
25 Rationality and Bounded Rationality: The 1986 Nancy L. Schwartz
Memorial Lecture

I am honored to present this lecture in tribute to Nancy L. Schwartz. I

did not know Professor Schwartz well, yet I am aware of her important

professional contributions. First and foremost are the direct advances to

the profession made through her writings. But also her indirect con-

tributions, as a teacher and an intellectual leader, are very important.

Some of the ideas and applications discussed in this lecture were devel-

oped in the excellent department she helped build.

1 Introduction

Economists have for long expressed dissatisfaction with the complex

models of strict rationality that are so pervasive in economic theory.

There are several objections to such models. First, casual empiricism or

even just simple introspection leads to the conclusion that even in quite

simple decision problems, most economic agents are not in fact max-

imizers, in the sense that they do not scan the choice set and consciously

pick a maximal element from it. Second, such maximizations are often

quite di‰cult, and even if they wanted to, most people (including econo-

mists and even computer scientists) would be unable to carry them out in

practice. Third, polls and laboratory experiments indicate that people

often fail to conform to some of the basic assumptions of rational deci-

sion theory. Fourth, laboratory experiments indicate that the conclusions

of rational analysis (as distinguished from the assumptions) sometimes

fail to conform to ‘‘reality.’’ And finally, the conclusions of ratio-

nal analysis sometimes seem unreasonable even on the basis of simple

introspection.

From my point of view, the last two of the above objections are more

compelling than the first three. In science, it is more important that

the conclusions be right than that the assumptions sound reasonable. The

assumption of a gravitational force seems totally unreasonable on the

face of it, yet leads to correct conclusions. ‘‘By their fruits ye shall know

them’’ (Matthew 7:16).

In the sequel, though, we shall not hew strictly to this line; we shall

examine various models that, between them, address all the above issues.

To my knowledge, this area was first extensively investigated by Her-

bert Simon (1955, 1972). Much of Simon’s work was conceptual rather

than formal. For many years after this initial work, it was recognized that

the area was of great importance, but the lack of a formal approach

impeded its progress. Particular components of Simon’s ideas, such
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as satisficing, were formalized by several workers, but never led to an

extensive theory, and indeed did not appear to have significant implica-

tions that went beyond the formulations themselves.

There is no unified theory of bounded rationality, and probably never

will be. Here we examine several di¤erent but related approaches to the

problem, which have evolved over the last ten or fifteen years. We will

not survey the area, but discuss some of the underlying ideas. For clarity,

we may sometimes stake out a position in a fashion that is more one-

sided and extreme than we really feel; we have the highest respect and

admiration for all the scientists whose work we cite, and beg them not to

take o¤ense.

From the point of view of the volume of research, the field has ‘‘taken

o¤ ’’ in the last half dozen years. An important factor in making this

possible was the development of computer science, complexity theory,

and so on, areas of inquiry that created an intellectual climate conducive

to the development of the theory of bounded rationality. A significant

catalyst was the experimental work of Robert Axelrod (1984) in the late

seventies and early eighties, in which experts were asked to prepare com-

puter programs for playing the repeated prisoners’ dilemma. The idea of

a computer program for playing repeated games presaged some of the

central ideas of the later work; and the winner of Axelrod’s tourna-

ment—tit-for-tat—was, because of its simplicity, nicely illustrative of

the bounded rationality idea. Also, repeated games became the context of

much of the subsequent work.

The remainder of this lecture is divided into five parts. First we discuss

the evolutionary approach to optimization—and specifically to game

theory—and some of its implications for the idea of bounded rationality,

such as the development of truly dynamic theories of games, and the idea

of ‘‘rule rationality’’ (as opposed to ‘‘act rationality’’). Next comes the

area of ‘‘trembles,’’ including equilibrium refinements, ‘‘crazy’’ perturba-

tions, failure of common knowledge of rationality, the limiting average

payo¤ in infinitely repeated games as an expression of bounded ration-

ality, e-equilibria, and related topics. Section 3 deals with the players who

are modeled as computers (finite state automata, Turing machines),

which has now become perhaps the most active area in the field. In sec-

tion 4 we discuss the work on the foundations of decision theory that

deals with various paradoxes (such as Allais [1953] and Ellsberg [1961])

and with results of laboratory experiments by relaxing various of the

postulates and so coming up with a weaker theory. Section 5 is devoted

to one or two open problems.

