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Glossary

Bayesian game An interactive decision situation involv-
ing several decision makers (players) in which each
player has beliefs about (i. e. assigns probability distri-
bution to) the payoff relevant parameters and the be-
liefs of the other players.

State of nature Payoff relevant data of the game such as
payoff functions, value of a random variable, etc. It is
convenient to think of a state of nature as a full descrip-
tion of a ‘game-form’ (actions and payoff functions).

Type Also known as state of mind, is a full description
of player’s beliefs (about the state of nature), beliefs
about beliefs of the other players, beliefs about the be-
liefs about his beliefs, etc. ad infinitum.

State of the world A specification of the state of nature
(payoff relevant parameters) and the players’ types (be-
lief of all levels). That is, a state of the world is a state
of nature and a list of the states of mind of all players.

Common prior and consistent beliefs The beliefs of
players in a game with incomplete information are
said to be consistent if they are derived from the same
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probability distribution (the common prior) by condi-
tioning on each player’s private information. In other
words, if the beliefs are consistent, the only source of
differences in beliefs is difference in information.

Bayesian equilibrium A Nash equilibrium of a Bayesian
game: A list of behavior and beliefs such that each
player is doing his best to maximize his payoff, accord-
ing to his beliefs about the behavior of the other play-
ers.

Correlated equilibrium A Nash equilibrium in an exten-
sion of the game in which there is a chance move, and
each player has only partial information about its out-
come.

Definition of the Subject

Bayesian games (also known as Games with Incomplete In-
formation) are models of interactive decision situations in
which the decision makers (players) have only partial in-
formation about the data of the game and about the other
players. Clearly this is typically the situation we are fac-
ing and hence the importance of the subject: The basic
underlying assumption of classical game theory according
to which the data of the game is common knowledge (CK)
among the players, is too strong and often implausible in
real situations. The importance of Bayesian games is in
providing the tools and methodology to relax this implau-
sible assumption, to enable modeling of the overwhelming
majority of real-life situations in which players have only
partial information about the payoff relevant data. As a re-
sult of the interactive nature of the situation, this method-
ology turns out to be rather deep and sophisticated, both
conceptually and mathematically: Adopting the classical
Bayesian approach of statistics, we encounter the need to
deal with an infinite hierarchy of beliefs: what does each
player believe that the other player believes about what
he believes. . . is the actual payoff associated with a cer-
tain outcome? It is not surprising that this methodological
difficulty was a major obstacle in the development of the
theory, and this article is largely devoted to explaining and
resolving this methodological difficulty.

Introduction

A game is a mathematical model for an interactive deci-
sion situation involving several decision makers (players)
whose decisions affect each other. A basic, often implicit,
assumption is that the data of the game, which we call the
state of nature, are common knowledge (CK) among the
players. In particular the actions available to the players
and the payoff functions are CK. This is a rather strong
assumption that says that every player knows all actions

and payoff functions of all players, every player knows that
all other players know all actions and payoff functions, ev-
ery player knows that every player knows that every player
knows. . . etc. ad infinitum. Bayesian games (also known as
games with incomplete information), which is the subject
of this article, are models of interactive decision situations
in which each player has only partial information about
the payoff relevant parameters of the given situation.

Adopting the Bayesian approach, we assume that
a player who has only partial knowledge about the state of
nature has some beliefs, namely prior distribution, about
the parameters which he does not know or he is uncer-
tain about. However, unlike in a statistical problem which
involves a single decision maker, this is not enough in an
interactive situation: As the decisions of other players are
relevant, so are their beliefs, since they affect their deci-
sions. Thus a player must have beliefs about the beliefs of
other players. For the same reason, a player needs beliefs
about the beliefs of other players about his beliefs and so
on. This interactive reasoning about beliefs leads unavoid-
ably to infinite hierarchies of beliefs which looks rather in-
tractable. The natural emergence of hierarchies of beliefs
is illustrated in the following example:

Example 1 Two players, P1 and P2, play a 2 � 2 game
whose payoffs depend on an unknown state of nature
s 2 f1; 2g. Player P1’s actions are fT; Bg, player P2’s ac-
tions are fL; Rg and the payoffs are given in the following
matrices:

Assume that the belief (prior) of P1 about the event
fs D 1g is p and the belief of P2 about the same event is q.
The best action of P1 depends both on his prior and on the
action of P2, and similarly for the best action of P2. This is
given in the following tables:
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Now, since the optimal action of P1 depends not only on
his belief p but also on the, unknown to him, action of
P2, which depends on his belief q, player P1 must there-
fore have beliefs about q. These are his second-level beliefs,
namely beliefs about beliefs. But then, since this is relevant
and unknown to P2, he must have beliefs about that which
will be third-level beliefs of P2, and so on. The whole infi-
nite hierarchies of beliefs of the two players pop out nat-
urally in the analysis of this simple two-person game of
incomplete information.

The objective of this article is to model this kind of situa-
tion. Most of the effort will be devoted to the modeling of
the mutual beliefs structure and only then we add the un-
derlying game which, together with the beliefs structure,
defines a Bayesian game for which we define the notion of
Bayesian equilibrium.

Harsanyi’s Model: The Notion of Type

As suggested by our introductory example, the straight-
forward way to describe the mutual beliefs structure in
a situation of incomplete information is to specify explic-
itly the whole hierarchies of beliefs of the players, that is,
the beliefs of each player about the unknown parameters
of the game, each player’s beliefs about the other players’
beliefs about these parameters, each player’s beliefs about
the other players’ beliefs about his beliefs about the pa-
rameters, and so on ad infinitum. This may be called the
explicit approach and is in fact feasible and was explored
and developed at a later stage of the theory (see [18,5,6,7]).
We will come back to it when we discuss the universal be-
lief space. However, for obvious reasons, the explicit ap-
proach is mathematically rather cumbersome and hardly
manageable. Indeed this was a major obstacle to the devel-
opment of the theory of games with incomplete informa-
tion at its early stages. The breakthrough was provided by
John Harsanyi [11] in a seminal work that earned him the

Nobel Prize some thirty years later. While Harsanyi actu-
ally formulated the problem verbally, in an explicit way,
he suggested a solution that ‘avoided’ the difficulty of hav-
ing to deal with infinite hierarchies of beliefs, by provid-
ing a much more workable implicit, encapsulated model
which we present now.

The key notion in Harsanyi’s model is that of type.
Each player can be of several types where a type is to be
thought of as a full description of the player’s beliefs about
the state of nature (the data of the game), beliefs about the
beliefs of other players about the state of nature and about
his own beliefs, etc. One may think of a player’s type as
his state of mind; a specific configuration of his brain that
contains an answer to any question regarding beliefs about
the state of nature and about the types of the other play-
ers. Note that this implies self-reference (of a type to itself
through the types of other players) which is unavoidable
in an interactive decision situation. A Harsanyi game of
incomplete information consists of the following ingredi-
ents (to simplify notations, assume all sets to be finite):

� I – Player’s set.
� S – The set of states of nature.
� Ti – The type set of player i 2 I.

Let T D �i2ITi – denote the type set, that is, the set
type profiles.

� Y � S � T – a set of states of the world.
� p 2 
(Y) – probability distribution on Y , called the

common prior.

(For a set A, we denote the set of probability distributions
on A by
(A).)

