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EXISTENCE OF CORRELATED EQUILIBRIA*!

SERGIU HART anp DAVID SCHMEIDLER
Tel-Aviv University
An elementary proof, based on linear duality, is provided for the existence of correlated

equilibria in finite games. The existence result is then extended to infinite games, including
some that possess no Nash equilibria.

1. Introduction. The standard proof of existence of correlated equilibria (defined
by Aumann 1974) in finite games consists of showing, first, that Nash equilibria are
correlated, and second, that every game has at least one Nash equilibrium. The first
argument is trivial; the second requires however the use of a fixed-point theorem.'

Since the correlated equilibria form a convex set, defined by a set of explicit linear
inequalities, it is reasonable to expect a simpler existence proof. We provide here (in
§2) such an elementary proof, based on the standard Linear Duality Theorem. We
actually chose to use an equivalent result, which seems more appropriate in this game
theoretic setup: the Minimax Theorem.?

We next consider infinite games, where the set of players and the sets of (pure)
strategies are arbitrary. General results on the existence of correlated equilibria are
obtained. Moreover, it is proved that a countably additive correlated equilibrium exists
when the payofl functions are continuous and the strategy spaces are compact
Hausdorff. All proofs are as “elementary” as possible: we use the result of the
existence of correlated equilibria for finite games, together with a standard product
compactness argument (e.g., Tychonofl’s Theorem); this is equivalent to an infinite-
dimensional separation theorem, but weaker than a fixed-point theorem (which is
needed to show the existence of Nash equilibria). We study first. in §3, the simpler case
where the sets of (pure) strategies are all finite; §4 then deals with the general case. We
also provide several examples to illustrate the various difficulties.

2. Finite games. A finite game (an “n-person game in normal or strategic form™)
is given as follows: Let N = {1,2,..., n} be a finite set of players. For each i € N, let
S’ be a finite set of (pure) strategies of i. Let S be the set of n-tuples of strategies:
S=S'%S8x---x8" an element of S is s = (s');cy- Foreach i€ Nand s € §
let
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denote the strategies played by everyone but i; thus s~ §'=Tl .S/ and
s = (s ', s"). Finally, for each i € N, let? h': § - R be the payoff function of player i;
h'(s) is the payofl to i when the n-tuple of strategies s is played.

A correlated equilibrium (Aumann 1974, 1987) consists of a probability vector*
P =(p(s)),es on S such that the following is satisfied for all i € N and all
r'; e 8

(1) Y op(s ) [R(s7h ) = Ri(s )] = 0.

sTres™!

The interpretation is as follows: An n-tuple of strategies » € S is chosen at random
(by a referee, say), according to the distribution p. Each player i is then told (only) his
own coordinate r' of r, and the original game is played. A correlated equilibrium
results if the n-tuple of strategies in which each player i always plays the “recom-
mended” ' is a Nash equilibrium in this extended game (note that all players are
assumed to know the distribution p). Condition (1) says that, whenever player i is told
r', he will have no incentive to play ¢’ instead. (Note that one should have in (1) the
conditional probability® p(s ~'|r') instead of the joint probability p(s ', r*); multiply-
ing by the marginal probability p(r') then yields (1), which also holds trivialy when
p(r') =0,

THEOREM 1. Every finite game has a correlated equilibrium.

Proor. Consider the following auxiliary two-person zero-sum game: Player 1 (the
maximizer) chooses an n-tuple of strategies s = (s',..., s") € S: player Il (the mini-
mizer) chooses a triple (i, r', '), where i € N and r', t' € §'. The payofl (from 11 to )
is: A'(s ' r') = h'(s7 ') if 5' = r' and 0 otherwise. A correlated equilibrium in the
original game is now easily seen to correspond to a strategy® of player I that guarantees
a nonnegative payofl in this zero-sum game. By the Minimax Theorem, such a strategy
exists if, for every given strategy of player I, there exists a strategy of player I yielding
a nonnegative payofl. Let thus y = (y'(#',1")),c v, e be a strategy of player I1.
We now need the following:

