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• Perturbation and asymptotics: find an approximate solution to problems
which cannot be solved analytically, by identifying them as “close” to some
solvable problems.

• Emphasis of course: how to.

• Textbook: Bender and Orszag.
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Chapter 1

Ordinary differential equations

1.1 Introduction

A differential equation is a functional relation between a function and its deriva-
tives. An n-th order differential equation for a function y(x) is a relation of the
form

y(n)(x) = f (x, y(x), y′(x), . . . , y(n−1)(x)). (1.1)

A solution to (1.1) is a function y(x) for which this equation is satisfied.

Linear equations An n-th order differential equation is called linear if the func-
tion f is linear in y and its derivatives (it needs not be linear in x). A linear equation
can be brought to the form

y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) = g(x).

It is called homogeneous if g(x) ≡ 0 and inhomogeneous otherwise (to be pre-
cise, it is only the homogeneous equation that is linear; the inhomogeneous equa-
tion should be called “affine”).

n-th order equations as first order systems Any n-th order equation can be
rewritten as a first-order equation for a vector-valued function,

y(x) = (y1(x), . . . , yn(x)).
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To do this, we define

y1(x) = y(x) y2(x) = y′(x) · · · yn(x) = y(n−1)(x),

and note that
y′1(x) = y2(x)
y′2(x) = y3(x)
... =
...

y′n−1(x) = yn(x)
y′n(x) = f (x, y1(x), . . . , yn−1(x)).

This relation can be written in vector form,

y′(x) = f (x, y(x)).

Initial-value problems versus boundary value problems In general, a differ-
ential equation does not have a unique solution. The set of solutions can usually
be parametrized by a set of “integration constants”. To obtain a problem that has
a unique solution it is necessary to prescribe additional constraints, such as the
value of the function, and perhaps some of its derivatives at certain points.

Example: The solutions to the first-order differential equation

y′(x) = 6 y(x)

form the set {
y(x) = c e6x : c ∈ R

}
.

It we require, in addition, that y(1) = 2, then the unique solution is

y(x) =
2
e6 e6x.

!!!

Normally, the number of pointwise constraints is equal to the order n of the equa-
tion (and in the case of a first-order system to the size of the vector y). If all the
pointwise constraints are prescribed at the same point we call the resulting prob-
lem an initial-value problem (). Otherwise, if the pointwise constraints are
prescribed at two or more points, we call the resulting problem a boundary-value
problem ().
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The term initial-value problem comes from applications where the independent
variable x is identified as time. In such cases it is more common to denote it by
t, i.e., y = y(t). In such applications, y (or the vector-valued y), is prescribed at
an initial time t0, and the goal is to find the “trajectory” of the system y(t) at later
times, t > t0 (of course, we can also look for the trajectory in the “past”).

Example: Newton’s mechanics can be viewed as an . The vector y(t) describes
the time evolution of the three components of the position of a point particle.
Newton’s equations are

my′′(t) = f (t, y(t), y′(t)).

The right-hand side is the force vector acting on the particle. It may depend on
both the position and velocity of the particle (e.g., in electro-magnetism). If one
prescribes initial data,

y(t0) = a and y′(t0) = b,

then, assuming that f is nice enough, there exists a unique “future” (cf. the
Laplace paradox). !!!

The term boundary-value problem comes from situations where the independent
parameter x represents position along a line. The equation is defined in a domain,
and the pointwise conditions are prescribed at the boundary of this domain.
Initial-value problems are in many respects simpler than boundary-value prob-
lems. Notably, there exists a general theorem of existence and uniqueness due to
Cauchy:

Theorem 1.1 Consider the vector-valued 

y′(t) = f (t, y(x)) y(t0) = y0.

If there exists an open set that contains (t0, y0) in which function f (t, y) is continu-
ous in t and Lipschitz-continuous in y, then there exists a time interval (t−τ1, t+τ2)
in which the initial-value problem has a unique solution.

Comment: The fact that we have a general existence and uniqueness theorem
does not imply that we can solve the equation (i.e., express its solution in terms of
known functions). Most equations cannot be solved, which is precisely why we
need approximation methods.
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Example: Cauchy’s theorem only guarantees short-time existence. Consider the


y′(t) = y2(t) y(0) = 1.
The unique solution in the vicinity of the point (t = 0, y = 1) is

y(t) =
1

1 − t
.

This solution diverges at time t = 1 (finite-time blowup). !!!

In fact, as long as f (t, y) satisfies the continuity requirements, finite-time blowup
is the only way existence and uniqueness may cease to hold.

Example: To see how Lipschitz-continuity is required for uniqueness consider the


y′(t) = y1/3(t) y(0) = 0.
Clearly, y(t) ≡ 0 is a solution. On the other hand,

y(t) =
(
2t
3

)3/2

is also a solution. This does not contradict Cauchy’s theorem since f (t, y) = y1/3

is not Lipschitz-continuous at y = 0, i.e., there exists no constant L and δ > 0 such
that

|y1/3| ≤ L|y|
for all |y| < δ. !!!

In the rest of this chapter we study particular types of equations which can either
be solved analytically, or for which we can at least make general statements. The
reason why this is important for this course is that we will always need to identify
solvable problems that are close enough to the (non-solvable) problems of interest.
We therefore need to develop skills for solving a variety of solvable problems.

1.2 Homogeneous linear equations

Recall that a homogeneous n-th order linear equation is of the form

L[y](x) = y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) = 0.

At this point, we do not distinguish between s and s. Note that the trivial
solution y(x) ≡ 0 is always a solution to a homogeneous linear equation.
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Definition 1.1 A collection of functions y1(x), . . . , yk(x) is said to be linearly de-
pendent if there exists constant c1, . . . , ck such that

k∑

i=1

ci yi(x) ≡ 0.

Otherwise, this collection is linearly independent. Note that this sum has to
be zero for all x (perhaps restricted to some interval). There is no meaning to
dependence/independence at a point.

Homogeneous linear equations have the property that if y(x) and z(x) are solutions,
so is every linear combination,

a y(x) + b z(x).

In other words, the set of solutions forms a vector space in the space of functions,
with respect to pointwise addition and pointwise scalar multiplication. Like any
vector space, its dimension is the maximum number of independent elements.

The remarkable fact is that a linear homogeneous n-order equation has exactly
n independent solutions (the set of solutions is an n-dimensional vector space).
Obviously, this set is not unique (as the basis of a vector space is never unique).
What we do know is that if

y1(x), . . . , yn(x)

forms such a basis, then any solution is necessarily of the form

y(x) =
n∑

i=1

ci yi(x).

Theorem 1.2 Consider an n-th order linear homogeneous equation such that the
existence and uniqueness theorem holds on some interval I (for that it is sufficient
that the coefficients ai(t) be continuous). Then the set of solutions on I forms an
n-dimensional vector space.

Proof : Let x0 be a point in I, and consider the sequence of s,

L[yk] = 0, yk(x0) = 0, y′k(x0) = 0, . . . , y(k)
k (x0) = 1, . . . , y(n−1)

k (x0) = 0,
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with k = 0, 1, 2, . . . , n−1. Each of these s has a unique solution. These solutions
are independent since suppose they were dependent, i.e., there exist constant ci,
not all zero, such that

n−1∑

k=0

ckyk(x) ≡ 0.

Let ck ! 0, then differentiating k times and setting x = x0 we get a contradiction.
To show that these functions span the space of solutions, let y(x) be an arbitrary
solution. Then

z(x) =
n−1∑

k=0

y(k)(x0)yk(x)

is a linear combination of our basis satisfying z(k)(x0) = y(k)(x0) for k = 0, . . . , n−1
and by uniqueness y(x) = z(x). !

The Wronskian Suppose that y1(x), . . . , yk(x) are functions defined on some in-
terval. At this stage we do not care whether they are solutions of some differential
equations, or just a set of God-given functions. How can we determine whether
they are independent? This is important because we often can find n solutions to
an n-th order equation, but we must be sure that they are independent in order to
claim that the most general solution is a linear combination of this collection.
There is a simple test for the linear independence of functions. We define the
Wronskian, which is a real-valued function,

W(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

y1(x) y2(x) · · · yk(x)
y′1(x) y′2(x) · · · y′k(x)
...

...
. . .

...
y(k−1)

1 (x) y(k−1)
2 (x) · · · y(k−1)

k (x)

∣∣∣∣∣∣∣∣∣∣∣∣

Proposition 1.1 The collection of functions is linearly independent on an interval
if W(x) ≡ 0 on that interval.

Proof : Obvious !

Note that the opposite is not true. A vanishing Wronskian does not imply depen-
dence.

Example: The set of functions ex, e−x and cosh x is linearly dependent. !!!

Example: The set of functions x, x2 is linearly independent. !!!
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Abel’s formula Let now y1(x), . . . , yn(x) be solutions of a homogeneous linear
n-th order equation. Differentiating the Wronskian, we obtain that

W ′(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)
...

...
. . .

...
y(n)

1 (x) y(n)
2 (x) · · · y(n)

n (x)

∣∣∣∣∣∣∣∣∣∣∣∣

.

(Why did we differentiate only the last row?). Substituting the equations that each
yi(x) satisfies we get that (why?)

W ′(x) = −an−1(x) W(x),

which is a first-order linear homogeneous equation. Its solution is of the form

W(x) = c exp
(
−
∫ x

an−1(u) du
)
.

Remarkably, we have an explicit expression for the Wronskian even without know-
ing the solutions. In particular, if the Wronskian is non-zero at a point x0 and an−1

is integrable in the interval [x0, x], then the Wronskian remains non-zero through-
out the interval.

Initial-value problems Suppose that we are given the value of y and its n − 1
first derivatives at a point t0,

y(k)(t0) = bk, i = 0, 1, . . . , n − 1.

If we have n independent solutions yi(t), then the general solution is of the form

y(t) =
n∑

i=1

ci yi(t),

and we need to find n constants ci such that
n∑

i=1

ci y(k)
i (t0) = bk

This is an n-dimensional linear system for the ci and the matrix of coefficients is
precisely W(t0). This system has a unique solution if and only if W(t0) ! 0. Thus
the Wronskian has a double role. Its non-vanishing in an interval guarantees the
independence of solutions, whereas its non-vanishing at a point guarantees that
initial data prescribed at that point yield a unique solution.
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Example: Consider the 

y′′ − 1 + t
t

y′ +
1
t
y = 0, y(1) = 1, y′(1) = 2.

First, we can easily verify that

y1(t) = et and y2(t) = 1 + t

are solutions. Moreover,

W(t) =
∣∣∣∣∣∣
et 1 + t
et 1

∣∣∣∣∣∣ = −t et

vanishes only at the point t = 0, hence the solutions are independent in any interval
on the line. Since W(1) ! 0 this  has a unique solution. If, however, we
prescribe initial data at t = 0, for example,

y(0) = 1, y′(0) = 2,

then if we express the general solution as

y(t) = c1et + c2(1 + t),

it follows that
c1 + c2 = 1 and c1 + c2 = 2,

which has no solution. If instead,

y(0) = 1, y′(0) = 1,

then there are infinitely many solutions. !!!

Boundary-value problems There is no general existence and uniqueness theo-
rem for s.

Example: Consider the second-order linear homogeneous 

y′′(x) + y(x) = 0, y(0) = 0, y′(π/2) = 1.

The general solution to this differential equation is

y(x) = c1 sin x + c2 cos x.

Since y(0) = 0 it follows that c2 = 0. The second condition

y′(π/2) = c1 cos
π

2
= 1

has no solution. !!!
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Constant coefficient equations The simplest (and fully solvable) case of ho-
mogeneous linear equations is when the coefficients ai(x) are constant, i.e., the
differential equation is

L[y](x) = y(n)(x) + an−1y(n−1)(x) + · · · + a1y′(x) + a0y(x) = 0.

Recall that in order to find the general solution we need to find n independent
solutions. We then look for solutions of the form

y(x) = epx.

Substituting into the equation we get a polynomial equation for p,

pn + an−1 pn−1 + · · · + a1 p + a0 = 0.

If this polynomial has n distinct roots, then we have n independent solutions and
the general solution is found. Note that some of the roots may be complex-valued,
however if p is a complex root, so is p̄, and from the independent solutions epx

and ep̄x we may form a new pair of independent real-valued solutions,

epx + ep̄x

2
= e(&ep)x cos[('m)p x] and

epx − ep̄x

2ı
= e(&ep)x sin[('m)p x].

It may also be that p is an m-fold degenerate root, in which case we lack m − 1
solutions. The remaining solutions can be constructed as follows. For every q,

L[eqx] = eqxPn(q) = eqx(q − p)mQn−m(q),

where the Qn are polynomials of degree n. Differentiating both sides with respect
to q and setting q = p we get

L[x epx] = 0,

i.e., x epx is also a solution. We may differentiate again up to the (m − 1)st time
and find that

epx, x epx, x2 epx . . . , xm−1 epx

are all independent solutions. Thus, we end up with a set of n independent solu-
tions.