Remark A state of the world ! thus consists of a state of
nature and a list of the types of the players. We denote it as

! D (s(!); t1(!); : : : ; tn(!)) :

We think of the state of nature as a full description of the
game which we call a game-form. So, if it is a game in
strategic form, we write the state of nature at state of the
world ! as:

s(!) D (I; (Ai(!))i2I ; (ui (�;!))i2I) :

The payoff functions ui depend only on the state of nature
and not on the types. That is, for all i 2 I:

s(!) D s(! 0)) ui (�;!) D ui (�;! 0) :

The game with incomplete information is played as fol-
lows:
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(1) A chance move chooses ! D (s(!); t1(!); : : : ; tn(!))
2 Y using the probability distribution p.

(2) Each player is told his chosen type ti (!) (but not the
chosen state of nature s(!) and not the other players’
types t�i (!) D (t j(!)) j¤i ).

(3) The players choose simultaneously an action: player i
chooses ai 2 Ai (!) and receives a payoff ui (a;!)
where a D (a1; : : : ; an) is the vector of chosen actions
and ! is the state of the world chosen by the chance
move.

Remark The set Ai (!) of actions available to player i in
state of the world ! must be known to him. Since his only
information is his type ti(!), we must impose that Ai (!)
is Ti-measurable, i. e.,

ti(!) D ti (! 0)) Ai (!) D Ai (! 0) :

Note that if s(!) was commonly known among the play-
ers, it would be a regular game in strategic form. We use
the term ‘game-form’ to indicate that the players have only
partial information about s(!). The players do not know
which s(!) is being played. In other words, in the exten-
sive form game of Harsanyi, the game-forms (s(!))!2Y
are not subgames since they are interconnected by infor-
mation sets: Player i does not know which s(!) is being
played since he does not know !; he knows only his own
type ti (!).

An important application of Harsanyi’s model is made
in auction theory, as an auction is a clear situation of in-
complete information. For example, in a closed private-
value auction of a single indivisible object, the type of
a player is his private-value for the object, which is typ-
ically known to him and not to other players. We come
back to this in the section entitled “Examples of Bayesian
Equilibria”.

Aumann’sModel

A frequently used model of incomplete information was
given by Aumann [2].

Definition 2 An Aumann model of incomplete informa-
tion is (I;Y ; (�i )i2I; P) where:

� I is the players’ set.
� Y is a (finite) set whose elements are called states of the

world.
� For i 2 I, � i is a partition of Y .
� P is a probability distribution on Y , also called the com-

mon prior.

In this model a state of the world ! 2 Y is chosen accord-
ing to the probability distribution P, and each player i is
informed of �i(!), the element of his partition that con-
tains the chosen state of the world !. This is the informa-
tional structure which becomes a game with incomplete
information if we add a mapping s : Y ! S. The state of
nature s(!) is the game-form corresponding to the state
of the world ! (with the requirement that the action sets
Ai (!) are � i-measurable).

It is readily seen that Aumann’s model is a Harsanyi
model in which the type set Ti of player i is the set of
his partition elements, i. e., Ti D f�i(!)j! 2 Yg, and the
common prior on Y is P. Conversely, any Harsanyi model
is an Aumann model in which the partitions are those de-
fined by the types, i. e., �i(!) D f! 0 2 Y jti (! 0) D ti (!)g.

Harsanyi’s Model and Hierarchies of Beliefs

As our starting point in modeling incomplete informa-
tion situations was the appearance of hierarchies of beliefs,
one may ask how is the Harsanyi (or Aumann) model re-
lated to hierarchies of beliefs and how does it capture this
unavoidable feature of incomplete information situations?
The main observation towards answering this question is
the following:

Proposition 3 Any state of the world in Aumann’s model
or any type profile t 2 T in Harsanyi’s model defines
(uniquely) a hierarchy of mutual beliefs among the players.

Let us illustrate the idea of the proof by the following ex-
ample:

Example Consider a Harsanyi model with two players, I
and II, each of which can be of two types: TI D fI1; I2g,
TII D fII1; II2g and thus: T D f(I1; II1); (I1; II2); (I2; II1);
(I2; II2)g. The probability p on types is given by:

Denote the corresponding states of nature by a D s(I1II1),
b D s(I1II2), c D s(I2II1) and d D s(I2II2). These are the
states of nature about which there is incomplete informa-
tion.

The game in extensive form:
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Assume that the state of nature is a. What are the belief
hierarchies of the players?

First-level beliefs are obtained by each player from p, by
conditioning on his type:

� I1: With probability 1
2 the state is a and with probability

1
2 the state is b.

� I2: With probability 2
3 the state is c and with probability

1
3 the state is d.

� II1: With probability 3
7 the state is a and with probabil-

ity 4
7 the state is c.

� II2: With probability 3
5 the state is b and with probabil-

ity 2
5 the state is d.

Second-level beliefs (using short-hand notation for the

above beliefs:


1
2 a
�
C 1

2b
�
, etc.):

� I1: With probability 1
2 , player II believes



3
7 a
�
C 4

7 c
�
,

and with probability 1
2 , player II believes



3
5b
�
C 2

5d
�
.

� I2: With probability 2
3 , player II believes



3
7 a
�
C 4

7 c
�
,

and with probability 1
3 , player II believes



3
5b
�
C 2

5d
�
.

� II1: With probability 3
7 , player I believes



1
2 a
�
C 1

2b
�
,

and with probability 4
7 , player I believes



2
3 c
�
C 1

3d
�
.

� II2: With probability 3
5 , player I believes



1
2 a
�
C 1

2b
�
,

and with probability 2
5 , player I believes



2
3 c
�
C 1

3d
�
.

Third-level beliefs:

� I1: With probability 1
2 , player II believes that: “With

probability 3
7 , player I believes



1
2 a
�
C 1

2b
�
and with

probability 4
7 , player I believes



2
3 c
�
C 1

3d
�
”.

And with probability 1
2 , player II believes that: “With

probability 3
5 , player I believes



1
2 a
�
C 1

2b
�
and with

probability 2
5 , player I believes



2
3 c
�
C 1

3d
�
”.

and so on and so on. The idea is very simple and powerful;
since each player of a given type has a probability distri-
bution (beliefs) both about the types of the other players
and about the set S of states of nature, the hierarchies of
beliefs are constructed inductively: If the kth level beliefs
(about S) are defined for each type, then the beliefs about
types generates the (k C 1)th level of beliefs.

Thus the compact model of Harsanyi does capture the
whole hierarchies of beliefs and it is rather tractable. The
natural question is whether this model can be used for all
hierarchies of beliefs. In other words, given any hierar-
chy of mutual beliefs of a set of players I about a set S of
states of nature, can it be represented by a Harsanyi game?
This was answered by Mertens and Zamir [18], who con-
structed the universal belief space; that is, given a set S of
states of nature and a finite set I of players, they looked
for the space˝ of all possible hierarchies of mutual beliefs
about S among the players in I. This construction is out-
lined in the next section.

The Universal Belief Space

Given a finite set of players I D f1; : : : ; ng and a set S of
states of nature, which are assumed to be compact, we first
identify the mathematical spaces in which lie the hierar-
chies of beliefs. Recall that 
(A) denotes the set of prob-
ability distributions on A and define inductively the se-
quence of spaces (Xk)1kD1 by

X1 D 
(S) (1)

XkC1 D Xk �
(S � Xn�1
k ); for k D 1; 2; : : : : (2)

Any probability distribution on S can be a first-level be-
lief and is thus in X1. A second-level belief is a joint prob-
ability distribution on S and the first-level beliefs of the
other (n � 1) players. This is an element in 
(S � Xn�1

1 )
and therefore a two-level hierarchy is an element of the
product space X1 �
(S � Xn�1

1 ), and so on for any level.
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Note that at each level belief is a joint probability distribu-
tion on S and the previous level beliefs, allowing for cor-
relation between the two. In dealing with these probabil-
ity spaces we need to have some mathematical structure.
More specifically, we make use of the weak� topology:

Definition 4 A sequence (Fn)1nD1 of probability measures
(on ˝) converges in the weak� topology to the probabil-
ity F if and only if limn!1

R
˝ g(!)dFn D

R
˝ g(!)dF for

all bounded and continuous functions g : ˝ ! R.

