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Abstract

We provide a formal write-up of the simple proof (1995) of the exis-

tence of calibrated forecasts by the minimax theorem, which moreover

shows that N3 periods suffice to guarantee a calibration error of at

most 1/N.

Consider a weather forecaster who announces each day a probability p

that there will be rain tomorrow. The forecaster is said to be calibrated if,

for each forecast p that is used, the relative frequency of rainy days out of

those days in which the forecast was p is equal to p in the long run.

The surprising result of Foster and Vohra (1998) is that calibration can

be guaranteed, no matter what the weather will be. There are various proofs

of this result, and there is a large literature on calibration and its uses; see

the survey of Olszewski (2015) and the more recent paper of Foster and Hart

(2021).

A simple proof of the existence of calibrated forecasts, based on the min-

imax theorem, was provided by the author in 1995.1 The basic argument
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for asking about the relation between the calibration error and the number of periods, and
Benjy Weiss for providing inequality (2).
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1At a lecture given by Dean Foster at the Center for Rationality of the Hebrew Uni-
versity of Jerusalem; see Section 4, “An argument of Sergiu Hart,” in Foster and Vohra
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is as follows (see below for details). If the forecaster knew the strategy of

the “rainmaker” (which could well be a mixed, i.e., probabilistic, strategy),

then the forecaster could clearly get calibrated forecasts by announcing in

every period the corresponding known probability of rain. Incorporating this

into a finite game (by using a finite grid of forecasts and a finite horizon)

yields, by von Neumann’s (1928) minimax theorem for two-person zero-sum

finite games, the existence of a strategy of the forecaster that guarantees

calibration against any strategy of the rainmaker. This is a striking use of

the minimax theorem, since the fact that there is a calibrated reply to any

given strategy of the rainmaker is clear, whereas the consequence that there

is a single strategy that is calibrated against all strategies of the rainmaker

comes as a big surprise.2

More formally, consider a two-person finite game where player 1 has m

strategies, player 2 has n strategies, and uij is the payoff when player 1 plays

his i-th strategy and player 2 plays his j-th strategy.3 A mixed strategy x

of player 1 is a probability distribution over his pure strategies {1, ...,m},

i.e., x = (x1, ..., xm), where xi ≥ 0 for every i = 1, ...,m and
∑m

i=1
xi = 1;

similarly, a mixed strategy y of player 2 is a probability distributions over

his pure strategies {1, ..., n}, i.e., y = (y1, ..., yn), where yj ≥ 0 for every

j = 1, ..., n and
∑n

j=1
yj = 1. When the two players play the mixed strategies

x and y, respectively, the (expected) payoff is U(x, y) :=
∑m

i=1

∑n
j=1

xiyjuij.

We now state the minimax theorem, formulated in a useful but perhaps

less standard way.

Theorem 1 (Minimax) Assume that the real number v satisfies the fol-

lowing:

(i) for every mixed strategy y of player 2 there is a mixed strategy

x ≡ x(y) of player 1 such that the payoff is at least v (i.e., U(x(y), y) ≥ v).

Then

2Indeed, Foster and Vohra had a hard time getting their paper published: they got
many desk rejections saying that the result “cannot be true” (the technical report came
out in 1991, and the published paper only seven years later).

3It does not matter who gets this “payoff” (it could be, say, player 1’s payoff); also,
the game need not be a zero-sum game, as only one payoff function is considered.
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(ii) there is a mixed strategy x∗ of player 1 that guarantees that the payoff

is at least v (i.e., U(x∗, y) ≥ v for every mixed strategy y of player 2).

Indeed, the premise (i) says that maxx U(x, y) ≥ v for every y, i.e.,

miny maxx U(x, y) ≥ v; since maxx miny U(x, y) = miny maxx U(x, y) by von

Neumann’s (1928) minimax theorem, we get maxx miny U(x, y) ≥ v, and so,

taking x∗ to be a maximizer there, miny U(x∗, y) ≥ v, which is the conclusion

(ii).4

Stated this way, the minimax theorem may look surprising, since from a

premise of “for every y there is an x” it gets a conclusion of “there is an x such

that for every y,” a false logical argument in general (while “every child has

a mother” is true, “there is a mother of all children” is not). Nevertheless,

the result is correct (and far from trivial) under the assumptions that, first,

there are finitely many pure strategies, and second, one uses mixed strategies

(the result is easily seen to be false if either one of these assumptions fails5).

