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1 Introduction

The allocation or assignment problem is one of the more important

problems of management science. It may be stated very briefly: We are

given a system with a number of vacant positions and an equal number

of available parts. We know how well each part performs in each posi-

tion; we wish to assign the parts to the positions so that system perfor-

mance is optimized.

Applications range far and wide, from employment to aircraft assign-

ment to naval overhaul programs. The computational aspects of the

problem have been solved, under the assumption that a numerical value

is associated with each assignment and that the value of the system is

given by the sum of the values of the individual assignments [1,2]. The

crux of the problem, therefore, becomes the finding of values to use for

the individual assignments.

Most of the prior literature has either ignored this problem or failed to

reach a definitive conclusion. In certain applications it may be possible to

determine values in a unique natural way; the transportation problem is

an example [1]. But in most cases the problem is much more complex,

and there is no natural utility (like dollar cost in the transportation case)

available. The employment problem is a case in point. Here we have a

number of vacancies and a number of candidates, and we wish to assign

the candidates to the vacancies. The problem is of the utmost impor-

tance; all organizations but the smallest are plagued by it. It has been

suggested that, as a first approximation, we classify each candidate as

either ‘‘suitable’’ or ‘‘unsuitable’’ for a job and solve the problem by

using the values 1 and 0, respectively. This approach is manifestly unre-

alistic; it is probably worse than letting the personnel o‰ce struggle along

as best it can, using nonnumerical subjective evaluation of the candidates

and the jobs.

The technique presented in this paper was originally developed for the

problem of allocating major electronic equipment to Naval Ships [3,4].

For concreteness, we will refer to this application throughout the sequel,

except in the last section, where we will return to the general case.

The technique is constituted so as to take advantage of any special

internal relationships that might exist between the positions or the parts.

Thus it will vary somewhat from application to application; and even

for a given application, several variations may be possible. In essence,

though, it is completely general; the same basic ideas apply to all allocation
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problems in which the assignment value is not easily measurable or not

measurable at all.

The naval electronics problem is extremely complex. In order not to

obscure the main outlines of the technique, we have drastically simplified

its statement. A more realistic and detailed treatment of that particular

problem, of great importance in itself, will be given in a subsequent paper

[5]. Aspects of procurement and allocation have been covered previously

in the Quarterly [4].

The basic idea contained in this paper is that of Jack W. Smith; the

authors are responsible only for mathematical formulation, elaboration,

and technique and, even for these, only partly. Much credit is also due

John P. Mayberry, Norman Shapiro, and George Suzuki.

The strictly mathematical part of this paper is contained in Sections 4,

5, and 6; Sections 2, 3 and 7 contain more explanatory material than

strict mathematical analysis.

2 Objectives of the Technique

Most problems of operations research are handled in the following

way: We are given some physical system and a physical utility (dollars,

expected kill, etc.) which we would like to optimize, subject to the

restraints of the system. We set up a mathematical model of the system

that allows us to express the physical utility (objective function) and the

restraints mathematically, and then we do our best to find that set of

parameters that optimize the physical utility.

This method, although it works very well with many OR problems,

fails completely with ours. To start with, there is no measurable physical

utility that we are trying to optimize. We say we are trying to optimize

military e¤ectiveness, but this is obviously a subjective idea rather than

an objective, physical, measurable utility. One can always count his

dollars to see how much profit he’s made; but there’s no way of measur-

ing how much ‘‘military e¤ectiveness’’ is contributed by some radio

transmitter. And even if we had a physical utility, the operating con-

ditions of the electronic sets are too complex and involve too many

unmeasurable and unpredictable factors to be describable at all usefully

in mathematical terms.

The navy handles this problem in the following way: It appoints

someone familiar with navy objectives and experienced with the equip-

ment and the ships involved, it helps him out with a few directives, and it

tells him to make up an allocation plan. Although a quantitative state-

ment of the objective function and the restraints is out of the question,

the responsible person can qualitatively weigh all the factors and come up
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with a ‘‘reasonable’’ or ‘‘acceptable’’ plan. In fact, this is how most deci-

sions in the military and business world are reached—the responsible

person comes up with his decision on the basis of qualitative consid-

erations and shrewd guesswork rather than by the use of mathematical

optimizations. This process is a perfectly accepted and valid one.