It follows from the compactness of S that all spaces
defined by (1)–(2) are compact in the weak� topol-
ogy. However, for k > 1, not every element of Xk rep-
resents a coherent hierarchy of beliefs of level k. For
example, if (�1; �2) 2 X2 where �1 2 
(S) D X1 and
�2 2 
(S � Xn�1

1 ), then for this to describe meaningful
beliefs of a player, the marginal distribution of �2 on S
must coincide with �1. More generally, any event A in the
space of k-level beliefs has to have the same (marginal)
probability in any higher-level beliefs. Furthermore, not
only are each player’s beliefs coherent, but he also consid-
ers only coherent beliefs of the other players (only those
that are in support of his beliefs). Expressing formally this
coherency condition yields a selection Tk � Xk such that
T1 D X1 D 
(S). It is proved that the projection of TkC1
on Xk is Tk (that is, any coherent k-level hierarchy can
be extended to a coherent k C 1-level hierarchy) and that
all the sets Tk are compact. Therefore, the projective limit,
T D lim1 k Tk , is well defined and nonempty.1

Definition 5 The universal type space T is the projective
limit of the spaces (Tk )1kD1.

That is, T is the set of all coherent infinite hierarchies of be-
liefs regarding S, of a player in I. It does not depend on i
since by construction it contains all possible hierarchies of
beliefs regarding S, and it is therefore the same for all play-
ers. It is determined only by S and the number of players n.

Proposition 6 The universal type space T is compact and
satisfies

T � 
(S � Tn�1) : (3)

The � sign in (3) is to be read as an isomorphism and
Proposition 6 says that a type of player can be identified
with a joint probability distribution on the state of na-
ture and the types of the other players. The implicit equa-
tion (3) reflects the self-reference and circularity of the no-
tion of type: The type of a player is his beliefs about the

1The projective limit (also known as the inverse limit) of the se-
quence (Tk )1kD1 is the space T of all sequences (�1; �2; : : : ) 2
�1kD1Tk which satisfy: For any k 2 N , there is a probability dis-
tribution �k 2 �(S � Tn�1

k ) such that �kC1 D (�k ; �k ).

state of nature and about all the beliefs of the other play-
ers, in particular, their beliefs about his own beliefs.

Definition 7 The universal belief space (UBS) is the
space˝ defined by:

˝ D S � Tn : (4)

An element of˝ is called a state of the world.

Thus a state of the world is ! D (s(!); t1(!); t2(!); : : : ;
tn(!)) with s(!) 2 S and ti(!) 2 T for all i in I. This is
the specification of the states of nature and the types of
all players. The universal belief space˝ is what we looked
for: the set of all incomplete information andmutual belief
configurations of a set of n players regarding the state of
nature. In particular, as we will see later, all Harsanyi and
Aumann models are embedded in ˝ , but it includes also
belief configurations that cannot be modeled as Harsanyi
games. As we noted before, the UBS is determined only by
the set of states of nature S and the set of players I, so it
should be denoted as˝(S; I). For the sake of simplicity we
shall omit the arguments and write ˝ , unless we wish to
emphasize the underlying sets S and I.

The execution of the construction of the UBS accord-
ing to the outline above involves some non-trivial mathe-
matics, as can be seen inMertens and Zamir [18]. The rea-
son is that evenwith a finite number of states of nature, the
space of first-level beliefs is a continuum, the second level
is the space of probability distributions on a continuum
and the third level is the space of probability distributions
on the space of probability distributions on a continuum.
This requires some structure for these spaces: For a (Borel)
measurable event E let Bp

i (E) be the event “player i of type
ti believes that the probability of E is at least p”, that is,

Bp
i (E) D f! 2 ˝jti(E) � pg

Since this is the object of beliefs of players other than i (be-
liefs of j ¤ i about the beliefs of i), this set must also be
measurable. Mertens and Zamir used the weak� topology
which is the minimal topology with which the event Bp

i (E)
is (Borel) measurable for any (Borel) measurable event E.
In this topology, if A is a compact set then
(A), the space
of all probability distributions on A, is also compact. How-
ever, the hierarchic construction can also be made with
stronger topologies on 
(A) (see [9,12,17]). Heifetz and
Samet [14] worked out the construction of the univer-
sal belief space without topology, using only a measur-
able structure (which is implied by the assumption that
the beliefs of the players are measurable). All these ex-
plicit constructions of the belief space are within what is
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called the semantic approach. Aumann [6] provided an-
other construction of a belief system using the syntactic ap-
proach based on sentences and logical formulas specifying
explicitly what each player believes about the state of na-
ture, about the beliefs of the other players about the state
of nature and so on. For a detailed construction see Au-
mann [6], Heifetz and Mongin [13], and Meier [16]. For
a comparison of the syntactic and semantic approaches see
Aumann and Heifetz [7].

Belief Subspaces

In constructing the universal belief space we implicitly as-
sumed that each player knows his own type since we spec-
ified only his beliefs about the state of nature and about
the beliefs of the other players. In view of that, and since
by (3) a type of player i is a probability distribution on
S � TInfig, we can view a type ti also as a probability dis-
tribution on ˝ D S � TI in which the marginal distribu-
tion on Ti is a degenerate delta function at ti; that is, if
! D (s(!); t1(!); t2(!); : : : ; tn(!)), then for all i in I,

ti (!) 2 
(˝) and ti(!)[ti D ti (!)] D 1 : (5)

In particular it follows that if Supp(ti ) denotes the support
of ti, then

! 0 2 Supp(ti (!))) ti(! 0) D ti (!) : (6)

Let Pi (!) D Supp(ti (!)) � ˝ . This defines a possibility
correspondence; at state of the world !, player i does not
consider as possible any point not in Pi (!). By (6),

Pi (!)\ Pi (! 0) ¤ � ) Pi (!) D Pi (! 0) :

However, unlike in Aumann’s model, Pi does not de-
fine a partition of ˝ since it is possible that ! … Pi (!),
and hence the union [!2˝Pi (!) may be strictly smaller
than ˝ (see Example 7). If ! 2 Pi(!) � Y holds for all !
in some subspace Y � ˝ , then (Pi (!))!2Y is a partition
of Y .

As we said, the universal belief space includes all pos-
sible beliefs and mutual belief structures over the state of
nature. However, in a specific situation of incomplete in-
formation, it may well be that only part of ˝ is relevant
for describing the situation. If the state of the world is !
then clearly all states of the world in [i2IPi(!) are rele-
vant, but this is not all, because if ! 0 2 Pi (!) then all states
in Pj(! 0), for j ¤ i, are also relevant in the considerations
of player i. This observation motivates the following defi-
nition:

Definition 8 A belief subspace (BL-subspace) is a closed
subset Y of˝ which satisfies:

Pi (!) � Y 8i 2 I and 8! 2 Y : (7)

A belief subspace is minimal if it has no proper subset
which is also a belief subspace. Given ! 2 ˝ , the belief
subspace at !, denoted by Y(!), is the minimal subspace
containing !.

