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Econometrica, Vol. 54, No. 6 (November, 1986), 1271-1318

VALUES OF MARKETS WITH SATIATION OR
FIXED PRICES

By ROBERT J. AUMANN AND JacQues H. Drize'

To Gerard Debreu on his sixty fifth birthday, with admiration and affection.

In markets with satiation, competitive equilibria may fail to exist, because no matter
what the prices are, the satiation points of some traders may be in the interiors of their
budget sets. Thus some traders will be using less than the maximum budget available to
them, creating a total budget excess. This suggests a revision of the equilibrium concept
that allows the budget excess to be divided among all the traders, as dividends. Each
trader’s budget is then the sum of his dividend and the market value of his endowment.
A given system of dividends and prices defines a dividend equilibrium if it generates equal
supply and demand.

This in itself is not satisfactory because it is too broad: Every Pareto optimal allocation
is sustained by some system of dividends and prices. However, the Shapley value yields
much more specific information. We prove that, when there are many individually insig-
nificant agents, every Shapley value allocation is generated by a system of dividends and
prices in which all dividends are nonnegative and depend only on the net trade sets of the
agents, not on their utilities. Moreover, the dependence is monotonic; the larger the net
trade set, the higher the dividend.

The same result holds for markets with fixed prices, which can be analyzed formally as
a special case of markets with satiation.

On a more technical level, our analysis has some unusual features. We use a finite-type
asymptotic model, rather than a nonatomic continuum. Surprisingly, the results are qualita-
tively different. (The continuum is too rough a tool for our problem, and leads to inconclus-
ive results.) Also, small coalitions play a critical role in our analysis. (We are led to
equations in which the first-order terms cancel; the second-order terms, which take events
of small probability into account, become decisive.)

KeywoRrbDs: Coupons equilibrium, exchange economy, fixed prices, game theory,
satiation, Shapley value, unemployment.

1. INTRODUCTION

PURE EXCHANGE ECONOMIES, or markets, in which the preferences satisfy condi-
tions of monotonicity and nonsatiation have been studied thoroughly in the past.
In this paper we investigate the opposite situation: the utility functions need not
be monotonic, and do have absolute maxima. The resulting theory has significant
new qualitative features.

This study is not motivated by an abstract desire to remove as many assumptions
as possible. It originated in the analysis of fixed price economies, which have
been used extensively in the past decade’ to model market failures such as
unemployment. In such economies, all trade is restricted to take place at

! The work of R. J. Aumann was supported by CORE at Université Catholique de Louvain, by
the Institute for Advanced Studies at the Hebrew University of Jerusalem, and by the Institute for
Mathematical Studies in the Social Sciences (Economics) at Stanford University under a grant from
the U.S. National Science Foundation. This work is part of the Projet d’Action Concertée on
“Applications of Economic Decision Theory” sponsored by the Belgian Government under Contract
No. 80/85-12. We are grateful to Jean-Frangois Mertens for carefully reading the manuscript and
suggesting significant improvements.

% See, e.g., the survey by Drazen (1980).
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1272 R. J. AUMANN AND J. H. DREZE

exogenously fixed prices p. In effect, this limits each trader ¢ to his fixed price
hyperplane, i.e. the set of all bundles x in his original consumption set for which
p-x=p- e(t), where e(t) is t’s endowment; under the usual assumptions, t’s
utility has an absolute maximum on this set, and is not monotonic there.?

In general, price rigidities prevent a market from “clearing” (i.e., supply from
matching demand); various quantity constraints or rationing schemes have been
proposed to bring the situation back into equilibrium. In the more traditional
markets, without fixed prices, there is a close relationship between competitive
equilibria and game theoretic concepts such as the core* and the Shapley value;’
thus one may expect game theory also to be helpful in suggesting equilibria for
fixed price economies. It turns out that the core is not well suited to this purpose
(see Section 11). But we shall find that the Shapley value allocations in fixed
price economies correspond to a natural extension of competitive equilibria,
closely related to the concept of coupons equilibrium defined by Dreze and
Miiller (1980).

To describe our results, let us return to the more general context of markets
with satiation. The reason that competitive equilibria may fail to exist in such
markets is that no matter what the prices® are, the satiation points of some traders
may be in the interiors of their budget sets.” Thus some traders will be using less
than the maximum budget available to them, creating a total budget excess. This
suggests a revision of the equilibrium concept that allows the budget excess to
be divided among all the traders, say as dividends: Each trader’s budget is then
the sum of his dividend and the market value of his endowment at the market
prices. A given system of dividends and prices is in equilibrium if it generates
equal supply and demand.

This in itself is not satisfactory because it is too broad: Dréze and Miiller
showed that the fundamental proposition of welfare economics continues to
apply here, i.e., that every Pareto optimal allocation is generated by some system
of dividends and prices. However, the Shapley value yields much more specific
information. Our main result says that when there are many individually insig-
nificant agents, every Shapley value allocation is generated by a system of
dividends and prices in which all dividends are nonnegative and depend only
on the net trade sets® of the agents, not on their utilities. Thus the income allocated
to each agent—over and above the market value of his endowment—depends
only on his trading opportunities; on what he is able to offer, not on what he
wants to offer. Moreover, the dependence is monotonic; the larger the net trade
set, the higher the dividend.

3 Indeed, monotonicity is meaningless in this context, since there is no natural partial order on
the fixed price hyperplane.

4Cf., e.g., Hildenbrand (1982).

5Cf., e.g., Aumann (1975) or Hart (1977b).

6 We are here discussing endogenous market prices g, which should not be confused with the
exogenous prices p in fixed price economies. See Section 10.

7See Section 3 for an example.

8 The net trade set of agent ¢ is C(t)—e(t), where C(t) is his consumption set, and e(t) his
endowment.
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Two brief illustrations may clarify this point. When a bond issue is over-
subscribed, bonds are normally rationed to the subscribers in proportion to the
amount requested. Under complete information, this procedure has no equili-
brium; the subscribers will always request more than they really want, this will
be taken into account by the other subscribers, and so on. But in the rationing
scheme implied by the Shapley value, the maximum that a subscriber may buy
is based not on what he requests, which is subject to manipulation, but on what
he could buy; on his net worth, say.

The second illustration deals with unemployment in a fixed wage context.
Various rationing schemes that involve cutting down on working hours have been
proposed. In the scheme suggested by the Shapley value, the maximum work
week for any particular worker would depend on how much time he has. Thus
a youngster who must by law attend school, or a kidney patient undergoing
time-consuming dialysis, would be assigned a quota smaller than the average,
even though he might be able to fill the average quota.

Economic models have two basic components, the objective and the subjective.
The first consists of the physical opportunities or abilities of the agents: resources,
technologies, constraints on consumption, and so on. The second consists of the
utilities or preferences. In a market, the objective component is completely
described by the net trade sets of the agents. Outcomes of economic models
usually depend on both components, often quite intricately.

Competitive equilibria “decouple” the two components. Each agent optimizes
over an endogenous choice set, his budget set; in equilibrium, the choices mesh,
they “clear” the market. The optimization, of course, is subjective; it depehds
on the agent’s preferences. But the choice set itself does not; it depends only on
his net trade set, i.e., on purely objective factors. Our result implies that the
dividend equilibria to which the Shapley value leads also decouple in this way.

On a more technical level, our analysis has several unusual features. Though
we are dealing with a large number of individually insignificant agents, we do
not model it with a nonatomic continuum; rather, we use a finite-type asymptotic
model of the Debreu and Scarf (1963) genre. Asymptotic and continuous results
may differ in various ways,” but usually, the results are qualitatively similar. Here
they are not. The continuum is too rough a tool; it obliterates the fine structure
of the problem, and so leads to inconclusive results. The matter will be discussed
further in Section 11.2.

Another unusual feature, related to the first, is the critical importance of small
coalitions. The Shapley value of a player is the expectation of his ‘““contribution
to Society” when the players are ordered at random; the probability that he is
second or third in the order is small, and is usually ignored. Here, we are led to
equations in which the first-order terms cancel, and the second-order terms, which
take events of small probability into account, become decisive. When there is an
excess supply of labor, the length of the work week allocated to a given worker

° E.g. in ease and transparency of the formulation, in the generality of the results, in the methods
of proof, and in the discussion of errors and rates of convergence. Compare Aumann and Shapley
(1974, Section 34, 208-210).
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depends on his expected contribution when he arrives on the scene; unless he is
very early, this is negligible.

The plan of the paper is as follows. In Sections 2-5, we present the model and
state our main result; it is proved in Sections 7-9. Section 10 contains the
application to fixed prices, and Section 11 is devoted to a discussion of some
alternative approaches. In Section 12 we state some additional results of a more
quantitative nature, including properties of the dividends that go beyond mere
monotonicity. These results enable the calculation of some numerical examples
in Section 13. Finally, Section 14 discusses open problems. Appendices A and
B establish two mathematical propositions that are needed for the proof of the
main result. Appendix C contains the proofs of the results stated in Section 12.

Since the proof of the main theorem is rather complex, we offer three aids to
its understanding. Section 6 contains a summary of the underlying economic
ideas. Section 9.2 gives a brief outline of the mathematical ideas. Finally, the
flow charts in Appendix D provide an overview of the relationships between the
various lemmas and propositions constituting the proof.

2. MARKETS WITH SATIATION
A (finite) market with satiation is defined by:
(2.1) a finite set T (the trader space);
(2.2) a positive integer d (the number of commodities);

(2.3) for each trader f, a compact convex subset X, of R? whose interior is
nonempty and contains the origin 0 (¢’s net trade set); and

(2.4) for each trader ¢, a concave continuous function u, on X, (¢’s utility
function).

Because X, is compact, the continuous function 4, must attain its maximum,;
denote by B, the set of all points in X, at which the maximum is attained (the
satiation or bliss set of trader t), and note that it is compact and convex. To
avoid trivialities, assume 0¢ B,, i.e., the initial bundle never satiates.

A few matters of terminology and notation: the inner product of two vectors
q and x is denoted g - x; “w.r.t.” means “‘with respect to” and ‘““w.l.o.g.”” means
“without loss of generality”’; R*, RX, and R%, denote, respectively, Euclidean
k-space, its (closed) nonnegative orthant, and its (open) strictly positive orthant;
int and bd denote ‘‘interior” and ‘“boundary” respectively.

3. DIVIDEND EQUILIBRIA

An allocation in a market with satiation is a vector x =(x,),;.r, where x, is a
feasible net trade for trader ¢ (i.e., x,€ X,), and }.,_ x, =0. A price vector is any
member of R? other than 0; since utilities need not be monotonic, one cannot
confine oneself to nonnegative prices. The classical notion of competitive equili-
brium is defined for markets with satiation just as it is for ordinary markets: it
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consists of a price vector g and an allocation x such that for all ¢, x, maximizes
u, over the budget set {x € X,: q- x<0}.

Competitive equilibria do not in general exist in markets with satiation. Con-
sider, for example,'® a market with two agents, 1 and 2, and one commodity;
suppose that the satiation points are on opposite sides of the origin, e.g., u;(x) =
—(x—1)%, uy(x)=—(x+2)% W.lo.g. the price vector is £1; in either case one
agent receives 0 and the other his satiation point, and these do not sum to 0.

The example is not due to any pathologies associated with the low dimension."!
Consider a market with two commodities and three agents having the same net
trade set, and with indifference maps as illustrated in Figure 1. No matter what
the price vector is, the satiation point of at least one trader must be in the interior
of the budget set,” so that his utility will be maximized there over the budget

@
&/

FIGURE 1

1 This example appears in Dréze and Miiller (1980).
' Such as the disconnectedness of the set of price vectors.
12 This holds as long as 0 is in the interior of the convex hull of the three satiation points.
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set; whereas the utilities of the remaining agents will be maximized on the budget
line. The resulting three points cannot sum to 0.

What is happening is that at least one trader creates a surplus by refusing to
make use of his entire budget; but the definition of competitive equilibrium does
not permit the other agents to use this surplus, so an imbalance results."

To overcome this problem, define a dividend to be a vector ¢ =(¢,),c + Whose
components ¢, are real numbers. A dividend equilibrium consists of a price vector
g, a dividend ¢, and an allocation x, such that for all ¢, x, maximizes u, over the
dividend budget set

{xeX;:q-x<c}.

A dividend may be thought of as a cash allowance added to the budget of
each trader; its function is to distribute among the unsatiated agents the surplus
created by the failure of the satiated agents to use their entire budget.

A dividend c is nonnegative if all the c, are nonnegative; monotonic in the net
trade sets, if X, > X, implies ¢, = ¢,. Occasionally, the word dividend will also be
used for a component c, of ¢

4. VALUE ALLOCATIONS

A comparison vector on the trader space T is a vector A =(A,),. 1, Where each
A, is a positive real number. For each comparison vector A and coalition' S, define

4.1) v (S) = Max { Y Au(x,): Y x,=0and x, € X, for all ¢t in S}.
teS teS

In words, v, (S) is the maximum total utility that S can get for itself by redistribut-

ing its endowment among its members, when the utilities u, are weighted by the

A;. A value allocation (in a given market with satiation) is an allocation x for

which there exists a comparison vector A such that for all traders ¢,

(4.2) (dva)(t) = Au(x,),

where ¢v, denotes the Shapley value of the game v,; we say that A and x are
associated with each other. (Recall that

(43)  (dn)(1)=E(n(Su1)—n(S)),

where E denotes ‘“‘expectation”, and S is the set of traders preceding ¢ in a
random order on all traders."’)

At a value allocation, the weighted utility each player receives is equal to his
Shapley value in the game v,. In other words, if transfers of utility are permitted

B If free disposal were permitted, the example would go away; but this is not a reasonable
assumption in the absence of monotonicity. Moreover, “disposal” is not really possible in the
fixed-price application (Section 10).

% A coalition is a subset of T.

15 Shapley’s definition (1953) of ¢ is in terms of a set of axioms, from which (4.3) is derived. See
Roth (1977) for an interesting discussion of Shapley’s axioms.
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with exchange rates A,, then the Shapley value of the resulting game is achieved,
without transfers of utility, at the allocation x. Compare Shapley (1969) and
Aumann (1975).