This process works very well when the choice the responsible person

must make is a clear-cut one with more or less clear-cut implications.

Thus if the allocation problems under discussion involved but a few sets

and ships, there would be no point in trying to improve current methods.

Actually, these allocation problems involve hundreds of electronic sets

and ships; and at this point, the responsible person is no longer able to

exercise his judgment soundly, because he is overwhelmed by the combi-

natorial di‰culties inherent in problems of this size.

The job of solving large allocation problems really is two jobs: the

combinatorial or mathematical job and the naval judgment job. Under

current methods these two are hopelessly mixed together, with the result

that probably neither one is being done as well as it could be. Our

objective is to separate the two: the mathematical or combinatorial prob-

lems should be solved by mathematicians and computing machines, and

decisions involving naval judgment should be made by naval personnel.

As a result of this process, both jobs will be handled more e‰ciently.

Note that we do not want to eliminate or replace qualitative naval

judgment. In fact, it forms the basis of our technique. We are simply out

to find a more e¤ective way of using it.

3 A Brief Description of the Technique

Roughly speaking, the technique works as follows: The Navy appoints an

o‰cer or board of o‰cers (henceforth called ‘‘the board’’) to be respon-

sible for making allocation decisions. These decisions will come in re-

sponse to hypothetical allocation problems of a very small size, usually

involving no more than two sets of electronic equipment and two possible

ships to which they could be assigned. Because of the small size of the

problems, the board will not get entangled in combinatorial di‰culties

and will be able to reach a decision based solely on its judgment, experi-

ence, and knowledge, taking into account all factors that a¤ect the

problem.

These qualitative decisions of the o‰cers are used in the following way:

We assumed in Section 1 that each alternative in each of the choices

made by the board had a numerical value, given by the sum of the

values of the individual assignments in it. The choices made by the

o‰cers therefore yield a set of inequalities involving the coe‰cients we
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are seeking. These inequalities, together with some additional results on

the algebraic make-up of the individual coe‰cients, enable us to esti-

mate the value of the coe‰cients fairly precisely.

It is important to note that:

a. The value of an assignment is not a function of the assignment only,

but also of the board that makes the decisions.

b. The board is never asked for a numerical estimate, only for qualitative

yes-or-no decisions. Quantitative value are mathematically deduced from

these qualitative decisions, assuming only the existence and linearity of

the value function. There is nothing surprising in this; the process of

deducing important numerical information from the mere existence of a

quantity, without any a priori knowledge of its value, is a commonplace

in mathematics.

We would like to stress the subjectivity of the allocation plan resulting

from this technique. Our results will be based entirely on the judgment,

knowledge, and experience of the board; all we have done is to find a

technique for obtaining an allocation plan from their judgment. If we

substitute a di¤erent board, we will probably get somewhat di¤erent

allocation plans. There is nothing anomalous in this. All executive

organizations, whether business, governmental, or military, are based on

a chain of command, and it is to be expected that di¤erent people within

this chain would make di¤erent decisions; this does not negate the

validity of the command system or the applicability of a decision once

it is made.

4 The Mathematical Model—Basic Theorems

The two classes of objects which we are pairing o¤ are electronic sets, and

positions, i.e., places on the ships where the sets will be put. We wish to

find the value of all possible assignments of a set to a position.

The electronic sets are classified into models; two sets of the same

model are essentially indistinguishable. We define the void model to

consist of no set at all. The positions are classified into priority groups,

depending on how important they are, and into state groups, depending

on the model already installed which the new set will replace. The void

position is no position at all (conceptually the warehouse). A priority-

state group is the intersection of a priority group and a state group.