Since ˝ is a BL-subspace, Y(!) is well defined for all
! 2 ˝ . A BL-subspace is a closed subset of ˝ which is
also closed under beliefs of the players. In any ! 2 Y , it
contains all states of the world which are relevant to the
situation: If ! 0 … Y , then no player believes that ! 0 is pos-
sible, no player believes that any other player believes that
! 0 is possible, no player believes that any player believes
that any player believes. . . , etc.

Remark 9 The subspace Y(!) is meant to be the minimal
subspace which is belief-closed by all players at the state!.
Thus, a natural definition would be: Ỹ(!) is the minimal
BL-subspace containing Pi (!) for all i in I. However, if for
every player the state! is not in Pi (!) then! … Ỹ(!). Yet,
even if it is not in the belief closure of the players, the real
state ! is still relevant (at least for the analyst) because it
determines the true state of nature; that is, it determines
the true payoffs of the game. This is the reason for adding
the true state of the world !, even though “it may not be
in the mind of the players”.

It follows from (5), (6) and (7) that a BL-subspace Y has
the following structure:

Proposition 10 A closed subset Y of the universal belief
space ˝ is a BL-subspace if and only if it satisfies the fol-
lowing conditions:

1. For any ! D (s(!); t1(!); t2(!); : : : ; tn(!)) 2 Y, and
for all i, the type ti (!) is a probability distribution on Y.

2. For any ! and ! 0 in Y,

! 0 2 Supp(ti (!))) ti (! 0) D ti (!) :

In fact condition 1 follows directly from Definition 8 while
condition 2 follows from the general property of the UBS
expressed in (6).

Given a BL-subspace Y in˝(S; I) we denote by Ti the
type set of player i,

Ti D fti(!)j! 2 Yg ;

and note that unlike in the UBS, in a specific model Y , the
type sets are typically not the same for all i, and the ana-
logue of (4) is

Y � S � T1 � � � � � Tn :

A BL-subspace is a model of incomplete information
about the state of nature. As we saw in Harsanyi’s model,
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in any model of incomplete information about a fixed
set S of states of nature, involving the same set of play-
ers I, a state of the world ! defines (encapsulates) an in-
finite hierarchy of mutual beliefs of the players I on S.
By the universality of the belief space ˝(S; I), there is
! 0 2 ˝(S; I) with the same hierarchy of beliefs as that
of !. The mapping of each ! to its corresponding ! 0 in
˝(S; I) is called a belief morphism, as it preserves the be-
lief structure. Mertens and Zamir [18] proved that the
space ˝(S; I) is universal in the sense that any model Y
of incomplete information of the set of players I about
the state of nature s 2 S can be embedded in ˝(S; I) via
belief morphism ' : Y ! ˝(S; I) so that '(Y) is a belief
subspace in˝(S; I). In the following examples we give the
BL-subspaces representing some known models.

Examples of Belief Subspaces

Example 1 (A game with complete information) If the
state of nature is s0 2 S then in the universal belief space
˝(S; I), the game is described by a BL-subspace Y consist-
ing of a single state of the world:

Y D f!g where ! D (s0; [1!]; : : : ; [1!]) :

Here [1!] is the only possible probability distribution
on Y , namely, the trivial distribution supported by !. In
particular, the state of nature s0 (i. e., the data of the game)
is commonly known.

Example 2 (Commonly known uncertainty about the state
of nature) Assume that the players’ set is I D f1; : : : ; ng
and there are k states of nature representing, say, k
possible n-dimensional payoff matrices G1; : : : ;Gk . At
the beginning of the game, the payoff matrix is cho-
sen by a chance move according to the probability vec-
tor p D (p1; : : : ; pk ) which is commonly known by the
players but no player receives any information about the
outcome of the chance move. The set of states of na-
ture is S D fG1; : : : ;Gkg. The situation described above
is embedded in the UBS, ˝(S; I), as the following BL-
subspace Y consisting of k states of the world (denoting
p 2 
(Y) by [p1!1; : : : ; pk!k]):

� Y D f!1; : : : ; !kg

� !1 D (G1; [p1!1; : : : ; pk!k]; : : : ; [p1!1; : : : ; pk!k])
� !2 D (G2; [p1!1; : : : ; pk!k]; : : : ; [p1!1; : : : ; pk!k])
� : : : : : :

� !k D (Gk ; [p1!1; : : : ; pk!k]; : : : ; [p1!1; : : : ; pk!k]).

There is a single type, [p1!1; : : : ; pk!k], which is the same
for all players. It should be emphasized that the type is
a distribution on Y (and not just on the states of nature),

which implies that the beliefs [p1G1; : : : ; pkGk] on the
state of nature are commonly known by the players.

Example 3 (Two players with incomplete information on
one side) There are two players, I D fI; IIg, and two pos-
sible payoff matrices, S D fG1;G2g. The payoff matrix is
chosen at random with P(s D G1) D p, known to both
players. The outcome of this chance move is known only
to player I. Aumann and Maschler have studied such situ-
ations in which the chosen matrix is played repeatedly and
the issue is how the informed player strategically uses his
information (see Aumann and Maschler [8] and its refer-
ences). This situation is presented in the UBS by the fol-
lowing BL-subspace:

� Y D f!1; !2g

� !1 D (G1; [1!1]; [p!1; (1 � p)!2])
� !2 D (G2; [1!2]; [p!1; (1 � p)!2]).

Player I has two possible types: I1 D [1!1] when he is in-
formed of G1, and I2 D [1!2] when he is informed of G2.
Player II has only one type, II D [p!1; (1 � p)!2]. We de-
scribe this situation in the following extensive form-like fig-
ure in which the oval forms describe the types of the play-
ers in the various vertices.

Example 4 (Incomplete information about the other players’
information) In the next example, taken from Sorin and
Zamir [23], one of two players always knows the state of
nature but he may be uncertain whether the other player
knows it. There are two players, I D fI; IIg, and two possi-
ble payoff matrices, S D fG1;G2g. It is commonly known
to both players that the payoff matrix is chosen at random
by a toss of a fair coin: P(s D G1) D 1/2. The outcome of
this chance move is told to player I. In addition, if (and
only if) the matrix G1 was chosen, another fair coin toss
determines whether to inform player II which payoff ma-
trix was chosen. In any case player I is not told the result
of the second coin toss. This situation is described by the
following belief space with three states of the world:

� Y D f!1; !2; !3g

� !1 D (G1; [ 12!1;
1
2!2]; [1!1])
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� !2 D (G1; [ 12!1;
1
2!2]; [ 13!2;

2
3!3])

� !3 D (G2; [1!3]; [ 12!2;
1
2!3])

Each player has two types and the type sets are:

TI D fI1; I2g D
��

1
2
!1;

1
2
!2

�
; [1!3]

�

TII D fII1; II2g D
�
[1!1] ;

�
1
3
!2;

2
3
!3

��
:

Note that in all our examples of belief subspaces, condi-
tion (6) is satisfied; the support of a player’s type contains
only states of the world in which he has that type. The
game with incomplete information is described in the fol-
lowing figure:

Example 5 (Incomplete information on two sides:
A Harsanyi game) In this example, the set of play-
ers is again I D fI; IIg and the set of states of nature is
S D fs11; s12; s21; s22g. In the universal belief space˝(S; I)
consider the following BL-subspace consisting of four
states of the world.

