The Dullness of Monotonic Mechanisms

Ran Ben Moshe Sergiu Hart Noam Nisan
The Hebrew University of Jerusalem

June 2022

Revenue-Maximizing Mechanisms for Selling Goods

- Distant Past (>40 years ago):
 - One good: simple (Myerson)
 - □ Buyer is willing to pay more ⇒ buyer pays more
- Past (>10 years ago):
 - Two or more goods: very complex "conceptual" complexity
 - Buyer is willing to pay more ⇒ buyer pays less! non-monotonicity (Hart-Reny)

Present setting

- Single (Bayesian revenue maximizing) seller
- Single additive (risk-neutral) buyer
- n (indivisible) items / goods
- Buyer's valuation for items is drawn from a possibly correlated distribution $(X_1...X_n)$.
- All mechanisms are IC, IR

Monotonicity

Definition: A mechanism is monotonic

if for every $x,y \in R_+^n$ with $x \le y$ (component-wise) we have that $s(x) \le s(y)$, where s() is the payment to the seller.

Not Monotonic Optimal for some distribution (Hart-Reny)

Monotonic vs Bundled revenues

Theorem: $MonRev(X_1...X_n) \le n \cdot BRev(X_1...X_n)$

Proof:
$$MonRev(X_1...X_n) \le MonRev(X^{max}...X^{max}) \le (=)$$
 $Rev(X^{max}...X^{max}) \le (=)$ $n \cdot Rev(X^{max}) \le n \cdot Rev(X^{max}) \le n \cdot Rev(X_1+...+X_n) = n \cdot BRev(X_1...X_n)$

Monotonic vs Bundled revenues

Theorem: $MonRev(X_1...X_n) \le n \cdot BRev(X_1...X_n)$

Corollary: For some distribution there is an infinite gap between MonRev and Rev (for every $n \ge 2$)

Corollary: For some distribution there is a gap of $\Omega(2^n/n^2)$ between *MonRev* and *DRev* (for every $n \ge 2$)

(use Hart-Nisan 2013)

Monotonic vs Separate revenues

Theorem: $MonRev(X_1...X_n) \le n \cdot SRev(X_1...X_n)$

Proof:
$$MonRev(X_1...X_n) \le MonRev(X^{max}...X^{max}) \le (=)$$
 $Rev(X^{max}...X^{max}) \le (=)$
 $n \cdot Rev(X^{max}) \le n \cdot SRev(X_1...X_n)$

Monotonic vs Simple revenues

 $MonRev(X_1...X_n) \le n \cdot \min\{SRev(X_1...X_n), BRev(X_1...X_n)\}$

Tightness

Theorem: $MonRev(X_1...X_n) \le n \cdot BRev(X_1...X_n)$

Tight: $SRev(X_1...X_n) \ge n \cdot BRev(X_1...X_n)$

for some iid X_i (Hart-Nisan 2012)

Theorem: $MonRev(X_1...X_n) \le n \cdot SRev(X_1...X_n)$

Best we know: $BRev(X_1...X_n) \ge \Omega(\log n) \cdot BRev(X_1...X_n)$

for some iid X_i (Hart-Nisan 2012)

Open problem

How large can the gap between *MonRev* and *SRev* be?

- at most n
- at least O(log n)

Not Monotonic

Not "Allocation-Monotonic"

Monotonicity

Definition: A mechanism is monotonic

if for every $x,y \in R_+^n$ with $x \le y$ (component-wise) we have that $s(x) \le s(y)$, where s() is the payment to the seller.

Definition: A mechanism is **allocation-monotonic** if for every $x,y \in R_+^n$ with $x \le y$ (component-wise) we have that $q(x) \le q(y)$, where $q_i()$ is the allocation probability of the ith good.

Monotonicity

Claim. Allocation-monotonicity ⇒ Monotonicity

Proof. If $q(y) \ge q(x)$ but s(y) < s(x) then (q(y), s(y)) is better than (q(x), s(x))

- Not Allocation-Monotonic
- Not Monotonic

- Allocation-Monotonic
- Monotonic

- Not Allocation-Monotonic
- Not Monotonic

- Allocation-Monotonic
- Monotonic

- Not Allocation-Monotonic
- Not Monotonic

- Not Allocation-Monotonic
- Monotonic

Hierarchy of Mechanisms

Allocation-Monotonocity: Deterministic

Theorem: A deterministic mechanism (with the right tiebreaking) is allocation-monotonic if and only if its pricing function p() is submodular.

Pricing function: p(S) – the price you need to pay to get the subset S of items.

Corollary: $AMonDRev(X_1...X_n) \le O(log n) \cdot SRev(X_1...X_n)$

Proof: Chawla, Teng & Tzamos show this bound for "sybil-proof" mechanisms, a class that contains those with submodular pricing functions.

Alloc-Monotonicity > submodularity

1-dimensional quadratic mechanism with parameter $\alpha>0$:

$$q(x)=\alpha \cdot x$$

$$s(x) = \alpha \cdot x^2/2$$

$$s(x) = \alpha \cdot x^2/2$$
 $p(q) = \alpha^{-1} \cdot q^2/2$

General quadratic mechanism (with A positive definite matrix):

$$q(x)=Ax$$

$$s(x) = x^t A x/2$$

$$s(x) = x^t A x/2$$
 $p(q) = q^t A^{-1} q/2$

- Allocation-monotonicity \Leftrightarrow all off-diagonal entries of A are ≥ 0
- Submodular pricing \Leftrightarrow all off-diagonal entries of A^{-1} are ≤ 0

$$A = \begin{bmatrix} 6 & 3 & 1 \\ 3 & 6 & 3 \\ 1 & 3 & 6 \end{bmatrix}$$

$$A = \begin{pmatrix} 6 & 3 & 1 \\ 3 & 6 & 3 \\ 1 & 3 & 6 \end{pmatrix}$$

$$A^{-1} = ---- \begin{pmatrix} 27 & -15 & \mathbf{3} \\ -15 & 35 & -15 \\ \mathbf{3} & -15 & 27 \end{pmatrix}$$

Allocation-Monotonicity: General

Theorem:

$$AMonRev(X_1...X_n) \leq O(log n) \cdot SRev(X_1...X_n)$$

Proof: Allocation-monotonicity

- ⇔ buyer payoff function *b()* is supermodular
- ⇒ pricing function is separately subadditive:

$$p(q) \leq \sum_{i} p(q_i)$$

which suffices for the Chawla, Teng & Tzamos approximation bound.

Hierarchy of Mechanisms

The symmetric deterministic case

Theorem:

$$SuperModSymDRev(X_1...X_n) \leq log(n) \cdot SRev(X_1...X_n)$$

$$SymDRev(X_1...X_n) \leq O(log^2n) \cdot SRev(X_1...X_n)$$

(symmetric deterministic mechanisms are monotonic: Hart-Reny)

Future: Still-open problem

How large can the gap between *MonRev* and *SRev* be?

- at most n
- at least O(log n)

Thank You, Noam!