5. THE MAIN THEOREM

Let M' be a market with satiation; denote the traders by 1, ..., k, the utility
functions by u,, ..., u, the net trade sets by X,, ..., Xi, and the satiation sets
by B, ..., Bi. The n-fold replication M" of M" is the market with satiation in
which there are nk traders, n of each of the k “types” in M'; i.e. the trader space
T" in M" is the union of k disjoint sets T7,..., Tk (the types), such that u, = u;
and X, = X; whenever te T;. We assume as follows:

ELBow RooM AssumptioN: For each J<{1,..., k},

(5.1) OEbd[Z B+ Y X,.]‘

ieJ igJ
In words, for any coalition J in M, if it is at all possible simultaneously to
satiate all agents in J, then this can also be done “with room to spare,” i.e. when
all other agents are restricted to the interiors of their net trade sets.'

This assumption holds generically in a certain very natural sense. The left side
of (5.1) represents the total endowment of the market, whereas its right side is
the boundary of a convex set in R% hence at most (d —1)-dimensional. Since
there are only finitely many J, the assumption holds for all but a (d-—
1)-dimensional set of total endowments. A formal genericity statement can be
made in terms of translates of the X;; translating the net trade set is equivalent
to varying the endowment. For details, see Section 11.3.

Note also that since the J’s are sets of types, the number of conditions (5.1)
is fixed at 2¥ and does not vary with n.

Call an allocation £ in M" equal treatment if it assigns the same net trade to
traders of the same type. Such an allocation £ defines a k-tuple x of net trades,
one for each type; x is an allocation in M', which is said to correspond to X.

MAIN THEOREM: For each n, let x™ be an allocation in the unreplicated market
M, corresponding to an equal treatment value allocation in the n-fold replication
M". Let x* be a limit point'’ of {x"}. Then there is a nonnegative dividend c that
is monotonic in the net trade sets, and a price vector g, such that (g, ¢, x) is a
dividend equilibrium in M".

From the monotonicity it follows that the dividends are determined by the net
trade sets, i.e., X; =X, implies c¢;=c;. Thus, the theorem says that all value
allocations in large markets with satiation approximate dividend equilibrium

16 See Section 10 for an interpretation in the fixed price case.
17 Limit of a subsequence.
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allocations, where the dividends depend only on the net trade sets, and monotoni-
cally so.'® In particular, call a dividend equilibrium (g, ¢, x) uniform" if all the
¢, are the same. Then we have the following:

COROLLARY 5.3: Under the conditions of the theorem, assume that all traders
have the same net trade set. Then (g, ¢, x*) is a uniform dividend equilibrium.

The following existence result, for which (5.1) is not needed, gives substance
to the main theorem:

ProrosITION 5.4: For every n, there is an equal treatment value allocation in
the n-fold replication M".

Further results will be stated in Section 12.

6. AN INFORMAL DEMONSTRATION OF THE MAIN THEOREM

Let A"=(AY,..., A}) be a comparison vector associated”® with x". Normalize
A" so that the sum of its coordinates is 1. For simplicity,”' assume for each i that
x? and A} converge as n-> o0; that each of the x| as well as their limit x; is
interior to the net trade set X;; and that the utility function u; is strictly convex
and continuously differentiable on X.

In the classical context of monotonicity and nonsatiation, A; tends to a positive
limit for all types i (Champsaur, 1975). But as we shall see below, in our context
some of the A} may tend to 0. This is the crucial difference between the two
contexts, and it is this that leads to the positive dividends.

The situation may in fact be quite complicated; there may be differences in
order of magnitude even between those A} that tend to 0. In this section, though,
we will assume for simplicity that those A} that do tend to 0 all have the same
order of magnitude.?® If there are such types, they are called lightweight, the
others heavyweight.?

By definition, the allocation x" is optimal®* for the all-trader set T". This
implies that all the (weighted) utility gradients A]u}(x}) are equal; otherwise

18 Of course, the dividends are endogenously determined by all the data of the market, including
all the utilities. Yet, in any given market, traders with the same net trade set have the same dividend.

19 This concept is due to Dréze and Miiller (1980), who showed, using fixed point methods, that
uniform dividend equilibria always exist. They worked in a fixed price context, using ‘“‘uniform
coupons equilibrium” for what we call “uniform dividend equilibrium.”

20 More precisely, A" is a k-dimensional vector corresponding to an nk-dlmensmnal equal treatment
comparison vector X" agsociated with the equal treatment allocation £" corresponding to x". There
must always be such a A" cf. footnote 33.

2 Use of the phrase “for simplicity” means that the restriction involved is for purposes of the
informal demonstration in this section only, and is not needed for the rigorous treatment in the
ensuing sections.

22 More precisely, lim,,, A 7/A} exists and is positive whenever both A} and A7 tend to 0.

23 The formal definition of “llghtwelght” in Section 9 is slightly different, but ylelds the same result.

24 An allocation is called optimal for a coalition S if it achieves the maximum total utility for S
when the utilities ; are multiplied by the weights A,
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transfers could lead to gains in total utility. Denote the common value of all
these gradients by q"; thus

(6.1)  Afui(xi)=Ajui(x))=q"

for all i and j. If we let n> o0 and set A :=lim, o A}, g7 =1lim,.» q", we get
(62)  ATUI(xP) = ATU(xT) = 4.

Our demonstration is based on (4.3), which says that the Shapley value of a
given trader ¢ is his expected contribution to a randomly chosen coalition; more
precisely, to the coalition S of traders before ¢ in a randomly chosen order on
all traders.

If S is large, it is very likely to be a good sample of all the traders, i.e. to have
approximately equal numbers of traders of each type. The allocation that is
optimal for S is then approximately the same as the allocation x" that is optimal
for the all-trader coalition T".

Adding ¢ to S will not change this optimal allocation by much; each trader
will be allocated approximately the same net trade as before. In particular, if ¢
is of type i, he will be allocated approximately x;. Since all the net trades must
sum to 0, the net trade of ¢ must somehow be divided among all the traders, with
each trader subtracting a small part of x} from his net trade. Since all the utility
gradients are g", the utility of each trader is decreased by q" times that small
part. Altogether, this causes a change in total utility of —g” - x;. To this must be
added the utility A7 u;(x}) that ¢ himself now enjoys. Thus #’s contribution to S
(the worth of Su ¢ less the worth of S) is given approximately by

(6.3)  A=Alu(x()—q"- xi.

All this is valid only when S is reasonably large. Otherwise—e.g. when S has
no more than a fixed finite number of traders (such as one or a hundred or a
thousand)—the reasoning breaks down. Denote by P” the probability that S is
“small,” so that ¢’s contribution is not measured by A. This event is perhaps not
very well defined, but in this section we are making no attempt at precision. It
is in any case clear that P" -0 as n- 0o, and that the order of P" is at least 1/n
(obtained already when S has only one trader).

Letting 6 denote the conditional expectation of #’s contribution given that S
is small,>® we conclude that

(6.4) (¢pvrn)(1)=(1—P")A+ P"6.

Note that we are ignoring the probability that S is large but nevertheless not a
good sample of the entire population; this probability is very small indeed, much
smaller than P", and in faci has no influence on the value. Note that 8 is uniformly
bounded; this follows, e.g., from the continuous differentiability of the utilities
u; on the compact sets Xj.

The definition (4.2) of the value stipulates that

(dvan)(1) = ATu(x7).

25 Both 4 and 8 depend on n; we suppress the corresponding superscript to keep our notation as
uncluttered as possible.
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Together with (6.4) and the definition of A, this yields
(6.5)  q" xi=e"(6—A{u(xy)),
where ¢":=P"/(1-P")~>0.

The case in which none of the A} tend to 0 is the simplest, and we dispose of
it first. With strict convexity, the elbow room assumption (5.1) rules out the
possibility of simultaneously satiating all traders, a situation that is in any case
rather uninteresting. Hence u}(x?°) # 0 for at least one i; and since A7 >0 for all
i, it follows from (6.2) that x™ satiates no one, that g® # 0, and that for all i, the
gradient of u; at x} is in the direction of ¢q™. Letting n - o in (6.5), we obtain
q~ - x7 =0; hence the net trade x7° maximizes u; over the budgetset {x € X;: q- x <
0}. Thus x* is an ordinary competitive allocation, and hence trivially part of a
dividend equilibrium that satisfies the appropriate conditions.

Up to now the analysis has been as in the classical context of monotonicity
and nonsatiation, where limits of value allocations are always competitive
(Champsaur, 1975). But as we saw in Section 3, in our context there are situations
in which competitive allocations need not even exist. By the above analysis, then,
there must be some lightweights; of course there must also be heavyweights, since
the sum of the k weights A} is normalized to be 1. This is the case of central
interest in this paper, to which we now turn.

If we take i lightweight in (6.2), we find ¢”=0; hence uj(x{") =0 for heavy-
weight j, and hence x™ satiates all heavyweights. Suppose now that ¢ is a
lightweight trader of type i. Since ¢ =0, letting n >0 in (6.5) as before would
simply yield 0=0. For something more informative, we must look at the fine
structure, at the second order effects. This is done by dividing (6.5) by |q"||,
which, like ¢", tends to 0 as n - co.

Assume for simplicity that ¢"/ | ¢"|| actually tends to a limit g; note that ||q|| = 1.
We shall see below that #’s expected contribution & to small coalitions is of larger
order of magnitude than the term A7u;(x{) on the right side of (6.5). Hence
dividing (6.5) by ||g"| and letting n - oo, we find
(6.6) q-x;=lim,. (¢"/||q"])®=: ¢;
the limit exists on the right because it exists on the left.

By definition, q" is proportional to the unweighted utility gradient u}(x7);
therefore its direction q"/||q"| is equal to the direction of uj(x}). Letting n-> oo,
we deduce that g is the direction of u}(x;’) whenever x;° does not satiate . In
that case, therefore, (6.6) says that x;° maximizes t’s utility over the dividend
budget set defined by prices g and dividend ¢;. Of course, when x;° does satiate
t, his utility is maximized globally, and a fortiori over his dividend budget set.

For lightweight i, it remains therefore only to show that ¢; depends monotoni-
cally on the net trade set X;, and in particular is independent of the utility u;.
To see this, let us examine the contribution of ¢ when joining a fixed small
coalition S. This may be divided into three components:

(i) ¢’s own utility after joining;

(ii) the change in the total utility of the lightweight traders in S due to #’s

joining; and
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(iii) the change in the total utility of the heavyweight traders in S due to t’s
joining.

In the first two of these three components, the utilities have weights tending
to 0; in the third they do not. Thus for large n, the contribution of ¢ to himself
and to other lightweights is negligible; the importance of his contribution to S
comes from what he can do to improve the lot of the heavyweights in S. Therefore
he should distribute his resources so as to maximize the heavyweights’ gain in
utility, paying no attention to his own. His ability to do this is limited only by
his net trade set, and has nothing to do with his utility. Moreover, the larger his
net trade set, the more he can do, and this yields the monotonicity.

The reasoning works only when S is a fixed coalition of relatively small size.
In that case the heavyweights in S cannot, in general, all be simultaneously
satiated; since S is small, they will then be a significant distance from satiation.?
When ¢ joins, he brings in resources (not utility!) that could be used significantly
to improve the lot of at least one heavyweight trader, perhaps even to bring that
one all the way to satiation; that would be a good deal more worthwhile than
using the resources for himself or for other lightweight traders, whose utilities
have weights tending to 0. A more even handed distribution of the resources
among the heavyweights would yield still more, but giving it all to one gives us
a lower bound on #’s contribution, and indicates that it is of larger order than A .

If, however, S is large, it is probably a good sample of all agents, and then all
types j will be close to x°; in particular, the heavyweights will already be satiated,
even before ¢ joins. Thus by joining, ¢ cannot improve the heavyweights by much.
The upshot is that no matter how ¢ uses his resources—whether for himself, for
his lightweight colleagues, or for the heavyweights—the increment in total utility
will be the same; in the first two cases the utilities are weighted by small weights
of the order A}, and in the last, the increase in the utility u; is small.

We come finally to the case in which the type i of the additional trader ¢ is
heavyweight. In calculating the contribution 8 to small coalitions, the significant
components are now (i) and (iii), rather than just (iii); component (ii) remains
negligible. Note, though, that on the right side of (6.5) we now have not 8, but
something close to 8 — AT u;(x7). Since AT u;(xY) is the absolute maximum that
t can get, component (i) of & is certainly at least cancelled out, and very likely
more than cancelled out. Thus what is left is at most component (iii). The rest
of the argument is as before, with (6.6) modified to read:*’

(6.7) q:x;¥s hjg (e"/llq™ ) [component (iii) of §]=: ¢;.

26 In principle, the equality of marginal utilities expressed by (6.1) should still hold when x] and
x} are replaced by y! and y}, where y" is optimal for an arbitrary (fixed) S. In fact, when S is small
and n large, y} is very likely to be on the boundary of X;, so that we have a corner situation, in
which marginal utilities need not be equal. We therefore cannot deduce that y; is close to satiation
for heavyweight j, and indeed it will usually not be.

%" For technical reasons, the definition of the dividend c; for heavyweight types i that we use in
Section 9 is a little different from (6.7). Since x{° is generally in the interior of the dividend budget
set when i is heavyweight, there is sometimes a little leeway in defining the dividend. Of course, if
X; = X; for some lightweight j, then we must have ¢; = ¢;, so the leeway disappears.
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Since i is heavyweight, x7° satiates; hence we must only show that it satisfies the
budget inequality, which (6.7) indeed shows.

We end with a word of caution. The argument in this section is meant only to
be indicative, and cannot easily be made rigorous. The difficulties we will encoun-
ter in the rigorous treatment below are intrinsic; they are not due to the generality
of the treatment. Assuming differentiability, strict concavity, and so on enabled
a simplified presentation in this section, but it would not help appreciably in the
treatment below.

7. THE EXISTENCE PROOF

In this section we prove Proposition 5.4. Define a generalized comparison vector
on the trader space T of a market with satiation to be a vector A =(A,),cr of
nonnegative real numbers not all of which vanish. A generalized value allocation
is defined like a value allocation, except that the comparison vector is replaced
by a generalized comparison vector.

In 1969, Shapley proved that every game has a nontransferable utility value,
if generalized comparison vectors are admitted. In this proof, the only properties
of the Shapley value that are used are continuity in the comparison weights,
Pareto optimality, and individual rationality (see the theorem on p. 261 of Shapley
(1969)); any function of the comparison vector enjoying these properties will be
called a pseudo-value.