Comment: Recall that an n-th order equation can be rewritten as a first-order
system for a vector-valued function y(t). In the case of a linear constant-coefficient
equation the linear system is

dy
dx
= Ay,
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where A is an n-by-n constant matrix. The general solution of this vector equation
is

y(x) = eAxc,

where c is a constant vector. While this looks much simpler, the evaluation of a
matrix exponential, which is defined by

eAx =

∞∑

k=0

(Ax)k

k!

requires the diagonalization (more precisely, transformation to Jordan canonical
form) of A, which amounts to an eigenvalue analysis.

Example: A harmonic oscillator in Newtonian mechanics satisfies the second-
order equations

m y′′(t) + k y(t) = 0.

Looking for a solution of the form y(t) = ept we get a quadratic equation for p,

mp2 + k = 0,

whose solution is p = ±ı√k/m. From these two independent complex-valued
solutions we may construct the real-valued solutions,

y1(t) = cos(
√

k/m t) and y2(t) = sin(
√

k/m t).

!!!

Example: Consider now the third-order equation

y′′′(t) − 3y′′(t) + 3y′(t) − 1 = 0.

Substituting y(t) = ept gives the polynomial equation (p − 1)3 = 0, i.e., p = 1 is a
triple root. In this case, the general solution is

y(t) = c1 et + c2 tet + c3 t2et.

!!!
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Euler equations Another case where the equation is solvable is when

ai(x) =
ai

xn−i ,

i.e.,
y(n)(x) +

an−1

x
y(n−1)(x) + · · · + a1

xn−1 y′(x) +
a0

xn y(x) = 0.

This equation can be solved by a change of variable, x = et. Then,

x
d
dx
=

d
dt

x2 d2

dx2 = x
d
dx

x
d
dx
− x

d
dx
=

d2

dt2 −
d
dt
,

and so on, and we end up with an equation with constant coefficients for y(t) =
y(log x). Alternatively, we may look for solutions of the form y(x) = xp and obtain
that p satisfies the polynomial equation,

[p(p − 1) . . . 1] + an−1[p(p − 1) . . . 2] + an−2[p(p − 1) . . . 3] + · · · + a1 p + a0 = 0.

Reduction of order Suppose we have a homogeneous linear equation

L[y] = 0

and we happen to know one solution y1(x). We then look for more solutions of the
form

y(x) = y1(x)u(x).

It turns out that u′(x) satisfies a homogeneous linear equation of order n−1, which
may make the remaining problem solvable.

Example: Consider once again the equation

y′′(x) − 1 + x
x

y′(x) +
1
x

y(x) = 0.

Suppose we (by chance) observe that y1(x) = ex is a solution. We then set y(x) =
exu(x), which gives

y′(x) = ex [u(x) + u′(x)
]

and y′′(x) = ex [u(x) + 2u′(x) + u′′(x)
]
.
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Substituting into the equation we get

u(x) + 2u′(x) + u′′(x) − 1 + x
x
[
u(x) + u′(x)

]
+

1
x

u(x) = u′′(x) − 1 − x
x

u′(x) = 0.

Thus, v(x) = u′(x) satisfies the equation

d
dx

log v(x) =
v′(x)
v(x)

=
1 − x

x
.

Integrating both sides we get

log v(x) = log x − x,

or,
v(x) = xe−x.

Integrating we get
u(x) = e−x(x + 1),

hence,
y(x) = x + 1

is a second solution independent of ex. We didn’t care about constants of integra-
tion because we are content with finding any additional (independent) solution.
!!!

“Known” equations In a general, the solution to a homogeneous linear equa-
tion cannot be expressed in terms of elementary functions. First-order linear equa-
tions,

y′(x) + a0(x)y(x) = 0

can always be solved (reduced to “quadratures”) by separation of variables,

d
dx

log y(x) = −a0(x),

hence
y(x) = c exp

[
−
∫ x

a0(u) du
]
.

Second-order equations,

y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0



Ordinary differential equations 15

do not have closed form solutions.
Yet, there are many such equations which occur repeatedly in the various sciences,
and as a result their solutions have been studied extensively. They have been
tabulated, and their asymptotic properties have been studied. Some of them can
also be computed by certain recurrence relations. Thus, to some extent we may
say that we know the solution to those equations (to the same extent as we “know”
what a sine function or a logarithmic function is!).

Example: The solutions to the second-order equation

y′′(x) = x y(x)

is called the Airy function. Similarly, the family of equations,

y′′(x) +
1
x

y′(x) +
(
1 − ν

2

x2

)
y(x) = 0,

with ν ≥ 0 is called the Bessel equations, and their solutions are known as the
Bessel functions. There are two sets of Airy and Bessel functions since there are
two independent solutions. !!!

1.3 Inhomogeneous linear equations

Consider now inhomogeneous linear equations of the form

L[y](x) = g(x).

Suppose that u(x) is a (particular) solution of this equation. Setting

y(x) = u(x) + z(x),

and substituting into the equation we get

g(x) = L[y](x) = L[u + z](x) = L[u](x) + L[z](x) = g(x) + L[z](x).

That is, z(x) solves the corresponding homogeneous equation. Thus, the general
solution to an inhomogeneous linear equation can be expressed as the sum of any
particular solution and the general solution to the homogeneous equation. This
means that all we need is to find one particular solution.



16 Chapter 1

Example: Consider the first order equation,

y′(x) + y(x) = 6.

y(x) = 6 is a particular solution, hence the general solution is

y(x) = 6 + c e−x.

!!!

An elegant solution can be found when the equation is written as a first-order
system. Then, the inhomogeneous system takes the form

d
dx

y(x) = Ay(x) + g(x).

Recall that the columns matrix-valued function eAx are independent solutions to
the homogeneous system. Consider now the particular function

y(x) =
∫ x

0
eA(x−s) g(s) ds.

We claim that this function solves the inhomogeneous system. Indeed,

d
dx

y(x) = g(s) + A
∫ x

0
eA(x−s) g(s) ds = Ay(x) + g(x).

The general method for solving the nth-order inhomogeneous linear equation is
the so-called variation of constants. If y1(x), . . . , yn(x) are independent solutions
to homogeneous equation, then so is any linear combination,

c1y1(x) + · · · + cnyn(x).

We then look for a solution to the inhomogeneous equation of the form

y(x) = c1(x)y1(x) + · · · + cn(x)yn(x),

and try to find coefficient functions for which the equation is satisfied. This pro-
cedure turns out to yield a substantial reduction of order.
Let’s examine this procedure for a general second-order equation,

y′′(x) + a1y′(x) + a0y(x) = g(x).
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Suppose that y1(x) and y2(x) are independent solutions to the homogeneous equa-
tion, and look for a solution of the form

y(x) = c1(x)y1(x) + c2(x)y2(x).

Substituting into the equation we get

g(x) =
(
c′′1 y1 + 2c′1y′1 + c1y′′1

)
+
(
c′′2 y2 + 2c′2y′2 + c2y′′2

)

+ a1
(
c′1y1 + c1y′1

)
+ a1
(
c′2y2 + c2y′2

)

+ a2c1y1 + a2c2y2.

Using the fact that y1, y2 solve the homogeneous equation, we remains with

g(x) =
(
c′′1 y1 + 2c′1y′1

)
+
(
c′′2 y2 + 2c′2y′2

)
+ a1
(
c′1y1
)
+ a1
(
c′2y2
)
.

Now let’s try to impose an additional constraint on the coefficient functions, namely,
that

c′1(x)y1(x) + c′2(x)y2(x) ≡ 0.
This also implies upon differentiation that

c′′1 (x)y1(x) + c′′2 (x)y2(x) + c′1(x)y′1(x) + c′2(x)y′2(x) ≡ 0.

Substituting, we remain with

c′1(x)y′1(x) + c′2(x)y′2(x) = g(x).

This last equation an the constraint yield a system
(
y1(x) y2(x)
y′1(x) y′2(x)

) (
c′1(x)
c′2(x)

)
=

(
0

g(x)

)
,

which is solvable if the Wronskian is non-zero (i.e., if y1(x), y2(x) are indeed inde-
pendent). Thus we solve for c′1(x) and c′2(x) and this means that the problem has
been solved up to quadratures.

" Exercise 1.1 Solve the second-order inhomogeneous linear equation

y′′(x) − 3y′(x) + 2y(x) = e4x,

using variation of constants (find the general solution).

" Exercise 1.2 Use reduction of order to find the general solution of

x2y′′(x) − 4xy′(x) + 6y(x) = x4 sin x,

after observing that y(x) = x2 is a solution of the homogeneous equation.



18 Chapter 1

1.4 Various nonlinear equations

There are no general methods to handle nonlinear equations, yet there are certain
equations for which the solution is known. In this section we cover a few such
examples.

Separable first-order equations A first-order equation is called separable if it
is of the form

y′(x) = f (x)g(y(x)).

In such case we have
∫ x

x0

y′(u)
g(y(u))

du =
∫ x

x0

f (u) du.

If F denotes the primitive function of f and G denotes the primitive function of
1/g, then changing variables y(u) = z on the left-hand side

∫ y(x)

y(x0)

dz
g(z)
= G(y(x)) −G(y(x0)) = F(x) − F(x0),

or in explicit form

y(x) = G−1 (F(x) − F(x0) +G(y(x0))) .

Example: Take the 

y′(t) = t
√

y(t), y(1) = 1.

By the above procedure
∫ t

1

y′(s)
√

y(s)
ds =

∫ t

1
s ds =

1
2

(t2 − 1).

Changing variables y(s) = z on the left-hand side
∫ y(t)

y(1)

dz√
z
= 2
√

z
∣∣∣y(t)
1 =

1
2

(t2 − 1),

and

y(t) =
[
1 +

1
4

(t2 − 1)
]2
.

!!!
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" Exercise 1.3 Solve the 

y′(t) = y2/3(t) sin t, y(1) = 1.

" Exercise 1.4 Find the general solution of the differential equation

y′(x) = ex+y(x).

Bernoulli equations are of the form

y′(x) = a(x)y(x) + b(x)yp(x),

where p is any number. The cases p = 0 is a linear equation, whereas p = 1 is
separable. For arbitrary p we first divide by yp,

(−p + 1)−1 d
dx

y−p+1(x) = y−py′(x) = a(x)y−p+1(x) + b(x),

and thus, u(x) = y−p+1(x) satisfies the linear equation

u′(x) = (−p + 1)a(x)u(x) + (−p + 1)b(x).

Riccati equations are of the form

y′(x) = a(x)y2(x) + b(x)y(x) + c(x).

There is no general solution to a Riccati equation, but if one solution y1(x) is
known, then we set

y(x) = y1(x) + u(x).

Substituting we get

y′1(x) + u′(x) = a(x)
[
y2

1(x) + 2y1(x)u(x) + u2(x)
]
+ b(x)

[
y1(x) + u(x)

]
+ c(x),

and
u′(x) = a(x)u2(x) +

[
b(x) + 2a(x)y1(x)

]
u(x).

This equation is solvable by the following substitution,

u(x) = − w′(x)
a(x)w(x)

,
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i.e.,

u′(x) = − w′′(x)
a(x)w(x)

+
w′(x)

a2(x)w2(x)
[
a′(x)w(x) + a(x)w′(x)

]
,

hence

− w′′(x)
a(x)w(x)

+
w′(x)

a2(x)w2(x)
[
a′(x)w(x) + a(x)w′(x)

]
= a(x)

[w′(x)]2

a2(x)w2(x)
−[b(x) + 2a(x)y1(x)

] w′(x)
a(x)w(x)

,

from which remains

w′′(x) +
w′(x)
a(x)

a′(x) = − [b(x) + 2a(x)y1(x)
]
w′(x),

which is a solvable equation.

Example: Solve the Riccati equation

y′(x) = y2(x) − xy(x) + 1

noting that y(x) = x is a particular solution. !!!

" Exercise 1.5 Find a closed-form solution to the Riccati equation

xy′(x) + xy2(x) + 1
2 x2 = 1

4 .

1.5 Eigenvalue problems

An eigenvalue problem in the context of differential equations is a boundary-value
problem that has non-trivial solutions when a parameter λ in the equation takes
special values, which we call the eigenvalues. Note the analogy to eigenvalue
problems in linear algebra,

Ax = λx.

For a linear algebraic system we know that the solution (the values of λ) is gener-
ally non-unique. This is also the case when the  is linear and homogeneous.

Example: Consider the 

y′′(x) + λy(x) = 0 y(0) = y(1) = 0.
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This  has a trivial solution for all value of λ. Note that the general solution of
this differential equation is

y(x) = a cos(
√
λx) + b sin(

√
λx).

Since it vanishes at zero a = 0. The boundary condition at x = 1 implies that

sin(
√
λx) = 0,

i.e., that
λ = k2π2, k = 1, 2, . . . .

!!!

" Exercise 1.6 Solve the eigenvalue problem

y′′(x) + λy(x) = 0 y(0) = y′(1) = 0.

Eigenvalue problems can also be formulated on infinite domains:

Example: Consider the eigenvalue problem

y′′(x) + (λ − x2/4)y(x) = 0, lim
x→±∞

y(x) = 0.

This eigenvalue problem arises in quantum mechanics as the solution to the wave-
functions of the harmonic oscillator. The eigenvalues turn out to be

λ = k +
1
2
, k = 0, 1, 2, . . . ,

and the corresponding eigenfunctions are

y(x) = Hn(x)e−x2/4,

where the Hn(x) are Hermite polynomials. !!!