If a is a set and b a position, we will denote by ða; bÞ the assignment of

a to b. Let X be a class of electronic sets and Y a class of positions. An

allocation plan T defined on ðX ;YÞ is a class of individual assignments

ða; bÞ, where a A X and b A X, and each a and b occurs at most once in T .
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X and Y will not be fixed in the sequel, but will vary in accordance with

the context. ða; bÞ itself may also be considered an allocation plan

(defined on (fag, fbg)).

assumption 1 With each allocation plan T and board B, there is asso-

ciated a numerical value vðT ;BÞ:

Intuitively, vðT ;BÞ can be interpreted as the military e¤ectiveness of T

in the opinion of B.

assumption 2 vðT ;BÞ ¼
P

ða;bÞ A T vðða; bÞ;BÞ:

From the strictly logical viewpoint, assumption 2 could equally well

have been stated as a definition. It involves important conceptual

assumptions, however, and is used not only in theoretical work but in the

deduction of numerical values from the board’s decisions. It therefore

seems more honest to state it as an assumption.

Denote by f ðT Þ the function that associates with each pair consisting

of a model M and a priority group P the number of sets of M in posi-

tions of P after the plan T is carried out; in other words, f ðT Þ specifies

the cardinality of the new priority-state groups. Of course, we are here

counting only those positions on which T is defined.

assumption 3 If f ðT1Þ ¼ f ðT2Þ, then vðT1;BÞ ¼ vðT2;BÞ.

This assumption tells us that the only quantity the Board considers

significant can be deduced from the number of models of each kind that

end up in positions of each kind. Which set replaced which set is of no

interest to the board. Of course T1 and T2 are here assumed to be defined

on the same set of positions.

theorem 4.1 If a is of the same model as the set installed in b, then

vðða; bÞ;BÞ ¼ 0:

Proof Let T be a null plan, i.e., a plan containing no assignments at all.

Then, by the hypothesis,

f ðTÞ ¼ f ða; bÞ

Hence, by assumption 3,

vðða; bÞ;BÞ ¼ vðT ;BÞ: ð�Þ

But since T is null, the sum on the right side of assumption 2 is empty,

whence

vðT ;BÞ ¼ 0: ð��Þ

Combining (�) and (��), we obtain our theorem.
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theorem 4.2 If a1 and a2 are of the same model and b1 and b2 of the

same priority-state group, then

vðða1; b1Þ;BÞ ¼ vðða2; b2Þ;BÞ:

Proof For i ¼ 1 and 2, let Ti be defined on (fa1; a2g; fb1; b2g) and

Ti ¼ fðai; biÞg. Then f ðT1Þ ¼ f ðT2Þ, and hence it follows from assump-

tion 3 that vðT1;BÞ ¼ vðT2;BÞ. Since Ti consists of ðai; biÞ only, our the-
orem follows.

In consequence of 4.2, we can speak of values vðM;A;BÞ for triples

consisting of a model M, a priority-state group A, and a board B. For-

mally, we have:

definition 4.3 If a A M and b A A, then

vðM;A;BÞ ¼ vðða; bÞ;BÞ:

(The definition is unique because of 4.2.)

For a given model M, let SðMÞ denote the set of those positions that

have sets of model M already installed (before the implementation of the

contemplated allocation plan). SðMÞ is a state group; if P is a priority

group, then PXSðMÞ is a priority-state group. Define

vðM1;P;M2;BÞ ¼ vðM1;PXSðM2Þ;BÞ: ð4:4Þ

theorem 4.5 vðM;P;M;BÞ ¼ 0:

Proof Follows at once from theorems 4.1 and 4.2.

Denote the void model by 0.

theorem 4.6 vðM1;P;M2;BÞ ¼ vðM1;P; 0;BÞ � vðM2;P; 0;BÞ:

Proof If M1 ¼ M2, then 4.6 follows at once from 4.5. Assume

M1 6¼ M2. Let b1 and b2 be positions in priority group P. Suppose that

b1 has a set of model M2 currently installed, and that b2 has a void cur-

rently installed. Let a1 and a2 be sets of model M1 and M2, respectively.