In the above calibration setup, the premise (i) is that for every strategy of

the rainmaker there is a strategy of the forecaster that yields a small calibra-

tion score,6 and the conclusion (ii) is that there is a strategy of the forecaster

that yields a small calibration score for every strategy of the rainmaker (ap-

ply the minimax theorem, taking as payoff the negative of the calibration

score). Let us show how to get a calibration score of, say, 10%. To see that

the premise (i) holds, assume that the strategy of the rainmaker is given. We

will round each forecast to a multiple of 10% (the finite grid of forecasts is

thus 0%, 10%, ..., 100%); therefore, the forecast of, say, 70%, is announced

when the probability of rain is between 65% and 75%. Assume that this has

occurred on a large number of days so that by the law of large numbers (i.e.,

Chebyshev’s inequality) the expected error between expectation and realiza-

tion of at most 5%; the relative frequency of rain out of these days will then

4Since (ii) trivially implies (i), the two conditions (i) and (ii) are in fact equivalent.
Also, the premise (i) is easily seen to be equivalent to “for every mixed strategy y of player
2 there is a pure strategy i ≡ i(y) of player 1 such that U(i(y), y) ≥ v.”

5Consider the “choose the higher integer” infinite game, and the “matching pennies”
game with pure strategies only.

6The “calibration score” will be formally defined below, as the average distance between
forecasts and relative frequencies (and so being calibrated means that the calibration score
is equal to zero).
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be between 65% − 5% = 60% and 75% + 5% = 80%—i.e., with a calibra-

tion error of at most 10%. Since the same holds for every forecast (that is

used nonnegligibly often), taking an appropriately large horizon proves the

premise (i)—and thus the conclusion (ii).

We now provide a formal write-up of this proof, which moreover shows

that an expected calibration error of size ε is guaranteed after 1/ε3 periods.

For each period (day) t = 1, 2, ..., let at ∈ {0, 1} be the weather, with 1 for

rain and 0 for no rain, and let ct ∈ [0, 1] be the forecast. For convenience, we

will let our forecasts lie in the grid D := {1/(2N), 3/(2N), ..., (2N−1)/(2N)}

for some positive integer N ; thus, each point in [0, 1] is within a distance of

at most 1/(2N) from a point in D (see Remark (e) below for the standard

1/N -grid).

The calibration score KT at time T is computed as follows. For each

d ∈ D let7

n(d) ≡ nT (d) :=
T∑

t=1

1ct=d

be the number of periods in which the forecast was d, and let

a(d) ≡ aT (d) :=
1

n(d)

T∑

t=1

1ct=d at

be the (relative) frequency of rain in those n(d) periods; the calibration

score KT is then the average distance between forecasts and rain frequencies,

namely,8

KT :=
∑

d∈D

(
n(d)

T

)
|a(d) − d| .

This setup can be viewed as a finite T -period game in which in every

period t = 1, ..., T the rainmaker chooses the weather at ∈ {0, 1} and the

7We write 1X for the indicator of the event X; thus, 1ct=d equals 1 if ct = d and 0
otherwise.

8An alternative score averages the squared errors: KT :=
∑

d∈D
(n(d)/T )(a(d) − d)2.

The two scores are essentially equivalent, because (KT )2 ≤ KT ≤ KT (the first inequality
is by Jensen’s inequality, and the second is by |a(d) − d| ≤ 1, since a(d) and d are both in
[0, 1]).
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forecaster chooses the forecast ct ∈ D, and the payoff is the calibration score

KT . Both players are assumed to have perfect recall of past weather and

forecasts (thus allowing for an “adversarial” rainmaker); since the number of

periods T and the sets of choices of the players, {0, 1} and D, are all finite,

the game is a finite game (i.e., each player has finitely many pure strategies).