1.6 Differential equations in the complex plane

Although our interest is in real-valued differential equations, their analysis relies
heavily on the properties of their complex-valued counterparts. We first remain
the definitions of analyticity:
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Definition 1.2 A function f (x) is called (real)-analytic in an open set U ⊂ R if
it is infinitely-differentiable in U and for every x0 ∈ U its Taylor series about x0,

∞∑

n=0

f (n)(x0)
n!

(x − x0)n

converges and equals to f (x) in some neighborhood of x0. A complex valued func-
tion f (z) is called analytic in an open set U ⊂ C if it satisfies the corresponding
conditions within the complex context.

Comments:

# Both real- and complex analytic functions have the properties that sums and
products of analytic functions are analytic.

$ The reciprocal of a non-vanishing analytic function is analytic.
% The inverse of an analytic function that has a non-vanishing derivative is

analytic. Finally, uniform limits of analytic functions are analytic.

There are also differences between real- and complex-analytic functions: differ-
entiability in the complex plane is much more restrictive than differentiability in a
real vector space. Recall that a complex-valued function f (z) is differentiable at
a point z0 if the limit

lim
z→z0

f (z) − f (z0)
z − z0

≡ f ′(z0)

exists (independently on how z approaches z0). A function is said to be homo-
morphic in a domain if its derivative exists in the domain.

Comments:

# If a function is holomorphic in a domain then it is infinitely-differentiable
and it is analytic (complex-differentiability in an open set implies complex-
analyticity in that set).

$ The radius of convergence of its Taylor series about a point z0 equals to the
distance of its nearest singularity to z0 (in particular, f (z) is analytic in an
open ball B around z0 then its Taylor series about z0 converges in B).

% The analogous statement does not hold for real-analytic functions.
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& Real-valued functions that are analytic in an open segment can be extended
to a complex-valued function that is analytic on some open set in the com-
plex plane (the extension is simply through the Taylor series). It is not
necessarily true, however, that a function that is (real-)analytic on the whole
line has an extension that is analytic in the entire complex plane.

With this in mind, we may consider systems of complex-valued differential equa-
tions of the form

y′(z) = f (z, y(z)),

where y ∈ Cn and f : C × Cn → Cn.

Theorem 1.3 Suppose that f is analytic in an open set D ⊂ C × Cn that contains
the point (z0, y0) (this means that every component of f is analytic in each of its
arguments). Then there exists an open ball |z − z0| < a in which the 

y′(z) = f (z, y(z)) y(z0) = y0

has a unique solution, which is analytic.

One can prove this theorem by Picard’s iterations defining

φ0(z) = y0

φk+1(z) = y0 +

∫ z

z0

f (ζ, φk(ζ)) dζ,

where the integration path can, for example, be taken to be the line segment be-
tween z0 and z. One can show that all the φk are analytic, and that by choosing a
sufficiently small a, this sequence converges uniformly in the open ball. Finally,
one has to show that this limit satisfies the differential equation.

" Exercise 1.7 Complete the existence proof for s in the complex plane.
Show that if f is analytic in an open set D ⊂ C×Cn that contains the point (z0, y0)
(this means that every component of f is analytic in each of its arguments). Then
there exists an open ball |z − z0| < a in which the 

y′(z) = f (z, y(z)) y(z0) = y0

has a unique solution, which is analytic. Follow Picard’s method of successive
approximations.
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Chapter 2

Local analysis I: Linear differential
equations

Perturbation and asymptotic methods can be divided into two main categories:
local and global analysis. In local analysis one approximates a function in a
neighborhood of some point, whereas in global analysis one approximates a func-
tion throughout the domain. s can be treated by either approach whereas s
require inherently a global approach. Local analysis is easier and is therefore the
first approach we learn. This chapter is devoted to the local analysis of solutions
of linear differential equations. In cases where the equation is solvable we can
explicitly assess the accuracy of the approximation by comparing the exact and
approximate solutions.

Example: The fourth-order differential equation

d4y
dx4 (x) = (x4 + sin x) y(x),

cannot be solved in terms of elementary functions. Yet, we will be able to deter-
mine very easily (Bender and Orszag claim that on the back of a stamp) that as
x→ ∞ the solution is well-approximated by a linear combination of the functions

x−3/2e±x2/2, x−3/2 sin(x2/2) and x−3/2 cos(x2/2).

!!!
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2.1 Classification of singular points

We are concerned with homogeneous linear equations of the form

y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) = 0. (2.1)

In local analysis we approximate its solution near a point x0.

Definition 2.1 A point x0 is called an ordinary point of (2.1) if the coefficient
functions ai(x) are (real) analytic in a neighborhood of x0. (Recall that real-
analyticity implies the complex analyticity of its analytic continuation.)

Example: Consider the equation

y′′(x) = exy(x).

Every point x0 ∈ R is an ordinary point because the function ez is entire. !!!

It was proved in 1866 (Fuchs) that all n independent solutions of (2.1) are analytic
in the neighborhood of an ordinary point. Moreover, if these solutions are Taylor
expanded about x0 then the radius of convergence is at least as the distance of
the nearest singularity of the coefficient functions to x0. This is not surprising.
We know that an analytic equation has analytic solutions. In the case of linear
equations, this solution can be continued indefinitely as long as no singularity has
been encountered.

Example: Consider the equation

y′(x) +
2x

1 + x2 y(x) = 0.

The point x = 0 is an ordinary point. The complexified coefficient function

2z
1 + z2

has singularities at z = ±ı, i.e., at a distance of 1 from the origin. The general
solution is

y(x) =
c

1 + x2 = c
∞∑

n=0

(ıx)2n

and the Taylor series has a radius of convergence of 1. Note that the solution
y(x) = 1/(1 + x2) is analytic on the whole of R, yet the radius of convergence of
the Taylor series is bounded. !!!
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Definition 2.2 A point x0 is called a regular singular point of (2.1) if it is not
an ordinary point, but the functions

(x − x0)na0(x), (x − x0)n−1a1(x), . . . , (x − x0)an−1(x)

are analytic in a (complex) neighborhood of x0. Alternatively, x0 is a regular
singular point if the equation is of the form

y(n)(x) +
bn−1(x)
x − x0

y(n−1)(x) + · · · + b1(x)
(x − x0)n−1 y′(x) +

b0(x)
(x − x0)n y(x) = 0,

and the coefficient functions b(x) are analytic at x0.

Example: Consider the equation

y′(x) =
y(x)
x − 1

.

The point x = 1 is a regular singular point. However, the point x = 0 is not a
regular singular point of the equation

y′(x) =
x + 1

x3 y(x).

!!!

It was proved (still Fuchs) that a solution may be analytic at a regular singular
point. If it is not, then its singularity can only be either a pole, or a branch point
(algebraic or logarithmic). Moreover, there always exists at least one solution of
the form

(x − x0)αg(x),

where α is called the indical exponent and g(x) is analytic at x0. For equations of
order two and higher, there exists another independent solution either of the form

(x − x0)βh(x),

or of the form
(x − x0)αg(x) log(x − x0) + (x − x0)βh(x),

where h(x) is analytic at x0. This process can be continued.

Example: For the case where the coefficients bi(x) are constant the equation is of
Euler type, and we know that the solutions are indeed of this type, with g(x) and
h(x) constant. !!!
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Example: Consider the equation

y′(x) =
y(x)

sinh x
.

It has a regular singular point at x = 0. The general solution is

y(x) = c tanh
x
2
,

which is analytic at x = 0. It’s Taylor series at zero, which involves the Bernoulli
numbers, has a radius of π, which is the distance of the nearest singularity of the
coefficient function (at z = ±ıπ). !!!

Definition 2.3 A point x0 is called an irregular singular point of (2.1) if it is
neither an ordinary point nor a regular singular point.

There are no general properties of solutions near such point.
Finally, we consider also the point x = ∞ by changing the dependent variable into
t = 1/x and looking at t = 0. The point x = ∞ inherits the classification of the
point t = 0.

Examples:

1. Consider the three equations

y′(x) − 1
2

y(x) = 0

y′(x) − 1
2x

y(x) = 0

y′(x) − 1
2x2 y(x) = 0.

Changing variables t = 1/x we have

− y′(t) − 1
2t2 y(t) = 0

− y′(t) − 1
2t

y(t) = 0

− y′(t) − 1
2

y(t) = 0.
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Thus, every point x ! 0 is an ordinary point of the first equation, the point
x = 0 is a regular singular point of the second equation and an irregular
singular point of the third equation. At x = ∞ it is the exact opposite. The
solutions are

y(x) = c ex/2, y(x) = c
√

x, and y(x) = c e−1/2x,

respectively. Note that the second solution has branch cuts at x = 0 and
x = ∞, whereas the third solution has an essential singularity at x = 0.

" Exercise 2.1 Classify all the singular points (finite and infinite) of the follow-
ing equations

1. y′′ = xy (Airy equation).

2. x2y′′ + xy′ + (x2 − ν2)y = 0 (Bessel equation).

3. y′′ + (h − 2θ cos 2x)y = 0 (Mathieu equation).

2.2 Local solution near an ordinary point

In the vicinity of an ordinary point, the solution to a linear differential equation
can be sought by explicitly constructing its Taylor series. The latter is guaranteed
to converge in a ball whose radius is a property of the coefficient functions; that
is, it can be determined directly from the problem, without need to solve it. While
this method can (in principle) provide the full solution, we are interested in it as
a perturbation series, i.e., as an approximation to the exact solution as a power
series of the “small” parameter x− x0. We will discuss perturbation series in more
generality later on.

Example: Consider the 

y′(x) = 2x y(x) y(0) = 1.

The exact solution is y(x) = cex2 , but we will ignore it, and obtain it via a power
series expansion.
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Note first that the coefficient function 2z is entire, hence the Taylor series of the
solution has an infinite radius of convergence. We now seek a solution of the form

y(x) =
∞∑

n=0

anxn.

Substituting into the equation we get

∞∑

n=0

nanxn−1 = 2
∞∑

n=0

anxn+1.

Since the Taylor series is unique the two sides must have equal coefficients, hence
we resort to a term by term identification. Equating the x0 terms we get that a1 = 0.
Then,

∞∑

n=0

(n + 2)an+2xn+2 = 2
∞∑

n=0

anxn+1,

and
an+2 =

2an

n + 2
, n = 0, 1, . . . .

The first coefficients a0 is determined by the initial data a0 = 1. All the odd
coefficients vanish. For the even coefficients

a2 =
2
2
, a4 =

22

2 · 4 , a6 =
23

2 · 4 · 6 ,

and thus,

y(x) =
∞∑

n=0

x2n

n!
,

which is the right solution.
Suppose that we interested in y(1) within an error of 10−8. If we retain n terms,
then the error is

∞∑

k=n+1

1
k!
=

1
(n + 1)!

(
1 +

1
n + 2

+
1

(n + 2)(n + 3)
+ · · ·

)

≤ 1
(n + 1)!

(
1 +

1
n
+

1
n2 + · · ·

)
=

1
(n + 1)!

n
n − 1

≤ 2
(n + 1)!

.

Taking n = 11 will do. !!!
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The Gamma function Before going to the next example, we remind ourselves
the properties of the Gamma function. It is a complex-valued function defined
by

Γ(z) =
∫ ∞

0
e−ttz−1 dt.

This function is analytic in the upper half-plane. If has the property that

Γ(z + 1) =
∫ ∞

0
e−ttz dt = zΓ(z).

In particular,

Γ(1) =
∫ ∞

0
e−t dt = 1,

which which follows that Γ(2) = 1, Γ(3) = 2, Γ(4) = 6, and more generally, for n
integer,

Γ(n) = (n − 1)!.

In fact, the Gamma-function can be viewed as the analytic extension of the facto-
rial. The Gamma function can be used to shorten notations as

x(x + 1)(x + 2) . . . (x + k − 1) =
Γ(x + k)
Γ(x)

.

Example: Consider the Airy equation1

y′′(x) = x y(x).

Our goal is to analyze the solutions near the ordinary point x = 0. Here again, the
solutions are guaranteed to be entire.
Again, we seek for a solution of the form

y(x) =
∞∑

n=0

anxn.

1The Airy function is a special function named after the British astronomer George Biddell
Airy (1838). The Airy equation is the simplest second-order linear differential equation with a
turning point (a point where the character of the solutions changes from oscillatory to exponential).
The Airy function describes the appearance of a star–a point source of light–as it appears in a
telescope. The ideal point image becomes a series of concentric ripples because of the limited
aperture and the wave nature of light.
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Substituting we get

∞∑

n=0

(n + 2)(n + 1)an+2xn =

∞∑

n=0

anxn+1.

The coefficient a0, a1 remain undetermined, and are in fact the two integration
constants. Equating the x0 terms we get a2 = 0. Then

an+3 =
an

(n + 2)(n + 3)
, n = 0, 1, 2, . . . .

This recursion relation can be solved: first the multiple of three,

a3 =
a0

2 · 3 , a6 =
a0

2 · 3 · 5 · 6 ,

and more generally,

a3n =
a0

2 · 3 · 5 · 6 . . . (3n − 1)3n
=

a0

32n 2
3 · 1 · (1 + 2

3 ) · 2 . . . (n − 1 + 2
3 )n
=

a0 Γ(2
3 )

32nn!Γ(n + 2
3 )
.