Let T1 be the plan that assigns a1 to b1 and a2 to b2. Let T2 be the

plan that assigns a1 to b2 and a2 to b1. (Both are defined on

(fa1; a2g; fb1; b2g).) Then

f ðT1ÞðM1;PÞ ¼ 1 ¼ f ðT2ÞðM1;PÞ;

f ðT1ÞðM2;PÞ ¼ 1 ¼ f ðT2ÞðM2;PÞ;

and f ðT1Þ ¼ 0 ¼ f ðT2Þ for all other pairs. Thus f ðT1Þ ¼ f ðT2Þ, and it

follows from assumption 3 that

vðT1;BÞ ¼ vðT2;BÞ: ð�Þ
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Now

vðM1;P;M2;BÞ þ vðM2;P; 0;BÞ

¼ vðM1;PXSðM2Þ;BÞ þ vðM2;PXSð0Þ;BÞ ðby 4:4Þ

¼ vðða1; b1Þ;BÞ þ vðða2; b2Þ;BÞ ðby 4:3Þ

¼ vðT1;BÞ ðby assumption 2Þ

¼ vðT2;BÞ ðby ð�ÞÞ

¼ vðða1; b2Þ;BÞ þ vðða2; b1Þ;BÞ ðby assumption 2Þ

¼ vðM1;PXSð0Þ;BÞ þ vðM2;PXSðM2Þ;BÞ ðby 4:3Þ

¼ vðM1;P; 0;BÞ þ vðM2;P;M2;BÞ ðby 4:4Þ

¼ vðM1;P; 0;BÞ ðby 4:5Þ

Subtracting vðM2;P; 0;BÞ from both sides, we obtain (4.6).

Intuitively, the expression vðM;P; 0;BÞ gives the value of having a set

of model M in a position of priority P, rather than the value of a

replacement. When P is a priority group, we will use the expression

vðM;P;BÞ instead of vðM;P; 0;BÞ. These values will be called basic

values. Theorem 4.6 tells us that, in order to find the values, it is su‰cient

to find the basic values.

theorem 4.7 If b is the void position, then

vðða; bÞ;BÞ ¼ 0:

Proof If T is a null assignment, then

f ðTÞ ¼ f ða; bÞ:

The result now follows from assumptions 2 and 3. (Actually, ða; bÞ is a

null assignment.)

Finally, in order to make use of the decisions of the board, we need:

assumption 4 If of two plans, T1 and T2, a board B prefers T1 to T2,

then

vðT1;BÞ > vðT2;BÞ:

If B is indi¤erent as to which plan is used, then

vðT1;BÞA vðT2;BÞ;

where A denotes approximate equality.
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Those readers who are unhappy about the use of A in a formal

assumption may replace it by an equality sign. To us, the A seems more

reasonable.

We remark that it would have been possible to state and prove the

axioms and theorems of this section by using only the terminology of set

theory (sets, functions, transformations, etc.). Such a procedure would

have detracted from the intuitive appeal and added nothing to the math-

ematical rigour.

Throughout this section, we have used the notation vðT ;BÞ to stress

the dependence of the numerical value on the board. Since this notation

is somewhat clumsy, we will henceforth write simply vðTÞ, the depen-

dence on B being understood. B will remain fixed throughout the dis-

cussion. In the new notation, (4.6) becomes

vðM1;P;M2Þ ¼ vðM1;PÞ � vðM2;PÞ: ð4:8Þ

There is one additional assumption, which will be stated in the follow-

ing section.

5 Determination of the Relative Values within a Priority Group

Let us fix attention on a certain priority group P.