� Y D f!11; !12; !21; !22g

� !11 D
�
s11; [ 37!11;

4
7!12]; [ 35!11;

2
5!21]




� !12 D
�
s12; [ 37!11;

4
7!12]; [ 45!12;

1
5!22]




� !21 D
�
s21; [ 23!21;

1
3!22]; [ 35!11;

2
5!21]




� !22 D
�
s22; [ 23!21;

1
3!22]; [ 45!12;

1
5!22]




Again, each player has two types and the type sets are:

TI D fI1; I2g D
��

3
7
!11;

4
7
!12

�
;

�
2
3
!21;

1
3
!22

��

TII D fII1; II2g D
��

3
5
!11;

2
5
!21

�
;

�
4
5
!12;

1
5
!22

��
:

The type of a player determines his beliefs about the type
of the other player. For example, player I of type I1 assigns
probability 3/7 to the state of the world!11 in which player

II is of type II1, and probability 4/7 to the state of the world
!12 in which player II is of type II2. Therefore, the beliefs
of type I1 about the types of player II are P(II1) D 3/7,
P(II2) D 4/7. The mutual beliefs about each other’s type
are given in the following tables:

II1 II2
I1 3/7 4/7
I2 2/3 1/3

II1 II2
I1 3/5 4/5
I2 2/5 1/5

Beliefs of player I Beliefs of player II

These are precisely the beliefs of Bayesian players if the
pair of types (tI ; tII) in T D TI � TII is chosen according to
the prior probability distribution p below, and each player
is then informed of his own type:

In other words, this BL-subspace is a Harsanyi game with
type sets TI ; TII and the prior probability distribution p
on the types. Actually, as there is one-to-one mapping be-
tween the type set T and the set S of states of nature, the
situation is generated by a chance move choosing the state
of nature si j 2 S according to the distribution p (that is,
P(si j) D P(Ii ; II j) for i and j in f1; 2g) and then player I is
informed of i and player II is informed of j. As a matter
of fact, all the BL-subspaces in the previous examples can
also be written as Harsanyi games, mostly in a trivial way.

Example 6 (Inconsistent beliefs) In the same universal
belief space, ˝(S; I) of the previous example, consider
now another BL-subspace Ỹ which differs from Y only
by changing the type II1 of player II from [35!11;

2
5!21] to

[ 12!11;
1
2!21], that is,

� Ỹ D f!11; !12; !21; !22g

� !11 D
�
s11; [ 37!11;

4
7!12]; [ 12!11;

1
2!21]




� !12 D
�
s12; [ 37!11;

4
7!12]; [ 45!12;

1
5!22]




� !21 D
�
s21; [ 23!21;

1
3!22]; [ 12!11;

1
2!21]




� !22 D
�
s22; [ 23!21;

1
3!22]; [ 45!12;

1
5!22]




with type sets:

TI D fI1; I2g D
��

3
7
!11;

4
7
!12

�
;

�
2
3
!21;

1
3
!22

��

TII D fII1; II2g D
��

1
2
!11;

1
2
!21

�
;

�
4
5
!12;

1
5
!22

��
:
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Now, the mutual beliefs about each other’s type are:

II1 II2
I1 3/7 4/7
I2 2/3 1/3

II1 II2
I1 1/2 4/5
I2 1/2 1/5

Beliefs of player I Beliefs of player II

Unlike in the previous example, these beliefs cannot be de-
rived from a prior distribution p. According to Harsanyi,
these are inconsistent beliefs. A BL-subspace with inconsis-
tent beliefs cannot be described as a Harsanyi or Aumann
model; it cannot be described as a game in extensive form.

Example 7 (“Highly inconsistent” beliefs) In the previous
example, even though the beliefs of the players were in-
consistent in all states of the world, the true state was con-
sidered possible by all players (for example in the state
!12 player I assigns to this state probability 4/7 and player
II assigns to it probability 4/5). As was emphasized be-
fore, the UBS contains all belief configurations, including
highly inconsistent orwrong beliefs, as the following exam-
ple shows. The belief subspace of the two players I and II
concerning the state of nature which can be s1 or s2 is given
by:

� Y D f!1; !2g

� !1 D
�
s1; [ 12!1;

1
2!2]; [1!2]




� !2 D
�
s2; [ 12!1;

1
2!2]; [1!2]



.

In the state of the world!1, the state of nature is s1, player I
assigns equal probabilities to s1 and s2, but player II as-
signs probability 1 to s2. In other words, he does not
consider as possible the true state of the world (and also
the true state of nature): !1 … PI(!1) and consequently
[!2Y PI(!) D f!2gwhich is strictly smaller thanY . By the
definition of belief subspace and condition (6), this also
implies that [!2˝PI(!) is strictly smaller than ˝ (as it
does not contain !1).

Consistent Beliefs and Common Priors

A BL-subspace Y is a semantic belief system presenting,
via the notion of types, the hierarchies of belief of a set of
players having incomplete information about the state of
nature. A state of the world captures the situation at what
is called the interim stage: Each player knows his own type
and has beliefs about the state of nature and the types of
the other players. The question “what is the real state of
the world !?” is not addressed. In a BL-subspace, there is
no chance move with explicit probability distribution that
chooses the state of the world, while such a probability dis-
tribution is part of a Harsanyi or an Aumann model. Yet,
in the belief space Y of Example 5 in the previous section,

such a prior distribution p emerged endogenously from the
structure of Y . More specifically, if the state ! 2 Y is cho-
sen by a chance move according to the probability distri-
bution p and each player i is told his type ti(!), then his be-
liefs are precisely those described by ti(!). This is a prop-
erty of the BL-subspace that we call consistency (which
does not hold, for instance, for the BL-subspace Ỹ in Ex-
ample 6) and that we define now: Let Y � ˝ be a BL-
subspace.

Definition 11

(i) A probability distribution p 2 
(Y) is said to be con-
sistent if for any player i 2 I,

p D
Z

Y
ti (!)dp : (8)

(ii) A BL-subspace Y is said to be consistent if
there is a consistent probability distribution p with
Supp(p) D Y . A consistent BL-subspace will be called
a C-subspace. A state of the world ! 2 ˝ is said to be
consistent if it is a point in a C-subspace.

The interpretation of (8) is that the probability distribu-
tion p is “the average” of the types ti(!) of player i (which
are also probability distributions on Y), when the average
is taken on Y according to p. This definition is not trans-
parent; it is not clear how it captures the consistency prop-
erty we have just explained, in terms of a chance move
choosing ! 2 Y according to p. However, it turns out to
be equivalent.

For ! 2 Y denote �i (!) D f! 0 2 Y jti(! 0) D ti (!)g;
then we have:

Proposition 12 A probability distribution p 2 
(Y) is
consistent if and only if

ti (!)(A) D p(Aj�i (!)) (9)

holds for all i 2 I and for any measurable set A � Y.

In particular, a Harsanyi or an Aumann model is repre-
sented by a consistent BL-subspace since, by construction,
the beliefs are derived from a common prior distribution
which is part of the data of the model. The role of the prior
distribution p in these models is actually not that of an ad-
ditional parameter of the model but rather that of an ad-
ditional assumption on the belief system, namely, the con-
sistency assumption. In fact, if a minimal belief subspace
is consistent, then the common prior p is uniquely deter-
mined by the beliefs, as we saw in Example 5; there is no
need to specify p as additional data of the system.
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Proposition 13 If ! 2 ˝ is a consistent state of the world,
and if Y(!) is the smallest consistent BL-subspace contain-
ing!, then the consistent probability distribution p on Y(!)
is uniquely determined.

(The formulation of this proposition requires some tech-
nical qualification if Y(!) is a continuum.)