Similarly,

a4 =
a1

3 · 4 , a7 =
a1

3 · 4 · 6 · 7 ,

hence

a3n+1 =
a0

3 · 4 · 6 · 7 . . . 3n(3n + 1)
=

a1

32n1 · (1 + 1
3 ) · 2 · (2 + 1

3 ) . . . n(n + 1
3 )
=

a0 Γ( 4
3 )

32nn!Γ(n + 4
3 )
.

Thus, the general solution is

y(x) = a0

∞∑

n=0

x3n

9nn!Γ(n + 2
3 )
+ a1

∞∑

n=0

x3n+1

9nn!Γ(n + 4
3 )
,

where we absorbed the constants into the coefficients.

These are very rapidly converging series, and their radius of convergence is infi-
nite. An approximate solution is obtained by truncating this series. To solve an
initial value problem one has to determine the coefficients a0, a1 first.
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Figure 2.1: The Airy functions

The two terms we obtained are independent solutions. There is arbitrariness in the
choice of independent solutions. It is customary to the refer to Airy functions as
the two special (independent) choices of

Ai(x) = 3−2/3
∞∑

n=0

x3n

9nn!Γ(n + 2
3 )
− 3−4/3

∞∑

n=0

x3n+1

9nn!Γ(n + 4
3 )

Bi(x) = 3−1/6
∞∑

n=0

x3n

9nn!Γ(n + 2
3 )
+ 3−5/6

∞∑

n=0

x3n+1

9nn!Γ(n + 4
3 )
.

!!!

" Exercise 2.2 Find the Taylor expansion about x = 0 of the solution to the
initial value problem

(x − 1)(x − 2)y′′(x) + (4x − 6)y′(x) + 2y(x) = 0, y(0) = 2, y′(0) = 1.

For which values of x we should expect the series to converge? What is its actual
radius of convergence?

" Exercise 2.3 Estimate the number of terms in the Taylor series need to es-
timate the Airy functions Ai(x) and Bi(x) to three decimal digits at x = ±1,
x = ±100 and x = ±10, 000.
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2.3 Local solution near a regular singular point

Let us first see what may happen if we Taylor expand the solution about a regular
singular point:

Example: Consider the Euler equation,

y′′(x) +
y(x)
4x2 = 0, x0 = 0.

Substituting a power series

y(x) =
∞∑

n=0

anxn,

we get
∞∑

n=0

n(n − 1)anxn−2 +
1
4

∞∑

n=0

anxn−2 = 0,

i.e.,
(n − 1

2 )2an = 0.

This gives an = 0 for all n, i.e., we only find the trivial solution. The general
solution, however, is of the form y(x) = c1

√
x + c2

√
x log x. !!!

The problem is that Taylor series are not general enough for this kind of problems.
Yet, we know from Fuchs’ theory that there exists at least one solution of the form

y(x) = (x − x0)αg(x),

where g(x) is analytic at x0. This suggest to expand the solution in a series known
as a Frobenius series,

y(x) = (x − x0)α
∞∑

n=0

an(x − x0)n.

To remove indeterminacy we require a0 ! 0.

Example: Going back to the previous example, we search a solution of the form

y(x) = xα
∞∑

n=0

anxn.
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Substituting we get
∞∑

n=0

(n + α)(n + α − 1)anxn+α−2 +
1
4

∞∑

n=0

anxn+α−2 = 0,

i.e., [
(n + α)(n + α − 1) + 1

4

]
an = 0.

Since we require a0 ! 0, the indical exponent α satisfies the quadratic equation

P(α) = (α − 1
2 )2 = 0.

This equation has a double root at α = 1/2. For n = 1, 2, . . . we have an = 0,
hence we found an exact solution, y(x) =

√
x. On the other hand, this method

does not allow us, for the moment, to find a second independent solution. !!!

We will discuss now, in generality, local expansions about regular singular points
of second-order equations,

y′′(x) +
p(x)

x − x0
+

q(x)
(x − x0)2 = 0.

We assume that the functions p(x), q(x) are analytic at x0, i.e., they can be locally
expanded as

p(x) =
∞∑

n=0

pn(x − x0)n

q(x) =
∞∑

n=0

qn(x − x0)n.

We then substitute into the equation a Frobenius series,

y(x) = (x − x0)α
∞∑

n=0

an(x − x0)n.

This gives
∞∑

n=0

(n + α)(n + α − 1)an(x − x0)n+α−2

+



∞∑

k=0

pn(x − x0)k



∞∑

n=0

(n + α)an(x − x0)n+α−2

+



∞∑

k=0

qn(x − x0)k



∞∑

n=0

an(x − x0)n+α−2 = 0.
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Equating same powers of (x − x0) we get

(n + α)(n + α − 1)an +

n∑

k=0

[
pk(n − k + α) + qk

]
an−k = 0.

Separating the k = 0 term we get

[
(n + α)2 + (p0 − 1)(n + α) + q0

]
an = −

n∑

k=1

[
pk(n − k + α) + qk

]
an−k.

We write the left-hand side as P(n + α) an. The requirement that a0 ! 0 implies
that P(α) = 0, i.e., α is a solution of a quadratic equation. a0 is indeterminate
(integration constant), whereas the other an are then given by a recursion relation,

an = −
1

P(α + n)

n∑

k=1

[
pk(n − k + α) + qk

]
an−k, n = 1, 2, . . . .

A number of problems arise right away: (1) α may be a double root in which case
we’re lacking a solution. (2) The recursion relation may break down if for some
n ∈ N, P(α + n) = 0. Yet, if α1, α2 are the two roots of the indical equation, and
&α1 ≥ &α2, then it is guaranteed that P(α1 + n) ! 0, and the recursion relation
can be continued indefinitely. This is why there is always at least one solution in
the form of a Frobenius series. More generally, we have the following possible
scenarios:

1. α1 ! α2 and α1 − α2 " Z. In this case there are two solutions in the form of
Frobenius series.

2. (a) α1 = α2. There is one solution in the form of a Frobenius series and
we will see how to construct a second independent solution.

(b) α1 − α2 = N, N ∈ N:

i. If
∑N

k=1
[
pk(α1 − k) + qk

]
aN−k = 0 then aN = 0 and the series can

be continued past the “bad” index.
ii. Otherwise, there is only one solution in the form of a Frobenius

series. We will see how to construct another independent solution.

" Exercise 2.4 Find series expansions about x = 0 for the following differential
equations. Try to sum (if possible) the infinite series.
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# 2xy′′(x) − y′(x) + x2y(x) = 0.
$ x(x + 2)y′′(x) + (x + 1)y′(x) − 4y(x) = 0.
% x(1 − x)y′′(x) − 3xy′(x) − y(x) = 0.
& sin x y′′(x) − 2 cos x y′(x) − sin x y(x) = 0.

Example: We start with an example of type 1. Consider the modified Bessel
equation

y′′(x) +
1
x

y(x) −
(
1 +
ν2

x2

)
y(x) = 0.

The point x = 0 is a regular singular point, hence we substitute the Frobenius
series

y(x) =
∞∑

n=0

anxn+α.

This gives
∞∑

n=0

(n+α)(n+α−1)anxn+α−2+

∞∑

n=0

(n+α)anxn+α−2−
∞∑

n=0

anxn+α−ν2
∞∑

n=0

anxn+α−2 = 0.

Equating powers of x we get
[
(n + α)2 − ν2

]
an = an−2.

For n = 0 we get the indical equation

P(α) = α2 − ν2 = 0,

i.e., α = ±ν. Take first α = ν > 0, in which case P(α + n) > 0.
For n = 1, since P(ν + 1) ! 0 we have a1 = 0. For n ≥ 0,

an =
an−2

(n + ν)2 − ν2 =
an−2

n(n + 2ν)
.

That is,

a2n =
a0

2n(2n − 2) . . . 2 · (2n + 2ν)(2n + 2ν − 2) . . . (4 + 2ν)
.

We can express this using the Γ function,

a2n =
Γ(ν + 1)

4nn!Γ(n + ν + 1)
a0.
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Thus, a first solution is

y(x) = Γ(ν + 1)
∞∑

n=0

x2n+ν

4nn!Γ(n + ν + 1)
.

It is conventional to define the modified Bessel function

Iν(x) =
∞∑

n=0

(1
2 x)2n+ν

n!Γ(n + ν + 1)
.

This series has an infinite radius of convergence, as expected from the analyticity
of the coefficients.
A second solution can be found by setting α = −ν. In order for P(−ν + n) ! 0 we
need 2ν not to be an integer. Note however that I−ν(x) given by the above power
series is well defined as long as 2ν is not an even integer, i.e., I−1/2(x), I−3/2(x) and
so on are well-defined and form a second independent solution.

!!!

" Exercise 2.5 Show that all the solutions of the modified Bessel equation

y′′(x) +
y′(x)

x
−
(
1 +
ν2

x2

)
y(x) = 0.

with ν = 1
2 ,

3
2 ,

5
2 , . . . , can be expanded in Frobenius series.

Case 2b(i) This is the simplest “bad” case, where nevertheless as second solu-
tion in the form of a Frobenius series can be constructed.

Example: You will be asked as homework to examine the half-integer modified
Bessel equation. !!!

Case 2a This is that case where α is a double root, α1 = α2 = α. Recall that
when we substitute in the equation a Frobenius series, we get

P(n + α)an = −
n∑

k=1

[pk(n − k + α) + qk]an−k,
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where
P(s) = s2 + (p0 − 1)s + p0.

In the present case we have
P(s) = (s − α)2.

One solution can be obtained by this procedure. We solve iteratively for the an

and have

y1(x) =
∞∑

n=0

an(x − x0)n+α.

We may generalize this type of solutions by replacing α by an arbitrary β, i.e.,
form a function

y(x; β) =
∞∑

n=0

an(β)(x − x0)n+β,

where the coefficients an(β) satisfy the recursion relations,

P(n + β)an(β) = −
n∑

k=1

[pk(n − k + β) + qk]an−k(β).

Of course, this is a solution only for β = α.
Let’s see now what happens if we substitute y(x; β) into the differential equation,

L[y](x) = y′′(x) +
p(x)

x − x0
y′(x) +

q(x)
(x − x0)2 y(x) = 0.

We get

L[y(·; β)] =
∞∑

n=0

(n + β)(n + β − 1)an(β)(x − x0)n+β−2

+ p(x)
∞∑

n=0

(n + β)an(β)(x − x0)n+β−2

+ q(x)
∞∑

n=0

an(β)(x − x0)n+β−2.

If we substitute the series expansions for p(x), q(x), we find that almost all the
terms vanish, because the an(β) satisfy the correct recursion relations. The only
terms that do not vanish are those proportional to xβ−2,

L[y(·; β)](x) = a0

[
β2 + (p0 − 1)β + q0

]
xβ−2 = a0P(β)xβ−2.
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Indeed, this vanishes if and only if β = α. If we now differentiate both sides with
respect to β and set β = α the right-hand side vanishes because α is a double root
of P. Thus,

L

[
∂

∂β
y(·; β)

∣∣∣∣∣
β=α

]
= 0,

that is we found another independent solution,

∂

∂β
y(·; β)

∣∣∣∣∣
β=α

=

∞∑

n=0

dan

dβ

∣∣∣∣∣
β=α

(x − x0)n+α + log(x − x0)
∞∑

n=0

an(α)(x − x0)n+α,

where we have used the fact that

∂

∂β
xβ = xβ log x.

We write it in the more compact form,

y2(x) =
∞∑

n=0

bn(x − x0)n+α + log(x − x0) y1(x), bn =
dan

dβ

∣∣∣∣∣
β=α

.

Example: Consider the modified Bessel for ν = 0. Recall that we get the recursion
relation

(n + α)2an = an−2,

and therefore conclude that α = 0 and that

y(x) = a0

∞∑

n=0

x2n

4n(n!)2

is a first solution. We then define the coefficients an(β) by the recursion relation

(n + β)2an(β) = an−2(β),

i.e.,
a2n(β) =

a2n−2(β)
(2n + β)2 =

a0

(2n + β)2(2n − 2 + β)2 . . . (2 + β)2 .

Differentiating with respect to β and setting β = α = 0 we get

b2n = −a2n(0)
(
1
n
+

1
n − 1

+ . . . 1
)
= − a0

4n(n!)2

(
1
n
+

1
n − 1

+ · · · + 1
)
.
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Thus we have found another (independent solution)

y2(x) = a0 log x
∞∑

n=0

( 1
2 x)2n

(n!)2 − a0

∞∑

n=0

(
1 +

1
2
+ · · · + 1

n

) (1
2 x)2n

(n!)2 .

It is conventional to choose for other independent function a linear combination
of y2(x) and I0(x) (it is called K0(x)). !!!

Case 2b(ii) We are left with the case where

P(s) = (s − α1)(s − α2),

with α1 − α2 = N ∈ N, and no “miracle” occurs. As before, using y(x; β) we have

L[y(·; β) = a0P(β)xβ−2.