Most of these notes are set in the framework of non-cooperative game

theory, because most of the work has been in this framework. Game

Strategic Games: Repeated476



theory is indeed particularly appropriate for discussing fundamental ideas

in this area, because it is relatively free from special institutional features.

The basic ideas are probably applicable to economic contexts that are not

game-theoretic (if there are any).

2 Evolution

2.1 Nash Equilibria as Population Equilibria

One of the simplest yet most fundamental ideas in bounded rationality—

indeed in game theory as a whole—is that no rationality at all is required

to arrive at a Nash equilibrium; insects and even flowers can and do

arrive at Nash equilibria, perhaps more reliably than human beings. The

Nash equilibria of a strategic (normal) form game correspond precisely to

population equilibria of populations that interact in accordance with the

rules—and payo¤s—of the game.

A version of this idea—the evolutionarily stable equilibrium—was first

developed by John Maynard Smith (1982) in the early seventies and

applied by him to many biological contexts (most of them animal con-

flicts within a species). But the idea applies also to Nash equilibria—not

only to interaction within a species, but also to interactions between dif-

ferent species. It is worthwhile to give a more precise statement of this

correspondence.

Consider, then, two populations—let us first think of them as di¤erent

species—whose members interact in some way. It might be predator and

prey, or cleaner and host fish, or bees and flowers, or whatever. Each

interaction between an individual of population A and one of population

B results in an increment (or decrement) in the fitness of each; recall that

the fitness of an individual is defined as the expected number of its o¤-

spring (I use ‘‘its’’ on purpose since, strictly speaking, reproduction must

be asexual for this to work). This increment is the payo¤ to each of the

individuals for the encounter in question. The payo¤ is determined by the

genetic endowment of each of the interacting individuals (more or less

aggressive or watchful or keen-sighted or cooperative, etc.). Thus one

may write a bimatrix in which the rows and columns represent the vari-

ous possible genetic endowments of the two respective species (or rather

those di¤erent genetic endowments that are relevant to the kind of inter-

action being examined), and the entries represent the single encounter

payo¤s that we just described. If one views this bimatrix as a game, then

the Nash equilibria of this game correspond precisely to population

equilibria; that is, under asexual reproduction, the proportions of the

various genetic endowments within each population remain constant
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from generation to generation if and only if these proportions constitute

a Nash equilibrium.

This is subject to the following qualification: in each generation, there

must be at least a very small proportion of each kind of genetic endow-

ment; that is, each row and column must be represented by at least some

individuals. This minimal presence, whose biological interpretation is

that it represents possible mutations, is to be thought of as infinitesimal;

specifically, an encounter between two such mutants (in the two popula-

tions) is considered impossible.

A similar story can be told for games with more than two players, and

for evolutionary processes other than biological ones; e.g., economic

evolution, like the development of the QWERTY typewriter keyboard,

studied by the economic historian Paul David (1986). It also applies to

learning processes that are perhaps not strictly analogous to asexual

reproduction. And though it does not apply to sexual reproduction, still

one may hope that, roughly speaking, similar ideas may apply.

One may ask who are the ‘‘players’’ in this ‘‘game’’? The answer is that

the two ‘‘players’’ are the two populations (i.e., the two species). The

individuals are definitely not the ‘‘players’’; if anything, each individual

corresponds to the pure strategy representing its genetic endowment (note

that there is no sense in which an individual can ‘‘choose’’ its own genetic

endowment). More accurately, though, the pure strategies represent kinds

of genetic endowment, and not individuals. Individuals indeed play no

explicit role in the mathematical model; they are swallowed up in the

proportions of the various pure strategies.