Fix the replication index n. To each generalized comparison vector A on
{1, ..., k}, there corresponds a generalized comparison vector A on T", which
assigns weight X, = A, to each of the n traders ¢ of type i. Define v; on the subsets
of T" as in (4.1). By the symmetry of the Shapley value ¢, traders of the same
type in T" are assigned equal values by ¢v; ; thus ¢v; defines a k-dimensional
vector ¢, whose ith coordinate is (@v3)(¢) for any ¢ of type i in T". Then the
function A - ¢, is a pseudo-value, and so by the theorem of Shapley quoted
above, there is an allocation x in M' and a generalized comparison vector A
such that (,); = Au;(x;) for all i=1,..., k. Now define an allocation £ in M"
by X, =x; whenever ¢ in T" is of type i; then

(7.1) (¢UA)(t)=(wA)i=Aiui(xi)=Xtut(£!),

and so £ is an equal treatment generalized value allocation in M",

It remains only to show that A is in fact a comparison vector, i.e., that A;>0
forall i. W.l.o.g. A;=A,=- - - = A;; hence A, > 0. Suppose A, =0. Let b € B,; since
0 does not satiate, u,(b)> u,(0). Since 0 int X, we have —0be X, for 6>0
sufficiently small. Hence if ¢ is a type k trader and S a coalition in M ™ consisting
of a single type 1 trader, then

(7.2) 0 (SUt)— 0 (S)= A u(0b) + A (—6b) — A uy (0)
= A(u,(6b) —u,(0)) = A, 6(uy(b) — u,(0))>0,

by the concavity of u,. On the other hand, for any S< T" not containing ¢, the



VALUES OF MARKETS 1283

superadditivity of v, yields
(7.3) UA(SUt)_U,\(S)BUA(t)=/\kuk(U)=0.

Combining (7.2) and (7.3) with (4.3), and noting that S is as in (7.2) with positive
probability, we deduce (¢v;)(1)> 0. Since A, = A, (7.1) then yields A, >0 after
all. Hence A;>0 for all i Q.E.D.

8. SOME TOOLS

If f is a concave function on a convex set X in a Euclidean space R define
the superdifferential®® 9f(x) of f at a point x in X by?

(8.1) of(x)={peR*: f(z)—f(x)<p- (z—x) for all ze X}.

Note that 9f(x) is always nonempty, closed, and convex, and that when x is
interior and f is differentiable, it consists of the gradient only.

As in the foregoing, for i=1,..., k, let u; be a concave continuous function
on a compact convex subset®® X; of R% Throughout the rest of the paper, write
Y. for Z:;, or Z;f:l. Define a closed convex cone U in R% by

(82) U={yeR{:0eY y:X};

note that U coincides with R* whenever each X; contains 0. Define a real-valued
function w on U by

(8.3) w(y)=Max {} yu(x;): x; € X; for all i, and ¥, y;x; =0};
the maximum is attained because of the compactness of the X;. Note that

(8.4) w is 1-homogeneous,*' concave, and superadditive
(ie. wy+y)=w(y)+w(y).

The function w plays a vital role in the sequel. The following proposition,
related to the core equivalence theorem, characterizes the superdifferentials of w
in terms of the superdifferentials of ; (which play the role of prices). It is proved
in Appendix A.

PrROPOSITION 8.5: Let y in R, be such that 0cInty y,X;, and let w(y) be
attained at (x,,...,x;). Then peow(y) if and only if there is an element q of
ﬂ:.(:l du;(x;) such that for each i,

(8.6) Pi=ui(x;)—q- x;.

28 Cf. Rockafellar (1970, p. 215), where this notation is used for subdifferentials. The superdifferen-
tial 9f(x) is denoted P(x;f) by Aumann and Shapley (1974, p. 216 f1.).

2 The symbol p in this and the next section bears no relation whatever to the fixed price vector
P in Sections 1 and 10.

30 In this section, the X; need not have interiors, nor contain 0, nor satisfy 0¢ B, nor satisfy (5.1).

31 Homogeneous of degree 1.
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The second tool presented in this section is of an explicitly game-theoretic
nature. As in the foregoing, let T" be a set with nk members (the players), divided
into disjoint subsets T7{,..., Ty (the types) with n members each. For each
Sc< T" let n(S)e R denote the profile of S, i.e.,

@7  m($)=|SnT7,

where | - | denotes cardinality; in words, 7;(S) is the number of type i players in
S. Let ¢ denote the Shapley value.

PROPOSITION 8.8: Let wy, w,, ... be 1-homogeneous continuous functions on R%
that are uniformly bounded on [0, 1]. Assume that on a convex neighborhood of
(1,...,1), the w, are concave and pointwise approach a concave function®* we.
Define a game v, on the subsets of T" by v, = w, ° 7, and define p" in R* by

(89)  pi=(ov,)(T7)/n (i=1,...,k).
Then p" is bounded, and every limit point of {p"} as n> 0 is in Iwx(1,...,1).

Propositions 8.5 and 8.8 constitute the technical foundation on which the proof
of the main theorem rests. Proposition 8.8, proved in Appendix B, tells us that
as the number of traders increases, the value approaches the superdifferential of
the appropriate w-function; and Proposition 8.5 tells us that this superdifferential
can be interpreted in terms of prices in the original market.

9. PROOF OF THE MAIN THEOREM
9.1. Preliminaries

We return now to the situation described in Sections 2 through 5. Assume
w.l.o.g. that u;(0) =0 for all i Let £" be an equal treatment value allocation i m
the n-fold replication M", let A" be an equal treatment companson vector™
associated with £", let x" be the allocation in M' corresponding to x and let
A" be the comparison vector on T'={1,..., k} corresponding to A" Assume
w.l.o.g. that Y’ A{ =1. Then there is a sequence of positive integers, called the
convergence indicator,>* such that if n-> 0 over members of this sequence only,
then x" - x*, and also {A"} converges. From now on, all finite values of n will
be in the convergence indicator; in particular, n - 0 means that n tends to infinity
over members of the convergence indicator only.

By possibly taking a smaller convergence indicator, we may assume w.l.o.g.
that A7/A} approaches a (finite or infinite) limit as n - oo, for all i and j. We will
assume the types arranged in the limiting order of size of the weights A[; that

32 The w,, and w,, are not necessarily related to the w of (8.3).

33 One that assigns equal weight to traders of the same type. That there is one such associated
with £” follows from the fact that £” is itself equal treatment. Indeed, if 4" is any oompanson vector
associated with £”, then we may define an equal treamtent A" associated with £” by taking A for
each trader ¢, to be the average of the weights 2" over traders s of ’s type.

34 We are grateful to Lloyd Shapley for suggesting this name.



VALUES OF MARKETS 1285

is, lim A7,,/A7=<1 for all i<k W.Lo.g. x* does not satiate all types;** let £ be
the “heaviest” type not satiated by x* (i.e., £=min {i: x7°¢ B;}). Call type i
lightweight (i€ L) if A] =0(A%), heavyweight (i € H) otherwise.

Define w" on RX as in (8.3), except that u; is replaced by A} u;. Define an open
convex cone U, in R, by

UL={ye Rk.: OeInt( Y yBi+ Y y,-Xi)}.
ieH ieL
For each lightweight trader i, define

&=1m A7/A%.
n-co

For y € U, define w;(y) as in (8.3), except that for heavyweight i, X; is replaced
by B; and u; by 0; and for lightweight i, u; is replaced by &u; (that the constraint
set is nonempty follows from y € U,). For n <o, define w}; on RX as in (8.3),
except that u; is replaced by A{u; for heavyweight i, and by 0 for lightweight i.
Also for n <oo, define w} on RX by

9.1) wh=wh+Awi.

Recall that 1(S) denotes the profile of the coalition S (see (8.7)). On T", define
games v", v, and v} by

vi=wom, vi=wlem, UVE=Wgen
From the concavity of the u; it follows that v" is the same as the v3, defined on

Sc T" as in (4.1). Hence by (4.2),
9.2) (") (T?) = nATu(x}) (i=1,...,k).

9.2. Outline

Before proceeding, we briefly outline the proof; the reader may also wish to
consult the flow charts in Appendix C. The thought that first comes to mind is
to apply the value convergence theorem (Proposition 8.8) directly to the v". But
this would wipe out all information about all types i for which A} - 0; i.e., about
all but the heaviest of the heavyweights. We therefore decompose w" as in (9.1),
and deduce

9.3) dv" = P+ AT PVL.

After showing wi -» w; (Lemma 9.8), we apply Proposition 8.8 to deduce ¢pv; > pe
owr(1,...,1). We then use Proposition 8.5 to express p in terms of prices g in
the commodity space. By plugging all this back into (9.3), and applying (9.2),
we obtain our resuit.

35 Otherwise the theorem is immediate.
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Intuitively, v(S) represents what the coalition S can do for the heavyweight
traders in it; i.e., the result of ignoring completely the utilities of the lightweights
in S. What is left over for the lightweights (possibly negative!) is of order*® A%,
since that is the order of all their utilities. Dividing by A7 to get v7(S) is a way
of looking at the situation through a microscope, so to speak on the scale of the
lightweight traders themselves; it yields something of order 1. If v, := w; © 7, then
v, (S) represents what the lightweights in S, when assigned their limiting “relative”
weights &;, can do for themselves (again, on their own ““scale”), after first satiating
all the heavyweights in S; it is defined only if the heavyweights can indeed be
satiated.

If S is large, then its profile is likely to be close to the “diagonal” (i.e., to a
multiple of (1,...,1)); hence the heavyweights can be satiated (Lemma 9.11).
Then v7(S) will for large n be close to v, (S) (Lemma 9.8), and hence an additional
trader of type i contributes approximately p; to vy by joining S, where p=
owr(1,...,1)=0owr(n(S)). To vy he contributes nothing if he is lightweight,
since the heavyweights are already satiated. Any contribution to vy by light-
weights therefore comes from the coalitions with few traders, which stand a
reasonable chance of not being able to satiate all their heavyweights.

Figure 2 depicts the path of the profile of a coalition Q that grows as traders
are added to it in a random order (cf. (4.3)). When Q is small, there is a good
chance that 7(Q) is outside of the cone U, . During this initial period, lightweight
traders of type~i make heavyweight contributions, which sum to (¢v5)(TT); but
it is a short period, and relative to n it tends to zero. (There is also a lightweight
contribution during this period, but it is negligible.) Afterwards, 7;(9) is in the
cone U; and in fact close to the diagonal; lightweight traders of type i are no
longer making heavyweight contributions, but altogether their contributions are
over a much longer period, and the total, which is = nA7 p;, has the same order
of magnitude as (¢v5)(T}). By the definition of the NTU value, all the contribu-
tions together must add up to the total (weighted) utility of type i; this yields

FIGURE 2

36 By Corollary 9.26, &> 0 for all ie L; hence the lightweight i are those with A} of the lowest
order of magnitude (that of A}).
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(9.25). The v} term gives us the prices g, as in ordinary markets without satiation
(Cf. Champsaur (1975)); the v}, term gives us the dividends. The analysis is
similar when i is heavyweight.

We now proceed with the formal proof, which we divide into three parts.

9.3. wi Satisfies the Hypotheses of Proposition 8.8

If y€ R%, a y-allocation is a k-tuple x = (x,, ..., x.), with x; € X; for all i, and
Y. yx;=0. An allocation is simply a (1,...,1)-allocation, i.e., an allocation in
M'. A y-allocation satiates type i if x; € B;. Denote

wi = Max {u;(x): x € X;}.

LEMMA 9.4. Letye U,, and for n <oo, let w"(y) be attained at x"(y). Let x*(y)
be a limit point of {x"(y)}. Then w, and w}, are attained at x*(y); that is, x*(y)
is a y-allocation that satiates all heavyweight types,

9.5) w(y)= ‘ZL vt (x7°(y)),

and
(9:6) wu(y)= ZH yiriu(x¥(y)) = »ZH VAT i

Finally, if x"(y) - x®(y) for some sequence of n, then for n in that sequence and
for all i, we have, as n— oo,

9.7)  ATu(xi(y)) = ATu(x7(y))+o(Ag).

ProoF: We restrict attention to a subsequence of the convergence indicator
for which x"(y) - x*(y). Since the x"(y) are y-allocations, so is x*(y). Suppose
that there is a heavyweight i with x;(y) ¢ B;. Since y € U,, there is a y-allocation
z that satiates all j in H. Now

X yrju(z)) = w™(y) =L yAj (ui(z) — (x5 (»))).

Since z;€ B; for all j in H, each term on the right with je H is nonnegative.
Moreover, for n in the subsequence we have chosen, the ith term is of the order
A7. But the terms with j € L are of smaller order of magnitude; so for n sufficiently
large, the right side is positive. Thus z satisfies the constraints in the definition
of w"(y) and yields a larger value than x"(y), a contradiction. Hence indeed
x®(y) is a y-allocation that satiates all heavyweight types.

Now let z be any other such y-allocation. Then

Y YATuit+ L ydiu(x7(y))
icH icL
=Y yAiu(xi(y)) =w"(y)
=) ydiu(z) = _ZH Vil gt .ZL yiriu(z;).
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Cancelling }.,_,; yir{ mi, dividing by A%, and allowing n - o0, we obtain
ZL yiEu(x7(y)) = .ZL yiEui(z;),
which yields (9.5).
As for (9.6), this follows from the fact that x*(y) satisfies the constraints in
the definition of wi;(y) and yields the maximum value for each of the u; appearing

in this definition.
Finally, to prove (9.7), note that

L YATu(x¥ ()< w"(y) =L yrATu:(x7 ().
Hence
T yr i (w(x7(y) — (%7 ()

ieH

< X yA i (u(x7(p) —u(x7())) = 0(A2).

ieL
Since each summand on the left is nonnegative, and since each y; is positive,
(9.7) follows. Q.E.D.

LeEMMA 9.8: w] is concave and 1-homogeneous on U,, and for each y in Uy,
y

wi(y)>wr(y) as n-oo.