Let b be a position in priority group P that has nothing currently

installed. By asking the board which model it would most like to install

in b, which model would be its second choice, and so on, we can obtain a

list of all the vðM;PÞ in decreasing order. (Here P is fixed and M ranges

over all models.) This is called the goodness order for P. Unfortunately,

the mere linear order on the functional values vðM;PÞ does not give us

significant numerical information about them; in other words, it does

not determine their scaling. There is, however, a theorem that under cer-

tain conditions enables us to obtain a function numerically—to within

an additive and a multiplicative constant—from a linear order on the

di¤erences between the functional values. In our case, the additive con-

stant is fixed by the requirement that installing a void in b have value 0

(Theorem 4.1). The multiplicative constant will be fixed if we specify the

value of the highest vðM;PÞ in the goodness order. This will in general

depend on P; we will denote it by qðPÞ. Define

rðM;PÞ ¼ vðM;PÞ=qðPÞ: ð5:1Þ

The rðM;PÞ are called relative basic values, or just relative values. They

are used only as a convenience, so that the top member of the goodness

order should be 1.
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theorem 5.21 Let g be a strictly decreasing continuous function on a

closed interval X. Then g is completely determined by the set of all

inequalities of the form

gðx1Þ � gðx2Þ
X
<

� �
gðx3Þ � gðx4Þ;

where x1; x2; x3, x4 A X . In other words, if g0 is a strictly decreasing con-

tinuous function on X distinct from g, then there is a quadruple

(x1; x2; x3; x4) for which

gðx1Þ � gðx2Þ > gðx3Þ � gðx4Þ

and

g0ðx1Þ � g0ðx2Þ < g0ðx3Þ � g0ðx4Þ:

In other words, a linear order on the di¤erences between the functional

values determines them numerically. The principle of Theorem 5.2 pro-

vides the key to solve our problem. It suggests that, in order to obtain the

basic values quantitatively, we qualitatively compare the di¤erences

between them; these will be called improvement values. But because

we do not yet know the value of qðPÞ, we can at most hope to obtain

relative values by this method. Furthermore, since our problem is discrete

(the variable M has a finite domain), whereas theorem 5.2 deals with a

continuous situation, it is not very surprising that we will be able to

obtain these relative values only approximately from the qualitative

comparisons.

Let M1; . . . ;Mnþ1 be all the models, arranged so that

rðM1;PÞ; . . . ; rðMnþ1;PÞ

is in decreasing order (Mnþ1 is the void model). This can be done because

we already know the goodness order. In order to obtain a linear order on

the relative improvement values

dij ¼ rðMi;PÞ � rðMj;PÞ; ð5:3Þ

we must ask the Board to consider all the improvements that can be

made, and list in order the one it considers most important, the one it

considers next most important, and so on. To be specific, we ask the

board to consider assigning model Mi to a position in P that has model

Mj already installed. By (4.4), (4.8), (5.1), and (5.3), this assignment has

1. Theorem 5.2 is not new, but we have not found it stated or proved in the literature. A
proof will be given in a subsequent paper. (Added in proof: It was proved in [7].)
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value qðPÞdij. By ranging over all i and j and using assumption 4, we get

a linear order on the qðPÞdij , which yields a linear order on the dij when

qðPÞ is divided out.

By means of the goodness order, we can tell at once when a dij is pos-

itive and when negative. The order on the positive improvement values is

called the improvement order. Let us denote the largest relative improve-

ment value by d1, the next largest by d2, and so on down to dk. The

improvement order can be written in the form of k � 1 inequalities

d1 > d2

d2 > d3

� � �
dk�1 > dk:

ð5:4Þ

It turns out that the inequalities (5.4) are by no means independent and

that in fact the entire improvement order and goodness order can usually

be characterized by a fairly small number of inequalities, usually few

more than n of them [5].

We remarked above that one would need a continuum of models in

order for the improvement order to determine the relative values pre-

cisely. As it is, each of the linear inequalities constituting the improve-

ment order can be thought of as restricting the relative value vector to lie

in some portion of (nþ 1)-dimensional space bounded by a hyperplane.