If we try to do again as before, differentiating both sides with respect to β and
setting β = α1 we find

L

[
∂

∂β
y(·, β)

∣∣∣∣∣
β=α1

]
= a0Nxα1−2 = a0Nxα2+N−2.

In other words,
∂

∂β
y(·, β)

∣∣∣∣∣
β=α1

satisfies the inhomogeneous equation

L[y](x) = a0Nxα2+N−2.

A way to obtain a solution to the homogeneous equation is to subtract any partic-
ular solution to this inhomogeneous equation. Can we find such? It turns out that
we can find a solution in the form of a Frobenius series.

Setting

z(x) =
∞∑

n=0

cn(x − x0)n+α2 ,
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and substituting into the inhomogeneous equation, we get
∞∑

n=0

(n + α2)(n + α2 − 1)cn(x − x0)n+α2−2

+



∞∑

k=0

pn(x − x0)k



∞∑

n=0

(n + α2)cn(x − x0)n+α2−2

+



∞∑

k=0

qn(x − x0)k



∞∑

n=0

cn(x − x0)n+α2−2 = a0Nxα2+N−2.

Equating the coefficients of (x − x0)α2−2 we get
[
α2

2 + (p0 − 1)α2 + q0

]
c0 = 0,

which is indeed satisfies since the pre-factor is P(α2). In particular, c0 is not (yet)
determined. For all powers of (x − x0) other than α2 + N − 2 we have the usual
recursion relation,

P(n + α2)cn = −
n∑

k=1

[pk(n − k + α2) + qk]cn−k.

Since n ! N there is no problem. Remain the terms proportional to (x − x0) to the
power α2 + N − 2, which give

P(N + α2)cN = −
N∑

k=1

[pk(N − k + α2) + qk]cN−k + a0N.

While the left hand side is zero, we can view this equation as determining c0 (i.e.,
relating it to a0). Then, cN is left arbitrary, but that is not a problem. Particular so-
lutions are not unique. Thus, we have constructed a second (independent) solution
which is

y2(x) =
∂

∂β
y(·, β)

∣∣∣∣∣
β=α1

− z(x),

or,

y2(x) =
∞∑

n=0

bn(x − x0)n+α1 + log(x − x0)y1(x) −
∞∑

n=0

cn(x − x0)n+α2 .

" Exercise 2.6 Find a second solution for the modified Bessel equation with
ν = 1.
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2.4 Local solution near irregular singular points

No far everything was very straightforward (though sometimes tedious). Rigorous
methods to find local solutions, always guaranteed to work, reflecting the fact that
the theory of local solutions near ordinary and regular singular points is complete.
In the presence of irregular singular points, no such theory exists, and one has to
build up approximation methods that are often based on heuristics and intuition.
In the same way as we examined the breakdown of Taylor series near regular
singular points, let’s examine the breakdown of Frobenius series near irregular
singular points.

Example: Let’s start with a non-dramatic example,

y′(x) = x1/2y(x).

The point x = 0 is am irregular singular points (note that nothing diverges). The
general solution is obtained by separation of variables,

d
dx

log y(x) =
2
3

d
dx

x3/2,

i.e.,
y(x) = c e

2
3 x3/2
.

This can be written as a series,

y(x) = c
∞∑

n=0

( 2
3 x3/2)n

n!
,

that has nothing of a Frobenius series, where all powers must be of the form n+α.
!!!

Example: We next consider the equation

x3y′′(x) = y(x),

where x = 0 is clearly an irregular singular point. If we attempt a Frobenius series,

y(x) =
∞∑

n=0

anxn+α,
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we get
∞∑

n=0

(n + α)(n + α − 1)anxn+α+1 =

∞∑

n=0

anxn+α.

The first equation is a0 = 0, which is a contradiction. !!!

Example: This third example is much more interesting,

x2y′′(x) + (1 + 3x)y′(x) + y(x) = 0.

Substituting a Frobenius series gives
∞∑

n=0

(n+α)(n+α−1)anxn+α+

∞∑

n=0

(n+α)anxn+α−1+3
∞∑

n=0

(n+α)anxn+α+

∞∑

n=0

anxn+α = 0.

Equating the coefficients of α − 1 we get αan = 0, i.e., α = 0, which means that
the Frobenius series is in fact a power series. Then,

nan = − [(n − 1)(n − 2) + 3(n − 1) + 1] an−1 = −n2an−1,

from which we get that an = (−1)nn! a0, i.e., the solution is

y(x) = a0

∞∑

n=0

(−1)nn!xn.

This is a series whose radius of convergence is zero! Thus, it does not look as
a solution at all. This is indeed a divergent series, on the other hand, it is a per-
fectly good asymptotic series, something we are going to explore in depth. If we
truncate this series at some n, it provides a very good approximation for small x.
!!!

Some definitions We will address the notion of asymptotic series later on, and
at this stage work “mechanically” in a way we will learn.

Definition 2.4 We say that f (x) is much smaller than g(x) as x→ x0,

f (x) . g(x) as x→ x0,

if

lim
x→x0

f (x)
g(x)

= 0.
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We say that f (x) is asymptotic to g(x) as x→ x0,

f (x) ∼ g(x) as x→ x0,

if
f (x) − g(x) . g(x).

Note that asymptoticity is symmetric as f (x) ∼ g(x) implies that

lim
x→x0

f (x) − g(x)
g(x)

= lim
x→x0

f (x)
g(x)

− 1 = 0,

i.e., that

lim
x→x0

f (x)
g(x)

= 1.

Examples:

1. x . 1/x as x→ 0.

2. x1/2 . x1/3 as x→ 0+.

3. (logx)5 . x1/4 as x→ ∞.

4. ex + x ∼ ex as x→ ∞.

5. x2 # x as x→ 0.

6. A function can never be asymptotic to zero!

7. x . −1 as x→ 0+ even though x > −1 for all x > 0.

In the following, until we do it systematically, we will assume that asymptotic
relations can be added, multiplied, integrated and differentiated. Don’t worry
about justifications at this point.

Example: Let’s return to the example

x3y′′(x) = y(x),
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for which we were unable to construct a Frobenius series. It turns out that as
x→ 0, the two independent solutions have the asymptotic behavior,

y1(x) ∼ c1x3/4e2x−1/2

y2(x) ∼ c2x3/4e−2x−1/2
.

!!!

Example: Recall the other example,

x2y′′(x) + (1 + 3x)y′(x) + y(x) = 0,

for which we were able to construct only one series, which was divergent every-
where. It turns out that the second solution has the asymptotic behavior,

y2(x) ∼ c2 1
x

e1/x as x→ 0+.

!!!

All these solutions exhibit an exponential of a function that diverges at the singular
point. This turns out to be typical. These asymptotic expressions turn out to be
the most significant terms in an infinite series expansion of the solution. We call
these terms the leading terms (it is not clear how well-defined this concept is).
Each of these leading terms is itself a product of functions among which we can
identify one which is the “most significant”—the controlling factor. Identifying
the controlling factor is the first step in finding the leading term of the solution.

Comment: Note that if z(x) is a leading term for y(x) it does not mean that their
difference is small; only that their ratio tends to one.
Consider now a linear second-order equation,

y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

where x0 is an irregular singular point. The first step in approximating the solution
near x0 is to substitute,

y(x) = exp S (x),

which gives,
S ′′(x) + [S ′(x)]2 + p(x)S ′(x) + q(x) = 0.
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This substitution goes back to Carlini (1817), Liouville (1837) and Green (1837).
The resulting equation is of course as complicated as the original one. It turns out,
however, that it is typical for

S ′′(x) . [S ′(x)]2 as x→ x0.

(Check for all above examples.) Then, it implies that

[S ′(x)]2 ∼ −p(x)S ′(x) + q(x) as x→ x0.

Note that we moved two terms to the right-hand side since no function can be
asymptotic to zero. We then proceed to integrate this relation (ignoring again any
justification) to find S (x).

Example: Let us explore the example

x3y′′(x) = y(x)

in depth. The substitution y(x) = exp S (x) yields,

x3S ′′(x) + x3[S ′(x)]2 = 1,

which is no more solvable than the original equation (even less as it is nonlinear).
Assuming that S ′′(x) . [S ′(x)]2 we get

[S ′(x)]2 ∼ x−3,

hence
S ′(x) ∼ ±x−3/2.

If this were an equation we would have S (x) = ∓2x−1/2 + c. Here this constant
could depend on x, i.e.,

S (x) = ∓2x−1/2 + c±(x),

as long as
S ′(x) = ±x−3/2 + c′±(x) ∼ ±x−3/2,

i.e., c′±(x) . x−3/2 as x→ 0+. Note that this is consistent with the assumption that

S ′′(x) ∼ − ∓ 3
2

x−5/2 . [S ′(x)] ∼ x−3.
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Let us focus on the positive solution and see if this result can be refined. We have
the ansatz

S (x) = 2x−1/2 + c(x), c′(x) . x−3/2,

which substituted into the (full) equation for S (x) gives

3
2

x3x−5/2 + x3c′′(x) + x3(−x3/2 + c′(x))2 = 1,

or,
3
2

x1/2 + x3c′′(x) − 2x3/2c′(x) + x3[c′(x)]2 = 0.

Since c′(x) . x−3/2 the last term is much smaller than the third. Moreover, as-
suming that we can differentiate the asymptotic relation,

c′′(x) . −3
2

x−5/2,

we remain with 3
2 x1/2 ∼ 2x3/2c′(x), or,

c′(x) ∼ 3
4x
.

Again, if this were an equality we would get c(x) = 3
4 log x. Here we have

c(x) =
3
4

log x + d(x),

where d′(x) . 3
4x .

We proceed, this time with

S (x) = 2x−1/2 +
3
4

log x + d(x).

This time,

3
2

x−5/2 − 3
4x2 + d′′(x) +

(
−x−3/2 +

3
4x
+ d′(x)

)2
=

1
x3 ,

which simplifies into

− 3
16x2 + d′′(x) + [d′(x)]2 − 2x−3/2d′(x) +

3
2x

d′(x) = 0.
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Since x−1 . x−3/2 and d′(x) . 3/4x (from which we conclude that d′′(x) . x−2),
we remain with the asymptotic relation,

− 3
16x2 ∼ 2x−3/2d′(x),

i.e.,

d′(x) ∼ − 3
32

x−1/2.

From this we deduce that

d(x) ∼ 3
16

x1/2 + δ(x),

where δ′(x) . x−1/2. This time, the leading term vanishes as x → 0. Thus, we
conclude that

S (x) ∼ 2x−1/2 +
3
4

log x + c,

which gives that
y(x) ∼ c x3/4e2x−1/2

.

This was long, exhausting, and relying on shaky grounds!

Numerical validation Since we do not have a theoretical justification to the
above procedure, let us try to evaluate the quality of the approximation numeri-
cally. On the one hand, let us solve the equation x3y′′(x) = y(x) numerically, with
the initial date

y(1) = 1 and y′(1) = 0.

The solution is shown in Figure 2.2a on a log-log scale.
We know, on the other hand that the solution is asymptotically a linear combina-
tion of the form

y(x) = c1x3/4e2x−1/2
(1 + ε1(x)) + c2x3/4e−2x−1/2

(1 + ε2(x)),

where ε1,2(x) tend to zero as x → 0. Since one of the two solutions terns to zero
as x→ 0, we expect that

y(x)
x3/4e2x−1/2 ∼ c1(1 + ε2(x)).
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Figure 2.2:

In Figure 2.2a we show y(x)/x3/4e2x−1/2 versus x. The deviation from the constant
c1 ≈ 0.1432 is c1ε1(x). !!!

The technique which we have used above is called the method of dominant bal-
ance. It based on (i) identifying the terms that appear to be small, dropping them,
thus replacing the equation by an asymptotic relation. (ii) We then replace the
asymptotic sign by an equality and solve the differential equation. (iii) We check
that the result is consistent and allow for additional weaker variations. (iv) We
iterate this procedure.

Example: We go back once more to our running example and try to improve the
approximation. At this stage we have

y(x) = x3/4e2x−1/2
[1 + ε(x)].

We will substitute into the equation and try to solve for ε(x) as a power series of
x. Setting w(x) = 1 + ε(x), we have

y′(x) = x3/4e2x−1/2
[

3
4x

w(x) − x−3/2w(x) + w′(x)
]
,
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and

y′′(x) = x3/4e2x−1/2
[

3
4x
− x−3/2

] [
3
4x

w(x) − x−3/2w(x) + w′(x)
]

+ x3/4e2x−1/2
[

3
4x

w′(x) − x−3/2w′(x) + w′′(x) − 3
4x2 w(x) +

3
2

x−5/2w(x)
]
.

This equals x3/4e2x−1/2w(x)x−3, which leaves us with the equation,

x−3w(x) =
[

3
4x
− x−3/2

] [
3
4x

w(x) − x−3/2w(x) + w′(x)
]

+

[
3
4x

w′(x) − x−3/2w′(x) + w′′(x) − 3
4x2 w(x) +

3
2

x−5/2w(x)
]
.

This further simplifies into

w′′(x) +
(

3
2x
− 2x−3/2

)
w′(x) − 3

16x2 w(x) = 0.

