Symmetric Solutions of Some Production Economies

By SERGIU HART)

Abstract: A symmetric n-person game (n,k) (for positive integer k) is defined in its characteristic
function form by v(S) = [|§|/k], where | S| is the number of players in the coalition S and [x] denotes
the largest integer not greater than x, (i.c., any k players, but not less, can “produce” one unit). It is
proved that in any imputation in any symmetric von Neumann-Morgenstern solution of such a
game, a blocking coalition of p = n — k + 1 players who receive the largest payoffs is formed, and
their payoffs are always equal. Conditions for existence and uniqueness of such symmetric solutions
with the other &k — 1 payoffs equal too are proved; other cases are discussed thereafter.

1. Introduction

The purpose of this paper is the determination of symmetric von Neumann-
Morgenstern solutions to a family of symmetric n-person games.

Let n and k be positive integers with 2 < k < n, and let g be the unique integer
satisfying

gk <n<{g+ Dk. 1
Define an n-person game (n, k) by
(0, S| <k,

1, k<|S|<2k,

2, 2k<|S| <3k,

v(S) = : 2
j,  jk<|S| <+ Dk,

g, ak<]|S|,
where v(S) is the characteristic function of the game, and |S| denotes the number
of players in S.

The motivation for studying this kind of game comes from economics. Consider
an economy consisting of n persons, each of them initially owning one unit of
some raw material. This raw material may be used to construct a certain consumer
product, but it can only be produced in batches. For the production of one unit
of the consumer product, k units of the raw material are needed; but with less
than k units of the raw material, nothing can be produced.
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This kind of economy embodies in perhaps the most elemental form the prob-
lems of production in which the returns to scale are not constant or decreasing,
and more specifically, the problems of set-up costs. Such economies have defied
treatment by more conventional concepts of game theory and economics, such
as the core, the competitive equilibrium, and so on. Though, of course, the games
considered here are far from being the most general such production economies,
we feel that they embody some of their most typical features, and that the study
of these games may well lead to insights that will generalize to much larger classes
of production economies.

For g = 1, we get a class of games whose unique symmetric solutions were
found by Botr [1953]. Hence we are interested by the games (n,k) with ¢ > 2.

Letp = n — k + 1. Then a p-player coalition is a “minimal blocking coalition”
(i.e., the smallest one which is large enough to block its complement from getting
anything). The solution of Bott was based on such coalitions: all the players
divide into disjoint p-player coalitions; the remaining players get nothing, and
all the members of a particular blocking coalition receive the same amount. For
g > 2, there is only one?) blocking coalition, and it has, too, an essential role in
the symmetric solutions.

Without loss of generality, we will denote the players 1,2, ...,n, and let N =
{1,2,...,n} be the set of all pilayers. An imputation a is an n-dimensional vector
{ay,a,,...,a,) satisfying

(i) ;= 0 = v({i}) for all i(1 < i < n), and
n
(ii) 'Z1ai < g = v(N).
A set U of imputations is called symmetric if it contains all imputations arising
from permutations of the indices of any imputation in U. A symmetric set which
is a solution is a symmetric solution.

In Theorem 1 we prove that in any symmetric solution to a game (n, k) (with
g = 2), the largest p coordinates of any imputation are equal.

This motivates us to pay special attention to imputations with the p largest
coordinates equal and the other k — 1 coordinates also equal. Let V be the
symmetric set?) consisting of all such imputations whose largest coordinate is
> 1/k. In Theorem 2 we prove that Vis a symmetric solution to the game (n,k)
(with g = 2)ifand only if n = (g + 1)(k — 1).

Moreover, whenever n > (g + 1)k — 3, the set V is also the unique symmetric
solution — this is proved in Theorem 3.

To illustrate these theorems, consider the two conditions

()n=(+ k=1,
(iiyn= (g + Dk - 3.

2} i.e., the maximal number of disjoint blocking coalitions that can be formed is one.
3y From now on, when we refer to ¥ we will always mean this particular set.
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Note that (i) holds for g > k — 1 (since n = gk by (1)), and (i) implies (ii) always
(since g > 2); moreover (i) is equivalent to (ii) for g = 2. Thus, if we take a con-
stant k, for n > (k — 1)?, V is always a symmetric solution, and this is true also
for some smaller n. E.g., if k = 7, then V is a symmetric solution for the n that
are underlined, and is known to be unique for the n that are double underlined
in the following table:

14,15,16,17,18,19,20, (¢ =2)
21,22,23,24,25,26,27, (g = 3)
28,29,30,31,32,33,34, (¢=4)
35,36,37,38,39. 40,41, (¢ = 5)
42,43,44,45,46,41,48, (g = 6)
9,50,51,52, 3, 54, 55,

@="17

We will note that in the case (n,k) is a zero-sum game, i.e. whenn = (g + 1)k — 4,
it was already known that V' is a symmetric solution (see GELBAUM [1959],
Theorem 3.1); but its uniqueness is proved only here.

