DRINFELED’S p-ADIC SYMMETRIC DOMAINS AND UNIFORMIZATION: EXERCISES.

1. A filtration on $\Omega^1 \otimes M_n$ by vector sub-bundles (after Schneider and Stuhler)

Let $M = M_n$ be the representation of $G = SL_2(K)$ on homogenous polynomials of degree n in the variables u and v given by

$$ (\gamma P)(u,v) = P(au + bv, cu + dv) $$

if $\gamma^{-1} = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$. Let \mathcal{O} be the structure sheaf of the rigid analytic space X, and $\Omega = \Omega^1$ the sheaf of rigid 1-forms. Consider the following filtration on $\mathcal{O}(M) = \mathcal{O} \otimes_K M$:

$$ \mathcal{O}(M) = F^0 \supset F^1 \supset \cdots \supset F^n \supset \{0\} = F^{n+1} $$

where

$$ F^k = \text{Span}_\mathcal{O} \{(u-zv)^k u^{n-k-l} v^l; 0 \leq l \leq n-k\}. $$

Show:

1. The filtration is G-stable.
2. $F^k = \mathcal{O}(u-zv)^k v^{n-k} \oplus F^{k+1}$ (as \mathcal{O}-modules, but not as G-modules).
3. $\mathcal{O}(M)$ is free over \mathcal{O} with basis $(u-zv)^k v^{n-k}$ (0 $\leq k \leq n$).
4. For any $m \in \mathbb{Z}$ let $\mathcal{O}(m)$ be the sheaf \mathcal{O} with the *twisted* G-action $\gamma \cdot f = (cz+d)^m (f \circ \gamma^{-1})$, where (c, d) is the bottom row of γ^{-1}. Then $f \mapsto f(z)(u-zv)^k v^{n-k}$ mod F^{k+1} is an isomorphism

$$ \Theta_k : \mathcal{O}(n-2k) \simeq F^k / F^{k+1}. $$

5. Similarly $F^k \Omega = \Omega \otimes_F F^k$ is a G-stable filtration on $\Omega(M)$ and

$$ f \mapsto f(z)(u-zv)^k v^{n-k} dz \mod \Omega \otimes F^{k+1} $$

is an isomorphism

$$ \Theta'_k : \mathcal{O}(n-2k-2) \simeq \Omega \otimes F^k / \Omega \otimes F^{k+1}. $$

6. For $1 \leq k \leq n$, the G-homomorphism $d : \mathcal{O}(M) \to \Omega(M)$ maps F^k to $\Omega \otimes F^{k-1}$ (*Griffiths transversality*) and induces a commutative diagram

$$
\begin{array}{ccc}
\mathcal{O}(n-2k) & \xrightarrow{(-k)} & \mathcal{O}(n-2k) \\
\downarrow \Theta_k & & \downarrow \Theta'_{k-1} \\
F^k / F^{k+1} & \xrightarrow{d} & \Omega \otimes F^{k-1} / \Omega \otimes F^k
\end{array}
$$

7. There is a decomposition as a direct sum of abelian groups with G-action

$$ \Omega(M) = d(F^1) \oplus (\Omega \otimes F^n). $$
(8) Let \(n \geq 0 \). There is a commutative diagram of additive (but not \(\mathcal{O} \)-linear) \(G \)-homomorphisms

\[
\begin{array}{ccl}
\mathcal{O}(n) & \overset{\hat{\psi}((\psi_1)^{n+1})}{\rightarrow} & \mathcal{O}(-n - 2) \\
\downarrow \Theta_0 & & \downarrow \Theta'_0 \\
\mathcal{O}(M)/F^1 & \overset{pr_2^\text{ord}}{\rightarrow} & \Omega \otimes F^n
\end{array}
\]

where \(pr_2 \) is the projection on the second factor in the decomposition (7).

Note that the fact that the top arrow is a \(G \)-homomorphism is not easy to establish via a direct computation, since differentiation does not commute with the action of \(G \). It is rather a consequence of the fact that the other three arrows commute with \(G \). Deduce:

Corollary 1.1. For \(n \geq 0 \), let \(P(n) \) be the space of polynomials of degree at most \(n \), with \(G \)-action induced from (4). Then there is an exact sequence of \(G \)-representations

\[
0 \rightarrow P(n) \rightarrow \mathcal{O}(\mathfrak{X})(n) \overset{\hat{\psi}((\psi_1)^{n+1})}{\rightarrow} \mathcal{O}(\mathfrak{X})(-n - 2) \rightarrow H^1_{dR}(\mathfrak{X}; M_n) \rightarrow 0.
\]

2. **Automorphisms of the Drinfeld \(p \)-adic upper half plane**

Let \(\hat{\mathfrak{X}} \) be the formal scheme underlying the Drinfeld upper half plane, and \(\mathcal{K} \) the completion of the maximal unramified extension of \(\mathbb{Q}_p \). Show that any automorphism of \(\hat{\mathfrak{X}} \otimes \mathcal{O}_\mathcal{K} \) over \(Spf \mathcal{O}_\mathcal{K} \) which commutes with the action of \(SL_2(\mathbb{Q}_p) \) is the identity.

Hints: (i) Such an automorphism \(\varphi \) must induce the identity on the Bruhat-Tits tree \(T \), hence preserves the irreducible components of the special fiber.

(ii) Show that \(\varphi \) is the identity on the special fiber.

(iii) Using induction on \(n \), show that \(\varphi \) is the identity on \(\hat{\mathfrak{X}} \otimes \mathcal{O}_\mathcal{K}/p^n\mathcal{O}_\mathcal{K} \).