This is a linear equation. Since we have extracted the singular parts of the solution,
there is hope that this remaining equation can be dealt with by simpler means. This
does not mean that the resulting equation no longer has an irregular singularity at
zero. The only gain is that w(x) does not diverge at the origin.
We proceed to solve this equation by the method of dominant balance. The equa-
tion for ε(x) is

ε′′(x) +
(

3
2x
− 2x−3/2

)
ε′(x) − 3

16x2 (1 + ε(x)) = 0.

Since ε(x) . 1 as x→ 0 we remain with

ε′′(x) − 2x−3/2ε′(x) ∼ 3
16x2 ,

subject to the constraint that ε(x)→ 0. We do not know whether among the three
remaining terms there are some greater than the others. We therefore need to
investigate four possible scenarios:

# ε′′ ∼ 3/16x2 and x−3/2ε′ . ε′′. In this case we get that

ε(x) ∼ − 3
16

log x + ax + b,

which can’t possible vanish at the origin.
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$ ε′′ ∼ 2x−3/2ε′ and 3/16x2 . ε′′. In this case,

(log ε(x))′ ∼ 2x−3/2,

i.e.,
log ε(x) ∼ −4x−1/2 + c,

which again violates the condition at the origin.
% All three terms are of equal importance. This means that

(e−4x−1/2
ε′(x))′ ∼ 3

16x2 e−4x−1/2
.

Integrating we get again divergence at the origin.
& This leaves for unique possibility that −2x−3/2ε′ ∼ 3

16x2 and ε′′ . −2x−3/2ε′.
Then

ε′(x) ∼ − 3
32

x−1/2,

i.e.,
ε(x) ∼ − 3

16
x1/2 + ε1(x),

where ε′1(x) . x−1/2.

Thus, we already have for approximation

y(x) = x3/4e2x−1/2
[
1 − 3

16
x1/2 + ε1(x)

]
.

See Figure 2.3a.
We can proceed further, discovering doing so that each correction is of power of
x1/2 greater than its predecessor. At this stage we may well substitute the asymp-
totic series,

w(x) =
∞∑

n=0

anxn/2,

and a0 = 1. This yields after some manipulations,

y(x) ∼ x3/4e2x−1/2
∞∑

n=0

Γ(n − 1
2 )Γ(n + 3

2 )
π4n n!

xn/2.

In Figure 2.3b we show the ratio between the exact solution and the approximate
solution truncated at n = 10. Note how the solution becomes more accurate near
the origin, although it becomes less accurate further away, reflecting the fact that
the series has a vanishing radius of convergence. !!!
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Figure 2.3:

" Exercise 2.7 Using the method of dominant balance, investigate the second
solution to the equation

x2y′′(x) + (1 + 3x)y′(x) + y(x) = 0.

Try to imitate all the steps followed in class. You should actually end up with an
exact solution!

" Exercise 2.8 Find the leading behavior, as x → 0+, of the following equa-
tions:

# y′′(x) =
√

x y(x).
$ y′′(x) = e−3/xy(x).

2.5 Asymptotic series

Definition 2.5 The power series
∑∞

n=0 an(x− x0)n is said to be asymptotic to the
function y(x) as x→ x0, denoted

y(x) ∼
∞∑

n=0

an(x − x0)n, x→ x0,
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if for every N

y(x) −
N∑

n=0

an(x − x0)n . (x − x0)N , x→ x0.

This does not require the series to be convergent.

Comment: The asymptotic series does not need to be in integer powers of x − x0.
For example,

y(x) ∼
∞∑

n=0

an(x − x0)αn, x→ x0

α > 0, if for every N

y(x) −
N∑

n=0

an(x − x0)αn . (x − x0)αN , x→ x0.

For x0 = ∞ the definition is that

y(x) ∼
∞∑

n=0

anx−αn, x→ ∞,

if for every N

y(x) −
N∑

n=0

anx−αn . x−αN , x→ ∞.

Not all functions can be expanded in asymptotic series:

Example: Not all functions have asymptotic series expansions. The function 1/x
does not have a asymptotic series expansion at x0 = 0 because it diverges. Sim-
ilarly, the function ex does not have an asymptotic series expansion at x0 = ∞.
!!!

The difference between a convergent series and an asymptotic series is worth
stressing. Recall that a series

∑∞
n=0 an(x − x0)n is convergent if

lim
N→∞

∞∑

n=N+1

an(x − x0)n = 0, for x fixed.
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Convergence is an absolute property. A series is either convergent or not, and
convergence can be determined regardless of whether we know what the limit is.
In contrast, a series is asymptotic to a function f (x) if

f (x) −
N∑

n=0

an(x − x0)n . (x − x0)N , for N fixed.

Asymptoticity is relative to a function. It makes no sense to ask whether a series
is asymptotic. In fact, every power series is asymptotic to some function at x0.

Proposition 2.1 Let (an) be a sequence of numbers. Then there exists a function
y(x) such that

y(x) ∼
∞∑

n=0

an(x − x0)n, x→ x0.

Proof : Without loss of generality, let us take x0 = 0. We define the following
continuous function,

φ(x;α) =




1 |x| ≤ 1
2α

2
(
1 − |x|α

)
1
2α < |x| < α

0 otherwise.

Then we set
αn = min(1/|an|2, 2−n),

and

y(x) =
∞∑

n=0

anφ(x;αn)xn.

For every x this series is finite and continuous because it truncates after a finite
number of terms. On the other hand we show that

y(x) ∼
∞∑

n=0

anxn.

Indeed, fixing N we can find a δ > 0 such that

φ(x;αn) = 1, for all n = 0, 1, . . . ,N for |x| < δ.
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Thus,
y(x) −∑N

n=0 anxn

xN =

∞∑

n=N+1

anφ(x;αn)xn−N .

It remains to show that the right hand side tends to zero as x → 0. For |x| ≤ δ we
only get contributions from n’s such that

n <
log x
log 2

and |an| <
1√
x
.

Hence, ∣∣∣∣∣∣∣

∞∑

n=N+1

anφ(x;αn)xn−N

∣∣∣∣∣∣∣
≤ log x

log 2
√

x→ 0.

!

Before demonstrating the properties of asymptotic series, let us show that solu-
tions to differential equations can indeed be represented by asymptotic series:

Example: Recall that we “found” that a solution to the differential equation

x2y′′(x) + (1 + 3x)y′(x) + y(x) = 0.

is a (diverging) power series

y(x) =
∞∑

n=0

(−x)nn!.

This is of course meaningless. We will now prove that this series is indeed asymp-
totic to the solution.
We start by noting that

n! =
∫ ∞

0
e−ttn dt

(recall the definition of the Γ function). We then do formal manipulations, which
we do not justify,

y(x) =
∞∑

n=0

(−x)n
∫ ∞

0
e−ttn dt =

∫ ∞

0
e−t

∞∑

n=0

(−x)ntn dt =
∫ ∞

0

e−t

1 + xt
dt.
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This integral exists, and in fact defines an analytic function (it is called a Stieltjes
integral). Moreover, we can check directly that this integral solves the differential
equation.
We will now show that this solution has the above asymptotic expansion. Inte-
grating by parts we have

y(x) =
∫ ∞

0

e−t

1 + xt
dt = − (1 + xt)−1

∣∣∣∞
0 − x

∫ ∞

0

e−t

(1 + xt)2 dt

= 1 − x
∫ ∞

0

e−t

(1 + xt)2 dt.

We may proceed integrating by parts to get

y(x) = 1 − x − 2x2
∫ ∞

0

e−t

(1 + xt)3 dt,

and after N steps,

y(x) =
N∑

n=1

n!(−x)n + (N + 1)! (−x)N+1
∫ ∞

0

e−t

(1 + xt)N+1 dt.

Since the integral is bounded by 1, we get that

y(x) −
N∑

n=1

n!(−x)n ≤ (N + 1)! (−x)N+1 . xN , x→ 0.

A more interesting question is how many terms to need to take for the approxima-
tion to be optimal. It is not true that the more the better! We may rewrite the error
as follows

εn = y(x) −
N∑

n=0

n!(−x)n =

∫ ∞

0

e−t

1 + xt
dt −

N∑

n=0

∫ ∞

0
e−t(−xt)n dt

=

∫ ∞

0
e−t




1
1 + xt

−
N∑

n=0

(−xt)n




=

∫ ∞

0
e−t (−xt)N

1 + xt
dt.

What is the optimal N? Note that the coefficients of the series are alternating in
sign and their ratio is (−nx). As long as this ratio is less that 1 in absolute value,
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the error decreases, otherwise it increases. The optimal N is therefore the largest
integer less than 1/x. An evaluation of the error at the optimal N gives

εN ∼
π

2x
e−1/x.

!!!

We are now in measure to prove the properties of asymptotic series:

Proposition 2.2 (Non-uniqueness) Let

f (x) ∼
∞∑

n=0

an(x − x0)n, x→ x0.

Then there exists a function g(x) ! f (x) asymptotic to the same series.

Proof : Take
g(x) = f (x) + e−1/(x−x0)2

.

This follows from the fact that

e−1/x2 . xn, x→ 0

for every n. The function e−1/x2 is said to be subdominant. !

Proposition 2.3 (Uniqueness) If a function y(x) has an asymptotic series expan-
sion at x0 then the series is unique.

Proof : By definition,

y(x) −
N−1∑

n=0

an(x − x0)αn − aN(x − x0)αN . (x − x0)αN ,

hence,

aN = lim
x→x0

y(x) −∑N−1
n=0 an(x − x0)αn

(x − x0)αN ,

which is a constructive definition of the coefficients. !

Comment: It follows that if two sides of an equation are have asymptotic series
expansions we can equate the coefficients term by term.
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Proposition 2.4 (Arithmetic operations) Let

f (x) ∼
∞∑

n=0

an(x − x0)n and g(x) ∼
∞∑

n=0

bn(x − x0)n,

then

α f (x) + βg(x) ∼
∞∑

n=0

(αan + βbn)(x − x0)n,

and

f (x)g(x) ∼
∞∑

n=0

cn(x − x0)n,

where

cn =

n∑

k=0

akbn−k.

Proof : This follows directly from the definitions. !

" Exercise 2.9 Show that if

f (x) ∼
∞∑

n=0

an(x − x0)n and g(x) ∼
∞∑

n=0

bn(x − x0)n,

then

f (x)g(x) ∼
∞∑

n=0

cn(x − x0)n,

where

cn =

n∑

k=0

akbn−k.

Proposition 2.5 (Integration) Let

f (x) ∼
∞∑

n=0

an(x − x0)n.

If f is integrable near x0 then
∫ x

x0

f (t) dt ∼
∞∑

n=0

an

n + 1
(x − x0)n+1.
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Proof : Set N. By the asymptotic property of f it follows that for every ε there
exists a δ such that

∣∣∣∣∣∣∣
f (x) −

N∑

n=0

an(x − x0)n

∣∣∣∣∣∣∣
≤ ε(x − x0)N , |x| ≤ δ.

Thus, ∣∣∣∣∣∣∣

∫ x

x0

f (t) dt −
N∑

n=0

an

n + 1
(x − x0)n+1

∣∣∣∣∣∣∣
≤ ε(x − x0)N+1

N + 1
,

which proves the claim. !

Proposition 2.6 (Differentiation 1) Let

f (x) ∼
∞∑

n=0

an(x − x0)n.

Then it is not necessarily true that

f ′(x) ∼
∞∑

n=0

nan(x − x0)n−1.

Proof : The problem is tightly related to the presence of subdominant functions.
Defining

g(x) = f (x) + e−1/x2
sin(e1/x2

),

the two functions have the same asymptotic expansion at zero, but not their deriva-
tives. !

Proposition 2.7 (Differentiation 2) If f ′(x) has an asymptotic expansion and is
integrable near x0 then

f (x) ∼
∞∑

n=0

an(x − x0)n.

implies that

f ′(x) ∼
∞∑

n=0

nan(x − x0)n−1.
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Proof : Set

f ′(x) ∼
∞∑

n=0

bn(x − x0)n.

Using the integration Proposition and the uniqueness of the expansion we get the
desired result. !

We come now to the ultimate goal of this section. Suppose we have a differential
equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

Suppose that p(x) and q(x) have asymptotic expansions at x0. Does it imply that
y(x) has an asymptotic expansion as well, and that its coefficient can be identified
by term-by-term formal manipulations? In general this is true.
First we need to assume that p′(x) also has an asymptotic expansion. Then we usu-
ally proceed in two steps. First we assume that y(x) has an asymptotic expansion.
Then, since

y′′(x) + [p(x)y(x)]′ + [q(x) − p′(x)]y(x) = 0,

it follows that

y′(x) − y′(x0) + p(x)y(x) − p(x0)y(x0) +
∫ x

x0

[q(t) − p′(t)]y(t) dt.

Hence y′(x) has an asymptotic expansion and so does y′′(x) (by the arithmetic
properties). We are then allowed to use the arithmetic properties and the unique-
ness of the expansion to identify the coefficients.
It remains however to show that y(x) can indeed to expanded in an asymptotic
series. In the next section we will demonstrate the standard approach to do so.