The entire improvement order thus restricts the relative value vector to lie

within a certain polyhedron. The smaller this polyhedron is, the better the

improvement order determines the relative value vector. In practice, the

centroid of the polyhedron has been used for the relative value vector,

but there is really no a priori reason to prefer this point to other points

within the polyhedron.

The only information used to determine the relative values is the

improvement order. Thus, if for two priority groups the improvement

order turns out to be the same, then the relative value vector for these

two priority groups will also be the same. In actual fact, it turns out that

the improvement order is independent of the priority groups. (This also

makes sense intuitively, because the relative value is in a sense a measure

of the goodness or suitability of a piece of equipment to a particular mis-

sion and should not depend on the importance of the position to which it

is assigned.) We have been led to:

assumption 5 rðM;PÞ is independent of P.

As a consequence of Assumption 5, we may write

rðM;PÞ ¼ gðMÞ;
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(g standing for ‘‘goodness’’) and conclude from (5.1) and (4.8) that

vðM;PÞ ¼ qðPÞgðMÞ ð5:5Þ

and

vðM1;P;M2Þ ¼ qðPÞðgðM1Þ � gðM2ÞÞ: ð5:6Þ

qðPÞ is called the priority rating of P, gðMÞ the goodness rating of M. We

have already determined the goodness rating of M. It coincides with the

relative value of ðM;PÞ for an arbitrary P. It remains only to determine

the priority ratings.

6 Determination of Priority Ratings

Let Pi and Pj be two priority groups. Let bi and bj be positions in Pi and

Pj, respectively, having sets of model Mi and Mj, respectively, currently

installed. Let M be an arbitrary model, and let a be a set of model M. By

(5.6) we have

vða; biÞ ¼ qðPiÞðgðM � gðMiÞÞ

vða; bjÞ ¼ qðPjÞðgðMÞ � gðMjÞÞ:
ð6:1Þ

We may now confront the board with an allocation problem in which

there are only 2 positions, namely bi and bj, and only one available set,

namely a, and ask it which of the two plans (a; bi) and (a; bj) it would

prefer. According to its answer, we may deduce from (6.1) and Assump-

tion 4 which of

qðPiÞ � ðgðMÞ � gðMiÞÞ
>
A
<

8<
:

9=
;qðPjÞ � ðgðMÞ � gðMjÞÞ ð6:2Þ

holds, whence we may deduce which of

qðPiÞ=qðPjÞ
>
A
<

8<
:

9=
;ðgðMÞ � gðM jÞÞ=ðgðMÞ � gðMiÞÞ ð6:3Þ

holds. We now draw up a list in size order of all the ratios

ðgðMÞ � gðMjÞÞ=ðgðMÞ � gðMiÞÞ;

where M, Mi and Mj range over all models for which both sides of (6.2)

are positive.

By asking questions of the above type, and using (6.3), we may

find between which two items of this list, or near which item, the ratio
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qðPiÞ=qðPjÞ lies. Often the list is su‰ciently dense so that fairly sensi-

tive results can be obtained for any given set of goodness ratings as

obtained in Section 5. Of course, the ‘‘uncertainty’’ interval surrounding

the ratings considered in this section depends on the size of the poly-

hedron considered.

Once we have obtained all the ratios qðPiÞ=qðPjÞ, we may obtain the

qðPiÞ and qðPjÞ themselves up to a multiplicative constant (which may of

course be ignored). In doing this, it is well to fix arbitrarily one of the Pj,

set qðPjÞ ¼ 1, and then use qðPiÞ=qðPjÞ as the value of qðPiÞ, in order to

avoid the ‘‘snowballing’’ of uncertainties that would result if we combine

qðPiÞ=qðPkÞ and qðPkÞ=qðPjÞ to obtain qðPiÞ=qðPjÞ. Also, in making up

the list on which our questions are based, it is well to try to stay away

from ratios involving small denominators, as uncertainties in a small

denominator are tremendously blown up in the quotient.