Some biologists object to this interpretation, because they see it as

implying group or species selection rather than individual selection. The

player is not the species, they argue; the individual ‘‘acts for its own

good,’’ not the good of the group, or of the population, or of the species.

Some even argue that it is the gene (or rather the allele) that ‘‘acts for its

own good,’’ not the individual. The point, though, is that nothing at all in

this model really ‘‘acts for its own good’’; nobody ‘‘chooses’’ anything. It

is the process as a whole that selects the traits. The most we can do is ask

what it is that corresponds to the player in the mathematical model, and

this is undoubtedly the population.

A question that at first seems puzzling is what happens in the case of

interactions within a species, like animal conflicts for females, etc. Who

are the players in this game? If the players are the populations, then this

must be a one-person game, since there is only one population. But that

doesn’t look right, either, and it certainly doesn’t correspond to the bio-

logical models of animal conflicts.
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The answer is that it is a two-person symmetric game, in which both

players correspond to the same population. In this case we look not for

just any Nash equilibria, but for symmetric ones only.

2.2 Evolutionary Dynamics

The question of developing a ‘‘truly’’ dynamic theory of games has long

plagued game theorists and economic theorists. (If I am not mistaken, it is

one of the conceptual problems listed by Kuhn and Tucker [1953] in the

introduction to volume II of ‘‘Contributions to the Theory of Games’’—

perhaps the last one in that remarkably prophetic list to be successfully

solved.) The di‰culty is that ordinary rational players have foresight, so

they can contemplate all of time from the beginning of play. Thus the

situation can be seen as a one-shot game each play of which is actually

a long sequence of ‘‘stage games,’’ and then one has lost the dynamic

character of the situation.

The evolutionary approach outlined above ‘‘solves’’ this conceptual

di‰culty by eliminating the foresight. Since the process is mechanical,

there is indeed no foresight; no strategies for playing the repeated game

are available to the ‘‘players.’’

And indeed, a fascinating dynamic theory does emerge. Contributions

to this theory have been made by Young (1993), Foster and Young

(1990), and Kandori, Mailath, and Rob (1993). A book on the subject

has been written by Hofbauer and Sigmund (1988) and there is an excel-

lent chapter on evolutionary dynamics in the book by van Damme (1987)

on refinements of Nash equilibrium. Many others have also contributed

to the subject.

It turns out that Nash equilibria are often unstable, and one gets vari-

ous kinds of cycling e¤ects. Sometimes the cycles are ‘‘around’’ the equi-

librium, like in ‘‘matching pennies,’’ but at other times one gets more

complicated behavior. For example, the game

0, 0 4, 5 5, 4

5, 4 0, 0 4, 5

4, 5 5, 4 0, 0

has ((1/3, 1/3, 1/3),(1/3, 1/3, 1/3)) as its only Nash equilibrium; the evolu-

tionary dynamics does not cycle ‘‘around’’ this point, but rather confines

itself (more or less) to the strategy pairs in which the payo¤ is 4 or 5. This

suggests a possible connection with correlated equilibria; this possibility

has recently been investigated by Foster and Vohra (1997).
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Thus evolutionary dynamics emerges as a form of rationality that is

bounded in that foresight is eliminated.

2.3 ‘‘Rule Rationality’’ vs. ‘‘Act Rationality’’

In a famous experiment conducted by Güth et al. (1982) and later

repeated, with important variations, by Binmore et al. (1985), two players

were asked to divide a considerable sum of money (ranging as high as

DM 100). The procedure was that P1 made an o¤er, which could be

either accepted or rejected by P2; if it was rejected, nobody got anything.

The players did not know each other and never saw each other; commu-

nication was a one-time a¤air via computer.

‘‘Rational’’ play would predict a 99-1 split, or 95-5 at the outside. Yet

in by far the most trials, the o¤ered split was between 50-50 and 65-35.

This is surprising enough in itself. But even more surprising is that in

most (all?) cases in which P2 was o¤ered less than 30 percent, he actually

refused. Thus, he preferred to walk away from as much as DM 25 or 30.