The consistency (or the existence of a common prior),
is quite a strong assumption. It assumes that differences
in beliefs (i. e., in probability assessments) are due only
to differences in information; players having precisely the
same information will have precisely the same beliefs. It is
no surprise that this assumption has strong consequences,
the most known of which is due to Aumann [2]: Players
with consistent beliefs cannot agree to disagree. That is,
if at some state of the world it is commonly known that
one player assigns probability q1 to an event E and an-
other player assigns probability q2 to the same event, then
it must be the case that q1 D q2. Variants of this result ap-
pear under the title of “No trade theorems” (see, e. g., [19]):
Rational players with consistent beliefs cannot believe that
they both can gain from a trade or a bet between them.

The plausibility and the justification of the common
prior assumption was extensively discussed in the litera-
ture (see, e. g., [4,10,11]). It is sometimes referred to in the
literature as the Harsanyi doctrine. Here we only make the
observation that within the set of BL-subspaces in ˝ , the
set of consistent BL-subspaces is a set of measure zero. To
see the idea of the proof, consider the following example:

Example 8 (Generalization of Examples 5 and 6) Consider
a BL-subspace as in Examples 5 and 6 but with type sets:

TI D fI1; I2g
D f[˛1!11; (1 � ˛1)!12]; [˛2!21; (1 � ˛2)!22]g

TII D fII1; II2g
D f[ˇ1!11; (1 � ˇ1)!21]; [ˇ2!12; (1 � ˇ2)!22]g :

For any (˛1; ˛2; ˇ1; ˇ2) 2 [0; 1]4 this is a BL-subspace. The
mutual beliefs about each other’s type are:

II1 II2
I1 ˛1 1 � ˛1
I2 ˛2 1 � ˛2

II1 II2
I1 ˇ1 ˇ2
I2 1 � ˇ1 1 � ˇ2

Beliefs of player I Beliefs of player II

If the subspace is consistent, these beliefs are obtained as
conditional distributions from some prior probability dis-
tribution p on T D TI � TII , say, by p of the following ma-
trix:

This implies (assuming pi j ¤ 0 for all i and j),

p11
p12
D

˛1

1� ˛1
;

p21
p22
D

˛2

1 � ˛2

and hence
p11p22
p12p21

D
˛1

1� ˛1
1� ˛2
˛2

:

Similarly,

p11
p21
D

ˇ1

1� ˇ1
;

p12
p22
D

ˇ2

1� ˇ2

and hence
p11p22
p12p21

D
ˇ1

1� ˇ1
1 � ˇ2
ˇ2

:

It follows that the types must satisfy:

˛1

1� ˛1
1� ˛2
˛2

D
ˇ1

1� ˇ1
1 � ˇ2
ˇ2

; (10)

which is generally not the case. More precisely, the set
of (˛1; ˛2; ˇ1; ˇ2) 2 [0; 1]4 satisfying the condition (10) is
a set of measure zero; it is a three-dimensional set in the
four-dimensional set [0; 1]4. Nyarko [21] proved that even
the ratio of the dimensions of the set of consistent BL-
subspaces to the dimension of the set of BL-subspaces goes
to zero as the latter goes to infinity. Summing up,most BL-
subspaces are inconsistent and thus do not satisfy the com-
mon prior condition.

Bayesian Games and Bayesian Equilibrium

As we said, a game with incomplete information played by
Bayesian players, often called a Bayesian game, is a game
in which the players have incomplete information about
the data of the game. Being a Bayesian, each player has
beliefs (probability distribution) about any relevant data
he does not know, including the beliefs of the other play-
ers. So far, we have developed the belief structure of such
a situation which is a BL-subspace Y in the universal belief
space ˝(S; I). Now we add the action sets and the pay-
off functions. These are actually part of the description of
the state of nature: Themapping s : ˝ ! S assigns to each
state of the world! the game-form s(!) played at this state.
To emphasize this interpretation of s(!) as a game-form,
we denote it also as �! :

�! D (I;Ai(ti (!))i2I; (ui (!))i2I) ;



Bayesian Games: Games with Incomplete Information B 437

where Ai (ti (!)) is the actions set (pure strategies) of
player i at ! and ui (!) : A(!)! R is his payoff function
and A(!) D �i2IAi (ti (!)) is the set of action profiles at
state!. Note that while the actions of a player depend only
on his type, his payoff depends on the actions and types of
all the players. For a vector of actions a 2 A(!), we write
ui (!; a) for ui (!)(a). Given a BL-subspace Y � ˝(S; I)
we define the Bayesian game on Y as follows:

Definition 14 The Bayesian game on Y is a vector payoff
game in which:

� I D f1; : : : ; ng – the players’ set.
� ˙ i – the strategy set of player i, is the set of mappings

�i : Y �! Ai which are Ti–measurable :

In particular:

ti (!1) D ti (!2) H) �i (!1) D �i(!2) :

Let˙ D �i2I˙i .
� The payoff function ui for player i is a vector-valued

function ui D
�
uti


t i2Ti

, where uti (the payoff function
of player i of type ti) is a mapping

uti : ˙ �! R

defined by

uti (�) D
Z

Y
ui (!; �(!))dti(!) : (11)

Note that uti is Ti–measurable, as it should be. When Y
is a finite BL-subspace, the above-defined Bayesian game
is an n-person “game” in which the payoff for player i is
a vector with a payoff for each one of his types (therefore,
a vector of dimension jTi j). It becomes a regular game-
form for a given state of the world ! since then the pay-
off to player i is uti (!). However, these game-forms are
not regular games since they are interconnected; the play-
ers do not know which of these “games” they are play-
ing (since they do not know the state of the world !).
Thus, just like a Harsanyi game, a Bayesian game on
a BL-subspace Y consists of a family of connected game-
forms, one for each ! 2 Y . However, unlike a Harsanyi
game, a Bayesian game has no chance move that chooses
the state of the world (or the vector of types). A way to
transform a Bayesian game into a regular game was sug-
gested by R. Selten and was named by Harsanyi as the Sel-
ten game G�� (see p. 496 in [11]). This is a game with
jT1j � jT2j � : : : � jTn j players (one for each type) in which
each player ti 2 Ti chooses a strategy and then selects his
(n � 1) partners, one from each Tj ; j ¤ i, according to
his beliefs ti.

Bayesian Equilibrium

Although a Bayesian game is not a regular game, the Nash
equilibrium concept based on the notion of best reply can
be adapted to yield the solution concept of Bayesian equi-
librium (also called Nash–Bayes equilibrium).

Definition 15 A vector of strategies � D (�1; : : : ; �n), in
a Bayesian game, is called a Bayesian equilibrium if for all i
in I and for all ti in Ti,

uti (�) � uti (��i ; �̃i) ; 8�̃i 2 ˙i ; (12)

where, as usual, ��i D (� j) j¤i denotes the vector of
strategies of players other than i.

Thus, a Bayesian equilibrium specifies a behavior for each
player which is a best reply to what he believes is the behav-
ior of the other players, that is, a best reply to the strategies
of the other players given his type. In a game with com-
plete information, which corresponds to a BL-subspace
with one state of the world (Y D f!g), as there is only one
type of each player, and the beliefs are all probability one
on a singleton, the Bayesian equilibrium is just the well-
known Nash equilibrium.

Remark 16 It is readily seen that when Y is finite, any
Bayesian equilibrium is a Nash equilibrium of the Selten
game G�� in which each type is a player who selects the
types of his partners according to his beliefs. Similarly, we
can transform the Bayesian game into an ordinary game in
strategic form by defining the payoff function to player i
to be ũi D

P
t i2Ti

�t i uti where �t i are strictly positive.
Again, independently of the values of the constants �t i ,
any Bayesian equilibrium is a Nash equilibrium of this
game and vice versa. In particular, if we choose the con-
stants so that

P
t i2Ti

�t i D 1, we obtain the game sug-
gested by Aumann and Maschler in 1967 (see p. 95 in [8])
and again, the set of Nash equilibria of this game is pre-
cisely the set of Bayesian equilibria.

