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Value, introduced by Lloyd Shapley in 1953, is a central concept in game
theory and its applications. The value of a game to a player is best viewed as an
a priori evaluation of his expected payoffs (in a similar way that the "utility" of
a "gamble" or "lottery" is a measure ofthe.prospective outcomes). The Shapley
value and its generalizations have been extensively studied, and continue to be
the focus of much research, both theoretically (leading to interesting and deep
mathematical problems), as well as in applications (in economics, political sci-
ences, etc.).

This paper surveys recent advances in the studyof the various value concepts.
It covers mainly the last decade; the survey of Aumann (1978) is an excellent
reference up to that date. We will deal here mostly with theory, the applications
of value (which are becoming more and more abundant) being the subject of
woilicrw~q.

,

It should be immediately pointed out that this is in no way a comprehensive
survey (the allotted time will hardly suffice just to write down the references of
pape~s dealing with value!). It is rather a collection of some results which seem
mostsignificant, either in opening up new paths, or in closing up (difficult) gaps
left from previous research. Moreover, the presentation will be as informal as
possible, the aim being only to focus on the main ideas; for precise and detailed
formulations one should of course refer to the original papers.

A two-way standard classification will be used: on one hand, finite versus
large games (the former referring to general games with finitely many players,
and the latter to asymptotic results-when the number of players increases-and
to games with infinitely many players); and on the other hand, transferable utility
(TU) versus nontransferable utility (NTU) games (also known as "with/without
side payments").

1. FINITE GAMES WITH TRANSFERABLE UTILITY

The main solution concept here, from which the whole theory has de~eloped,
is the Shapley value, (Shapley, 1953). It may be surprising that after so many
years there are still new and interesting things to say about the Shapley value,
even in finite.TV games! '

"
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First, the standard notations I: A game (N, v) consists of a finite set N of
"players" together with a "characteristic function" v: 2N~ K! that associates to
every "coalition" 5 CN its "worth" v(5); it is assumed that v (0) = O. A
solution function ~ assigns to each game (N, v) a "payoff vector" cp (N, v) -
«jJi(N, V))iElvERN.

1.1 MARGINAL CONTRIBUTIONS

As it is well known, the standard axioms determining the Shapley value are:
Efficiency (which means that the values add up to v(N), the worth of the grand
coalition); symmetry or equal treatment (which means that identical players have
equal values); additivity (the value of the sum of two games is the sum of the
values of the two games2); and finally, null player (the value of a player who
never contributes anything is zero).

In a recent paper, Young (1985) has shown that one may replace the last two
axioms-:-"additivity" and "null player"-with the following requirement: The
value of a player depends only on his marginal contributions; i.e., given two
games (N, v) and (N, w) ~with the same set of players) and a player i E N,
if v(5) - v(5 \ i) = w(5) - w(5 \ i) for all coalitions 5, then cpi(N, v) =
<jJi(N,W).3We will refer to this as the "marginal contributions" axiom.

Young's result is: A solution function satisfies "efficiency", "symmetry" and
"marginal contributions", if and only if it is the Shapley value.4

It is easy to derive the "null player" axiom: the marginal contributions of a
null player are the same as in the "null game" w (defined by w(5) = 0 for all
5); "efficiency" and '~symmetry" imply that the value of w is zero for all play-
ers. The surprising fact is that the "additivity" axiom is also implied by these
other three axioms. 5 The proof (by induction on the number of players) makes
use of "symmetry" in an essential way; it seems therefore interesting to drop
"symmetry" and characterize other solutions that satisfy the "marginal contri-
butions" axiom (e.g., the "weighted Shapley values").

1.2 POTENTIAL

Paying players according to their margimil contributions is a principle of long
standing, in particular in economics. If it is applied in a straightforward manner

]
1< denotes the real line, 0 is the empty set, and all set inclusions C are weak.