2.6 Irregular singular points at infinity

Irregular singular points at infinity are ubiquitous in equations that arise in phys-
ical applications (e.g., Bessel, Airy), and the asymptotic behavior at infinity is of
major importance in such applications. In principle, the investigation of irregular
singular points at infinity can be dealt with by the change of variables t = 1/x,
yet, we can use the method of dominant balance to study the asymptotic behavior
in the original variables.
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Example: Consider the function

y(x) =
∞∑

n=0

xn

(n!)2 ,

reminiscent of the Bessel function

I0(x) =
∞∑

n=0

(1
2 x)2n

(n!)2 ,

i.e., y(x) = I0(
√

2x). This series is convergent everywhere, yet to evaluate it at,
say, x = 10000 to ten significant digits requires at least,

10000n

(n!)2 < 10−10,

and using Stirling’s formula,

n log 10000 − 2n log n + 2n < −10 log 10,

this roughly gives n > 284. It would be useful to obtain an approximation that
does not require the addition of hundreds of numbers.
Consider the following alternative. First, note that

y′(x) =
∞∑

n=1

xn−1

n!(n − 1)!
,

hence

(xy′(x))′ =
∞∑

n=1

xn−1

[(n − 1)!]2 = y(x),

i.e., y(x) is a solution of the differential equation

x y′′(x) + y′(x) = y(x).

We are looking for a solution as x→ ∞, in the form y(x) = exp S (x), yielding

xS ′′(x) + x[S ′(x)]2 + S ′(x) = 1.

As before, we assume that S ′′(x) . [S ′(x)]2. We remain with

x[S ′(x)]2 + S ′(x) ∼ 1.



Local analysis I: Linear differential equations 63

This is a quadratic equation, whose solution is

S ′(x) ∼ −1 ±
√

1 + 4x
2x

∼ ±x−1/2, x→ ∞.

Thus,
S (x) ∼ ±2x1/2,

or
S (x) ± 2x1/2 +C(x),

where C′(x) . x−1/2.
Since all the coefficients in the power series are positive, y(x) is an increasing
function of x, and the leading behavior must be dominated by the positive sign.
We then go to the next equation,

x[2x1/2 +C(x)]′′ + x([2x1/2 +C(x)])′2 + [2x1/2 +C(x)]′ = 1.

Expanding we get

x
[
−1

2
x−3/2 +C′′(x)

]
+ x
[
x−1/2 +C′(x)

]2
+
[
x−1/2 +C′(x)

]
= 1,

and
1
2

x−1/2 + xC′′(x) + 2x1/2C′(x) + x[C′(x)]2 +C′(x) = 0,

Recall that C′(x) . x−1/2 hence C′′(x) . x−3/2, and so we remain with

2x1/2C′(x) ∼ −1
2

x−1/2,

or
C(x) ∼ −1

4
log x.

The next correction is asymptotic to a constant.
The leading solution is then

y(x) ∼ c x−1/4e2x1/2
.

We cannot (at this point) evaluate the constant (the equation is homogeneous!),
which turns out to be 1

2π
−1/2. In Figure 2.4 we show the ratio of this asymptotic
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Figure 2.4:

solution and y(x) versus x. Interestingly, the approximation is (relatively) excel-
lent for x > 100, whereas the power series truncated at n = 10 is very accurate
up to that point. Together, the two approximations yield a “uniformly accurate”
approximation.

!!!

" Exercise 2.10 Show that the asymptotic behavior at infinity of the solutions
to the modified Bessel equation,

x2y′′(x) + xy′(x) − (x2 + ν2)y(x) = 0

is
y1(x) ∼ c1x−1/2ex

y2(x) ∼ c2x−1/2e−x.

Example: The modified Bessel equation

x2y′′(x) + xy′(x) − (x2 + ν2)y(x) = 0

has an irregular singular point at x = ∞. There are two independent solutions, one
which decays at infinity and one which diverges. We will study the behavior of
the converging one.
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By using the method of dominant balance (see above exercise) we find that

y(x) ∼ cx−1/2e−x.

We “peel off” the leading behavior by setting

y(x) = x−1/2e−xw(x).

Then,

y′(x) = x−1/2e−x
(
−1

2
x−1w(x) − w(x) + w′(x)

)

y′′(x) = x−1/2e−x
(
−1

2
x−1 − 1

) (
−1

2
x−1w(x) − w(x) + w′(x)

)

+ x−1/2e−x
(
1
2

x−2w(x) − 1
2

x−1w′(x) − w′(x) + w′′(x)
)
.

Substituting we get

x2w′′(x) − 2x2w′(x) +
(

1
4 − ν2

)
w(x) = 0.

At this point we construct an asymptotic series for w(x).

w(x) ∼
∞∑

n=0

anx−n,

and proceed formally. Substituting we get
∞∑

n=0

n(n + 1)anx−n − 2
∞∑

n=0

nanx−n+1 +
(

1
4 − ν2

)
anx−n = 0.

Equating the power of x−n we get

n(n + 1)an − 2(n + 1)an+1 +
(

1
4 − ν2

)
an = 0,

or

an+1 =
(n + 1

2 )2 − ν2

2(n + 1)
an.

Recall that we proved in the previous section that if w(x) assumes a power series
expansion, then it is given by the above procedure. We will now prove that this is
indeed the case. Setting λ = 1

4 − ν2 we have

w′′(x) − 2w′(x) +
λ

x2 w(x) = 0,
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and we want to show that there exists a solution that can be expanded about infin-
ity. We first write this equation as an integral equation. First,

(e−2xw′(x))′ +
λe−2x

x2 w(x) = 0,

from which we deduce that

w′(x) = λ
∫ ∞

x

e−2(s−x)

s2 w(s) ds.

Note that we chose the integration constant such that w′(x) → 0 at infinity. One
more integration yields

w(x) = 1 + λ
∫ ∞

x

∫ ∞

t

e−2(s−t)

s2 w(s) dsdt.

Exchanging the order of integration we end up with

w(x) = 1 + λ
∫ ∞

x

∫ s

x

e−2(s−t)

s2 w(s) dtds

= 1 +
λ

2

∫ ∞

x

e−2(s−x) − 1
s2 w(s) ds

We now claim that the solution to this integral equation is bounded for sufficiently
large x. That is, there exist a, B > 0 such that |w(x)| ≤ B for x ≥ a. To show that
we proceed formally and iterate this integral,

w(x) = 1 +
λ

2

∫ ∞

x

K(x, s)
s2 ds +

(λ
2

)2 ∫ ∞

x

∫ ∞

s1

K(x, s1)
s2

1

K(s1, ss)
s2

s
ds + . . . ,

where K(x, s) = e−2(s−x) − 1. Since |K(x, s)| ≤ 1 for x ≥ s, it follows that the k-th
term of this series is bounded by

|Ik| ≤
(λ
2

)n ∫ ∞

x

∫ ∞

s1

. . .

∫ ∞

sn−1

1
s2

1
. . .

1
s2

n
dsn . . . ds1 ≤

(λ
2

)n x−n

n!
,

i.e., the series converges absolutely and is bounded by e−λ/2x. Since we constructed
an absolutely converging series that satisfies an iterative relation satisfied by w(x),
it is indeed the solution.
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Having proved the boundedness of w(x), it remains to show that it has an asymp-
totic expansion. We start with w(x) = 1 + w1(x), and

|w1(x)| =
∣∣∣∣∣
λ

2

∫ ∞

x

K(x, s)
s2 w(s) ds

∣∣∣∣∣ ≤
λ

2
B
∫ ∞

s

ds
s2 =

λ

2x
B,

i.e., w(x)→ 1. Next,

w1(x) =
λ

2

∫ ∞

x

e−2(s−x) − 1
s2 ds +

λ

2

∫ ∞

x

e−2(s−x) − 1
s2 w1(s) ds

= − λ
2x
+
λ

2

∫ ∞

x

e−2(s−x) − 1
s2 w1(s) ds.

Using the bound, |w1(x)| ≤ λB
2x , we get that

∣∣∣∣∣w1(x) +
λ

2x

∣∣∣∣∣ ≤
λ2B

4

∫ ∞

x

ds
s3 =

λ2B
12x2 ,

and so on.
!!!
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Local analysis II: Nonlinear
differential equations

3.1 Spontaneous singularities

For linear equations the situation is that in regions where the coefficients are reg-
ular so is the solution. Singularities of the solution are always associated with a
singularity of the equation. In particular, points of singularity can be predicted
without solving the equation. This is non the case for nonlinear equations, where
singularities can occur “spontaneously” even if the coefficients are regular.

Example: Consider the following linear 

y′(x) +
y(x)
x − 1

= 0 y(0) = 1.

The point x = 1 is a singular regular point and we are not surprised to find that the
solution

y(x) =
1

1 − x
has a pole at this point. If we replace the initial data into y(0) = 2 this does not
change.
Consider in contrast the nonlinear 

y′(x) = y2(x).
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The coefficients are analytic everywhere and yet the solution y(x) = 1/(1 − x) has
a pole at x = 1. If the initial data are changed into y(0) = 2, the location of the
singularity changes,

y(x) =
2

1 − 2x
.

!!!

This example shows that such singularities cannot be predicted by our current
tools. Yet, it is easy to show that if the equation is analytic in the vicinity of the
initial data, then the solution is analytic in some neighborhood of that point. In
principle, one can therefore look for solutions in the form of Taylor series. As
long as the series converges there is no singularity.

Example: Consider the following 

y′(x) =
y2

1 − xy
, y(0) = 1.

Since the coefficients are analytic at the point (0, 1) we expect the Taylor series

y(x) =
∞∑

n=0

anxn, a0 = 1,

to have a non-zero radius of convergence. On the other hand, we do not expect
to be able to find the coefficients (we rarely expect a nonlinear equation to be
solvable).
It turns out that this particular problem is solvable. Substituting the Taylor series
we get 

1 −
∞∑

n=0

anxn+1



∞∑

m=0

mamxm−1 =

∞∑

m=0

∞∑

n=0

anamxn+m,

hence
∞∑

m=0

∞∑

n=0

(1 + m)anamxn+m =

∞∑

m=0

mamxm−1,

which we rewrite as
∞∑

n=0

n∑

k=0

(1 + k)akan−kxn =

∞∑

n=0

(n + 1)an+1xn,
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hence
an+1 =

∑n
k=0(1 + k)akan−k

n + 1
.

We claim that the solution is

an =
(n + 1)n−1

n!
.

Indeed, by induction

∑n
k=0(1 + k)akan−k

n + 1
=

∑n
k=0(1 + k) (k+1)k−1

k!
(n−k+1)n−k−1

(n−k)!

n + 1

=
1

n + 1

n∑

k=0

(k + 1)k(n − k + 1)n−k−1

k!(n − k)!

=
1

(n + 1)!

n∑

k=0

(
n
k

)
(k + 1)k(n − k + 1)n−k−1

=
(n + 2)n

(n + 1)!
,

where in the last step we used a binomial identity,
The radius of convergence on this Taylor series is obtained by the standard test,

∣∣∣∣∣
an

an+1

∣∣∣∣∣ =
(n + 1)n−1(n + 1)!

n!(n + 2)n =

(
n + 1
n + 2

)n
=

(
1 +

1
n + 1

)−n

→ 1
e
.

Thus, the solution has a (spontaneous) singularity at a distance of 1/e from the
origin. It must be on the positive real axis since all the coefficients in the series
are positive. This singularity cannot be predicted by an inspection of the equation.
!!!
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Evaluation of integrals

4.1 Motivation

Example: Consider the 

y′′(x) = y(x) y(0) = 1, y′(0) = 0.

If we make a local analysis at the irregular singular point x = ∞ we find that the
solution has two possible behaviors,

y(x) ∼ a ex and y(x) ∼ b e−x.

In the general case, we cannot determine the coefficients when the initial data are
given away from the singular point. This case is of course fully solvable so we
find y(x) = cosh x.
In contrast, suppose we want the behavior at infinity of the solution to the modified
Bessel equation

x2y′(x) + xy′(x) − (x2 + 1)y(x) = 0, y(0) = 1, y(∞) = 0.

We know that this equation has solutions

y1(x) ∼ c1x−1/2ex and y1(x) ∼ c1x−1/2e−x.

Only the decaying solution remains, but we cannot determine its prefactor by the
initial condition at zero. !!!
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In many case, this problem can be remedied by representing the solution to the
differential equation as an integral in which x appears as a parameter. The ad-
vantage is that the initial data are usually built into the integral, thus it remains to
learn how to evaluate such integrals.

Example: Consider the 

y′(x) = xy(x) + 1, y(0) = 0.

Suppose we are interested in the properties of the solution at the point x = ∞. By
the method of dominant balance, we expect 1 . xy, hence

y′(x) ∼ xy(x),

which we integrate,
y(x) ∼ c ex2/2.

The problem is that we cannot determine the coefficient c.
Alternatively, we can solve the equation directly,

(
e−x2/2y(x)

)′
= e−x2/2,

hence,

y(x) = ex2/2
∫ x

0
e−t2/2 dt,

and we know that the prefactor converges as x→ ∞ to
√
π/2. !!!

Example: Consider now a third-order equation

x y′′′(x) + 2y(x) = 0, y(0) = 1, y(∞) = 0.