The Harsanyi Game Revisited

As we observed in Example 5, the belief structure of a con-
sistent BL-subspace is the same as in a Harsanyi game af-
ter the chance move choosing the types. That is, the embed-
ding of the Harsanyi game as a BL-subspace in the univer-
sal belief space is only at the interim stage, after the mo-
ment that each player gets to know his type. The Harsanyi
game on the other hand is at the ex ante stage, before
a player knows his type. Then, what is the relation between
the Nash equilibrium in the Harsanyi game at the ex ante
stage and the equilibrium at the interim stage, namely, the
Bayesian equilibrium of the corresponding BL-subspace?
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This is an important question concerning the embedding
of the Harsanyi game in the UBS since, as we said before,
the chance move choosing the types does not appear explic-
itly in the UBS. The answer to this question was given by
Harsanyi (1967–8) (assuming that each type ti has a posi-
tive probability):

Theorem 17 (Harsanyi) The set of Nash equilibria of
a Harsanyi game is identical to the set of Bayesian equi-
libria of the equivalent BL-subspace in the UBS.

In other words, this theorem states that any equilibrium in
the ex ante stage is also an equilibrium at the interim stage
and vice versa.

In modeling situations of incomplete information, the
interim stage is the natural one; if a player knows his be-
liefs (type), then why should he analyze the situation, as
Harsanyi suggests, from the ex ante point of view as if
his type was not known to him and he could equally well
be of another type? Theorem 17 provides a technical an-
swer to this question: The equilibria are the same in both
games and the equilibrium strategy of the ex ante game
specifies for each type precisely his equilibrium strategy at
the interim stage. In that respect, for a player who knows
his type, the Harsanyi model is just an auxiliary game to
compute his equilibrium behavior. Of course the deeper
answer to the question above comes from the interactive
nature of the situation: Even though player i knows he is
of type ti, he knows that his partners do not know that
and that they may consider the possibility that he is of
type t̃i , and since this affects their behavior, the behavior
of type t̃i is also relevant to player i who knows he is of
type ti. Finally, Theorem 17 makes the Bayesian equilib-
rium the natural extension of the Nash equilibrium con-
cept to games with incomplete information for consistent
or inconsistent beliefs, when the Harsanyi ordinary game
model is unavailable.

Examples of Bayesian Equilibria In Example 6, there
are two players of two types each, and with inconsistent
mutual beliefs given by

II1 II2
I1 3/7 4/7
I2 2/3 1/3

II1 II2
I1 1/2 4/5
I2 1/2 1/5

Beliefs of player I Beliefs of player II

Assume that the payoff matrices for the four type’s of pro-
files are:

As the beliefs are inconsistent they cannot be presented by
a Harsanyi game. Yet, we can compute the Bayesian equi-
librium of this Bayesian game. Let (x; y) be the strategy of
player I, which is:

� Play the mixed strategy [x(T); (1 � x)(B)] when you
are of type I1.

� Play the mixed strategy [y(T); (1 � y)(B)] when you
are of type I2.

and let (z; t) be the strategy of player II, which is:

� Play the mixed strategy [z(L); (1 � z)(R)] when you are
of type II1.

� Play the mixed strategy [t(L); (1 � t)(R)] when you are
of type II2.

For 0 < x; y; z; t < 1, each player of each type must be in-
different between his two pure actions; that yields the val-
ues in equilibrium:

x D
3
5
; y D

2
5
; z D

7
9
; t D

2
9
:

There is no “expected payoff” since this is a Bayesian game
and not a game; the expected payoffs depend on the ac-
tual state of the world, i. e., the actual types of the players
and the actual payoff matrix. For example, the state of the
world is !11 D (G11; I1; II1); the expected payoffs are:

�(!11) D
�
3
5
;
2
5

�
G11

�
7/9
2/9

�
D

�
46
45
;
6
45

�
:

Similarly:

�(!12) D
�
3
5
;
2
5

�
G12

�
2/9
7/9

�
D

�
18
45
;
4
45

�

�(!21) D
�
2
5
;
3
5

�
G21

�
7/9
2/9

�
D

�
21
45
;
21
45

�

�(!22) D
�
2
5
;
3
5

�
G22

�
2/9
7/9

�
D

�
28
45
;
70
45

�
:

However, these are the objective payoffs as viewed by the
analyst; they are viewed differently by the players. For



Bayesian Games: Games with Incomplete Information B 439

player i of type ti the relevant payoff is his subjective pay-
off uti (�) defined in (11). For example, at state !11 (or
!12) player I believes that with probability 3/7 the state
is !11 in which case his payoff is 46/45 and with prob-
ability 4/7 the state is !12 in which case his payoff is
18/45. Therefore his subjective expected payoff at state!11
is 3/7 � 46/45C 4/7 � 18/45 D 2/3. Similar computations
show that in states !21 or !22 player I “expects” a payoff
of 7/15 while player II “expects” 3/10 at states !11 or !21
and 86/225 in states !12 or !22.

Bayesian equilibrium is widely used in Auction The-
ory, which constitutes an important and successful appli-
cation of the theory of games with incomplete informa-
tion. The simplest example is that of two buyers bidding in
a first-price auction for an indivisible object. If each buyer i
has a private value vi for the object (which is independent
of the private value vj of the other buyer), and if he further
believes that vj is random with uniform probability distri-
bution on [0; 1], then this is a Bayesian game in which the
type of a player is his private valuation; that is, the type sets
are T1 D T2 D [0; 1], which is a continuum. This is a con-
sistent Bayesian game (that is, a Harsanyi game) since the
beliefs are derived from the uniform probability distribu-
tion on T1 � T2 D [0; 1]2. A Bayesian equilibrium of this
game is that in which each player bids half of his private
value: bi (vi ) D vi /2 (see, e. g., Chap. III in [25]). Although
auction theory was developed far beyond this simple ex-
ample, almost all the models studied so far are Bayesian
games with consistent beliefs, that is, Harsanyi games. The
main reason of course is that consistent Bayesian games
are more manageable since they can be described in terms
of an equivalent ordinary game in strategic form. How-
ever, inconsistent beliefs are rather plausible and exist in
the market place in general and even more so in auction
situations. An example of that is the case of collusion of
bidders: When a bidding ring is formed, it may well be
the case that some of the bidders outside the ring are un-
aware of its existence and behave under the belief that all
bidders are competitive. The members of the ring may or
may not know whether the other bidders know about the
ring, or they may be uncertain about it. This rather plausi-
ble mutual belief situation is typically inconsistent and has
to be treated as an inconsistent Bayesian game for which
a Bayesian equilibrium is to be found.

Bayesian Equilibrium and Correlated Equilibrium

Correlated equilibrium was introduced in Aumann (1974)
as the Nash equilibrium of a game extended by adding to
it random events about which the players have partial in-
formation. Basically, starting from an ordinary game, Au-

mann added a probability space and information struc-
ture and obtained a game with incomplete information,
the equilibrium of which he called a correlated equilibrium
of the original game. The fact that the Nash equilibrium
of a game with incomplete information is the Bayesian
equilibrium suggests that the concept of correlated equi-
librium is closely related to that of Bayesian equilibrium.
In fact Aumann noticed that and discussed it in a sec-
ond paper entitled “Correlated equilibrium as an expres-
sion of Bayesian rationality” [3]. In this section, we review
briefly, by way of an example, the concept of correlated
equilibrium, and state formally its relation to the concept
of Bayesian equilibrium.