20ne may use "average" instead of "sum": if one of two equally probable games will be played,

then the :'total" (a priori) value is the average of the values of the two games.
3 \ denotes set subtraction; we will write S\i instead of the correct but more cumbersome S\{i}.
4Young (1985) actually uses a stronger axiom, which clearly implies the. "marginal contributions"

axiom: given two games (N, v) and (N, w) and a player i E N, if v(S) - v(S \ i) :2::w(S) - w(S\ i)

for all S, then cf>i(N,v) :2::cf>i(N,w).
5Note that a linear operator that satisfies "marginal contributions" and "null player" must be a

linear combination of the marginal contributions, since it vanishes whenever they all vanish (this
remark is due to Dov Monderer); however, here the value is not assumed to be linear (which implies
"additivity").

.
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it leads, however, to infeasible or inefficient allocations (since, in general,
LiEN [v(N) - v(N\ i)] differs from v(N)).

The following approach has therefore been suggested by Hart and Mas-Colell
(1989): Associate to each game (N, v) just one real number peN, v), called the
potential of the game, and compute marginal contributions according to these
numbers. It is now required that these marginal contributions satisfy "effi-
ciency," that is 6

L [peN, v) - P(N\ i,~)J = v(N).
iEN

The main result is that there exists a unique 7 real function on games-the
potential function-such that its marginal contributions are always efficient
(i.e., the equation above is satisfied); moreover, the resulting payoff vector is
precisely the Shapley value.

It is remarkable that just one requirement, namely the equation, suffices. Fur-
thermore, it turns out that, for any given game, one needs to apply this equation
only to this one game and its subgames in order to determine the potential-and
thus, a fortiori, the Shapley value-uniquely (this is in contrast to the usual
axiomatizations, where large classes of games have to be considered together).

The potential function approach has led to a number of new results. In particu-
lar, a formulation of "internal consistency" for the Shapley value has been ob-
tained, which parallels similar developments for other solution concepts (core,
kernel, nucleolus, bargaining solutions, etc.). Finally, it should be pointed out
that the potential approach can be extended, for instance, to "weighted values"
and to NTU games.

2. FINITE GAMES WITH NONTRANSFERABLE UTILITY

A value for NTU games usually satisfies the following requirements (these are
minimal desiderata): For TV games, itcoincides with the Shapley value; for two-
person games, it coincides with the Nash bargaining solution; and, finally, it is
"NTU invariant" (also referred to as "scale covariant"; it means that resealing
the payoffs, independently among the players, leads to the same resealing of the
values). The two most studied NTU values are due to Harsanyi (1963) and Shap-
ley (1969).

2.1 A DEBATE

The papers of Roth (1980) and Shafer (1980) have exhibited some examples
where the NTU values seem to behave somewhat unintuitively. The ensuing

6The (sub)game (N\ i, v) is the restriction of the game (N, v) to N\ i, and P(N\ i, v) is its
potential.

7 Up to an additive constant, which of course does not change the marginal contributions.
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debate (see Aumann, 1985b, 1986; Hart, 1985b; Roth, 1986) led to a renewed
interest in this subject.

I will not get into this controversy here (the "truth" -if there is such a
thing-lies, as usual, somewhere in between; see also the paragraph one before
last of Section 2.2). I will just point out that some of these papers deal with
fundamental issues and should be of interest to the large community of research-
ers in game theory and it$ applications (an extensive bibliography on the theory
and applications of the NTU value may be found in Aumann, 1985b).

2.2 AXIOMATIZATIONS

Partly, perhaps, as an outcome of the above debate, the NTU solutions have
been recently axiomatized (in the same way that the Shapley value and the Nash
bargaining solution have each been shown to be uniquely determined by appro-
priate sets of plausible axioms).

This approach has been pioneered by Aumann (1985a), who provided an ax-
iomatization for the Shapley NTU value (also known as the "A-transfer value").
Let cf>stand now for a set-valued function that associates to an NTU game
(N, V) a set of payoff vectors in ;:?N.Fix the set of players N, and consider the
following axioms (required for all games in an appropriate class of games f):

AXIOM 1. Nonemptiness (i. e., cf>(V) ¥- 0);

AXIOM 2. Efficiency (i.e., cf>(V) contains only Pareto-efficient vectors);

AXIOM3. Scale covariance (i. e., cf>(AV) = Acf>(V) foTall strictly positive
vectors A E ;:?N);

AXIOM4. Conditional additivity (i. e., cf>(V + W) contains all elements of .