7 Reservations and Conclusions

1. Use of the technique presented here should be confined to problems

which, like the naval electronics problem, involve too many unpredict-

able or unmeasurable factors or are too vaguely defined or complex to

be amenable to treatment by the conventional methods of Operations

Research, i.e., by methods involving physical, objective constraints, and

utilities. When objective methods are available, they are naturally pref-

erable to subjective methods that depend on the opinions of an individual

or group, no matter how well informed it may be. It is only when we are

forced to use subjective methods anyway that the technique described

here is applicable.

2. The application of our technique to a particular kind of allocation

problem (employment, naval electronics, aircraft assignment, etc.) in-

volves the assumption that the model is meaningful and valid for that

kind of problem. In the final analysis, the validity of the model for a

given kind of problem must be judged by the military or management

authorities themselves. There are, however, mathematical tests which we

can use to see if the method is at all applicable. The most important of

these involves the consistency of the numerical results obtained. Before

the technique is adopted for use with a particular kind of problem, a pilot

problem should be run in which several sets of questions are asked (of

the same board, of course). If widely divergent results are obtained, the

model is not applicable to that kind of problem. If fairly consistent results

are obtained, and if the model is acceptable from other viewpoints as

well, then it is reasonable to assume that the model is applicable. It is

then no longer necessary to test for consistency every time a particular
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allocation is determined, because consistency is a logical consequence of

the model. Nevertheless, it may be wise to throw in one or two more

questions than are strictly necessary to obtain the value, just to see if the

answers check. In the case of naval electronics, limited tests have yielded

consistent results. It has been pointed out that if linearity (assumption 2)

holds, then the answers to the questions should be independent of what

other assignments have already been made. This also can and should be

tested.

It should be noted that no assumptions, implicit or explicit, are made

about the ‘‘nature of psychological judgment,’’ except insofar as the rou-

tine use of any priority list comes under this heading. Psychological or

not, all the assumptions are explicitly stated, and the only ways in which

we can check applicability of the model are by examining for accept-

ability both the assumptions themselves and the results obtained by using

them.

3. There are only three basic assumptions necessary for the application

of the kind of technique presented here. These are assumptions 1, 2, and

4. Assumptions 1 and 4 tell us that associated with each allocation plan

and board there is a numerical military value that satisfies the intuitive

notion of the word ‘‘value.’’ Assumption 2 gives us a way of going from

small allocation problems to big ones, which is of course the crux of our

technique. It is important to note, however, that the particular form of

assumption 2—linearity—could equally well be replaced by some other

formula, and the technique would still be applicable, though possibly

more complicated computationally.

Assumption 1 and something like assumption 2 are necessary not only

for finding the coe‰cients but also for the application of any method that

arrives at allocation plans by linear or nonlinear programming. As we

remarked in Section 1, standard computational techniques for solving the

allocation problem require assumptions 1 and 2. As for assumption 4,

this tells us that we may rely on the decision of the board in arriving at a

plan; this assumption is certainly justified in the problem we are consid-

ering here, because, as stated early in this section, we have to rely on

subjective decisions anyway. We may therefore conclude that if in a given

kind of allocation problem linear or nonlinear programming is at all

applicable, then the kind of technique presented here also should be.

Assumptions 3 and 5 are not basic; they are merely ways of formaliz-

ing the structure that the real-life problem in fact has. Most real-life allo-

cation problems probably present opportunities for simplifications of this

kind. Incidentally, inconsistencies in numerical results may sometimes be

traceable to ignoring the ‘‘fine structure’’ of a problem in the formulation

of a ‘‘type 3’’ assumption. If that occurs, the assumption has to be revised

The Coe‰cients in an Allocation Problem205



accordingly. On the other hand, we are sure that there are some alloca-

tion problems in which linear or nonlinear programming are not appli-

cable at all.

4. Even within the framework of assumptions 1 to 5, the computational

procedures outlined in Sections 5 and 6 are by no means the only ones.

We are not even sure that they are the most e‰cient, in the sense that

they yield the values as precisely and with as few questions as possible.