The point x = ∞ is an irregular singular point. Setting y(x) = eS (x) we get

x
(
[S ′(x)]3 + 3S ′′(x)S ′(x) + S ′′′(x)

)
+ 2 = 0.

As usual, we assume that S ′′′(x) . [S ′(x)]3 as well as S ′′(x) . [S ′(x)]2, then

[S ′(x)]3 ∼ −2
x
.
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and S ′(x) ∼ −ωi(x/2)−1/3, which leads to

S (x) ∼ −3ωi(x/2)2/3,

where ωi are the three roots of unity. Since the solution has to decay at infinity we
remain with only ω = 1, after which we substitute

S (x) = −3(x/2)2/3 +C(x),

where C′(x) . (x/2)−1/3. We get
(
−(x/2)−1/3 +C′(x)

)3
+3
(
1
6

(x/2)−4/3 +C′′(x)
) (
−(x/2)−1/3 +C′(x)

)
+

(
−1

9
(x/2)−7/3 +C′′′(x)

)
= −2

x
.

Retaining only the highest order terms this simplifies into

3(−(x/2)−1/3)2C′(x) ∼ 1
2

(x/2)−5/3, or C′(x) ∼ 1
3x
.

Thus,
y(x) ∼ c x1/3e−3(x/2)2/3

.

The question again is how to find the coefficient.
We note however that the solution has an integral representation,

y(x) =
∫ ∞

0
exp
(
−t − x√

t

)
dt.

Indeed,

xy′′′(x) = −
∫ ∞

0

x
t3/2 exp

(
−t − x√

t

)
dt,

while upon integration by parts we see that the equation is satisfied. The boundary
condition at x = 0 is also satisfied, i.e., this is an integral representation of the
solution.

!!!

4.2 Some examples

Example: Consider the evaluation of the integral

I(x) =
∫ 2

0
cos[(xt2 + x2t)1/3] dt.
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It is hard to evaluate, but clearly as x→ 0 we have I(x) ∼ 2. !!!

More generally, we will be concerned with the evaluation of integrals of the form

I(x) =
∫ b

a
f (x, t) dt

as x→ x0.

Proposition 4.1 If
f (x, t) ∼ f0(t) x→ x0,

uniformly for all t ∈ [a, b], which means that

lim
x→x0

f (x, t)
f0(t)

= 1 uniformly in t,

then

I(x) ∼
∫ b

a
f0(t) dt,

provided that the right hand side is finite and non-zero.

Proof : It is given that for every ε > 0 there exists a δ > 0 such that

| f (x, t) − f0(t)| ≤ ε | f0(t)| |x − x0| ≤ δ.

Then, ∣∣∣∣∣∣I(x) −
∫ b

a
f0(t) dt

∣∣∣∣∣∣ ≤ ε
∫ b

a
| f0(t)| dt.

If the integral of f0 is finite and does not vanish, there then exists a constant C
such that ∣∣∣∣∣∣I(x) −

∫ b

a
f0(t) dt

∣∣∣∣∣∣ ≤ Cε
∣∣∣∣∣∣

∫ b

a
f0(t) dt

∣∣∣∣∣∣ ,

where

C =

∫ b
a | f0(t)| dt
∣∣∣∣
∫ b

a f0(t) dt
∣∣∣∣
.

(Indeed, we need the numerator to be finite and the denominator to be non-zero.)
!
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More generally, if

f (t, x) ∼
∞∑

n=0

an(t)(x − x0)αn,

uniformly on t ∈ [a, b], then

∫ b

a
f (x, t) dt ∼

∞∑

n=0

(x − x0)αn
∫ b

a
an(t) dt,

provided that all the terms on the right hand side are finite and do not vanish.

" Exercise 4.1 Prove that if

f (t, x) ∼
∞∑

n=0

an(t)(x − x0)αn,

uniformly on t ∈ [a, b], then

∫ b

a
f (x, t) dt ∼

∞∑

n=0

(x − x0)αn
∫ b

a
an(t) dt,

provided that all the terms on the right hand side are finite and do not vanish.

Example: Consider the integral

I(x) =
∫ 1

0

sin xt
t

dt

as x→ 0. Since

sin xt ∼
∞∑

n=0

(−1)n+1 (tx)2n+1

(2n + 1)!

uniformly on t ∈ [0, 1], then

I(x) ∼
∞∑

n=0

(−1)n+1x2n+1

(2n + 1)!

∫ 1

0
t2n dt.

!!!



78 Chapter 4

Example: Let

I(x) =
∫ ∞

x
e−t4 dt.

The expansion

e−t4 ∼
∞∑

n=0

(−1)nt4n

n!
,

yield a divergent series. The solution is to write

I(x) =
∫ ∞

0
e−t4 dt −

∫ x

0
e−t4 dt.

The first integral is
∫ ∞

0
e−t4 dt =

1
4

∫ ∞

0
e−s s−3/4 ds =

1
4
Γ

(
1
4

)
= Γ

(
5
4

)
.

For the rest we can use term by term integration,

I(x) = Γ
(
5
4

)
−
∞∑

n=0

(−1)nx4n+1

4 (n + 1)!

!!!

" Exercise 4.2 Find the leading behavior as x→ 0+ of the following integrals:

#
∫ 1

x cos xt.

$
∫ 1

0 e−x/t dt.

" Exercise 4.3 Find the full asymptotic behavior as x→ 0+ of the integral
∫ 1

0

e−t

1 + x2t3 dt.

4.3 Integration by parts

Integration by parts is a standard technique for finding asymptotic expansions of
integrals.
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Example: Suppose that f (x) is infinitely differentiable near x = 0, then its asymp-
totic series at x = 0 is Taylor’s series. This can be shown as follows:

f (x) = f (0) +
∫ x

0
f ′(t) dt = f (0) +

∫ x

0
(x − t)0 f ′(t) dt.

Integrating by parts,

f (x) = f (x) + x f ′(x) +
∫ x

0
(t − x) f ′′(t) dt.

Repeating it once more,

f (x) = f (x) + x f ′(x) +
1
2

x f ′′(x) +
1
2

∫ x

0
(t − x)2 f ′′′(t) dt,

and so on. If the remainders exists for sufficiently small x, then we develop an
asymptotic series. !!!

Example: Consider again the integral

I(x) =
∫ ∞

x
e−t4 dt

as x→ ∞. We saw already that

I(x) = Γ
(
5
4

)
−
∞∑

n=0

(−1)nx4n+1

4 (n + 1)!
.

This is an exact solution by tedious to evaluate for large x.
An asymptotic series for large x needs to be in powers of 1/x. We use for that
integration by parts,

I(x) =
∫ ∞

x

−4t3

−4t3 e−t4 dt =
1
−4t3 e−t4

∣∣∣∣∣
∞

x
−
∫ ∞

x

3
4t4 e−t4 dt

=
1

4x3 e−x4
+

∫ ∞

x

−3t3

4t7 e−t4 dt,

and so on. We can systematize the procedure as follows: define

In(x) =
∫ ∞

x

1
t4n e−t4 dt.



80 Chapter 4

We need I0(x) and we note that

In(x) =
∫ ∞

x

−4t3

−4t4n+3 e−t4 dt =
e−x4

4x4n+3−
∫ ∞

x

(4n + 3)
4t4n+4 e−t4 dt =

e−x4

4x4n+3−
(
n +

3
4

)
In+1(x).

Thus,

I(x) =
e−x4

4x3

(
1 − 3

4x4 +
3 · 7
42x8 −

3 · 7 · 11
43x12 + . . .

)
,

which is the asymptotic series,

I(x) ∼ e−x4

4x3

∞∑

n=0

(−1)n 3 · 7 · · · · · (4n − 1)
(4x4)n .

!!!

Example: Consider now the following example,

I(x) =
∫ x

0
t−1/2e−t dt

as x→ ∞. Naive integration by parts is problematic because

− t−1/2e−t
∣∣∣x
0 −

1
2

∫ x

0
t−3/2e−t dt

is a difference of two infinite terms. The way around is to express the integral as
a difference,

I(x) =
∫ ∞

0
t−1/2e−t dt −

∫ ∞

x
t−1/2e−t dt.

The first integral is Γ(1
2 ) =

√
π. Now we can integrate by parts. !!!

" Exercise 4.4 Find the leading behavior of
∫ ∞

x
e−atb dt

as x→ ∞, with a, b > 0.
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Laplace integrals A Laplace integral has the form

I(x) =
∫ b

a
f (t)exφ(t) dt.

To obtain the behavior as x→ ∞,

I(x) =
∫ b

a
f (t)

xφ′(t)
xφ′(t)

exφ(t) dt =
f (t)

xφ′(t)
exφ(t)
∣∣∣∣∣
b

a
− 1

x

∫ b

a

d
dt

(
f (t)
φ′(t)

)
exφ(t) dt.

It is assumed that this new integral exists. If the second terms is much smaller
than the first, then

I(x) ∼ f (b)
xφ′(b)

exφ(b) − f (a)
xφ′(a)

exφ(a).

We will see more on Laplace integrals shortly.

Failure of integration by parts Consider the integral

I(x) =
∫ ∞

0
e−xt2 dt.

We know the exact value I = 1
2

√
π/x. Since it is not an integral power of 1/x we

expect an asymptotic expansion to fail. It is a Laplace integral with φ(t) = −t2 and
f (t) = 1. It is easy to see that the above procedure will fail. Already in the first
step

I(x) =
∫ ∞

0

−2xt
−2xt

e−xt2 dt =
1
−2xt

e−xt2
∣∣∣∣∣
∞

0
−
∫ ∞

0

1
2xt2 e−xt2 dt.

Both terms diverge.

4.4 Laplace’s method

Consider the Laplace integral

I(x) =
∫ b

a
f (t)exφ(t) dt,

in the limit where x→ ∞. It is assumed that both f and φ are continuous. Suppose
that φ(t) attains a unique maximum at a point c ∈ [a, b]. Then, for large x we
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expect the integral to be dominated by contributions in the vicinity of the point c.
Assume momentarily that c ∈ (a, b) and f (c) ! 0. We claim that for every ε > 0
such that

(c − ε, c + ε) ⊆ (a, b),

we have
I(x) ∼ I(x; ε),

where

I(x; ε) =
∫ c+ε

c−ε
f (t)exφ(t) dt,

and the asymptotic equivalence is to all orders of 1/x. I.e., the two functions have
the same asymptotic expansion independently of ε! Why is this true? Because

|I(x) − I(x; ε)|
|I(x; ε)| ≤

∫ c−ε
a | f (t)|exφ(t) dt +

∫ b
c+ε | f (t)|exφ(t) dt

∣∣∣∣
∫ c+ε

c−ε f (t)exφ(t) dt
∣∣∣∣

.

Since c is a unique maximum, we can find a δ <ε and numbers M and η > 0 such
that

φ(t) > M for |t − c) < δ
φ(t) < M − η for |t − c| > ε.

If furthermore,

β = max
t∈[a,b]
| f (t)| and γ = min

|t−c|<ε
| f (t)| ! 0,

then
|I(x) − I(x; ε)|
|I(x; ε)| ≤ (b − a)βex(M−η)

δγexM =
(b − a)β
δγ

e−ηx.

This indeed tends to zero faster than any power of x, hence the difference between
I(x) and I(x; ε) is subdominant.
The question is what did we gain by restricting the range of integration. The
answer is that this may allow us to perform a convergent Taylor expansion.

Example: Consider the case

I(x) =
∫ 10

0

e−xt

1 + t
dt.
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We claim that for every ε > 0,

I(x) ∼ I(x; ε) =
∫ ε

0

e−xt

1 + t
dt.

The reason is that
I(x) − I(x; ε)

I(x)
=

∫ 10
ε

e−xt

1+t dt
∫ 10

0
e−xt

1+t dt
.

This is a ratio of positive terms, which we can bound by

∫ 10
ε

e−xt

1+t dt
∫ ε/2

0
e−xt

1+t dt
≤
∫ 10
ε

e−xε

1+0 dt
∫ ε/2

0
e−xε/2

1+10 dt
≤ 10e−εx
ε

22e−εx/2
,

which is subdominant.
What did we gain. By taking ε < 1 we can write

I(x; ε) =
∫ ε

0

∞∑

n=0

(−t)ne−xtdt.

We cannot exchange summation and integration as functions, but we are allowed
to do it in the sense of asympotic series:

I(x; ε) ∼
∞∑

n=0

∫ ε

0
(−t)ne−xtdt.

It remains to evaluate these integrals. This is hard, but we can replace these inte-
grals by integrals that are asymptotically equivalent. As bizarre as this may seem,
we claim that ∫ ε

0
(−t)ne−xtdt ∼

∫ ∞

0
(−t)ne−xtdt

to all orders. The latter integral is easily evaluated yielding

I(x) ∼
∞∑

n=0

(−1)n n!
xn+1 .

!!!
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Lemma 4.1 (Watson) Let

I(x) =
∫ b

0
f (t)e−xt dt.

If f is continuous on [0, b] and

f (t) ∼
∞∑

n=0

antα+βn, t → 0+,

with α > −1 and β > 0, then

I(x) ∼
∞∑

n=0

an Γ(α + βn + 1)
xα+βn+1 .

" Exercise 4.5 Prove Watson’s lemma.