4>(v) + <t>(W)that are Pareto-efficient for V + W);

AXIOM5. Independence of irrelevant alternatives (i.e., if V C W, then 1>(v)
contains all elements of 1>(w) that are feasible in V);

AXIOM6. Unanimity games (i.e.', if V corresponds to a TU unanimity game
v, then <t>(V)consists of a unique element: the Shapley value of v).

Aumann's result can now be stated:

THEOREM 1. 1>satisfies Axioms 1 to 6 on r if and only if 1>(v) is the set of
Shapley NTU values of the game Vfor every V E r.

Following this, Hart (l985a) has provided an axiomatization for the Harsanyi
NTU value:
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THEOREM2. qJsatisfies Axioms 1 to 6 on r if and only if ~(V) is the set of
Harsanyi NTU solutions of the game V for every V E r.

The two, theorems are indeed formally identical. There are two differences: A
minor one is that the set r of games changes. A major one is that, in Theorem
I, one deals with payoff vectors, and in Theorem 2, with payoff configurations.
A "payoff configuration" x is a list of payoff vectors for all coalitions; Le.,
x = (XS)SCN with Xs = (XDiES E J(!sfor all seN. Thus, ~(V) is a set of payoff
vectors (Le., elements of J(!N)in Theorem 1, and it is a set of payoff configura-
tions in Theorem 2 (the axioms have to be interpreted accordingly in each case).

On one hand, it is quite remarkable that essentially identical requirements
characterize the two NTU values. On the other hand, the main difference be-
tween the two axiomatizations suggests that the grand coalition N plays a more
prominent role in the Shapley NTU value than in the Harsanyi one, where inter-
mediate coalitions are taken into account no less "seriously." This further leads
to the conjecture that the Shapley NTU value may be better suited for large
games (see the discussion at the end of Section 5 in Hart, 1985a).

In a parallel development, Kalai and Samet (1985) have studied and axioma-
tized the class of egalitarian solutions. These solutions are not NTU invariant:
only when the players' payoffs are equally (rather than independently) resealed
they change accordingly. One may thus call these CU solutions (for "comparable
utilities") since they apply when, for instance, the ratios between the individual
utility scales are given.

3. LARGE GAMES WITH TRANSFERABLE UTILITY

It is now assumed that the number of players is infinite, and some (if not all)
are individually insignificant; such a game is called a large game. For example,
the generalization of a weighted majority game is a scalar measure game
v = foIL, where fL is a probability measure (the "fraction of the vote") and f is
a real function defined on the closed interval [0, 1]. Let N denote the support of
fL; a weighted majority game results if the set N is finite and f is the indicator
function of an interval [q, 1]; a large game corresponds to an infinite N.

There are two main approaches to the study of value in games with infinitely
many players: the asymptotic approach, where the given game is approximated
by sequences of finite games, and the value is defined as the limit of the corre-
sponding Shapley values, and the axiomatic approach, where the value is deter-
mined by a set of axioms, similar to those used for finite games.

3.1 THE ASYMPTOTIC ApPROACH

A game v ~ith infinitely many players has an asymptotic value if, for any
approximating sequence of finite games, the limit of thei!; Shapley values exists
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TABLE I

Asymptotic Value of Scalar Measure Games fo}.L

f

Support of }.L "Nice" General

Finitely many atoms and
a nonatornic continuum

General C

Artstein (1972)
Aumann and Shapley (1974);

Kannai (1966)
Fogelman and Quinzii (1980)

Berbee (1981)a
Neyman (1981)"

Countable
Nonatornic continuum

Neyman (1979)"

_d Neyman (1988)

aBerbee does not actually prove the existence of the asymptotic value in this case; however,

his paper solves the main difficulty here (see Neyman, 1986).
"Neyman (1981) actually predates Neyman (1979).
cThat is, countably many atoms and a nonatomic continuum.
dThe result of Fogelman and Quinzii (1980) may be extended to this case as well as by

appropriate approximations, which is not so in the general ("non-nice") case (this remark is

due to Abraham Neyman). (

. .

and is moreover independent of the particular sequence chosen. The study of the
asymptotic value of scalar measure games, in particular, has required very deep
mathematical advances (some of these problems were open for a long time),
mainly in probability theory (d. the work of Neyman and of Berbee). The final
result of Neyman (1988) (that includes all previous ones) is that the game

, v = fof.Lhas an asymptotic value for any function fin bv' (the space of functions
of bounded variation that vanish at 0 and are continuous at 0 and 1) and any
probability measure f.L.