Theorem 2 (Calibration) Let T ≥ N3. Then there exists a mixed strat-

egy of the forecaster that guarantees that9 E [KT ] ≤ 1/N against any mixed

strategy of the rainmaker.

This follows from the proposition below by applying the minimax theorem

to the payoff function −KT .

Proposition 3 Let T ≥ N3. Then for every mixed strategy of the rainmaker

there is a strategy of the forecaster such that E [KT ] ≤ 1/N .

Proof. Let τ be a mixed strategy of the rainmaker. For every t ≥ 1 and

history ht−1 = (a1, c1, ..., at−1, ct−1) ∈ ({0, 1} × D)t−1 of rain and forecasts

before time t, let pt := P [at = 1|ht−1] = E [at|ht−1] be the probability of rain

induced by the rainmaker’s strategy τ . We then let the forecast ct after the

history ht−1 be the rounding of pt to the grid D, with a fixed tie-breaking

rule when pt is the midpoint of two consecutive points in D; this makes ct

a deterministic function of the history—i.e., ct is ht−1-measurable—and we

always have |ct − pt| ≤ 1/(2N).

The calibration score KT can be expressed as

KT =
1

T

∑

d∈D

|G(d)| ,

where10

G(d) := n(d)(a(d) − d) =
T∑

t=1

1ct=d(at − d) =
T∑

t=1

1ct=d(at − ct)

9The expectation is over the random choices of the two players.
10G(d) is the difference between the actual number of rainy days, n(d)a(d), and the

predicted number of rainy days, n(d)d, in the n(d) days in which the forecast was d; it is
referred to as the (total) “gap” in Foster and Hart (2021).
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for every d ∈ D. Replacing each ct with pt yields the scores

G̃(d) :=
T∑

t=1

1ct=d(at − pt) and

K̃T :=
1

T

∑

d∈D

∣∣∣G̃(d)
∣∣∣ ;

since |ct − pt| ≤ 1/(2N) it follows that |G(d) − G̃(d)| ≤ n(d)/(2N) and

∣∣∣KT − K̃T

∣∣∣ ≤
1

T

∑

d∈D

n(d)

2N
=

1

2N
(1)

(because
∑

d n(d) = T ).

We claim that11

E

[
G̃(d)2

]
≤

1

4
E [n(d)] (2)

for each d ∈ D. Indeed, G̃(d) =
∑T

t=1
1ct=dZt where Zt := at − pt, for which

we have E [Zt|ht−1] = 0 (because pt = E [at|ht−1]) and E [Z2

t |ht−1] ≤ 1/4

(because this is the variance of a Bernoulli random variable, namely, at|ht−1).

Then, for s < t we get

E [(1cs=d Zs) · (1ct=d Zt)] = E [E [(1cs=d Zs) · (1ct=d Zt)|ht−1]]

= E [1cs=d Zs1ct=d E [Zt|ht−1]] = 0

(because the random variables cs, Zs, and ct are ht−1-measurable), and for

s = t we get

E
[
(1ct=d Zt)

2
]

= E
[
E

[
(1ct=d Zt)

2 |ht−1

]]

= E
[
1ct=d E

[
Z2

t |ht−1

]]
≤

1

4
E [1ct=d] ;

summing all these terms yields E

[
G̃(d)2

]
≤ (1/4)

∑T
t=1

E [1ct=d] = (1/4)E [n(d)],

which is (2).

11If one does not care about the bound N3 on T one may use at this point various simpler
Chebyshev or law-of-large-numbers inequalities (see also Remarks (c) and (d) below).
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Therefore,

E

[
K̃T

]
=

1

T

∑

d∈D

E

[∣∣∣G̃(d)
∣∣∣
]
≤

1

T

1

2

∑

d∈D

(E [n(d)])1/2

≤
1

T

1

2

(
N

∑

d∈D

E [n(d)]

)1/2

=
1

2

(
N

T

)1/2

, (3)

where we have used E

[∣∣∣G̃(d)
∣∣∣
]
≤

(
E

[
G̃(d)2

])1/2

and (2) for the first in-

equality, the Cauchy–Schwartz inequality for the second one, and finally
∑

d E [n(d)] = T . When T ≥ N3 this gives E

[
K̃T

]
≤ 1/(2N), and hence

E [KT ] ≤ 1/(2N) + 1/(2N) = 1/N by (1).