Proor: The concavity and 1-homogeneity of w} follow from its definition
(9.1), from the concavity and 1-homogeneity (8.4) of w", and from the linearity
(9.6) of wy on U;. The convergence follows from

(99)  w'(y)=wa()+Azw(y)+0(A%)

for each y in U,. To demonstrate (9.9) for a sequence of n for which x"(y)
converges, write w"(y) =Y yiATu;(x7(y)) and apply (9.7), (9.6), (9.5), and A} =
Az&+o(Ay) for ie L; the truth of (9.9) in general follows from its truth for those
special sequences. Q.E.D.

LEmMMA 9.10: wi(y)= O(1) as n- oo, uniformly for y in [0, 1]~

n

Proor: Let w"(y) and wi(y) be attained at the y-allocations x"(y) and z
respectively. Then

W)= X yAiu(xi(y)+ _ZL yid i ui(x7(y))

<wh(y)+0(Ap),

where the O is uniform because the u; are uniformly bounded. Next,
wi(y) =L ydiu(z7) - .ZLyiA?u.‘(z,'?)
sw"(y)+0(xr7),

where again the O is uniform. Q.E.D.
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LEMMA 9.11: U, is a convex neighborhood of (1,...,1).

Proor: U, is open and convex by definition. By the definition of H, the
allocation x* satiates all heavyweight types; hence 0e), ., Bi+Y,., X;, and
hence by*’ the elbow room assumption (5.1), OcInt (T, , B:i+Y,., X); ie.,
a,...,)eU,. Q.E.D.

9.4. Monotonicity Properties of v’

In a finite coalitional game v, a player s is called at least as desirable as®® a
player t, written s= ¢, if v(SuU s)=v(Sut) for each® coalition S that contains
neither s nor ¢

PrOPOSITION 9.12: If s=t, then (¢pv)(s) = (Pv)(1).

PrOOF: Suppose there are h players in all. The orders & on the players can
be divided into h!/2 pairs, in each of which the two orders are the same, except
that the positions of s and ¢ are interchanged. Let # and &* constitute such a
pair; suppose s precedes t in R. Let S, be the set of players preceding s in R,
and let S, be the set of players strictly between s and ¢ Setting S;=S,U S,, we
find that

¢gz(s) =0(S;Us)—v(S)),
¢ () =0v(S;usut)—v(S;Us),

where ¢%(s) and ¢#(t) are the contributions of s and ¢ respectively in the order
R. Similarly,

6% (s)=v(Ssusut)—v(S;ut),
{cb‘“’"(t) =0(8, 0 1) —v(S)).

Using s = t, we conclude that
% (s)+ ™ ()= " () + ™ (1),

and the proposition follows. Q.E.D.

COROLLARY 9.13: Suppose i, je L, and X; < X;. Then (¢pvy)(T;)<(pvu)(T}).

If S is a coalition in T", an S-allocation is a vector x = (x,),.s such that x, € X,
whenever ¢ is of type i, and },_¢ x, =0. Whereas every 7(S)-allocation may be
viewed as an S-allocation, the converse is false; an S-allocation allows traders
of the same type to have different net trades, which an 7(S)-allocation does not.

LEMMA 9.14: Suppose ic H, je L, and X; < X;. Then
(dvE)(T?) < (PvE)(T})+nAip,.
37(5.1) is used only here.

38 Cf. Maschler and Peleg (1966).
39 {5} and {t} are abbreviated by s and t.
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Proor: Let t and s be type i and j traders respectively. First we show that
(9.15) oH(Sut)svHE(SUs)+ATw,

for all coalitions S containing neither ¢ nor s. Indeed, suppose vy (SuUt) is
attained at the (S U t)-allocation x. Now transfer the amount x, from ¢ to s. Since
X; = Xj, this yields an (Su s)-allocation z; z coincides with x on S, and obeys
z, = x,. Since lightweight traders have utilities 0 in the definitions of w; and vy,
it follows that

vE(Sus)= T Alu(x,),

reS
A
where the comparison function A" on T" corresponds to A" on T. Hence

vE(Sut)= ¥ Rru(x)<ou(Sus)+ilu(x,),

reSut

and (9.15) follows. Proceeding from (9.15) as in the proof of Proposition 9.12,
we find

7 () + T (<™ ()+ 6™ () +2A T

Summing over all (nk)!/2 pairs (R, #*) and dividing by (nk)!, we obtain
(pvm)(1) < (Pv)(s) + A7 i,

and the lemma follows. Q.E.D.

9.5. Derivation of Prices and Dividends

By restricting the convergence indicator, we may assume that (v L)( T") /n has
a (finite or infinite) limit for each i; denote

(9.16) p;i= li_ffolo (@v)(T7)/n.

By Lemma 9.11, U, is a convex neighborhood of (1,...,1); by Lemma 9.8, on
U, the wT are concave and 1-homogeneous, and converge to the concave function
wy; the w] are 1-homogeneous throughout R by definition, and by Lemma 9.10
are uniformly bounded on [0, 1]*. Therefore by Proposition 8.8, all p; are finite,
and setting p=(p,,..., px), we have

9.17) peow,(1,...,1).

Now construct a vector g corresponding to p in accordance with Proposition
8.5. Here w is replaced by w;, i.e. u; is replaced by &u; for lightweight i, and
by 0 for heavyweight i; and X; is replaced by B; for heavyweight i. Applying
Lemma 9.4 to y=(1,...,1), we see that w,(1,...,1) is achieved at x™;
and OelInt (3, . 4 Bi+2,.. Xi) by Lemma 9.11. Hence (8.6) yields

§iui(x?o) -9 x?O’ ie La
1 o=
(018)  p {—q-x?", icH.
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As for g, the condition in Proposition 8.5 implies that

(9.19) gqed&u(xy), iel.

Since € L, £&,=1, and u,(x7) < w,, it follows from (9.19) that
(9.20) g#0

(choose z € B, in the definition (8.1) of superdifferential).
Note that v}, is monotonic,*® since u;(0) =0 for all i; hence by (4.3),

(9.21)  (PvE)(TH)=0, alli

LeMMA 9.22: If i is lightweight, then

w_ ($O)(TY)

9.23) gq:x; Y +o(1).

If i is heavyweight, j lightweight, and X; < X, then

o ($VB)(TH = mATu,
9.24) gq-x7= Y

+o(1).

ProoF: By (9.2) (which is part of the definition of the A7), (9.1), and (9.16),

(9.25)  mAtu(x?) = (dv")(T7) = (dvE)(T7) + A2 (v1)(T7)
= (¢vu)(T7)+nrgpi+o(nAy)
for all i. Moreover, x" > x™ and the continuity of u; yield
ui(x7) = ui(x77) +o(1).

Hence if i is lightweight, then A} = A&+ 0(A%), together with (9.25) and (9.18),
yield

nAg&ui(x7) + o(nAz) = nAfu(x7)
=(PvE)(TT) + nAzéu(x7) —nrzq - xT+o0(nA%).

Cancelling, transposing, and dividing by nA7, we obtain (9.23).
To prove the second part of the lemma, note that u;=u;(x7"), since i is
heavyweight. Hence (9.7), (9.25), and (9.18) yield

AT u(x7)+ o(nAy) = nATu(x}) = (¢vy)(T?) + nAyp;+ o(nr})
=(pva)(T7)—nrzq- x7+o(nAy);

transposing and dividing by nA%, we obtain (9.24). Q.E.D.

W pr(Sut)=v™(S).
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COROLLARY 9.26: & >0 for all lightweight i.
Proor: If &=0, then by (9.19), the definition (8.1) of superdifferential,
0eInt X; (see (2.3)), and g # 0 (see (9.20)), we have
q-xy=min{q- x: xe X;}<0;
by (9.21), this contradicts (9.23). Q.E.D.

We now define the dividend ¢ First, define

027) ¢ = lim (22HNTE)
n->© nA(

the limit exists by (9.23). When i€ H, define J(i):={je L: X;< X;}, and
(9.28) c¢=min{c:jeJ(i)}, when ieH and J(i)# J.

If J(i) is empty, then, as usual for the minimum over the empty set, ¢; should
be taken as +oco0. Since, however, we want ¢; finite for all i, we define it as a
sufficiently large finite number; specifically,

(929) c=max{qg-x:xe) X;}, when ieH and J(i)={.

With these definitions it follows from (9.21) that the dividends are nonnegative,
and from Corollary 9.13 that they are monotonic in the net trade sets. By (9.23),

(9.30) gq'x°=c¢; when iel;
and by (9.23), (9.24), and Lemma 9.14,

g x;i<c¢ foralli

, when ielL;

i.e.,, x7° is in the dividend budget set {xe€ X;: ¢- x< ¢} (note that g is a price
vector by (9.20)). If i is heavyweight, then x{° is a global maximum of u;, and a
fortiori maximizes u; over the dividend budget set. If i is lightweight, then from
(9.19), (9.30), and & >0 (Corollary 9.26), it follows that x;° maximizes u; over
the dividend budget set. This completes the proof of the main theorem.

10. FIXED PRICE MARKETS
A (finite) fixed price market is defined by:

(10.1)  a finite set T (the trader space);

(10.2)  an integer d +1 that is at least 2 (the number of commodities);

(10.3)  for each trader ¢, a point e, in R4'(¢’s endowment),

(10.4)  for each trader ¢, a concave continuous function u* on R%™!
(¢’s utility function); and

(10.5)  a point p in R%%' (the fixed price vector).

A fixed price market is just like an ordinary market (without satiation), except
that all trade is constrained to take place at the exogenously given prices p. In
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effect, this means that each trader ¢ can only consume bundles in his fixed price
hyperplane

Hi={yeRi"™":p-y=p" e}
The utility u¥ is defined on the entire orthant R¢™!
is actually used is its restriction to H,.

An allocation in a fixed price market is a vector v =(y,),., where y, € H, for
each t (trading takes place at prices p and all consumptions are nonnegative),
and Y, ¥ =2 ,.r & (trading does not affect the total quantity of each good).
A coupons price vector is a member g* of R**! not proportional to p (i.e., unequal
to ap for any real «). A coupons endowment for agent ¢ is a real number c,. A
coupons equilibrium consists of a coupons price vector g*, a vector ¢ = (¢,),;c of
coupons endowments, and an allocation y, such that for all traders ¢, y, maximizes
u¥ over the coupons budget set

only for convenience; all that

{yeR{™p-y=p e andq* y<q* e+c}.

The notion of coupons equilibrium is due to Dréze and Miiller (1980). If the
traders maximize their utilities subject only to the fixed prices p, then in general
the market will not clear. To obtain market clearing, one introduces an auxiliary
currency, in addition to the ordinary currency in which the fixed prices p are
stated. This auxiliary currency may be thought of as rationing “coupons”; each
transfer of commodities must be paid for both in ordinary money, at prices p,
and in coupons, at prices g*. Coupons may not be exchanged for ordinary money.

The coupons endowments ¢, are called monotonic in the commodity endowments
if e,= e, (coordinatewise) implies ¢, = ¢,; and uniform if all the ¢, are the same.

In a (d +1)-commodity fixed price market M*, the spaces H, —e, =: X, of net
trades are compact convex subsets of the d-dimensional subspace Q of R™*!
that is othogonal to p; M* may be viewed as a d-commodity market M with
satiation. If (q, ¢, x) is a dividend equilibrium in this market, then q is a linear
functional on Q, and x is in Q*; extending q in an arbitrary way to a linear
functional ¢* on all of R?*! yields a coupons equilibrium (q*, ¢, x+e) in M*,
where e is the initial allocation in M®*. In brief, dividend equilibria in M
correspond naturally to coupons equilibria in M* (cf. Dréze and Miiller, 1980,
p. 133). Hence our main theorem implies that in fixed price markets with k types,
limiting value allocations are associated with coupons equilibria enjoying the
appropriate monotonicity properties.

Clearly, monotonicity in the net trade sets is equivalent to monotonicity in the
endowments:

(10.6) X,> X, if and only if e, = ¢, (coordinatewise).

Thus, all value allocations in large fixed price markets approximate coupons equili-
brium allocations, where the coupons endowments depend only on the commodity
endowments, and monotonically so. In particular, if all commodity endowments
are the same, we are led to uniform coupons equilibria.
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Note that in the context of fixed prices, the elbow room assumption is satisfied
if there is no set J of types whose aggregate demand for some good h precisely
exhausts the total supply of that good.*!

So much for the technical treatment. We end this section with some remarks
of a more conceptual nature, which relate this work to other work on fixed prices.

As mentioned in the introduction, our interest in markets with satiation arose
from the desire to discover what kind of allocations the Shapley value would
generate, in markets with fixed prices. The study of these markets in economic
theory has been mostly oriented towards equilibria with one-sided, market-by-
market rationing. The specific features of the equilibrium concept are either
imposed directly, as in Dréze (1975), or derived from more basic assumptions
(no involuntary trading, efficient recourse to a set of admissible trades,...), as
in Malinvaud and Younés (1977). By contrast, the analysis presented here imposes
no conditions on the problem or its solution, beyond the constraint that all trading
should take place at exogenously given prices.*’ Rather, we apply a general
solution concept (the Shapley value) to the problem. The equilibrium concept
(coupons equilibrium) and its specific features (nonnegative coupons endow-
ments monotonically geared to initial resources) are an output of the analysis,
not an input.

Whatever further properties Shapley value allocations may be found to possess,
these properties will also emerge from the problem formulation, kept here to
essentials. By this we mean in particular keeping out of the problem formulation
elements like “market-by-market rationing,” which make the solution set depend
upon inessentials like the definition of commodities.**

To clarify this point, note that the formal description of a market specifies for
each trader a set (the consumption set), a real function on it (the utility function),
and a point in it (the endowment). The set must also be endowed with an additive
structure (to enable us to describe transfers between traders). Nothing more is
required to describe a market from the economic viewpoint; the above structure
completely specifies the opportunities as well as the incentives.

This suggests that one might want an economic “solution” (such as an equili-
brium concept) to depend only on this structure, to be invariant under “inessen-
tial” changes, changes in the specification of the situation that leave this basic
structure invariant. Familiar examples of such “inessential’’ changes are changing
the units of the commodities, or using different commodities that are utility
substitutes, or permuting the commodities. But the principle of invariance under
inessential changes applies equally well in less familiar cases, e.g. for rotations
or other affine transformations.**

“'That is, ¥,_, ¥ =Y el, where y, maximizes u7 over H,.

“2 This is not the place to discuss the rationale for studying markets with fixed prices.