Table I summarizes the development of these results. It is organized according
to the support of the measure f.L;moreover, the case where the function f is
"nice" (for instance, differentiable or absolutely continuous) is shown separately
(it corresponds to the spaces of games pNA, pFL, etc.).

3.2 THE AXIOMATIC APPROACH

We consider now nonatomic games, which are games with infinitely many
players that are individually insignificant. Aumann and Shapley (1974) define a
value ~ as an operator on a space Q of nonatomic games that satisfies a number
of axioms. The value existence problem consists of finding spaces Q, as large as
possible, on which a value exists. 8

A most important contribution to this problem has been made by Mertens
(1988). The space Q he has obtained contains, in particular, all scalar measure

8The restriction of a value on a subspace is a value on the subspace as well.
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games v = foIL where fL is a nonatomic probability measure and f E bv' (see
Section 3.1 above), all sums and products of such games, all games of the form
v = min{fLj, . . . , fLn}where the fL/ s are nonatomic probability measures and
n is an arbitrary integer (these include the so-called" n-glove markets"), and
others.

To explain the key insight that led to this result, one must first recall the well
known" diagonal formula," which says that the value of a player is the average
of his marginal contributions to coalitions that are perfect samples of the grand
coalition (these coalitions are referred to as "diagonal coalitions"). This for-
mula-which is just the "Law of Large Numbers" in this framework-works
well for "differentiable" games, where the marginal contribution is the corre-
sponding (directional) derivative.

What happens however when the game is not "differentiable" along the "di-
agonal"? The idea is then to average the marginal contributions as one moves in
a neighborhood of the diagonal (rather than on the diagonal itself). For this, an
appropriate probability measure P needs to be defined on coalitions (actually,
"ideal coalitions"). A first approach, using normal distributions (by the "Central
Limit Theorem") may however be shown to fail to generate a value.

Mertens observed that the "symmetry" axiom of the vah,le indicates that P
should be invariant under all automorphisms of the underlying space of players.
Therefore, if S is a "random coalition," chosen according to P, and fLo, fLI are
any two nonatomic probability measures, then fLoeS) and fLIeS) have the same
distribution.9 If, in addition, fLo and fLI are mutually singular, then fLoeS) and
fLIeS) are independent; moreover, fLa(S) = (1 - a)fLo(S) + alLIeS) are identi-
cally distributed for all 0 < a < 1 (since each fLa is a nonatomic probability
measure). But this is just strict stability of index '1, which characterizes the Cau-
chy distribution. Mertens shows that the probability P is well defined (by these
Cauchy "marginals"), and moreover unique, and that a value is generated (it
should be noted that carrying out this program required very intricate and com-
plex arguments).

3.3 MEASURE-BASED VALUES

The symmetry axiom requires the value to be independent of the "names of
the players"; i. e., to be covariant with all "permutations" of the players. When
the number of players is infinite, the space of players is endowed with a (T-field
(the "coalitions"), and the "permutations" become "automorphisms": one-to-
one mappings of the space onto itself that are measurable in both directions.