How can this be reconciled with ordinary notions of utility maximization,

not to speak of game theory?

It is tempting to answer that a player who is o¤ered five or ten percent

is ‘‘insulted.’’ Therefore, his utilities change; he gets positive probability

from ‘‘punishing’’ the other player.

That’s all right as far as it goes, but it doesn’t go very far; it doesn’t

explain very much. The ‘‘insult’’ is treated as exogenous. But obviously

the ‘‘insult’’ arose from the situation. Shouldn’t we treat the ‘‘insult’’

itself endogenously, somehow explain it game-theoretically?

I think that a better way of explaining the phenomenon is as follows:

ordinary people do not behave in a consciously rational way in their day-

to-day activities. Rather, they evolve ‘‘rules of thumb’’ that work in gen-

eral, by an evolutionary process like that discussed at 2.1 above, or a

learning process with similar properties. Such ‘‘rules of thumb’’ are like

genes (or, rather, alleles). If they work well, they are fruitful and multiply;

if they work poorly, they become rare and eventually extinct.

One such rule of thumb is ‘‘Don’t be a sucker; don’t let people walk all

over you.’’ In general, the rule works well, so it becomes widely adopted.

As it happens, the rule doesn’t apply to Güth’s game, because in that

particular situation, a player who refuses DM 30 does not build up

his reputation by the refusal (because of the built-in anonymity). But

the rule has not been consciously chosen, and will not be consciously

abandoned.

So we see that the evolutionary paradigm yields a third form of

bounded rationality: rather than consciously maximizing in each decision

situation, players use rules of thumb that work well ‘‘on the whole.’’
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3 Perturbations of Rationality

3.1 Equilibrium Refinements

Equilibrium refinements—Selten (1975), Myerson (1978), Kreps and

Wilson (1982), Kalai and Samet (1984), Kohlberg and Mertens (1986),

Basu and Weibull (1991), van Damme (1984), Reny (1992), Cho and

Kreps (1987), and many others—don’t really sound like bounded ration-

ality. They sound more like super rationality, since they go beyond the

basic utility maximization that is inherent in Nash equilibrium. In addi-

tion to Nash equilibrium, which demands rationality on the equilibrium

path, they demand rationality also o¤ the equilibrium path. Yet all are

based in one way or another on ‘‘trembles’’—small departures from

reality.

The paradox is resolved by noting that in game situations, one man’s

irrationality requires another one’s superrationality. You must be super-

rational in order to deal with my irrationalities. Since this applies to all

players, taking account of possible irrationalities leads to a kind of

superrationality for all. To be superrational, one must leave the equilib-

rium path. Thus, a more refined concept of rationality cannot feed on

itself only; it can only be defined in the context of irrationality.

3.2 Crazy Perturbations

An idea related to the trembling hand is the theory of irrational or

‘‘crazy’’ types, as propounded first by the ‘‘Gang of Four’’ (Kreps,

Milgrom, Roberts, and Wilson [1982]), and then taken up by Fudenberg

and Maskin (1986), Aumann and Sorin (1989), Fudenberg and Levine

(1989), and no doubt others. In this work there is some kind of repeated

or other dynamic game set-up; it is assumed that with high probability

the players are ‘‘rational’’ in the sense of being utility maximizers, but

that with a small probability, one or both play some one strategy, or one

of a specified set of strategies, that are ‘‘crazy’’—have no a priori rela-

tionship to rationality. An interesting aspect of this work, which di¤er-

entiates it from the ‘‘refinement’’ literature, and makes it particularly

relevant to the theory of bounded rationality, is that it is usually the crazy

type, or a crazy type, that wins out—takes over the game, so to speak.

Thus, in the original work of the Gang of Four on the prisoner’s dilemma,

there is only one crazy type, who always plays tit-for-tat, no matter what

the other player does; and it turns out that the rational type must imitate

the crazy type, he must also play tit-for-tat, or something quite close to it.