43 Indeed, in applied work, identifying specific “commodities” is often quite difficult.

“ For example, suppose that eachr of two mutual funds is composed of stock in the same two
companies, but in different proportions. Suppose that the companies themselves are not public, but
that the funds are: in essence, therefore, one can buy into the companies in any proportion between
those offered by the two funds. Then it should make no difference whether the “commodities” are
defined to be company stock or fund stock.
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The Walras equilibrium is invariant in this sense; so are the kinds of dividend
equilibrium and coupons equilibrium defined in this paper.*’ But the “market-by-
market” rationing equilibria mentioned above are not; they depend on identifying
specific “‘commodities,” which are not present in the opportunities or the incen-
tives. ‘

All this is reflected in the game-theoretic treatment. Game theory gets at the
essence; it separates the intrinsic from the conventional. Thus it is not surprising
that the game-theoretic analysis leads to a ‘““commodity-free’” solution.

When institutional aspects (like market-by-market rationing) are deemed
important, they should perhaps be introduced exogenously into the problem
formulation. This brings us to the basic methodological dichotomy, whether
economic theory should be concerned with “explaining” the genesis of institu-
tions, or with “predicting” their consequences. In the end, each of these activities
has its own validity.

11. ALTERNATIVE APPROACHES
11.1 The Core

The core of a market is the set of all allocations that cannot be improved upon
by any coalition S. “Improved upon” has two possible meanings:

(a) Some members of S are better off and none worse off.

(b) All members of S are better off.

In classical markets these two meanings lead to the same core, but here they do
not. Neither core is very interesting; the first is too small, the second is too large.

Let M' be a market with satiation, M" its n-fold replication. For simplicity
we assume that the utilities are strictly convex and that not all traders can be
simultaneously satiated; the elbow room assumption (5.1) is, however,
unnecessary here.

Under (a), the Debreu-Scarf Theorem (1963) applies; the proof goes through
without difficulty. Specifically, the a-core of M" enjoys the equal treatment
property. Hence it may be represented by a set C; of allocations in the unrepli-
cated market M'. Then C,*'< C7, and the limiting a-core, C3:=(,._, C%,
coincides with the set of competitive allocations.

As we saw in Section 3, markets with satiation often have no competitive
allocations; the limiting a-core is then empty. This is what we meant by “too
small”.

Under (b), the core of M" may be very large, and does not even enjoy the
equal treatment property. If we nevertheless confine ourselves to equal treatment
allocations, we are, as above, led to a set C} of allocations in M', where again
Cp*'c C}. We are interested in C5=(_, Cj.

For each allocation x in M', let G;(x)={xe X;: u;(x) > u;(x;)} be the set of
net trades preferred by i to x. Then C} consists precisely of those allocations x

45 The monotonicity condition for coupons equilibria ostensibly involves the commodities, but
(10.6) shows that it is merely a restatement of an “invariant™ condition.
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for which 0 is not in the convex hull of the union of the preferred sets G;(x);
since the preferred set is empty for satiated traders, we may take the union over
unsatiated i only. For example, any dividend equilibrium allocation with nonnega-
tive dividends is in the limiting b-core, even if the dividends are not in any sense
monotonic; they may even be different for identical*® types. Any individually
rational allocation x at which only one type is unsatiated will also be in the
limiting b-core. What is happening is that the satiated traders are useless as
partners in an improving scheme; the unsatiated must fend for themselves, and
they may well lack the resources for this. This makes the b-core very large.

We note for the record that the limiting value allocations are in the limiting
b-core; but in general they constitute only a small subset. This fits in well with
our experience in other market contexts with cores. For example, in large transfer-
able utility markets with nondifferentiable utilities the core may be quite big, but
if it has a center of symmetry, then the value is that center of symmetry (Hart,
1977a). More generally (asymmetric core, nontransferable utility), the value
allocations in a large nondifferentiable market often constitute a small, “central”
subset of a relatively big core (Hart, 1977b, 1980; Mertens, 1986; Tauman, 1981).

11.2. The Continuum Approach

There is no difficulty in defining nonatomic markets with satiation. One simply
replaces the trader space T by a nonatomic measure space (T, 6, w) with w(T) =1,
and requires that the net trade sets X, and the utility functions u, be measurable
in an appropriate sense, and the u, uniformly bounded. An allocation is now a
measurable function x from T to R? with x(¢)e X, for all ¢ and [, x=0. As
before, we assume that no allocation satiates all traders, but do not require
anything like the “elbow room” assumption (5.1). The definition of competitive
equilibrium remains literally unchanged.

A generalized comparison function is an integrable function from T to R} with
a positive integral; if it is to R}, it is a comparison function. A coalition is a
measurable subset of T (i.e. a member of €). Given a generalized comparison
function A, define a nonatomic game v, by

v (S)= max(J A(t)u,(x(t))u(dt): J x=0 and x(t)eX, forall te S)

for each coalition S. A (generalized) value allocation is an allocation x for which
there exists a (generalized) comparison function A such that

(11.1)  (dva)(dt) = A(6)u,(x(1))pu(dr)
for all “infinitesimal” agents dt, where ¢ is an appropriate*’ value operator. (A
more formal statement of (11.1) is that (¢v,)(S)=[g A(t)u,(x(¢))u(dt) for all
coalitions S.)

46 Having the same utilities and net trade sets. Confining ourselves to equal treatment allocations
in M™ does not mean that identical types get the same net trade; it only means that in M", different
replicas of the same trader in M get the same net trade.

47 See, e.g., Kannai (1966), Aumann and Shapley (1974), Hart (1980), Mertens (1980, 1986), or
Neyman and Tauman (1979). What is needed here is a value with the “diagonal” property.
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So much for the definitions. Unfortunately, the results are rather disappointing.
All we can say is:

(11.2)  Every value allocation is competitive.

(11.3)  An allocation is a generalized value allocation if and only if it is competitive
or satiates some agents.

We have already noted that markets with satiation often have no competitive
equilibria; in that case there are no value allocations in the continuum approach.
The generalized value allocations, on the other hand, constitute a very large set
even then, consisting of all allocations satiating at least one agent. There is no
restriction at all on what nonsatiated agents get; they may even be assigned
individually irrational net trades.

To demonstrate these results, assume for simplicity that the u, are continuously
differentiable and strictly convex, and that the allocations in question are interior
(i.e., x(t) eint X, for all t). Let x be a generalized value allocation. As at (6.1),
there is a vector q such that

(11.4)  A(D)ui(x(1)) =g,

for all t. Moreover, the value (¢uv,)(dt) is the average contribution of dt to a
coalition S. In the continuum case, “almost all” coalitions are large; hence as at
(6.3),

(poa)(dt) = A(t)u,(x(¢))u(dt) — q - x(t)u(dt),
and together with (11.1), we obtain that for all ¢,
(11.5)  q-x(¢)=0.

If x is a value allocation, i.e., A(t)>0 for all ¢, then u}(x(¢t)) is either equal
to 0 for all t or is unequal to O for all ¢ If it is equal to O for all ¢, then all traders
are simultaneously satiated, which we have ruled out. Hence it is unequal to 0
for all ¢, whence q # 0; together, (11.4) and (11.5) then assert precisely that (g, x)
is a competitive equilibrium, whence x is a competitive allocation.

If x is not a value allocation, i.e., A(t) =0 for some ¢, then g =0. Hence for
those ¢ for which A(t)#0, we must have u}(x(¢))=0, and hence these ¢t are
satiated. Conversely, if x is any allocation that satiates some traders, let A be a
generalized comparison function that assigns weight 0 to all traders unsatiated
at x. The value (v, )(dt) is the average contribution of df to a diagonal*® coalition
0T, where 6 ranges from 0 to 1. The case 8 =0 has no effect on the average and
may be ignored. As soon as 6> 0, there are enough unsatiated traders in 0T to
supply all the resources desired by the satiated traders in 6T. Thus dt contributes
nothing if he is unsatiated, and only his own utility A(¢#)u,(x(¢))u(dt) if he is
satiated, which means that (11.1) is satisfied. Thus any such x is a generalized
value allocation.

48 See Aumann and Shapley (1974, Chapter III).
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The reader will have realized that what prevents the continuum approach from
achieving a more satisfactory result is that ‘“‘small” coalitions play no role.
Coalitions either have positive measure, in which case they behave like “large”
coalitions, or have measure 0, in which case they are ignored. The crucial coalitions
in the limit approach® (the one used in this paper) are those whose size is positive
but of smaller order of magnitude than that of the all-trader set; the continuum
approach is not equipped to take account of such coalitions.

11.3. The Elbow Room Assumption in a Model with Explicit Endowments

To show that (5.1) holds generically, we must reformulate the definition of a
market with satiation so that the endowments appear explicitly. Accordingly,
define a market with satiation and explicit endowments to consist of a finite set T
(the trader space), a positive integer m (the number of commodities), and for
each trader ¢,

a compact convex subset X? of R (t’s consumption set);
a concave continuous function u? on X? (¢’s utility function); and
a point e, in the interior of X? (¢’s endowment).

To regain from this a market with satiation as in Section 2, simply define
X, = X — e, (algebraic subtraction!) and u,(x) := u2(x+ e,). The remainder of the
treatment is then exactly as before.

In this formulation, the elbow room assumption is equivalent to the following:
for each J<{1,..., k},

k
(11.6) Y e g bd[z B+ Y X?],

i=1 ieJ ig)
where ¢; is the endowment of a type i trader, and B! is the set of points in X7
at which u? is maximized. Note that for each J, the right side of (11.6) represents
the boundary of a compact convex set in R? that is independent of the endow-
ments; such sets are closed and of measure 0. The left side is simply the total
endowment. Since there are only finitely many different possible choices of J, it
follows that the elbow room assumption holds for all total endowment vectors
except for a closed set of measure 0 in R ; hence also for all k-tuples (e,, ..., €)
of endowments except for a closed set of measure 0 in R

Conceptually, the situation here is perhaps a little different from that of other

generic theorems in the literature. The exceptional set is entirely explicit and has
transparent geometric and economic meanings; in any given market one can, so
to speak, ‘““see at a glance” whether or not the elbow room assumption is satisfied.

4 Of course, the value operator ¢ may itself be defined by a limit approach, even when it is
applied to nonatomic games. Nevertheless, the kind of second-order effect that is crucial in the proof
of the main theorem does not obtain then.
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12. FURTHER RESULTS

The main theorem (Section 5) shows that the dividends depend only on the
net trade sets, and monotonically so. In fact, we know much more about them,
both qualitatively and quantitatively. This section discusses additional properties
of the dividends, as well as the order of magnitude of the weights A}, and some
results concerning the differentiable case and that of a single commodity. The
next section applies these results to computing some examples.

We will maintain here the terminology, notations, and conventions introduced
previously, especially in Sections 5, 8, and 9. The allocations x”, the comparison
vectors A", and the limiting allocation x™ will be fixed throughout; so will the
price vector g and the dividend ¢, which are taken to be as in the proof (Section
9) of the main theorem. We will call a type i satiated (unsatiated) if it is satiated
(unsatiated) at x?°.

The competitive case is from our point of view less interesting, and it is
convenient to exclude it; thus throughout this section, we assume

(12.1)  (q, x™) is not a competitive equilibrium.

A summary of the results is as follows. The dividends ¢; are all strictly positive
(rather than just nonnegative); in addition to monotonicity, they satisfy a con-
cavity condition; and there is an “explicit” formula for them. The order of
magnitude of the weights A{ of each lightweight type i is exactly 1/n. Lightweight
types whose utilities are differentiable, and whose maxima are interior, are
unsatiated; hence if all utilities are differentiable and all maxima interior, then
the heavyweights are precisely the satiated types, the lightweights precisely the
unsatiated. In the case of one commodity (d = 1), all traders on the “short” side
are satiated.

We start the formal treatment by discussing concavity of the dividends. Let J
be a set of types. A dividend ¢ in M' is called monotonically concave in the net
trade sets of the types in J, if
(122) =Y ac

ieJ
for all j in J and constants a; =0 such that ),,_; ;<1 and

(123) X;o Y a;X.

ieJ
This implies that if a convex combination of net trade sets X; is itself a net trade
set Xj, then the dividend ¢; is at least as great as the corresponding combination
of the dividends ¢;. As a function of the net trade sets, so to speak, the dividends
are concave.

Actually, the condition involves somewhat more, in two directions. First, note
that in (12.3) we have inclusion, not only equality. This expresses a kind of
amalgamation of concavity and monotonicity. We have already seen that
“ordinary” concavity is implied; note that by taking «; =1 for one of the i in
(12.3), we also get ordinary monotonicity.
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Second, note that we demand only that },,_; ; <1, not},_; o; = 1. Intuitively,
one can think of this as if we were talking about ordinary convex combinations
(X, @i =1), but adding the additional ‘“‘virtual” element X,:= {0}, with ¢,==0.

Denote by 4, the set of all convex compact subsets of linear combinations of
the X, (for i € J) that contain 0; note that 4, itself is a convex set. M. Perles has
shown (private communication) that ¢ is concave over J if and only if there is
a concave monotonic function on 4, that vanishes at {0} and coincides with c;
at each X; with ie J.

We now state our first results.

THEOREM 12.4: ¢;> 0 for all i.

THEOREM 12.5: ¢ is monotonically concave in the net trade sets of the lightweight
types.

In particular, since by definition, all unsatiated types are lightweight, it follows
that ¢ is monotonically concave in the net trade sets of the unsatiated types.

THEOREM 12.6: If i is lightweight, then A} has order of magnitude 1/n exactly.

By possibly restricting the convergence indicator, we may assume that
lim, .. nA % exists; denote it by A,. The above theorem asserts that

(12.7)  0<A,<oo
We come next to the explicit formula. Define

(12.8)  AY:=1lim A}

Define wy on RX as in (8.3), except that u; is replaced by A Pu; for all i. Consider
a pool of traders containing infinitely many of each of the k types. If S is a finite
coalition chosen from this pool, let vy (S) be the maximum total utility that S
can achieve by trading within itself, with utilities weighted by the A; formally,
vy = wy © 7, where n(S) is S’s profile (7;(S) is the number of type i traders in
S). Consider next an infinite sequence of independent random choices from this
pool, which pick traders from the k types with probability 1/k each. Denote by
Q,. the coalition of traders chosen up to stage m, and let p;" =1 or 0 according
as to whether or not i is chosen at stage m. Let t; denote a separate trader of
type i, not included in the pool.