There are however many models where only an appropriate subgroup of auto-

9The space of players is assumed to be "standard," i.e. isomorphic to the unit interval [0, 1] with

the Borel cr-fieid. This implies (see Aumann and Shapley, 1974, Lemma 6.2) that for any two
nonatomic pl:CJbabilitymeasures there exists an automorphism that,maps one to the other.
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morphisms should be considered. For instance, when an underlying probability
measure j.Lis given (the "population measure" 10), the value is required to be
covariant only with j.L-preserving automorphisms. This axiom is called j.L-
symmetry, and an operator satisfying the standard value axioms, with "symme-
try" replaced by "j.L-symmetry," is a j.L-value. Since any value is also a j.L-value,
the problem now is usually one of uniqueness: Given a space of games Q, on
which a unique value 4Jexists, is 4Jalso the unique j.L-valuethere? 11

Even on the simplest such space, pNA(j.L), which is generated by the scalar
measure games of the form v = fov, where f is "nice" (i. e., differentiable or
absolutely continuous) and v is a probability measure (absolutely continuous
with respect to j.L12),the unique~ess of the j.L-value turns out to be a quite non-
trivial matter. 13 This result has been recently proved by Monderer (1986).

3.4 EQUIVALENCE TO THE CORE

The well known "Value Equivalence Principle" states that, in a perfectly
competitive economy, all value allocations are competitive (and, moreover, the
two sets coincide if there is sufficient differentiability); see Aumann (1978, Sec-
tion 6) for some discussion and references. In game theoretic terms, this means
that the values of large market games lie (approximately) in the core (since the
core is just the set of competitive allocations).

Recently, Wooders and Zame (1987a) have proved a new quite general result
of this type. They consider games satisfying only two conditions:

(1) superadditivity; and
(2) uniformly bounded individual marginal contributions (Le., there exists a

constant M such that v(S) - v(S\i) < M for all S and i).

Their result is essentially the following: 14 Given c > 0, if each player has enough
"substitutes," 15 then the value belongs to the (weak) c-core. 16

IOThe interpretation being that fJ-(S) is the fraction of the total population that is contained in the

coalition S.
II Two technical points: First, all the games in Q are absolutely continuous with respect to fJ-;and

second, an additional requirement 'is needed to rule out the always existent "degenerate ,a-value,"
which assigns to each game v an appropriate multiple of ,a.

12j,Lis a fixed nonatomic probability measur~.
13As a general rule, value uniqueness results are much harder than existence ones; there are indeed

relatively few spaces on which the value has been shown to be unique.
14For simplicity of exposition, the result is presented here in terms of games rather than" attri-

butes" and "pregames" as in the original paper.
15Le., players of the same typ'e; actually, "near substitutes" suffice.
16The "weak s-core" is the set of all efficient payoff vectors x satisfying

-J

:LiES Xi ?: v(S) - sjSj,

for all coalitions S, where Isl denotes the number of elements of S.
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It may seem surprising at first glance that such a result would hold without
assuming the essential property of market games, namely, "positive homoge~
neity of degree 1" (which means, for instance, that veT) = kv(S) whenever Tis
a "k-replica" of S, i.e., IT! = kisl and for each player i in S there are exactly k
players identical to i in T). However, the two basic assumptions (1) and (2) above
do imply a sort of homogeneity in the limit (note th'at the proof of Wooders and
Zame goes along different lines). Indeed, for a simple example, let f be a non-
negative function defined on the positive integers that satisfies, for all n, rn:

(1) fen) + fern) < fen + rn);and
(2) there exists M such thatf(n + 1) - fen) < M.

Then it can be easily shown thatf(n)/n converges to a finite limit. Clearly, this
argument (that corresponds to the case where there is only one type of player) is
readily generalized to functions of several variables.

4. LARGE GAMES WITH NONTRANSFERABLE UTILITY

There has been little research done here. A possible reason may be that the
difficult problems in the TU case need to be settled first (the NTU values being
usually defined via some auxiliary TU games). Also, most of the results for large
NTU games are usually in applications, especially in economics (e.g., the
"Value Equivalence" theorems, etc.).

Two exceptions should be noted: First, the work of Wooders and Zame
(1987b), whi~h extends their results in the TU case (see Section 3.4 above) to
the NTU case, using the Shapley NTU value.

Second, an approach to the "Value Equivalence Principle" for the Harsanyi
NTU value, due to Imai (1983) (there is however a drawback, since the "diago-
nal principle" is assumed rather than proved; without this, the problem appears
to be quite difficult).
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