LEMMA.  Let (a;.); 4y, . be nonnegative numbers. Then there exists a probability
vector X = (X;) .y, Such that, Jor any vector u = (u;),_,_

o mr

m m

2 %; X Ay =u) =0,

i=1 k=1

Proor. Denote the expression above by ®(x, u). Since ®(x, —u) = —®(x, u), we
need only to show that ®(x, u) = 0 for all w. Next, note that it suffices to consider
only probability vectors u, since one may add an arbitrary constant to all the
coordinates of u (to make them nonnegative) and then multiply u by a positive scalar
(to normalize it), without changing (the sign of) ®(x, u). The function ® is bilinear in
x and wu; therefore the Minimax Theorem applies to it: Max  min B(x,u) =
min, Max ®(x, u), where x and u are both probability vectors. leen u, let J be such

'R denotes the real line.
A probability vector is a vector whose coordinates are all nonnegative and sum up to 1,

*We regard p as 4 probability distribution on the product space §: marginal and conditional probabilities
are thus well defined.

“By “strategy” we mean, of course, *mixed strategy”.
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that u, = Max,u,; for x the jth unit vector, we then have ®(x, u) > (. This shows
that the min Max is nonnegative, hence so is the Max min, implying the existence of a
vector x as claimed.” m

Proor or THEOREM 1 (CONTINUED). For each i, apply the Lemma to
(V(r' '), pes (as (ay)), to obtain a probability vector (x'(r")), e s such that, in
particular,

2) L) Syt ) W5~ r') = (s, )] =0
¥ r

for every s~ € § ' (here, u = (h'(s "', r')), e s)- Define x(r) =TI, yx/(r”) for each

r € §; x is clearly a strategy of player I in the auxiliary game. The payoff correspond-

ing to the pair of strategies (x, y) (recall that y is the given strategy of player II) is

;[Ux’(rf ]{zzy () = )]
This may be rewritten as
Zz[}# rf)] 21 ()Y Ey (r ) (r ety = B, r‘)]}

which equals zero by (2). This completes the proof. m
REMARK An explicit formula for x in the Lemma is as follows: For each j in
= {1,....m}. let G; be the set of all functions g from M into itself. such that. for
every k #= J, there is a posmve integer r (depending on j) with g'”(k) = j (we write
g'") for the composition of g with itself r times). Then

z na!\ g(k)

2EG, k+J
forall j € M.

3. Infinitely many players. Consider now the case where the set of players may be
infinite. We will assume in this section that the (pure) strategies sets of all players are
finite, since the definitions, the results, the proofs—and the difficulties—are simpler
and more transparent than in the general case (which is studied in §4).

A game (in normal or strategic form) consists of:" (i) a nonempty set of players N;
(ii) for each i € N, a nonempty set of (pure) streategies S': and (iii) for each i € N, a
bounded payoff function A' from § = [1,. S to R.

In this section we assume that all the sets S" are finite.

For each i € N, denote S~ =1[1,,,S’; thus, every s € § can be written as s =
(s'.5 ") with '€ 8" and s '€ § . The sets §' are endowed with the discrete
topology.” and their product S with the resulting product topology (note that S is a

?Scc the Remark following the proof of Theorem 1. for an explicit formula for x.

8The difference between a “finite game” (as defined in §2) and a “game” is that the sets N and §' are
finite in the former and arbitrary in the latter. (Note that the functions A’ arc always bounded in a finite
game.)

°A standard reference for the concepts and results of topology. measure theory, linear spaces, ete., that are
used in 883 and 4 is Dunford and Schwartz (1958).
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compact Hausdorfl space). Let = denote the product o-algebra on S: it is generated
by the cylinders of the form S™' X {s'} for i € N and 5" € §".