2. Preliminaries

An ordered imputation a is an imputation satisfying
ay =0y = - 2> a,.

Thus a symmetric set is characterized by its ordered imputations. We will redefine
the concept of domination for ordered imputations. Let a, b be ordered imputa-

tations. Then a > b (a dominates b via S over T) where S = {issiyosiy) CN
ST

and T = {j;,js,....Jm} C N, if
(i) a;, >b for 1 < r < m,and
(i) Z a; < v(8) (“efficiency”).

ieS

We write a > b (a dominates b) if there are S and T such that a > b.
S|IT
In all our proofs we need to decide whether or not at least one member of a

symmetric set U of imputations dominates a given imputation b. This is equivalent
to the problem of deciding whether some ordered imputation a in U dominates*)
the ordered imputation b’ that we get from b.

Hence we can deal only with ordered imputations. From now on, domination
will always be according to the above definition.

We will first prove a simple but useful lemma:

“) Domination between ordered imputations.
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Lemma:
Let a,b be ordered imputations, such that a > b via §|T.
Then there are coalitions S* and T* such that a > b via $*|T*, and |§*| =
|T*| = k.
Proof :
Let [S] = |T| = m, then jk <m < (j + 1)k (for some j > 1), hence
v(S) i _1
=Ll <l =
IS m TGk k
Let S = {i}.iz,-.ript a0d T = {j;,j2,....jmt (with the correspondence i, < J,
by a; > b;). Without loss of generality let i; > i, > -+ > i,, hence g;, < a;, <
f\: b S aim-
Let §* = {i;,i5,....053} and T* = {j{,j,,....Jx}. Then a; > b; for t <r <k,
and ¥ is effective for g since

Yoa £ — Za,w ,S;U(S) 1 = v(8*).

isS* M s

QED.

3, The Theorems and their Proofs
We are ready now to state exactly and prove our results.

Theorem 1:
Let U be a symmetric solution to the game (n, k) for g > 2. Let a be an ordered
imputation in U. Then
gizazz,..:g N
where p =n — k + 1.
Proof :

Suppose that a;, > a;,, , for some 1 <ip < p — 1. Let b be the ordered im-
putation given by

b;=a;+¢&, for i#i,, and by =a, —(n~ e,
where ¢ > 0 is small enough so that b, > b, ,,. Let S=T = {p,p + 1 ,n}.
Then b > a via $|T(|S]| = | T| = k, and § is effective for b since } b, < — Z b;
k ieS i=1

=4 < 1 = p(S)). Hence b ¢ U, and therefore there exists another ordered

imputation ¢ in U such that ¢ > b.

By the previous lemma, the domination is via k-player coalitions. For b we
can take without loss of generality the smallest k coordinates b,, b, 1, ..., by
As for ¢, let {iy.i5,..., i} be the dominating set:

¢, > b,y for r=12..k
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Butb,,,_; =a,,,_; +eforall r (1 <r < k)since i, < p, hence
G, > Gpyp—y for r=1,2,.. k.

Le., ¢ > avia {i;,is,....i}|{p,p + 1,....n}, which contradicts the fact that both
a and ¢ are members of the solution U.
Q.E.D.

The next theorem gives the necessary and sufficient condition for V to be a
solution.

Theorem 2:
The symmetric set V generated by all the ordered imputations a satisfying
Ay = 4y = - = 4y = Uy, (3)
Apiry = Ay = =0 = 4y = Uy, (4)
and
oy = 1/k (%)
is a symmetric solution to the game (n, k) (with g > 2), if and only if
n=(g+ Dk —1). (6)
Proof:

Unless we indicate otherwise, a symbol of the form (e, ...,%,0,,...,0,) Will
denote

(g sy 0y, 0g,yen. ,0p)
—_——— e —,
P k—1

i.e. the imputation whose first p coordinates are o, and whose last k — 1 co-
ordinates are o,.