Example 18 Consider a two-person game with actions
fT; Bg for player 1 and fL; Rg for player 2 with corre-
sponding payoffs given in the following matrix:

This game has three Nash equilibria: (T; R) with payoff
(2; 7), (B; L) with payoff (7; 2) and the mixed equilibrium
([ 23 (T);

1
3 (B)]; [

2
3 (L);

1
3 (R)]) with payoff (4 2

3 ; 4
2
3 ). Suppose

that we add to the game a chance move that chooses an el-
ement in fT; Bg � fL; Rg according to the following prob-
ability distribution �:

Let us now extend the game G to a game with incom-
plete information G� in which a chance move chooses
an element in fT; Bg � fL; Rg according to the probabil-
ity distribution above. Then player 1 is informed of the
first (left) component of the chosen element and player 2
is informed of the second (right) component. Then each
player chooses an action in G and the payoff is made. If we
interpret the partial information as a suggestion of which
action to choose, then it is readily verified that following
the suggestion is a Nash equilibrium of the extended game
yielding a payoff (5; 5). This was called by Aumann a cor-
related equilibrium of the original game G. In our termi-
nology, the extended game G� is a Bayesian game and its
Nash equilibrium is its Bayesian equilibrium. Thus what
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we have here is that a correlated equilibrium of a game is
just the Bayesian equilibrium of its extension to a game
with incomplete information. We now make this a gen-
eral formal statement. For simplicity, we use the Aumann
model of a game with incomplete information.

Let G D (I; (Ai )i2I; (ui )i2I) be a game in strategic
form where I is the set of players, Ai is the set of actions
(pure strategies) of player i and ui is his payoff function.

Definition 19 Given a game in strategic form G, an in-
complete information extension (the I-extension) of the
game G is the game G� given by

G� D (I; (Ai )i2I ; (ui )i2I; (Y ; p)); (�i )i2I) ;

where (Y ; p) is a finite probability space and � i is a parti-
tion of Y (the information partition of player i).

This is an Aumann model of incomplete information
and, as we noted before, it is also a Harsanyi type-based
model in which the type of player i at state ! 2 Y is
ti (!) D �i(!), and a strategy of player i is a mapping from
his type set to his mixed actions: �i : Ti ! 
(Ai ).

We identify a correlated equilibrium in the game G
by the probability distribution � on the vectors of actions
AD A1�; : : : ;�An . Thus � 2 
(A) is a correlated equi-
librium of the game G if when a 2 A is chosen according
to � and each player i is suggested to play ai, his best reply
is in fact to play the action ai.

Given a game with incomplete information G� as
in definition 19, any vector of strategies of the players
� D (�1; : : : ; �n) induces a probability distribution on the
vectors of actions a 2 A. We denote this as �
 2 
(A).

We can now state the relation between correlated and
Bayesian equilibria:

Theorem 20 Let � be a Bayesian equilibrium in the
game of incomplete information G� D (I; (Ai )i2I; (ui )i2I;
(Y ; p)); (�i )i2I); then the induced probability distribu-
tion �
 is a correlated equilibrium of the basic game
G D (I; (Ai )i2I; (ui )i2I).

The other direction is:

Theorem 21 Let � be a correlated equilibrium of the
game G D (I; (Ai )i2I; (ui )i2I); then G has an extension
to a game with incomplete information G� D (I; (Ai )i2I;
(ui )i2I; (Y ; p)); (�i )i2I) with a Bayesian equilibrium � for
which �
 D �.

Concluding Remarks and Future Directions

The Consistency Assumption

To the heated discussion of the merits and justification of
the consistency assumption in economic and game-theo-

retical models, wewould like to add a couple of remarks. In
our opinion, the appropriate way of modeling an incom-
plete information situation is at the interim stage, that is,
when a player knows his own beliefs (type). The Harsanyi
ex antemodel is just an auxiliary construction for the anal-
ysis. Actually this was also the view of Harsanyi, who jus-
tified his model by proving that it provides the same equi-
libria as the interim stage situation it generates (Theo-
rem 17). TheHarsanyi doctrine says roughly that ourmod-
els “should be consistent” and if we get an inconsistent
model it must be the case that it not be a “correct” model of
the situation at hand. This becomes less convincing if we
agree that the interim stage is what we are interested in:
Not only are most mutual beliefs inconsistent, as we saw
in the section entitled “Consistent Beliefs and Common
Priors” above, but it is hard to argue convincingly that the
model in Example 5 describes an adequate mutual belief
situation while the model in Example 6 does not; the only
difference between the two is that in one model, a certain
type’s beliefs are [ 35!11;

2
5!21] while in the other model his

beliefs are [ 12!11;
1
2!21].

Another related point is the fact that if players’ beliefs
are the data of the situation (in the interim stage), then
these are typically imprecise and rather hard to measure.
Therefore any meaningful result of our analysis should
be robust to small changes in the beliefs. This cannot be
achieved within the consistent belief systems which are
a thin set of measure zero in the universal belief space.

Knowledge and Beliefs

Our interest in this article was mostly in the notion of be-
liefs of players and less in the notion of knowledge. These
are two related but different notions. Knowledge is de-
fined through a knowledge operator satisfying some ax-
ioms. Beliefs are defined by means of probability distri-
butions. Aumann’s model, discussed in the section en-
titled “Aumann’s Model” above, has both elements: The
knowledge was generated by the partitions of the players
while the beliefs were generated by the probability P on the
space Y (and the partitions). Being interested in the sub-
jective beliefs of the player we could understand “at state
of the world ! 2 ˝ player i knows the event E � ˝” to
mean “at state of the world ! 2 ˝ player i assigns to the
event E � ˝ probability 1”. However, in the universal be-
lief space, “belief with probability 1” does not satisfy a cen-
tral axiom of the knowledge operator. Namely, if at ! 2 ˝
player i knows the event E � ˝ , then ! 2 E. That is, if
a player knows an event, then this event in fact happened.
In the universal belief space where all coherent beliefs are
possible, in a state ! 2 ˝ a player may assign probabil-
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ity 1 to the event f! 0g where ! 0 ¤ !. In fact, if in a BL-
subspace Y the condition ! 2 Pi(!) is satisfied for all i and
all! 2 Y , then belief with probability 1 is a knowledge op-
erator on Y . This in fact was the case in Aumann’s and in
Harsanyi’s models where, by construction, the support of
the beliefs of a player in the state ! always included !. For
a detailed discussion of the relationship between knowl-
edge and beliefs in the universal belief space see Vassilakis
and Zamir [24].

Future Directions

We have not said much about the existence of Bayesian
equilibrium, mainly because it has not been studied
enough and there are no general results, especially in the
non-consistent case. We can readily see that a Bayesian
game on a finite BL-subspace in which each state of na-
ture s(!) is a finite game-form has a Bayesian equilib-
rium in mixed strategies. This can be proved, for exam-
ple, by transforming the Bayesian game into an ordinary
finite game (see Remark 16) and applying the Nash the-
orem for finite games. For games with incomplete infor-
mation with a continuum of strategies and payoff func-
tions not necessarily continuous, there are no general exis-
tence results. Even in consistent auction models, existence
was proved for specific models separately (see [20,15,22]).
Establishing general existence results for large families of
Bayesian games is clearly an important future direction
of research. Since, as we argued before, most games are
Bayesian games, the existence of a Bayesian equilibrium
should, and could, reach at least the level of generality
available for the existence of a Nash equilibrium.
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