Also, the ‘‘crazy’’ types, while irrational in the sense that they do not

maximize utility, are usually by no means random or arbitrary (as they
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are in refinement theory). For example, we have already noted that tit-

for-tat is computationally a very simple object, far from random. In the

work of Aumann and Sorin, the crazy types are identified with bounded

recall strategies; and in the work of Fudenberg and Levine (1989), the

crazy types form a denumerable set, suggesting that they might be gen-

erated in some systematic manner, e.g., by Turing machines. There

must be method to the madness; this is associated with computational

simplicity, which is another one of the underlying ideas of bounded

rationality.

3.3 Epsilon-equilibria

Rather than playing irrationally with a small probability, as in 3.1 and

3.2 above, one may deviate slightly from rationality by playing so as

almost, but not quite, to maximize utility; i.e., by playing to obtain a

payo¤ that is within e of the optimum payo¤. This idea was introduced

by Radner (1980) in the context of repeated games, in particular of the

repeated prisoners’ dilemma; he showed that in a long but finitely

repeated prisoners’ dilemma, there are e-equilibria with small e in which

the players ‘‘cooperate’’ until close to the end (though, as is well-known,

all exact equilibria lead to a constant stream of ‘‘defections’’).

3.4 Infinitely Repeated Games with Limit-of-the-Average Payo¤

There is an interesting connection between e-equilibria in finitely repeated

games and infinitely repeated games with limit of the average payo¤

(‘‘undiscounted’’). The limit of the average payo¤ has been criticized as

not representing any economic reality; many workers prefer to use either

the finitely repeated game or limits of payo¤s in discounted games with

small discounts. Radner, Myerson, and Maskin (1986), Forges, Mertens,

and Neyman (1986), and perhaps others, have demonstrated that the

results of these two kinds of analysis can indeed be quite di¤erent.

Actually, though, the infinitely repeated undiscounted game is in some

ways a simpler and more natural object than the discounted or finite

game. In calculating equilibria of a finite or discounted game, one must

usually specify the number n of repetitions or the discount rate d; the

equilibria themselves depend crucially on these parameters. But one may

want to think of such a game simply as ‘‘long,’’ without specifying how

long. Equilibria in the undiscounted game may be thought of as ‘‘rules of

thumb,’’ which tell a player how to play in a ‘‘long repetition,’’ indepen-

dently of how long the repetition is. Whereas limits of finite or discounted

equilibrium payo¤s tell the players approximately how much payo¤ to

expect in a long repetition, analysis of the undiscounted game tells him

approximately how to play.
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Thus, the undiscounted game is a framework for formulating the idea

of a duration-independent strategy in a repeated game. Indeed, it may be

shown that an equilibrium in the undiscounted game is an approximate

equilibrium simultaneously in all the n-stage truncations, the approx-

imation getting better and better as n grows. Formally, a strategy profile

(‘‘tuple’’) is an equilibrium in the undiscounted game if and only if for

some sequence of en tending to zero, each of its n-stage truncations is an

en-equilibrium (in the sense of Radner described above) in the n-stage

truncation of the game.

3.5 Failure of Common Knowledge of Rationality

In their paper on the repeated prisoners’ dilemma, the Gang of Four

pointed out that the e¤ect they were demonstrating holds not only when

one of the players believes that with some small probability, the other is a

tit-for-tat automaton, but also if one of them only believes (with small

probability) that the other believes this about him (with small proba-

bility). More generally, it can be shown that many of the perturbation

e¤ects we have been discussing do not require an actual departure from

rationality on the part of the players, but only a lack of common knowl-

edge of rationality (see Aumann 1992).

4 Automata, Computers and Turing Machines

We come now to what is probably the ‘‘mainstream’’ of the newer work

in bounded rationality, namely, the theoretical work that has been done

in the last four or five years on automata and Turing machines playing

repeated games. The work was pioneered by A. Neyman (1985) and A.