First we will prove that whenever (6) is satisfied, V' is a symmetric solution to
the game.

Suppose a and b are ordered imputations in V, and a > b. From the lemma,
itfollowsthatthedominationisviak-playercoalitions.Leta = (o,...,0%,0%5,...,%;)
and b = (B;,...,B1,B2,..., B,). Then at least one of the dominated coordinates
is B, hence oy, > B;. Since pa; + (k — VYo, =g = pf, + (k — 1)B,, we must
have @, < f8,, hence all the dominating coordinates are «,. By effectiveness
ko, < 1orey <1/k,s0 B, < 1/k, which contradicts (5) for b. Therefore, the set
V is internally consistent.

To prove that the set V' is extradominative, we will use the fact that for any
a= (0ty,...,04,0,...,%;) in V, a coalition of k — 1 a,’s and one a, is efficient:

(k — 1o, +a, < 1. )

Forq < k — 1, this follows from (6): n > (g + 1)(k — Dhencep=n—-(k — 1) =
qg(k — 1) and

(k — Doy + oy = [gk ~ Doy + qoy]/g < [poy + (k- Day]/g = 1.
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Forg >k — 1 we get
gtk — Yoy +qo, =qlk— oy, +{g —k + Do, + (k — Dy
<(gk—k+ o, + k- Doy <pa; +k— o, =g

and so (7) is proved.
Now let b be any imputation not in V. We will show that it is dominated by
some imputation a in V. We have two cases:

Case I:
b, < 1/k. Define a; = 1/k and a, such that pa, + (k — 1)a, = g, then a =
(Oqyeen s 0y, 00, ..., 00,)€V dominates b via k o’s.

Case 2:
b, > 1/k. Since b ¢ V, (3) or (4) are not satisfied, hence

pb, + (k- 1)b, < Y b,=gq.

i=1

Let 0 <& =[q — (pb, + (k — 1)b,)]/n, and define oy = b, + e and «, = b, + &
Then a = (2,...,%;,8;,...,0,) is an ordered imputation in ¥, and a > b via
k — 1 ay’s (which dominate b,,b,.,,...,b,_;) and one &, (which dominates b,),
the effectiveness being ensured by (7). Hence V is a symmetric solution.

Now we prove the converse. It will follow from the fact that if (6) is not satisfied,
the set ¥V does not dominate all imputations outside V.

Let b be the ordered imputation defined by

1
blzbzzq..:bl’:k—‘1’
_ - __1 p
bp+1“bp+2—— —bnAI-k__z q—k—l ’ and

b,=0
{k > 2 otherwise (6) holds). But g — 2 f 1 > 0 (this is equivalent to the converse
of (6)),i.c. b,_, > b,, hence b¢ V.

Let a = (o, ...,0,0%,,...,0,) be an ordered imputation in ¥ such that a > b;

without loss of generality, let b,,b,,;,...,b, be the k dominated coordinates.

Then oy > b, = -—LT— hence (k — 1)a; > 1, which implies that there are at

& —
most k — 2 «,’s in the dominating coalition. Hence there are at least two a,’s,
which dominate b,,b,_,, therefore a, > b,_,. But this leads to a contradiction,
for

q = poy + (k= Yo, > pb, + (k — 1)b,_;

__ b k=1 _»p
k—1+k—2[q k»l]
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=+1_p>
CI e | Sy iy B

the last inequality again following from n < (g + 1)(k — 1). Hence b is not
dominated by any member of ¥, which proves that V cannot be a solution.
QED.

Now we come to the uniqueness theorem.

Theorem 3:
Let V be the symmetric set generated by all ordered imputations satisfying
B)—(5). If
nz(@g+ k-3 8)

then V is the unique symmetric solution to the game (n,k) (with g > 2).

Proof:
Let U be a symmetric solution to the game. By Theorem 1, if a is any ordered
imputation in U, then a; = a, = --- = a, = «,. Suppose a;, > g;,, forp + 1 <

ip £ n — 1. Define an ordered imputation b by
b;=a;+¢, for i¥i,, and
b;,

where ¢ > 0 is small enough so that b, > b; . ;.