3. **Semilinear Algebra (for the case of Drinfeld’s upper half plane)**

Notation: \(D \) is the unique quaternion algebra over \(\mathbb{Q}_p \), \(\hat{K} \) the quadratic unramified extension of \(\mathbb{Q}_p \) embedded in \(D \), \(\Pi \in D \), \(\Pi^2 = p \), and \(\mathcal{K} \) the completion of the maximal unramified extension to \(\mathbb{Q}_p \). Let \(\sigma \) be the arithmetic Frobenius automorphism of \(\mathcal{K} \). \(\mathcal{O}_D \) is the maximal order of \(D \). Thus

\[
\mathcal{O}_D = \mathcal{O}_\hat{K} \otimes \mathcal{O}_\mathcal{K} \Pi, \quad \Pi a = \sigma(a) \Pi \quad (a \in \hat{K}).
\]

Let \(N = D \otimes \mathcal{K} = N_0 \oplus N_1 \), where \(N_i = \{ x \in D \otimes \mathcal{K} | (a \otimes 1)x = (1 \otimes \sigma^i(a))x \} \).

(i) \(\mathcal{O}_N = \mathcal{O}_D \otimes \mathcal{O}_\mathcal{K} \) decomposes as \((\mathcal{O}_N \cap N_0) \oplus (\mathcal{O}_N \cap N_1) \). If \(\mathcal{O}_\hat{K} \otimes \mathcal{O}_\mathcal{K} = \mathcal{O}_K^{(0)} \oplus \mathcal{O}_K^{(1)} \) then

\[
\mathcal{O}_N \cap N_i = \mathcal{O}_K^{(i)} \oplus \Pi \mathcal{O}_K^{(i+1)} \quad (\text{mod}2).
\]

(ii) Let the Verschiebung \(V \) be defined by

\[
V(\delta \otimes \lambda) = \delta \Pi \otimes \sigma^{-1}(\lambda) \quad (\delta \in D, \ \lambda \in \mathcal{K}).
\]

Show that both (left) multiplication by \(\Pi \) and \(V \) map \(\mathcal{O}_N \cap N_i \) to \(\mathcal{O}_N \cap N_{i+1} \) and have the same image \((i = 0 \text{ and } 1 \text{ are both critical})

(iii) If \(N' \subset N \) is a sub-\(\mathcal{K} \)-vector space stable under \(\hat{K} \subset D \) then \(N' = N_0' \oplus N_1' \) where \(N_i' = N' \cap N_i \). If furthermore \(N' \) is stable under \(D, \ N_1' = \Pi N_0' \).
(iv) Show that the K-linear endomorphisms of N that commute with both D and V are naturally isomorphic to
\[(N^\dagger)^{-1} \cong N^\dagger. \]

(v) Show that $N^\dagger \cong M_2(Q_p)$.

Remark: The pair of groups $(D^\times, GL_2(Q_p))$ is a special case of the set-up considered in Chapter 1 [Rapoport-Zink].

4. Supersingular elliptic curves and special formal \mathcal{O}_D-modules

Let H be the quaternion algebra over \mathbb{Q} ramified at ∞ and p. Let \mathcal{O}_H be some maximal order in H. Fix (E, ι) where E is a supersingular elliptic curve over \mathbb{F}_{p^2} and $\iota : \mathcal{O}_H \cong \text{End}(E)$. By Deuring, (E, ι) exists. Let E^σ be the Frobenius twist of E, $\iota^\sigma : \mathcal{O}_H \cong \text{End}(E^\sigma)$ and $\Pi : E \rightarrow E^\sigma$ the Frobenius morphism. Write Π also for the Frobenius morphism of E^σ to $E = E^{(\sigma^2)}$. Consider $A = E \times E^\sigma$. Find $\text{End}(A)$. Embed \mathcal{O}_K in $\mathcal{O}_H \otimes \mathbb{Z}_p$ and let $\mathcal{O}_D = \mathcal{O}_K[\Pi]$. Show that the formal group \hat{A} is a model for the special formal height 4 \mathcal{O}_D-module which was denoted in class X.

5. Isomorphism types of special formal height 4 \mathcal{O}_D-modules

(i) Using Drinfeld’s modular interpretation of $\hat{X} \otimes \mathcal{O}_K$ show that the isomorphism types of special formal height 4 \mathcal{O}_D-modules over $\bar{\mathbb{F}}_p$ are in bijection with two copies of $GL_2(F_p) \backslash \mathbb{P}^1(\bar{\mathbb{F}}_p)$ joined at the unique F_p-rational point.

(ii) Show that the unique F_p-rational point corresponds to X.

(iii) Characterize the two “components” in terms of critical indices for the Cartier module.

Note: This is only a characterization over $\bar{\mathbb{F}}_p$. The problem of classifying isomorphism types over an arbitrary base is not representable.

6. Drinfeld’s p-adic symmetric domain in dimension 2

This is a vaguely phrased exercise but a very good one. Try to understand the Bruhat-Tits building as well as you can for $GL_3 (d = 2)$. Mimic the construction of the formal scheme \hat{X} (warning: the irreducible components of the special fibers will not be \mathbb{P}^2’s this time, but rather their blow-ups at the $q^2 + q + 1$ rational points). Describe the pre-images under reduction $r^{-1}([\sigma])$ for open simplices σ of the building.

While the case $d = 1$ is too special, if you understand well the case $d = 2$, you are likely to understand the general case.