Remarks. (a) Since the game between the rainmaker and the forecaster is

a game of perfect recall, by Kuhn’s (1953) theorem one can replace mixed

strategies with their equivalent behavior strategies. A behavior strategy of

the forecaster, which is referred to as a forecasting procedure, consists of a

separate randomization after each history; i.e., it is a mapping from the set

of histories to the set of probability distributions on D.

(b) N3 is the right order of magnitude for the horizon T that guarantees

a calibration error of 1/N when the forecaster rounds the rain probabilities

pt to the grid D, because if the rainmaker chooses pt to be uniform on [0, 1]

then each one of the N forecasts d in D is used about T/N times, and so in

order to get an error of 1/N one needs T/N to be of the order of N2.

(c) A tighter estimation in the proof of Proposition 3 uses E [Z2

t |ht−1] =

pt(1− pt), which is close to d(1− d), instead of E [Z2

t |ht−1] ≤ 1/4 (recall that

E [Z2

t |ht−1] is the variance of a Bernoulli(pt) random variable); this yields

E [KT ] ≤ 1/N for T starting approximately at (2/3)N3. More precisely: let

f(d) := d′(1− d′) where d′ = d+1/(2N) for d < 1/2, d′ = d for d = 1/2, and

d′ = d−1/(2N) for d > 1/2; then |pt−d| ≤ 1/(2N) implies pt(1−pt) ≤ f(d)

(because x(1−x) increases for x < 1/2 and decreases for x > 1/2), and then
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the coefficient 1/4 in inequality (2) may be replaced with f(d). This yields

E

[
K̃T

]
≤

1

T

∑

d∈D

(f(d)E [n(d)])1/2 ≤
1

T

(
∑

d∈D

f(d)

)1/2 (
∑

d∈D

E [n(d)]

)1/2

=
1

T 1/2

(
∑

d∈D

f(d)

)1/2

.

Now it is a straightforward computation to see that
∑

d∈D f(d) = N/6+1/4−

1/(6N), and so for all T ≥ (2/3)N3+N2−(2/3)N we have E

[
K̃T

]
≤ 1/(2N),

and thus E [KT ] ≤ 1/N .

(d) A looser but slightly simpler estimation in the proof of Proposition

3 that uses n(d) ≤ T for each d instead of
∑

d n(d) = T yields E

[
K̃T

]
≤

(1/T )(1/2)NT 1/2, and so E [KT ] ≤ 1/N for T ≥ N4.

(e) If instead of D we were to use the standard 1/N -grid

D′ = {0, 1/N, 2/N, ..., 1} we would need to replace N (the size of D) with

N + 1 (the size of D′) in (3), which would yield E [KT ] ≤ 1/N for T ≥

(N + 1)N2 = N3 + N2.

(f) A lower bound on the guaranteed calibration error as a function of

the number of periods T has recently been obtained by Qiao and Valiant

(2021); it is of the order of T−0.472 (improving on the trivial lower bound of

the order of T−1/2, which is obtained when the rain is an i.i.d. Bernoulli(1/2)

process; note that what we have shown here is an upper bound of T−1/3).

(g) The minimax approach can be further used to obtain calibrated fore-

casts that are “calibeating,” a concept introduced by Foster and Hart (2022):

they are guaranteed to beat the Brier score of any other forecast by that fore-

cast’s calibration score. See Appendix A.2 of the arxiv version of Foster and

Hart (2022).

(h) The minimax proof does not construct a calibrated procedure; it only

shows its existence. There are various specific such constructions in the

literature, the simplest being the one in Section V of Foster and Hart (2021).
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