THEOREM 12.9: For lightweight i,

.=—' Z E((UH(Qm) vH(Qm l))pl)

*ml

kA* z E(UH(QmUt) vH(Qm))
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In words, the first line says that the dividend is the expected total contribution
of all type i traders in the infinite sequence, divided by A, . The second expression
is the sum (over m) of the expected contributions made by a type i trader to the
coalition chosen up to stage m, divided by kA, . The two expressions are equal
because at each stage, a type i trader is picked with probability 1/k exactly.

Another alternative expression, directly in terms of wy, will be given in
Appendix C (Proposition C.15). There we will also discuss analogous formulas
for heavyweight types (Corollary C.19).

A noteworthy feature of this formula is that it involves independent choices
(like in sampling with replacement), which are much easier to work with than
the more complicated permutations (sampling without replacement) that are
usually associated with values. For example, it is the independence that enables
the proof of concavity of the dividends (Theorem 12.5). Another noteworthy
feature is that the limiting order represented here—a discrete infinite sequence—is
quite different both from the continuous interval associated with the familiar
diagonal formula,*® and from the denumerable dense order type (the order type
of the rationals) introduced into value theory by N. Z. Shapiro.”

The last two results are shallower than the others, but are useful to keep in
mind, particularly when computing examples.

ProPOSITION 12.10: Let i be a lightweight type with B; < Int X;, and u; differenti-
able at each point of B;. Then i is unsatiated.

The final result deals with the case of one commodity (d =1), which is of
considerable special interest, both theoretically—because of its relative sim-
plicity—and in the applications, e.g. to unemployment.

In this case, each net trade set X; is a compact interval on the real line, that
contains 0 in its interior. For each i, the bliss set B; is also a compact interval;
we have assumed (Section 2) that it does not contain 0. If 0 €}’ B;, then all agents
can be simultaneously satiated. Since value allocations are Pareto optimal, it
follows that x™ satiates all agents, a trivial case that was excluded in Section 9.
Thus, 0£ Y, B;. Since ), B; is a compact interval, it is included in either the strictly
positive or the strictly negative half-line. We shall say that Type i is on the short
(long) side of the market if B; is on the opposite (same) side of 0 from }, B;.

Intuitively, ), B; represents total demand. If ), B; is, say, in the positive half-line,
then there is excess demand for the single good;> the good is scarce. A type i
with B; in the negative half-line wants to supply this scarce good, which is what
we mean by ‘‘being on the short side.”

PrROPOSITION 12.11: Ifd =1, then AT > 0 for all types i on the short side of the
market; in particular, they are satiated.

0 See Footnote 47.

51 See Shapley (1962).

52 This is the convention in the examples below; it is convenient because then g > 0. In applications,
the case of interest is often that of excess supply. Practically, there is no difference; demand for
positive amounts is the same as supply of negative amounts.
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All results stated in this section will be proved in Appendix C. Also, some
useful generalizations and strengthenings of these results may be found there.

13. EXAMPLES

(e o)

ExampLE 13.1: Unless x* is competitive, there are at least two orders of
magnitude for the weights: 1/n for the lightweights, and 1 for at least some
of the heavyweights. Here we show that there may be more than two orders of
magnitude, by bringing an example with three. We will not compute the third
one explicitly, but will use theoretical arguments to show that it is different from
both 1 and 1/n. Indeed, we do not know what it is.

Let d=1, k=3, X|=X2=X3=[_3,3]’
u(x) =4—(x+2)% w(x)=1-(x—1)% us(x)=4—(x-2)

The maxima are at —2, 1, and 2 respectively. The short side consists of Type 1
only, and so by Proposition 12.11, Type 1 is satiated, and indeed AT > 0. Since
all net trade sets are equal, all dividends are equal, which means that the maxima
of 2 and 3 over their dividend budget sets are achieved at 1. At this point, 3 is
unsatiated and so must be lightweight. Type 2 is satiated and so, by Proposition
12.10, must be heavyweight; that is, A7 has order of magnitude greater than 1/n.
If A3>0, then by Lemma C.28, 1 =x7 <x3 =1. Hence A5 =0; that is, A} has
order of magnitude less than 1. Q.E.D.

ExaMPLE 13.2: In this example, the net trade sets are not all the same, and
we use the “explicit formula” (Theorem 12.9) to calculate the dividends. Let
d=1,k=3,

X2=[_131], X1=X3:[_2’2]a
w(x)=1-|x+1|, u(x)=us(x)=1-(x—1)>~

The short side consists of Type 1 only, so AT > 0 (Proposition 12.11), and g > 0.
Because ¢;> 0 for all i (Theorem 12.4), both long types, 2 and 3, have a positive
consumption. Therefore if either one is satiated, the market does not clear; there
is excess demand. Hence they are both unsatiated, hence lightweight, and so

Theorem 12.9 applies to them. Together, they consume the supply of Type 1,
and hence

(& (&
1=x3+x7==+=.
9 q

Hence it suffices to calculate ¢,/ c;, which we can do from Theorem 12.9 without
knowing A, . The normalization Y, A7 =1 yields AT =1.
Denote Q,,’s profile by 2}"‘ =(y1>y2,y3)- Set

S =yi—y>—2ys.
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If f(y™) <0, then the long types together can satiate Type 1, and so an additional
long'trader t; contributes nothing to vy. If f(y™) =1, then the whole long side
together falls short by just one unit of trading Eapacity to be able to satiate Type
1. This unit of capacity is supplied by #; whether i =2 or 3, and so in either case,
t; contributes exactly 1. If f(y™) =2, then ¢; contributes 1 if i =2, and 2 if i =3.
The expected contribution of t; is therefore

(13.2.1) prob {f(y™)=1}+(i—1) prob (f(y™)=2}.

Since f(y™) is the sum of m ii.d. r.v.’s distributed like f(g’), the generating
function of f(y™) is g(x):= ((x+x'+x72)/3)™ The first probability in (13.2.1)
is the coefficient of x in g(x), and the second is the sum of all coefficients starting
with that of x°. Using this we find

(13.2.2) x7 =c,/q=.414,
X3 =c3/q=.586,

to within .002. Of course, x7 = —1.

Several aspects of this example are worthy of special note. First, the limiting
value allocation x* is unique, though there are no symmetries that would lead
to this conclusion in any obvious way. Second, our method does not involve
calculating x" for large n, say by some fixed point method. On the contrary, we
use a formula that is valid only “in the limit.”” This formula enables a precise
calculation of x*, to within errors with definite, theoretically proven bounds; but
it does not enable even an approximate calculation of x”", for any finite n.

Third, the outcome is fairly insensitive to the utility functions on the long side
(Types 2 and 3). For simplicity, let each bliss set B; consist of a unique point b;.
The above reasoning certainly continues to apply when u, and u; are changed
only cardinally,” e.g., if u,(x) = x, u3(x) = 1 —(x — 1)*. But even if there are ordinal
changes, i.e., the bliss points are changed, x™ will not change if b, and b; remain
sufficiently large; e.g., if b,> 31 and b;> % (see C.19 and C.20). Of course, if they
are sufficiently small—e.g., b,<.412 or b;=<.584—then either 2 or 3 must be
satiated, and the result necessarily changes. (We are assuming that u, and the
X; do not change.) Again, all this applies to x™ only; each x" may, and in general
will, change considerably, even if u, or u; are only changed cardinally. Indeed,
the x" may perhaps be nonunique, even though x* is unique.

On the other hand, the outcome is quite sensitive to changes in u,, even if
they are only cardinal. If u, is strictly concave, then the fact that Type 3 has
more capacity than Type 2 matters less than when u, is linear. Specifically, if
u;=1—(x+1)% then c;/c,~1 when a0, and hence x7 -3, x*-1. Indeed,
when « is large, the lion’s share of the contribution to Type 1 comes on the very
first occasion when a trader on the long side joins the market, and it comes with
the first unit that that trader contributes. When a is moderate, additional units
remain more significant.

3 This is as in ordinary markets, without satiation. In such markets, of course, all agents are
unsatiated; and indeed, under appropriate smoothness conditions, the limiting value allocations
coincide with the competitive ones (Mas-Colell, 1977), and so are ordinally invariant.
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Thus on one end of the scale, when the satiated traders are very risk averse,
the unsatiated traders get dividends that are almost independent of their trading
capacity. One might have thought that on the other end of the scale, when the
satiated traders are risk neutral, the dividends of the satiated will be proportional
to their capacities. Our example shows that this is not so. Type 3 traders have
100% more capacity than type 2, but their dividends are only about 40 per cent
larger. This is because of the possibility that the shortfall, f(y™), in the capa01ty
to satiate Type 1 is exactly 1, in which case the extra capacity of Type 3 is useless.**

Intuitively, it may seem strange that what the unsatiated traders get depends
on the cardinal utility of the satiated traders, but not on their own cardinal utility.
The reason is that because the unsatiated traders are on the *“‘long” side, they
contribute very little to Society. When there is unemployment, an additional
employer is a lot more welcome than an additional worker. This is reflected in
the weights, which are much higher for the employers; the workers are judged
not by what they can do for themselves, but by what they can do for the employers.

It should not puzzle the reader that the dividends may depend on cardinal
utilities, in spite of our statement that they depend only on the net trade sets.
The latter statement refers to different types within the same market; such types
do get the same dividend as long as they have the same net trade sets, even if
their utilities are different. But if one changes the utility of one type, everybody’s
dividend may change. The situation is similar in an ordinary market, without
satiation. Incomes depend only on endowments, not on utilities, in the sense that
agents with the same endowment have the same incomes, even if their utilities
are different. But prices, and therefore incomes, are determined by everybody’s
utilities, and may change when a utility changes.

ExampLE 13.3: In this example, there are two types on the long side with
identical utilities (but different net trade sets), one of whom is satiated and the
other not. The satiated one of the two has A7 > 0.

Let k=3, d =1, the X; and u, as in the previous example, and

Uy(x) = us(x) = (.55)* — (x —.55)%

As above, the short side consists of Type 1 only; therefore Type 1 is satiated
(x’=-1), and indeed AT>0. Type 2 cannot be satiated, because then by
monotonicity, Type 3 is also satiated, and then the market does not clear (there
is excess demand). Hence A5=0. If also A5 =0, then vy is as in the previous
example, and hence x5’ <.416<.45. Hence c;/q = x5 >.55. But then Type 3 is
not maximizing over its budget set, since the maximum is at .55. Hence A3 >0,
and hence x5 =.55, x5 = .45.

34 It is worthy of note that this happens in a significant proportion of the cases, not only when m
is small, but also when it is large. When m = 40, the probability is about .0003 that Type 1 cannot
be satiated. In 37 per cent of these cases, the shortfall is exactly 1, though it ranges up to 40. This
phenomenon is closely related to the exponential decay in Lemma B.9; it lies at the root of our results.
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14. OPEN PROBLEMS

Foremost among the open problems is that of the converse. To what extent
are the necessary conditions that we have found for limiting value allocations
also sufficient? In the case of ordinary markets, without satiation, this is related
to smoothness: see Mas-Colell (1977) and Hart (1977b). It is quite likely that
smoothness is relevant here too.

Another interesting task is to dispense with the finite type assumption. As we
have seen, one cannot simply use a continuum; what is called for is a limiting
approach, in which the limit is a continuum of different types. There is a large
literature on this type of model in connection with the core equivalence principle;
cf. Hildenbrand’s book (1974) and survey article (1982). Another approach that
could conceivably be helpful for this purpose is that of nonstandard analysis
(cf. Brown and Robinson, 1972).

One might aiso like to explore the consequences of dispensing with the equal
treatment restriction, the elbow room assumption, or the assumption that 0 is in
the interior of each net trade set.

Perhaps most interesting at this stage would be to derive additional qualitative
properties of the solution in particular contexts. In the case d =1 (one com-
modity), for example, what happens to the dividends when the capacity of the
long side is much larger than the supply of the short side? When they are almost
equal? Can this kind of result, once obtained, be generalized to d >1? The
“explicit formula” (12.9) gives us a powerful tool for investigating these and
other questions arising in particular contexts.

Institute of Mathematics, Hebrew University, 91904 Jerusalem, Israel
and
CORE, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Manuscript received June, 1984; final revision received February, 1986.

APPENDIX A
PRICE CHARACTERIZATION OF dw(y)

In this Appendix we prove Proposition 8.5.

LEMMA A.1: Let g be concave and 1-homogeneous on a convex cone V, and let ye V. Thenp € 3g(y)
if and only if

(A2) p-y=g(y),
and
(A.3) p-y'=g(y) forally inV.
PROOF: By definition, p € g(y) if and only if
(A.4) g(y)—g(y)<p-(y'—y) forall y'.

Obviously (A.2) and (A.3) imply (A.4). Conversely, applying (A.4) to y'=2y and y'=0 yields
g(y)<p-y and g(y)=p- y respectively, and therefore p- y =g(y). Again applying (A.4), we then
obtain p- y'=g(y’). Q.E.D.
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PROOF OF PROPOSITION 8.5: Intuitively, Lemma A.1 shows that one can view the superdifferential
dw(y) as the core of a transferable utility market with a nonatomic continuum of traders of types
1,..., k, in which type i has measure y;. Proposition 8.5 is then simply an expression of the core
equivalence principle. It needs to be reproved because the published versions use different assumptions
(e.g., they do not permit satiation), but the proof follows known ideas.

Suppose g € ﬂ:;‘ ou;(x;), and define p by (8.6). Let y'€ R%, and let w(y’) be attained at (x}, ..., x}).
From Y yx; =0=} y!x} it follows that

Tyig- (xi—x) =X i-y)(=q" x).
Hence
w(y) —w(y) =X (yiu(x)) — yau(x;))
=Y [ —y)u () + yi(u(x]) — ui(x,))]
<TIGi-y)u(x) +yiq: (xi—x)]
=X (i-y)u(x)—q-x)=p- ('),

i.e., peow(y).
Conversely, let pe dw(y). Let G; denote the “‘strict subgraph” of u;(x)—p,, i.e.,

G;={(x, 8): xe X; and 6 < u;(x) — p;}.
We assert that
(A.5) 0 is not in the convex hull of U, G;.

Indeed, suppose 0 is in this convex hull. Then there are nonnegative y}, ..., y} summing to 1, and
(xi, 6;) in G;, such that ¥ yi(x}, 6,) =0, i.e.