Let = be an algebra on § such that £ 2 X, and all the payoff functions #' are
Z-measurable. A correlated equilibrium (with respect to Z) is a (finitely additive)
probability measure p on the measurable space (S. =), such that the following' is

satisfied for all i € N and all ', 1"  §':
(3) f [h’(s". r) — h'(s™, r’)] dp(s) = 0.
S ()

(Note that, as in the finite case, we have multiplied by p(r').)

THEOREM 2. Assume that, for each i € N, the set S" is finite.

(i) Let 3 2 3 be an algebra on S and assume that, for each i € N, the function h' is
bounded and Z-measurable. Then there exists a correlated equilibrium with respect to X.

(1) Assume that, for each i € N, the function h' is continuous. Then there exists a
countably additive correlated equilibrium with respect to 2.

REMARKS. 1. One may of course apply (i) to = = 2%, in which case every function
is Z-measurable. Thus, if the payofl’ functions are bounded, then there always exists a
(finitely additive) correlated equilibrium with respect to 2°.

2. If A" is a continuous function, then it is bounded (since S is compact) and
= -measurable.

3. A real function on the product space S is continuous if and only if it is *“almost
finitely determined”; i.e., it is the uniform limit of functions depending only on finitely
many coordinates (cf. Lemma 4.3 in Peleg 1969).

In the case that the payofl functions are continuous, Peleg (1969) has proved that
there exists a Nash equilibrium, which is clearly also a countably additive correlated
equilibrium with respect to . However, his proof uses a fixed-point theorem, whereas
the proof below is essentially an infinite-dimensional separation argument (or, equiva-
lently. finite-dimensional separation together with compactness of an infinite product
—which is the way our proof is presented).

Before proceeding to the proof of Theorem 2, it is instructive to consider two
examples. The first one, due to Peleg (1969), is of a game that possesses no Nash
equilibria (the payoff functions are not continuous); we exhibit a countably additive
correlated equilibrium there (whose existence is nor guaranteed by Theorem 2), and
also a noncountably additive one, which shows that these equilibria (although they
always exist) may well be quite * unreasonable”. The second example, which is a slight
modification of the first, possesses only noncountable additive correlated equilibria.

EXAMPLE 1. Let N be the set of positive integers; for each i € N let S’ = (0,1}
and h'(s) = 5" if X, vs' < 00 and hi(s) = —s' if X, o 8" = 0. Call the first case (of
the convergent series, which happens whenever there are only finitely many players
that chose s = 1) Case 1 (since all players would like to chose s’ = 1 there), and the
second case Case 0 (all players would prefer to choose s' = 0 here). This game has no
Nash equilibria: Let o' be a mixed strategy of player i, and denote by &' the
probability (under ¢') that s'= 1. By the Zero-One Law (mixed strategies are
independent), either Case 1 happens almost surely, or Case 0 happens almost surely. In
the former case, players strictly prefer their strategy &' = 1 (i.e., s' = 1 for sure); in the
latter, &' = 0 (i.e., s' = 0).

""The above conditions on % and the functions h' guarantee that (3) is well defined.
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A countably additive correlated equilibrium (with respect to Z,)) is obtained in this
game as follows: For each j € N, let z; be that element of S whose first j coordinates
are 1 and all the rest are 0; i.e., z;= (z‘;),G y with z;=1 if i <7 and 2= Qif i .
Let p, be the probability measure on § with support {z,: j € N} and p(z,) = 1/j
=1/(j+ 1)forall j € N. Note that py[s € S:s5' = 1] = py[z,: j = i] = 1/i [or all
i € N and that p,[Case 1] = 1. Next, let p, be the product probability measure on §
with marginals py[s € S:s'=1]=1/i for all i € N: note that py[Case 0] = 1 (by
the Zero-One Law, since Y1 /i = oo). Finally, put p, = (p, + p,)/2. It is now easily
checked that p, is indeed a correlated equilibrium: For every i € N and s' = 0, 1. one
has p,[Case 1|s'] = p,[Case O|s'] = 1/2, therefore (3) is always satisfied (as an
equality).