Then b >a via S|T, where S =T={p ~ 1,p,....is — 1,ip + 1,...,n}. The
effectiveness of this coalition for b follows from :

b1+b2++bk
Z bysy + byn + o+ by

=qa;, — (n —~ 1)¢,

z b(q~2)k+1 + b(q—Z)k+2 + e+ b(q—l)k-l + bio
2by g +by by + b+ b,

I'he rows are disjoint (the last two because (g— Dk —1<n—k—-1=
n

p — 2 < p — 1); the sum of all g rows is at most ) b; = g, hence the last one is

< 1 i=1
Therefore, b¢ U, and there exists an ordered imputation ¢ in U such that
¢ >b. By Theorem 1,¢; =c¢, = --- =c,=y,. From (8), we get gk — 2 < p =

n — k + 1, hence
(k ~ Dy + cpuz < [qlk — D)yy + 2¢,4,)/a

< [(qk 9+ ¥ ci}/q <.

i=p+1

©)

Let i be the largest index in the dominating coalition. There are then two possibili-
ties:
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Case I:
i < p + 1. Then the dominating coordinates must be y,....,7,,¢;, and hence

y>b, = +e>a

71 > bp+1 = ap+1 te> ap+1
74 > by = a;,, — (n— 1)e

g>b,=a,+e>a,.

Instead of b, we can take b,_; = o, + ¢ (because of the inequality in the first
line), and we get ¢ > a (via the same coalition for ¢, and {p — 1,p,...,i; — 1,
iy + 1,...,n} for a), which is a contradiction because a,c e U.

Case 2:

i > p+ 2. Then in the dominating coalition, we can change the first k — 1
coordinates to y, (since ¢; < ¢, ,, it follows from (9) that it is still efficient), and
proceed as in Case 1.

In any case we got a contradiction, hence a,,; = a,., = = = a, = oy, ie.
any ordered imputation in U satisfies (3) and (4).

Let b be an ordered imputation in ¥, ie. satisfying (3), {(4) and (5). Then no
ordered imputation g satisfying (3) and (4) can dominate it (see the proof of the
internal consistency of ¥ in Theorem 2: if a > b, where a and b satisfy (3) and (4),
then «; > B, > 1/k because (5) is fulfilled by b; hence both a and b are in V and
this contradicts a > b). Hence no a in U dominates b, therefore be U, and V' C U.
But V is a solution, so every ae U\V is dominated by some be VC U, hence
U\V must be empty (otherwise a > b, where a,b e U).

Hence U = ¥, and V is the unique symmetric solution.

Q.E.D.

4. Discussion

Two problems are still open:

(i) what are the symmetric solutions, if any, to the game {(n,k) when (6) is not
satisfied, and

(ii) is ¥ the unique symmetric solution when (6) but not (8) arc satisfied.

The following two examples indicate that the answers are much more com-
plicated than the theorems proved here.

First,let n = 17 and k = 7 (hence V is not a solution). It can be easily checked
that the unique symmetric solution is the symmetric set generated by all the
ordered imputations

3 2
(0ty, ... 00,0, ...,0,,0), where —&— < a; <-—, and
— L N S 19 11

1 5
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h ~1- <-——---32
(0gsern sOlg50p,-..,8), where 5 < 300
1 6

Even more interesting is the second example: n = 23 and k = 10. Then all the
ordered imputations

(g5 ey, 0, ...,05,0,0), where N <—1—,
\ ) N 28 — 7
14 7
5 5 1 1
(49 sy 49 14 3 7—'—’0) 5 3nd
14 8
LN S
196’ T § 1477714 ’
14 9

generate a symmetric solution to the game. Note that in the last imputation,
the largest coordinate is less than 1/k.

- By a similar method to that used in the proof of Theorem 3, it can be proved
thatwhenevern = (g + 1)k — m(for4 < m < k), allthesmallestk — 1 coordinates
but the last m — 3 must be equal in any imputation in any symmetric solution.
Further results were also obtained regarding the uniqueness of V (and of other
solutions, as above), but they still do not cover all the cases. |

As to the economic meaning of the results, two facts are important.

First — the p-player coalition that is formed, whose members receive the largest
payoffs. This illustrates the “exploitation” process of the small and powerless
economic agents (here, k —~ 1 players who a priori can get nothing) by the powerful
ones, and indicates that some kind of cartel is formed.

Second — the strong competition between the p largest players, that implies
the equality of their payoffs (and this is true for any symmetric solution). It is
interesting that most of the players (p) receive the same payoff, which is different
from the case of the games of BoTT [1953]. This leads to the conclusion that the
competition is strong when there are at least two units, and this is similar to

other results in the theory of economic games (e.g, SHITOVITZ and SHAPLEY
[1961], etc.).
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