(A.6) 0=% yix;

and

(A7) 0=y yi6;.

From (A.6) it follows that
L yiu(xp)<w(y";

hence from 6, <u;(x})—p; and (A.7) we obtain
0<X [yiu(x))—yipl<w(y)—p- ',

in contradiction to (A.3). Thus (A.5) is established.

From (A.S5) it follows that there is a hyperplane through 0 that supports all the G;; i.e., a nonzero
vector (—q, go) in R4*! such that

(A.8) —q x+gy0=<0

whenever 6 < u;(x) — p;, and hence also whenever 8 < u;(x) — p;. Choosing 6 to be a negative number
with a large absolute value shows that g, cannot be negative. If g, =0, then ¢#0 and q- x=0 for
all x in all X;; but this contradicts 0€ Int }, y,X;. Thus g, >0, so w.l.o.g. g, = 1. Setting 6 = u;,(x)—p;
in (A.8) we then obtain

(A9) —q-x+tu(x)—p;<0 forall xelX,,

and in particular when x = x;. If strict inequality would hold in (A.9) for one of the x;, then since
ye R,

0>Y yi(=q* x;+u(x)—p)=—q - Zyx+w(y)-p y=0,
where the last equation follows from ) y,x; =0 and (A.2). Therefore
(A.10) pi=u(x)—q x

for all i. From (A.10) and (A.9) we obtain g€ du;(x;) for all i, and together with (A.10), this is what
was to be proved.
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APPENDIX B
THE VALUE CONVERGENCE THEOREM

In this Appendix we prove Proposition 8.8. Results that are in many respects similar appear in
Champsaur (1975) and Hart (1977a); but they do not contain quite what we need here,> and it is
simpler and quicker to prove what we need directly than to derive it from those results.

Lemmas B.9 and B.10 constitute the probabilitistic foundations of the paper. The proofs of these
lemmas do not depend on what goes before.

Let U be the convex neighborhood of (1,..., 1) mentioned in the proposition;*® since the w; are
1-homogeneous, we may take U to be an open cone. Denote by w an arbitrary concave 1-homogeneous
function on U, and by w'(3, z) its directional derivative lim_ o, [W(y + 6z) —w(y)]/ 0 in the direction
Z.

LEMMA B.1: Let y,»ye Uand z,»> ze R*. Then

lim inf wi,(y,; 2,) = weo(y; 2).

PROOF: Rockafellar (1970, Theorem 2.4.5, p. 233). Q.E.D.
For ze R¥, set ||z|| = max, z;.
COROLLARY B.2: Let ye U and ze R*. Then for any £ >0 there is a >0 such that
wi(P; D)= wi(y; 2)— ¢
whenever
l7=yl<8, |Z—z|<8, and n>1/6.
PrRoOOF: Immediate from Lemma B.1.

LEMMA B.3: Let ye U and ze R*. Then

(B.4) wi(y;z)=w(y+z)-w(y) if y+zeU;

(B.5) -w(y; —z)=w'(y; 2);

(B.6) w(y)-w(y—-z)=w'(y;z) if y—zeU,

(B.7) w'(y; z) is 0-homogeneous®” in y and 1-homogeneous in z.

PROOF: The .concavity of w yields (B.4). For (B.5), see Rockafellar (1970, Theorem 2.3.1, p. 214).
For (B.6), substitute —z for z in (B.4) and apply (B.5). The definition of w'(y; z) yields (B.7) directly.
Q.E.D.

LEMMA B.8: Letye U, and let p in R* be such that p- z=w'(y; z) forall zin RX, and p- y = w(y).
Then pe ow(y).
PROOF: Let y'€ U. Then y'e R%,, since U is an open cone in RX. Hence 8y’ = y for sufficiently
large positive 8, and hence there is a z in R¥ such that y + z = 6y’. Hence by (B.4),
pz=w (i )=wy+z)-wy)=w(y+z)-p-y;
hence by the homogeneity of w,
p'(6y)=p-(y+z)=w(y+z)=w(6y)=0w(y);
hence p- y'= w(y’), and hence by Lemma A.1, pedw(y). Q.E.D.

LEMMA B.9: Let x,, X,, ... be independent identically distributed random variables with mean 0, all
bounded in absolute value by 1. Set g,, = x,+ -+ X,,,, and let 0< 8 < 1. Then for all m,
gm

prob{ 26} <2e~(89m,
m

%5 For example, we do not have concavity on the entire nonnegative orthant, but only on a conical
neighborhood of the diagonal.

6 Not the U of (8.2).

57 Homogeneous of degree 0.
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REMARK: This provides an explicit bound for the residual probability in the weak law of large
numbers. The particular expression 82/4 is of no importance; for our purposes, it can be replaced
by any positive constant depending on & only (but not on m or on the distribution of the x;). We
are grateful to B. Weiss for providing the following elegant direct proof.

PrROOF: Let 0< A <1. Since Ex; =0, we have

prob {g,, = md} e*™® < Ee*?n = (E e**1)™

A2 "
=<1+A(Ezc,)+7(Ezc%)+- . )

A2 A3 m 2
s(1+—ﬁ"—+-~> Ss(1+A)m=<e™,
2 3!
Setting A = /2, we deduce
prob {g,, = mé}=< e~mA,
By substituting —; for x,, we deduce that also
prob {g,, < —md}=< e ™"/, QE.D.

We now proceed to calculate ¢v,, using (4.3). Pick at random an order Z" on T", assigning equal
probability to all (nk)! orders. For 0< m < nk, denote by Q7 the coalition®® consisting of the first m
agents in the order 2" -

LEMMA B.10: For 1>8>0 and Sc< T", we have
{ |Qnn Sl Is|
proby [————

nk
REMARK: This is the weak law of large numbers for sampling without replacement, with an explicit
bound as in the previous lemma.

PrROOF: Fix S, and write r", =|Sn Q"|. The sequence r7,..., r" may be obtained by choosing
traders at random, one at a time from the population of all nk traders, without replacement; if
choosing an agent in S is considered as “success,” then r;, is the number of successes in the first m
trials. Now let s,, be the number of successes in m trials when traders are chosen at random from
the same population, but with replacement (here m may be as large as we like); i.e., the number of
successes in m independent Bernoulli trials, each with success probability |S|/ nk. Note that both r},,
and §,, have mean m|S|/ nk. Our proof is based on the principle that “sampling without replacement
is uniformly better than sampling with replacement.”>® Here “uniformly better” means that the
probability of any given deviation from the mean is smaller; thus if

. { r Is] 518

= =6, Y= —|=6r,
1o} o-{f=-5l=o}
then prob & < prob 4. Noting that (s,,/m)— (|S|/nk) is of the form g,,/m in the previous lemma

m n

m n
completes the proof. Q.E.D.

PROOF OF PROPOSITION 8.8: Let e’ denote the ith unit vector (0,...,0,1,0,...,0) in R¥ and
let e=(1,...,1). Let z be an arbitrary but, for the time being, fixed point in [0, 1]%/k. Let S, S%,...
be a sequence of coalitions in T', T?, ... respectively such that

Sn
(B.11) lim n( )=z;
n> pk
in fact, we choose S" so that (S")#0 and in the maximum norm,
n(S") 1
B.12 —_— | =
( ) nk nk

*% The wiggles are to indicate that 2" and Q, are random variables.
** Cf. e.g. Aumann and Shapley (1974, p. 135, Note 1), or Champsaur (1975, p. 415, 6.13).
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Let 75, =1 or 0 according as to whether the mth trader in the order &" is or is not in S™. Set

(B13)  y™=n(Qh), ™ =%”97n).

For all ze R, set z,=2/Y z,if z#0, 2, =0 if z=0.
The value of a type i player in v, is p}', where p" is as in (8.9); hence by the efficiency of the value,

p"-ne=p" n(T") =(¢0,)(T") = 0,(T") = w,,(n(T")) = w,(ne),
and so by the 1-homogeneity of w,,
(B.14) ptre=w,(e)>wy(e) as n->oo.

Next, by (4.3) we have

nk
(B.15)  p"-n(8")=(¢v,)(S")=E Z=l (0a(Qn) = 0,( Qo)) T

nk nk
= X ELon(n(@n) - wi(n(@n-0))zhl= T E4%,

the 4, being defined by the expressions in square brackets. Now 47, is either 0, or it is w,(y™") -
w,(y™ —e') for some type i. The latter happens if and only if the mth trader in " is of type i and
is in S"; given Q.. the probability of this is 7,(S" N Q},)/m = z™". Setting

(B.16) Ih=E(4,/Qn),
we thus conclude that

k
(BA)  Ih= T [wn(y™) = waly™ =€)z,

Now define the event &), by
(B.18) &n=1{y™ -[0,1]*< U}.
If &), obtains, then the concavity of w, on U, (B.6), and (B.7) yield

k
(B.19) F"m=( Z: [wn(y""')—wn(y""'—ei)].z;"{'>2.2.’""

= (Wa(y™) = Wy (y™ = 2"™) T 2

=wn(y™ 2™ L 2™

ymn
= wln("ymn; gmn) = w:l(~m ;.zmn>.

Now let £ >0 be given. Choose 8 in accordance with Corollary B.2, with y=e/k and z as chosen
at the beginning of the proof. Define events 9, €,,, and 3;, by

9:‘,.:{ L ¢ <5}, <€"m={ z""‘—M <§}, Bm=D G
m k - nk

2
By setting S = T} in Lemma B.10, we deduce

Prob (not D) <2k e~m5/4,

Similarly, by setting S =S" N T}, we deduce
prob (not €™) <2k e~™5/16,
and hence
(B.20) prob (not B") < 4k e=mo"/16,
Now from (B.12) we deduce that
(B.21) B < €rc{z™—z| <8} whenever n>2/4.
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Moreover, we may assume w.l.o.g. that § is chosen sufficiently small so that

e
y—z <26 = yeU;
as U is a cone, this yields
e
Y 2l = Zeu = yeu
m m

Since x [0, 1] and m>1/8 imply | x/m| <8, we deduce
(B.22) Br< D<€, whenever m>1/8.
Combining (B.19), (B.21), (B.22), Corollary B.2 and (B.7), we obtain that for n>2/8 and m>1/8

(B23)  E(IL®5)=> w;(f; ) —e=wi(e)—e.

Since n=m/k, (B.23) holds whenever m > 2k/é.
Let u be a uniform bound on the |w,| in [0, 1]% By (B.17), we always have

(B.24) |77l < 2kum.
By (B.16), E(4,,)= E(I'%). Hence by (B.15), (B.23), and (B.24), for m>2k/ & we have

nk nk
P n(8h= % E(4m)= % E(I})
nk
= T [E(I/®},) prob &7, + E(I'7,|not B7,) prob (not B7,)]
m=1

nk
= nkwl,(e; z) —nke — Y, 4kum prob (not AB},);
m=1

and hence by (B.20)
. n(S™)
k

1 nk
(B.25) P =wli(e;z)—e— [— Y m e""‘sz/“]wkzp

n nk m=1

Denote by c, the expression in square brackets. Then ¢, is the Cesaro mean of the sequence
{me~™"/1%} "which tends to 0 as m - 0; hence also ¢, >0 as n-> . In particular, for n sufficiently
large, we have 16k?uc, < e, and then

a n(S")
P

(B.26) = wli(e; z) —2e.

In the particular case in which z = e’, we may choose S" = T?, and then (B.26) yields

s ,
pr=pm- 150 bt (s ey~ 2k
n

Thus the p} are bounded from below, and by (B.14), ¥ p} is bounded from above. Hence {p"} is
bounded. If p is a limit point of {p"}, then (B.12) and (B.26) yield
prz=wi(e; z)—2e.
Since this is true for each ¢, we deduce
(B.27) p-z=wh(e; 2).

Now (B.27) holds for any z in [0, 1]%/k, and so by (B.7), for any z in RX. By (B.14), p- e = wy(e).
Hence by Lemma B.8, p € dw,(e), as was to be proved.
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APPENDIX C
FURTHER PROPERTIES OF DIVIDENDS AND WEIGHTS

This Appendix is devoted to proving the results stated in Section 12.

W.lo.g. x® does not satiate all types (see footnote 35), which implies that there are lightweight
types. If none of the A} tend to 0, it follows that all types are lightweight; hence by (9.27), ¢, =0 for
all i, and hence (g, x*) is a competitive equilibrium, which we have excluded (12.1). Thus

(C.1) there are both heavyweight and lightweight types.

Formulas (9.27) through (9.29) indicate that to gain information about the dividends, we should
study (¢vfy)(T}) for lightweight i. Define ", Q), and y™" as in Appendix B (just before Lemma
B.10, and (B.13)). Let 77" =1 or 0 according as to whether the mth trader in the order " is or is
not of Type i, and set

(€C2) A= (0h(Qm) — v (Qh-))F "
= (Wh(y™) = Wiy ) E.
A" represents the contribution of the mth player to vy if he is of Type i; otherwise it is 0. Hence

nk nk
(C3) (dop ) (T{)=E Z=lé\.7"”= ZIE- i

m=

LEMMA C.4: Ifiis lightweight and N a nonnegative integer, then uniformly in n,

N
(60)(TD)= T EAT"+o(0).

REMARK: The error o(1) is to be understood as a function of N. In words, the lemma says that
the total contribution (¢vf)(T}) of all Type i traders to the heavyweights can be approximated
arbitrarily closely by the contribution of the Type i traders that are among the first N traders of the
order, where N is a fixed finite number that is independent of the number n of times that the market
is replicated. We will in fact show that the error decreases exponentially, i.e. that there is a positive
a, independent of n, such that the error is O(e™*").

PROOF: By Lemma 9.11, we may choose & sufficiently small so that § <1 and
e
”y—; <86 = yel,.
" e
Dr=yF——-ll<dq-
{ m k }
Using Lemma B.10 with S = T7 for each j, we find

prob (not D7) <2k e~ ™8/,

prob (not @7,_,) <2k e~ (MDA < 3| g~m8Y/4,

Define®°

Setting

(m=Dn are in U},

Fy= {X""‘ and y
we deduce
(C.5) prob (not F7,) <S5k e~™8/4,
Since i is lightweight, it follows from (9.6) and (C.2) that

(C.6) A™ =0 whenever %), obtains.