A noncountably additive correlated equilibrium (with respect to = = 2%) is as
follows (this is essentially an equilibrium of the type constructed in our proof of
Theorem 2(i) below): Let A4 C §; if A contains only finitely many of the points
{z,},en (defined in the previous paragraph), put p,(A4) = 0; if A contains all but
finitely many of these points, put p;(A4) = 1. Now extend p, to a finitely additive
probability measure on (S,2%) (apply the Hahn-Banach Theorem''). It can now be
easily checked that p, satisfies the following two properties: py[s' = 1] = p;s[z,: j = ]
=1 for each i; and p,[Casel] = ps[L, c ys' < 0] = p3[2,: j € N] = L. It is now
clear that p, is indeed a correlated equilibrium. m

The equilibria in this example illustrate two points: First, that a (countably additive)
correlated equilibrium may exist even when there is no Nash equilibrium. And second,
that noncountably additive correlated equilibria may well be unintuitive (indeed.
pi-almost surely every player chooses 1, and also p;-almost surely there are only
finitely many 1’s!). However, if the payoff functions are not continuous, countably
additive correlated equilibria need not exist at all, as the next example will show.

ExampLE 2. Identical to Example 1, except that in Case 1 (when there are finitely
many 1's) we define h'(s) = s'/i* (instead of h'(s) = s'). Applying the same argu-
ments used in Example 1 shows that there exists no Nash equilibrium, and also that p,
is a (noncountably additive) correlated equilibrium.

Next, we prove that there exists no countably additive correlated equilibrium.
Indeed, assume p is such an equilibrium. First, note that both Case 0 and Case 1 must
have positive probability (otherwise, apply the same argument used to show that there
is no Nash equilibrium). Now condition (3) for ' =1 and ' = 0 1s

p[Case 1 & r' = 1] /i* = p[Case 0 & ' = 1].

This implies that p[Case 0 & r' = 1] < 1/i°, hence p[Case 0 & r' =1 infinitely
often] = 0 (by the Borel-Cantelli Lemma, since the series £1/i* converges; here is the
only use of the countably additivity of p). Thus p[Case 0] = 0. a contradiction. m

Proor OF THEOREM 2. (i) Consider finite sets 7= [1,. 7" € § such that T* C §'
for all i, and T is a singleton for all but finitely many players i € N: we will call such
a set T an *f-set”. The game I', obtained by replacing S’ with T for each i € N is
equivalent to a finite game (only those i for which 7" is not a singleton are “real”
players). By Theorem 1, every finite game has a correlated equilibrium; one therefore
obtains a correlated equilibrium in I';, which will be denoted by ¢;. Clearly, we may
regard g, as a probability measure on S, with (finite) support 7.

"' The Axiom of Choice is used here,
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Consider the net {g,: T an f-set}, ordered by inclusion of the sets 7. It belongs to
the unit ball of ba(s, Z), the space of finitely additive measures on (S, £). By the
Banach-Alaoglu Theorem (which is an easy consequence of Tychonoff’s Theorem on
the compactness of a product of compact spaces; see Dunford and Schwartz 1958.
Theorem V.4.2), the unit ball is compact in the weak*-topology, which in this case is
induced by B(S, Z). the space of bounded and measurable functions on (S, 2) (cf.
Dunford & Schwartz 1958, Theorem 1V.5.1). Let p thus be a cluster point of { g, }. We
will show that p is a correlated equilibrium.