Rubinstein (1986), working independently and in very di¤erent direc-

tions. Subsequently, the theme was taken up by Ben-Porath (1993), Kalai

and Stanford (1988), Zemel (1989), Abreu and Rubinstein (1988), Ben-

Porath and Peleg (1987), Lehrer (1988), Papadimitriou (1992), Stearns

(1989), and many others, each of whom made significant new contri-

butions to the subject in various di¤erent directions. Di¤erent branches

of this work have been started by Lewis (1985) and Binmore (1987 and

1988), who have also had their following.

It is impossible to do justice to all this work in a reasonable amount of

space, and we content ourselves with brief descriptions of some of the

major strands. In one strand, pioneered by Neyman, the players of a

repeated game are limited to using mixtures of pure strategies, each of

which can be programmed on a finite automaton with an exogenously

fixed number of states. This is reminiscent of the work of Axelrod, who
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required the entrants in his experiment to write the strategies in a fortran

program not exceeding a stated limit in length. In another strand, pio-

neered by Rubinstein, the size of the automaton is endogenous; computer

capacity, so to speak, is considered costly, and any capacity that is

not actually used in equilibrium play is discarded. The two approaches

lead to very di¤erent results. The reason is that Rubinstein’s approach

precludes the use of ‘‘punishment’’ or ‘‘trigger’’ strategies, which swing

into action only when a player departs from equilibrium, and whose sole

function is precisely to prevent such departures. In the evolutionary

interpretation of repeated games, Rubinstein’s approach may be more

appropriate when the stages of the repeated game represent successive

generations, whereas Neyman’s may be more appropriate when each

generation plays the entire repeated game (which would lead to the evo-

lution of traits having to do with reputation, like ‘‘Don’t be a sucker’’).

The complexity of computing an optimal strategy in a repeated game,

or even just a best response to a given strategy, has been the subject of

works by several authors, including Gilboa (1988), Ben-Porath (1989),

and Papadimitriou (1989). Related work has been done by Lewis (1992),

though in the framework of recursive function theory (which is related

to infinite Turing machines) rather than complexity theory (which has to

do with finite computing devices). Roughly speaking, the results are

qualitatively similar: finding maxima is hard. Needless to say, in the evo-

lutionary approach to games, nobody has to find the maxima; they are

picked out by evolution. Thus, the results of complexity theory again

underscore the importance of the evolutionary approach.

Binmore (1987 and 1988) and his followers have modeled games as

pairs (or n-tuples) of Turing machines in which each machine carries in it

some kind of idea of what the other ‘‘player’’ (machine) might look like.

Other important strands include work by computer scientists who

have made the connection between distributed computing and games

(‘‘computers as players,’’ rather than ‘‘players as computers’’). For a sur-

vey, see Linial 1995.

5 Relaxation of Rationality Postulates

A not uncommon activity of decision, game, and economic theorists since

the fifties has been to call attention to the strength of various postulates

of rationality, and to investigate the consequences of relaxing them.

Many workers in the field—including the writer of these lines—have at

one time or another done this kind of thing. People have constructed

theories of choice without transitivity, without completeness, violating

Strategic Games: Repeated484



the sure-thing principle, and so on. Even general equilibrium theorists

have engaged in this activity, which may be considered a form of limited

rationality (on the part of the agents in the model). This kind of work is

most interesting when it leads to outcomes that are qualitatively di¤erent—

not just weaker—from those obtained with the stronger assumptions; but

I don’t recall many such cases. It can also be very interesting and worth-

while when one gets roughly similar results with significantly weaker

assumptions.

6 An Open Problem

We content ourselves with one open problem, which is perhaps the most

challenging conceptual problem in the area today: to develop a mean-

ingful formal definition of rationality in a situation in which calculation

and analysis themselves are costly and/or limited. In the models we have

discussed up to now, the problem has always been well defined, in the

sense that an absolute maximum is chosen from among the set of feasible

alternatives, no matter how complex a process that maximization may

be. The alternatives themselves involve bounded rationality, but the pro-

cess of choosing them does not.

Here, too, an evolutionary approach may eventually turn out to be the

key to a general solution.
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