%0 This is as in Appendix B, with U; instead of U.
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Letting u; '= max u; as in Section 9.3, and setting u=Y,_,, u;, we find that 0< wj;(y) < u whenever
y€[0, 1]%. From (C.2) and the 1-homogeneity of w?; (see (8.4)), it follows that always

(c.n 0<A™<mpu.

Combining (C.5) through (C.7) with (C.3) and (C.2), we find

N nk
(C8) (poi)(T])= ¥ EAn+ Y E(47"|not &) prob (not &)
m=1

m=N+1

=

nk
EA™ +5ky Y me ™4
1

m=N+1

HYE

The second term in the last expression is part of the tail of a convergent series, and therefore tends
to 0 uniformly as N - co. This proves the lemma. The explicit bound on the error term in the remark
follows from a slightly closer look at the tail. Q.E.D.

COROLLARY C.9: If i is heavyweight and N is a nonnegative integer, then uniformly in n,

(¢vz)(r.-")=(n—%')m"ui+ S EAT"+0(1).
m=1

REMARK: As in Lemma C.4, the error is a function of N, and decreases exponentially. The
difference between the two cases is in the first term on the right, which reflects the fact that a
heavyweight trader makes a contribution to the heavyweights even when they are all satiated, simply
by adding his own consumption to that of the coalition. As n - o0, this contribution of the heavyweights
cannot be approximated by a fixed finite N.

PROOF: Follows the proof of Lemma C.3. Formula (C.5) must be replaced by
(C.10) A" = A]un; whenever %), obtains.
In (C.8), this leads to the additional term
nk N
T E(4!| ) prob F, = (" -—) Afpito(l),
m=N+1 k

where, as before, the term o(1) decreases exponentially in N, uniformly in n. Q.E.D.

LEMMA C.11: Ifi is lightweight, then as n varies, (¢pv'y)(T") remains bounded and bounded away®*
from 0. If i is heavyweight, then as n varies, (¢pv3;)(T?) — nA} u, remains bounded.

PrROOF: For the boundedness part, which holds in both cases, choose N =0 in Lemma C.4 (for
i€ L) and Corollary C.10 (for i € H); the result follows since the error term in those results is uniform
in n. To show the boundedness away from O for lightweight i, note that 4" is always =0, so it is
enough to show that A2", say, is bounded away from 0. Now the probability is > 1/k? that the first
trader in R" is of Type 1 (which is heavyweight by (C.1)), and the second trader is of Type i. In
that case

A%" =27 max {u;(x): x e X; n (= X))}.

Since 0 does not satiate 1, and is in the interior of both X, and —X; (see (2.3)), it follows that the
max on the right is a fixed positive number, say {>0. The A} are all positive by definition, and since
1 is the “heaviest” type, they do not tend to 0; therefore they have a positive minimum, say 8> 0.
It follows that

($vE)(T) = EAT" > BL/K*> 0. QE.D.

6! Greater than a positive constant.
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PROOF OF THEOREM 12.6: W.l.o.g. restrict the convergence indicator so that nAy converges or
tends to infinity. By (9.23), if i is lightweight, then

(C.12) (pvE)(T?)=nAzq - x;+0(nAg).
By Lemma C.11, the left side is bounded away from 0, so
(C.13) 0<lim nAj%.

Suppose lim nA; =co. Since the left side of (C.12) is bounded (Lemma C.11), it follows that

q - x°=0; this holds for all i€ L. If i € H, then (9.24) yields

(poE)(TT)—nAip = nrzq- xT+o(nAp).
By Lemma C.11, the left side is bounded in n, and so again, since lim nA } = co, we must have g - x;°=0.
Thus g+ x7°=0 both for i€ L and for i € H, i.e., for all i. But this implies that (g, x) is a competitive
equilibrium (cf. the end of Section 9), which we have ruled out (C.1). Hence lim nA 3 <0, and so by
(C.13),

0<lim nAj <oo.
Since by Corollary 9.26, the A} have the same order of magnitude for all lightweight i, the theorem
is proved. QE.D.

PROOF OF THEOREM 12.4: Suppose i€ L. By Lemma C.11, (¢v§;)(T}) is bounded away from 0;
by Theorem 12.6, proven above, nA} is bounded. Hence c; >0 by (9.27). If i € H, the result follows
from (9.28), (9.29), and from its truth for i € L. Q.E.D.

We come next to the explicit formula for the dividends, Theorem 12.9. Note that the p™ are i.i.d.
r.v.’s, which take on each of the values e!,..., e* in R% with equal probability (recall that e’ =
,...,0,1,0,...,0)). Set

(C.14)  ymi=p'+.-+pm

ProposITION C15: For lightweight i,

0<Aye,= lim (603)(TD)= T CE((waly™) = (g

= T LB+ e = wa(y™)
m=0

REMARK: In particular, it is asserted that the limit exists and is finite, and the series converge to
a finite limit.

PROOF: The positivity, 0 < A,c;, follows from (12.7) and Theorem 12.4 (proven above). The equality
of Ac; with the limit is (9.27). The equality between the two sums is straightforward. It remains only
to prove that the limit equals the first sum.

First note that if z" —» z, then

(C.16) wi(z) > wg(z).

Let us now examine the behavior of EA™" for fixed m, as n—> c0. Each of the random variables y™"
and y™ has precisely k™ possible values; as n- oo, the distribution of y™ approaches that of y™.
Noting that 7" =y — y{m=Dn and p™=y™ — y™=1 and using (C.16), we deduce that as m >0,
(C17) B> E((wa(y™) = w3 ™) o).

Now let £ >0 be given. By Lemma C.4, there is an N, such that for all N> N,, and for all n,

N
($0R)(TD - T EAT"| <e.
Letting n—> oo on the left while keeping N fixed, and using (C.17), yields
N
‘ lim (¢oE)N(T7) = T E((wa(y™) —we(y" ))pl) | <e
n-»o0 m=1 -~ -~ -~

for all N> Nj,. Since ¢ was chosen arbitrarily, the proof is complete. Q.E.D.

PROOF OF THEOREM 12.9: Follows from Proposition C.15, by noting that
(C.18) Y7 =n(Qn), wu(y")=vu(Q™), wu(y"+e)=vu(QTuUL). Q.E.D.
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COROLLARY C.19: For all heavyweight i,

- § E (051 (Q U 1) — 041 (@) ~ APhy).

1 2 .
Ao X7 = lim (0R)(TD=miw) =1 T E(wa(y™+e)=waly™ = ATu)

PROOF: The first equality is (9.24). The second equality follows as in the proof of Proposition
C.15, using Corollary C.9 instead of Lemma C.4. The third equality follows from (C.18).  Q.E.D.

Before proceeding, we should point out that whereas vy is formally defined as wy © 1, the two
represent slightly different concepts. In vy (S), the maximum is over S-allocations that need not be
equal treatment; that may give different bundles to traders of the same type (cf. (4.1)). This was used
already in the proof of Lemma 9.14, and will be used again in the proof of Lemma C.20 below.
Because the X; are convex and the u; concave, the maximum is in fact achieved at equal treatment
allocations, and this enables us to express vy by wy ° 7.

Denote by T the infinite pool of Type i traders, and set T = Ty U - - - U T¥. Recall that ¢; denotes
an additional Type i trader, outside of the pool. Like before, u, = u;, X, = X;, and A7 = AT whenever
t is of Type i.

PrROPOSITION C.20: Let ay,..., a); be nonnegative numbers whose sum a is <1, let S< T®, and
let j be such that =0 and

(C.21) X;2Y a;X,.
Then
(C.22) vg(SU)—vu(8)=T a(vy(Su ) —vu(S)—A7w,).

PROOF: Assume first that o = 1. Suppose that Y (Su't;) is achieved at an (S U t;)-allocation that
assigns to each f in SuU ¢t the bundle x!; that is, x| € X,,

(C.23) APu(xi)+ ¥ APuP(x) =vy(SUt), and
teS
(C.24) xi+ X xi=0.
tesS

Now for te S, assign to ¢ the bundle x,:=Y a;x!, and to 4, assign the bundle x, = Z ax;| The
concav1ty of X, yields x, € X, when 1€ §, (C.21) yields x, € and (C.24) yields ¥, sy X =0. Thus
x is an (Su t;)-allocation, and hence using A =0, the concav1ty of the u,, and (C.23), we get

(C.25) vg(Sut)= Zs ATu,(x,)+ AT u(x;)
te
=2 APu(x)= T AT au(x))
teS teS
=Y aq ZS APu(x) =Y a;(vy(SU ) - )‘ci'o“i(xi;))
te
=Y o (vg(SuUt)—ATw);
this yields the result for a =1.
When a <1, we add an additional type, with index 0, net trade set X, = {0}, utility defined by
uo(0) =0, and weight A5’ =0. This violates the conditions 0€ Int X, and 0¢ B;, but in the above proof
for the case @ = 1, no use was made of these conditions. Setting a,:= 1 — a, and applying the previous

case to this situation, yields (C.22) in this case as well. Q.E.D.

PROOF OF THEOREM 12.5: Since AT u; =0 for lightweight i, the theorem follows from Theorem
12.9 (proven above), (12.7), and Proposition C.20. Q.E.D.

LEMMA C.26: If q- x7 <0, then A7>0.
PROOF: If A7 =0, then by (9.30), Proposition C.15, and Corollary C.19,

1 2 .
Ayq- x?o=; E_Io E(WH(:VM“’ e')— WH(,_Vm))~
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By the superadditivity (8.4) of wy, each term on the right is nonnegative, and as in the proof of
Lemma C.11, at least one must be positive. Hence g x;°>0.

REMARK C.27: Let L' be the set of i with A?°=0. Theorem 12.5 says that the dividends are
monotonically concave over L. We can replace L by L', thus strengthening the theorem, but only at
the cost of revising the formulas for the dividends. Set H':= H\L'. For i€ L', define ¢/:=q- x°. For
ie H', define ¢} analogously to the definition of ¢; for ie H ((9.28) and (9.29)); in words, ¢} is the
smallest ¢; among those with je L' and X; > X;, when there is such a j; otherwise, it is a sufficiently
large finite number. By Lemma C.26, x{> 0 for i in L', and hence for i in H' as well. From Proposition
C.20 it follows that ¢’ is monotonically concave in the net trade sets of L'. It may, incidentally, be
seen that ¢, like ¢, is monotonic over all the net trade sets. Q.E.D.

LEMMA C.28: IfA7>0, A7 =0, and X; < X;, then q- x7<q- x5.

PrROOF: By (9.30), Proposition C.15, and Corollary C.19,

(€2 g 5= T E(0a(Qn )= 0n(Qn) = AT k),
#¢ m=0 ~
1 0o

(€C30) g 3= T E(0n(Qnv )= 0u(Q))
xK m=0

By Proposition (C.20) with a; =1, each term on the right of (C.29) is less than or equal to the
corresponding term in (C.30). In fact it is strictly less than, because there is a positive probability
that _Q,,, consists of Type i traders only, in which case

UH(Qm v ti)_vH(_Qm)_/\?op'i =-APp <0< vH(Qm ut)- vH(Qm)'
Hence ¢- x7¥<gq- x}.

PROOF OF PROPOSITION 12.10: If i is satiated at x{°, then x° € B,, so u; is differentiable at x7°,
50 du;(x°) = {0}, so a&u;(xy) ={0}, so g =0 (by (9.19)), contradicting (9.20). Q.E.D:

PROOF OF PROPOSITION 12.11: Since d = 1, the price vector q is a real number # 0, w.l.o.g.>0
(otherwise reflect around 0). We say that i’s demand is positive (negative) if B;< R, (B;< —R..);
since all dividends are positive, the bliss sets B; of types i with negative demand are included in i’s
dividend budget set, and hence x?° € B;= —R’,. Hence all unsatiated i have positive demand. The
corresponding B; cannot intersect i’s dividend budget set, and so must be to the right of (greater
than) x{°. Thus for each unsatiated i, there is a point y; in B; with y; > x{°. Setting y, := x;°€ B, for
unsatiated i, we find

0=Yx<XyelB,

the first equality being the feasibility of x*. Thus the short side of the market consists precisely of
types with negative demand. But for such types i, we have already seen that x> —R!,, hence
q- x<0, and hence A >0 by Lemma C.26. Q.E.D.
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APPENDIX D

OVERVIEW OF THE PROOF OF THE MAIN THEOREM

(9.3) 9.2)
(o")TD) = A"(@DNTY) + ()T = mAiu(x))
I
[ since the
For ie L: dividing by nAj 8.8 via other terms 9.7)
and letting n-> o Sect. 9.3 converge
. (@v")(TT) l Y
A%T = def bi + G = &u'(x?
¢
JeL X,c X;=>¢<c
directly from (4.3)
Vi c,=0
pi=&u'(x7)—q- x7, 1 i ;
geodu(x7), 70 [ (x)—g-x7) + G )
from Proposition 8.5 via 8.8 —q- x¢ + ¢ = 0

A

l

Xic Xj=>e¢=<g¢
0<¢=¢q"x

(¢, x7)icr define a monotone dividend equilibrium on L
gedtu(x7), &>0
For ie H:
jeL, X;c X; _fif 3je L, X;< X;: define ¢;=min{¢:je L, X;= X;}=c- x7
¢ <¢+(A]/AP)u(B) "\ otherwise: define c;=¢>¢; VjelL
=g xT

v

(¢isx7)i=1,..x define a monotone dividend

equilibrium on M'
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LOGICAL STRUCTURE OF THE PROOF OF THE MAIN THEOREM

Key to flow chart

Results that form part of the conclusion are identified in a square.
Results that are grouped naturally together (e.g. different parts of the same lemma) are encircled together.
Results that are more “central” are enclosed in a heavy circle. Since everything is used, this is necessarily
somewhat subjective.
Numbers without decimals refer to Section 9 (e.g., 20 means 9.20).
“Int” is the assumption that 0 is in the interior of each net trade set (see (2.3)).
Lettered results are not identified by letter in the text:
. The dividends c; are well defined.
. x7 is in i’s dividend budget set (¢ x°< ;).
. i weakly prefers x{° to everything in his dividend budget set (¢- x < ¢; = u;(x{°) = u;(x)).
. The dividends are nonnegative (c; =0).
. The dividends are monotonic in the net-trade sets (X; < X; = ¢; < ).

moowp
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