Indeed, fix i € N and r', 1" € §". Define a real function fon S by: f(s) = hi(s) —
hi(s™' ") for s € S7' x {r'} (ie., when s'=r’), and f(s)= 0 otherwise. The as-
sumptions on A’ imply that f too is bounded and Z-measurable. Given £ > 0 and i,
there exists therefore an f-set T with 7' > {r, 1"}, such that | [fdp — [fdg,| < e. It is
easily checked that [fdg, = 0 (since ¢, satisfies (1), hence (3), for all “real” players in
I, in particular 7, and »', 1" € T"). Therefore the inequality above implies [fdp > —e,
hence = 0, which is exactly (3) for p.

(ii) Replace ba(S,Z) in the proof of (i) with rca(S, =), the space of regular
countably additive measures on (S, £,), which is the dual of C(S), the space of
continuous real functions on S (by Riesz’s Representation Theorem; see Dunford and
Schwartz 1958, Theorem 1V.6.3). =

4. Infinitely many players and strategies. In this section we deal with the general
case, where the set of players as well as the strategy sets may be infinite. A “game” was
defined in §3; here it is not longer assumed that the (pure) strategies sets are finite.
When defining a correlated equilibrium, it turns out that condition (3) is no longer
appropriate, since p(r') many well be zero for all ' € §' (for example, when §' is a
continuum). A first attempt is therefore to require (3) also for subsets R € S’ and not
only for singletons {r'}. This is however not yet satisfactory, since ' there need not be
fixed—it may well depend on r’. To obtain the correct conditions, we therefore
consider again the extended game described in §2: An element r € S is chosen, each
player i is informed only of the ith coordinate »* of r, and then the original game is
played. A strategy of player i in the extended game is thus a function ¢’ from S' into
itself, that associates to each “recommendation” »' € §' a choice of action {/(»') € S'
in the original game. A correlated equilibrium is obtained if, when each player i uses
the strategy {' = identity, a Nash equilibrium results (in the extended game).

Formally, let 2 be an algebra on S, let £ be the o-algebra on S generated by the
product of the ='’s, and let £ > = be any algebra on S. We assume that. for each
i & N, the payoff function &' is bounded and X-measurable. A correlated equilibrium
(with respect to { '}, - and X) is a probability measure p on (S, 2). such that, for all
i € N and all ='-measurable'” functions {': S — §', the following inequality holds:

(4) j;[h’(s sty = hi(s, g"(.s"_)_)] dp(s) = 0.

The left-hand side in (4) is the difference between the payoff of player i (in the
extended game) when he always follows the *“recommendation”, and his payofl when
he plays the strategy {' instead. It is easy to see that, when S’ is a finite set, conditions
(4) and (3) are equivalent: (3) is obtained by taking in (4) {'(s') = s' for all s # r' and
$r') = 1% vice versa, given a function {', sum the inequalities (3) over all r' with
' = {'(r'), to yield (4).

Rre, {s'e 8 :{(s')e A} € T foreverya € X',
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As we saw in the previous section, noncountably additive correlated equilibria may
be quite “unreasonable”. We will therefore deal here only with the existence of
countably additive correlated equilibria (however, a result parallel to Theorem 2(i) may
be obtained here too).

THEOREM 3.  Assume that. for eachi € N, the space S" is compact Hausdorff and the
function h' is continuous (where S is endowed with the product topology). Let Z' be the
Borel o-algebra on S', and let = be the Borel o-algebra on'® S. Then there exists a
countably additive correlated equilibrium with respect to {2'}, . v and Z.

ProOOF. The construction is similar to that used in the proof of Theorem 2. A set
T =11, T will be called an “f-set” if 7" is a finite subset of S’ for all i € N, and
moreover T is a singleton for all but finitely many i’s. To each f-set T there
corresponds an (essentially) finite game I'; (obtained by replacing §' with T for all
i) let g, be a correlated equilibrium of I'; (whose existence follows from Theorem 1),
regarded as a probability measure on S (with finite support T'). The net {g,: T an
f-set} (ordered by inclusion of the sets 7') belongs to the unit ball of rca(§) (the space
of regular countably additive measures on S; recall that each §' is Hausdorff, therefore
S is Hausdorff, hence measures with finite support are regular). Again, the Banach-
Alaoglu Theorem implies the existence of a cluster point p with respect to the topology
induced by C(S) (the space of continuous functions on S). We will show that p is
indeed a correlated equilibrium.