There is another consideration to be taken into account when asking

questions. This is the need to phrase the questions as realistically as pos-

sible, i.e., to present actual situations which the Board can readily pic-

ture, so as to make it as easy as possible for the Board to consider all

relevant factors in arriving at an answer. From this point of view, also, it

is possible that the procedure in Sections 5 and 6 could be improved. On

the other hand, the methods of Sections 5 and 6 are easily grasped and

lead in a rather straightforward manner to numerical ratings.

In alternative procedures, we might want to determine goodness and

priority ratings simultaneously, for instance, by exclusive use of questions

of the type discussed in Section 6. Or else, we might use a completely

new type of question; for instance, we could attach realistic prices to the

models, and use procurement-allocation questions, i.e., questions which

ask: Given these positions, this money, and these models available for

procurement, what would you buy and how would you allocate it? The

resulting inequalities would yield valuable numerical information which

could be converted into approximate numerical ratings.

Some of these various computational systems should be used in check-

ing the applicability of the model to the problem, as outlined in para-

graph 2 of this section.

5. Another cause for concern is possible variation of the value within the

restraints set by the decisions we have obtained. Let us consider two sets

of assignment values, both consistent with the answers we have received.

In accordance with assumptions 1 and 2, they will each induce value

functions, which we will call v1 and v2. By maximizing v1ðTÞ and v2ðTÞ
over all allocation plans T , we obtain allocation plans T1 and T2 that are

optimal for v1 and v2, respectively. T1 and T2 may di¤er considerably

without causing undue alarm; this is because it is not the plan itself that is

important but its military e¤ectiveness. Thus if

v1ðT1ÞA v1ðT2Þ;

v2ðT1ÞA v2ðT2Þ;
ð7:1Þ

then we probably need not worry. It is only when there is a pair of value

functions not satisfying (7.1) that we must try to remedy the situation. In
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that case we must ask more questions, or di¤erent kinds of questions, in

order to reduce the range of permissible values. In general, the more

information we have, the less uncertainty there is in the numerical ratings

(but we must be careful not to ask so many questions that the board

ceases to think about the answers).

If these methods do not help, the usefulness of the technique is seri-

ously impaired; but even then it is well to remember that if for two plans

T1 and T2, we have

vðT1Þ > vðT2Þ

for all value functions v consistent with the answers received, then T1 is

probably preferable to T2.

On the other hand, it may be possible to obtain plans that are essen-

tially unique (in the sense of (7.1)), with numerical information of only

the most general and cursory kind. Only experience with a particular

kind of problem can determine which kind and how many questions to

ask.

6. Subjective problems of the kind considered here can have no unique

‘‘correct’’ solutions. The technique outlined in this paper is just a way to

go about finding acceptable allocation plans, by no means the way. In a

particular problem, it may be di‰cult to evaluate this technique; but

since the allocation involved usually must be performed in one way or

another, the technique presented here should, practically speaking, be

evaluated in comparison with the possible alternatives rather than on its

own merits alone.

Morse [6] has stated that in operations research, the scientist supplies

the executive with a quantitative basis for the qualitative decision the

executive will make. Actually, this process is typical of operations

research problems on or near the operating level, where it is possible to

use meaningful physical utilities and restraints to reach conclusions that

will be used in making decisions on a higher level. The problems with

which we are concerned are usually several stages removed from the

operating level. The solutions must therefore make use of the qualitative,

subjective decisions made on the lower levels. On the other hand, our

problems are complicated from the combinatorial-mathematical view-

point and cannot be solved e‰ciently by the executive without mathe-

matical help. As a result, the process described by Morse is here reversed;

the executive supplies the scientist and the computing machine with

qualitative decisions which the scientist and the computing machine use

to arrive at quantitative conclusions. It remains to be seen whether the

same general type of thinking can be applied as well to other problems

The Coe‰cients in an Allocation Problem207



(i.e., not necessarily allocation problems) in which quantitative decisions

on a high level must be based at least in part on subjective, qualitative

decisions on lower levels.
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