),
selection starts affecting the population at 2, moving it towardsThis makes
node 3 reachable and then selection at 3 decreg&e®/henm is large, the
probability is extremely low that? will increase from 0 to 12 4+ 1/m—which
is the crucial proportion for selection to start operating at node 1—béfore
decreases from/B+ 1/m to 1/3 (indeed, the former requires/2 “steps,” the
latter only 1 step). Therefore, the system is led back t@éthemponent with very
high probability, and so, for large populatiors,gives very small weight to and
its component. In our general model(@, 0, 1/3+ 1/m) turns out, as in N6éldeke
and Samuelson, to be absorbing for the selection dyn&@wirecall Remark 1
in Section 3.1), then the same argument applie€®td/m, 1/3+ 1/m); to go
from there to(0, 0, 1/3+ 1/m) however requires an additional argument (see for
instance (4.13)).

We note that for some variants of our dynamics—as in (e) in Section 5.1—it
can in fact be shown thaip[x] = O for all x in the equilibrium component af,
for every population sizen > 2. However, large populations would still be needed
to obtain the backward induction equilibrium in general—for instance, in game
I3 of Fig. 3.

78 Assume for simplicity that is divisible by 6.
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Finally, it is possiblé® that the Néldeke and Samuelson model will also yield
the backward induction equilibrium for large populations; they did not consider
this setup.

(b) Population dynamics. The most relevant paper here is Cressman and
Schlag (1998), who consider continuous-time replicator dynamics (like (5.1)
in Section 5.1) for continuum populations (which would correspond to our
large populations limit). They study (interior) asymptotic stability (rather than
evolutionary or stochastic stability), and they show that only in simple g&hmes
does the process select the backward induction equilibria. As we said in (d)
of Section 5.1, we conjecture that our result need not hold for such selection
mechanisms. Another related work is Swinkels (1993), which provides sufficient
conditions for myopic adjustment dynamics—a class that includes the replicator
dynamics—to lead to (Kohlberg—Mertens) stable sets.

(c) Fictitious play dynamics. There are a number of papers that provide
adaptive learning models, of the “fictitious play” variety, leading to the backward
induction equilibria: see Canning (1992), Theorem 4; Hendon et al. (1996),
Theorem 2; and Groes et al. (1999), Theorem 2. While these are not population
games (there is a single player in each role), their dynamics can nevertheless
be interpreted as population dynamics—see Hofbauer and Sigmund (1998),
Section 8.4. By comparison to the present paper, notice that in these models the
dynamic is a best-reply dynamic, and itassumed that all nodes are reached
(the “beliefs” of the players—the counterpart of our population frequencies—
are completely mixed); in our model, this constitutes a substantial difficulty (see
Section 4.1).
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264 S Hart / Games and Economic Behavior 41 (2002) 227-264

References

Aumann, R.J., 1995. Backward induction and common knowledge of rationality. Games Econ.
Behav. 8, 6-19.

Aumann, R.J., 1998. On the state of the art in game theory. Games Econ. Behav. 24, 181-210.

Canning, D., 1992. Learning the subgame perfect equilibrium. Discussion paper No. 608, Columbia
University.

Cressman, R., Schlag, K.H., 1998. The dynamic (in)stability of backwards induction. J. Econ.
Theory 83, 260-285.

Ellison, G., 2000. Basins of attraction, long-run stochastic stability, and the speed of step-by-step
evolution. Rev. Econ. Stud. 67, 17-45.

Foster, D., Young, H.P., 1990. Stochastic evolutionary game dynamics. Theor. Pop. Biol. 38, 219-232.

Fudenberg, D., Levine, D.K., 1998. The Theory of Learning in Games. MIT Press.

Gale, J., Binmore, K., Samuelson, L., 1995. Learning to be imperfect: The ultimatum game. Games
Econ. Behav. 8, 56-90.

Groes, E., Jacobsen, H.J., Sloth, B., 1999. Adaptive learning in extensive form games and sequential
equilibrium. Econ. Theory 13, 125-142.

Hammerstein, P., Selten, R., 1994. Game theory and evolutionary biology. In: Aumann, R.J., Hart, S.
(Eds.), Handbook of Game Theory, Vol. Il. North-Holland, pp. 929-993.

Hendon, E., Jacobsen, H.J., Sloth, B., 1996. Fictitious play in extensive form games. Games Econ.
Behav. 15, 177-202.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge
University Press.

Kandori, M., Mailath, G., Rob, R., 1993. Learning, mutation, and long-run equilibrium in games.
Econometrica 61, 29-56.

Kuhn, H.W., 1953. Extensive games and the problem of information. In: Kuhn, H.W., Tucker, A.W.
(Eds.), Contributions to the Theory of Games Il. Annals of Mathematics Studies, Vol. 28. Princeton
University Press, pp. 193-216.

Maynard Smith, J., Price, G.R., 1973. The logic of animal conflict. Nature 246, 15-18.

Nash, J., 1950. Equilibrium points inperson games. Proc. Nat. Acad. Sci. USA 36, 48—49.

Noldeke, G., Samuelson, L., 1993. An evolutionary analysis of backward and forward induction.
Games Econ. Behav. 5, 425-454.

Samuelson, L., 1997. Evolutionary Games and Equilibrium Selection. MIT Press.

Selten, R., 1965. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit. Z. Ges.
Staatswissen. 12, 301-324.

Selten, R., 1975. Re-examination of the perfectness concept for equilibrium points in extensive games.
Int. J. Game Theory 4, 25-55.

Swinkels, J.M., 1993. Adjustment dynamics and rational play in games. Games Econ. Behav. 5, 455—
484.

Vega-Redondo, F., 1997. Evolution, Games, and Economic Behavior. Oxford University Press.

Weibull, J.W., 1995. Evolutionary Game Theory. MIT Press.

Young, H.P., 1993. The evolution of conventions. Econometrica 61, 57-84.

Young, H.P., 1998. Individual Strategy and Social Structure. Princeton University Press.