Let i = N and let ¢': S —» S' be a measurable function. If {' were a continuous
function, inequality (4) would easily be proved by an argument similar to that used in
the Proof of Theorem 2 (here, p is a cluster point relative to continuous functions);
since however {’ need not be continous, we need more elaborate arguments. We will
deal first with a special case, from which the general case will then easily follow.

A special case. There exist /' € §' and R' € X' such that {(s') = ¢' for all 1" € R’
and {'(s') = s' otherwise. Fix & > 0. The measure p is regular; therefore there exist
sets F.G C S such that: F is closed, G is open, FC R' X § ' C G and™ p(G \ F)
< ¢ Define!® F' = proj, F and G' = §' \ proj,(S \ G), then F' is closed and G' is
open (since S is compact), F' € R' € G’ and'® p((G'\ F') X §7) < p(G\ F) <e
Next, apply Urisohn’s Lemma (see Dunford and Schwartz 1958, Theorems 1.5.2 and
1.5.9), to obtain a continuous function ¢:S’— [0,1] such that @(s') =1 for all
s'e Fland @(s') =0 forall s' & G'.

Define'” f(s) = @(s")h'(s) — hi(s ', 1")]; since f: § — R is a continuous function,
there exists an f-set T with T' 2 {¢'} such that (all the integrals are over §)

< £,

|[rdo ~ [rdar
Next, let M be a bound on h’; then

]ffdp — f[hf(.s‘) - h‘(s”,{'(s"))] dp| < 4Me,

"¥Note that £ 2 =, (= the product of the £'’s). A, S. Nowak has pointed out that the inclusion may be

strict in the nonmetrizable case.

“The symbol \ denotes set-theoretic subtraction.

'*The projection from S onto S' is denoted proj,.

Y \What we have showed here is that in a compact space, the marginal of a regular measure is also regular.

""One may regard g as a mixed strategy (more precisely. a behavioral strategy) of player i in the extended
game: when the recommendation (to i) is 5', he follows it (i.c.. he plays s') with probability 1 — @(s) and he
plays t* with probability @(s").
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since the integrands may differ only on (G' ~ F') X § . Finally.

ffdffr'z 2 oels) X [h*(s_)—h’(s"’.t’)]q?-(s)20.

seT s et

since (1) holds for g, and ¢ = 0. The last three displayed inequalities together imply
that the left-hand side of (4) is > —(4M + 1)e, hence, & being arbitrary, that (4)
holds.

The general case. Let & > 0 be given. Since both §" and § ' are compact and the
function A’ is continuous, it is straightforward to obtain a finite partition of §' into
disjoint measurable sets {4, },.,  x such that |h'(s™", s") — hi(s ™", 1")| < & for any
s', 1" belonging to the same A, and every s ' € §~". For each k, fix some ] € 4,; let
R, ={s'€8":{'(s'") € Ay} and define a X'measurable function ¢ as follows:
$i(s') =t for 5" € R}, and {; is the identity outside RY. Inequality (4) holds for ¢/,
since the special case applies to it. Summing up these inequalities for all k, we obtain
(4) for the admissible function %' defined by 7'(s') = 1 if ' € R for some k. The
construction above implies that [h'(s ™, {'(s")) — h'(s ", 5(s"))| < € for all s, therefore
the left-hand side of (4) for {'is > —¢& hence > 0. m

REMARK.  Under the assumptions of Theorem 3, one may prove—using a fixed-point
theorem—the existence of a Nash equilibrium (e.g., see Fan 1952 [apply his Theorem
2] or Glicksberg 1952 [his proof in §2 may be easily applied to an arbitrary set of
players]).
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