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The example of the ‘‘absent-minded driver’’ was introduced by Piccione and
Rubinstein in the context of games and decision problems with imperfect recall.
They claim that a ‘‘paradox’’ or ‘‘inconsistency’’ arises when the decision reached
at the ‘‘planning stage’’ is compared with that at the ‘‘action stage.’’ Though the
example is provocative and worth having, their analysis is questionable. A careful
analysis reveals that while the considerations at the planning and action stages do
differ, there is no paradox or inconsistency. Journal of Economic Literature Classi-
fication Numbers: D81, C72. Q 1997 Academic Press

1. INTRODUCTION

An absent-minded driver starts driving at START in Figure 1. At X he
Ž .can either EXIT and get to A for a payoff of 0 or CONTINUE to Y. At Y he
Ž . Ž .can either EXIT and get to B payoff 4 , or CONTINUE to C payoff 1 . The

essential assumption is that he cannot distinguish between intersections X
and Y, and cannot remember whether he has already gone through one of
them.

Ž .Piccione and Rubinstein 1997; henceforth P & R , who introduced this
example, claim that a ‘‘paradox’’ or ‘‘inconsistency’’ arises when the
decision reached at the planning stage}at START}is compared with that
at the action stage}when the driver is at an intersection. Though the
example is provocative and worth having, P & R’s analysis seems flawed. A
careful analysis reveals that while the considerations at the planning and
action stages do differ, there is no paradox or inconsistency.
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FIG. 1. The absent-minded driver problem.

We start in Section 2 by laying down the fundamental observations that
underlie the driver’s decision problem, and then show in Section 3 how
P & R’s analysis violates these observations. In Section 4 we formally
define the concept of action-optimality and use it to analyze P & R’s
example. Section 5 studies action-optimality in a more general setup, with
some interesting and unexpected conclusions. We conclude with a detailed
discussion of various issues in Section 6.

2. FUNDAMENTALS

At the planning stage, the decision problem is straightforward. In the
Ž . 1example, the optimal randomized decision is ‘‘CONTINUE with probability

2r3 and EXIT with probability 1r3.’’ We call this the planning-optimal
decision.

1 Ž . Ž . 2The problem is to maximize 1 y p ? 0 q p 1 y p ? 4 q p ? 1 over p, where p is the
probability of CONTINUE.
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At the action stage, though, even formulating the decision problem is
not straightforward. The following observations are essential for a correct
analysis of the decision at the action stage.2

v First, the driver makes a decision at each intersection through
which he passes. Moreover, when at one intersection, he can determine
the action only there, and not at the other intersection}where he isn’t.

v Second, since he is in completely indistinguishable situations at the
two intersections, whatever reasoning obtains at one must obtain also at
the other, and he is aware of this.

3. THE P & R ANALYSIS

Consider the action stage. The driver finds himself at an intersection; he
does not know which. Let a be the probability that X is the current
intersection, and let p and q be the probabilities of CONTINUE at the
current and at ‘‘other’’ intersections, respectively. Then the expected
payoff at the action stage is

H p , q , a [ a 1 y p ? 0 q p 1 y q ? 4 q pq ? 1Ž . Ž . Ž .
q 1 y a 1 y p ? 4 q p ? 1 .Ž . Ž .

Ž . wŽ . Ž . 2 x ŽP & R maximize H p, p, a s a 1 y p ? 0 q p 1 y p ? 4 q p ? 1 q 1
.wŽ . xy a 1 y p ? 4 q p ? 1 over p, holding a fixed. Thus they take p and q

as decision variables to be maximized simultaneously, subject to the
constraint q s p. This makes sense only if the driver controls the probabil-
ities at both intersections}a violation of the first observation. But even if,
by some magical process, the driver could control the probability q at the
other intersection, surely a depends on q, and cannot be held fixed in the
maximization!

4. ACTION-OPTIMALITY

How, then, should the driver reason at the action stage? Let us spell out
in detail the implications of the two observations in Section 2:

Ž .i The optimal decision is the same at both intersections; call
it pU.

2One can imagine scenarios for which these observations do not hold. But such scenarios
do not correspond to the plain meaning of the words used to describe the situation. More
important, with those other scenarios the analysis at the planning stage also changes, and
again there is no paradox. Piccione and Rubinstein have yet to adduce an explicit scenario

Ž .that does display a paradox. See Section 6 c for more on this issue.
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Ž . Uii Therefore, at each intersection, the driver believes that p is
chosen at the other intersection.

Ž .iii At each intersection, the driver optimizes his decision given his
beliefs. Therefore, choosing p at the current intersection to be pU must be
optimal given the belief that pU is chosen at the other intersection.

Given a behavior q at the other intersection, the probability that the
3 Ž . Ž .current intersection is X is a s 1r 1 q q . Thus if we set h p, q [

Ž Ž .. Ž .H p, q, 1r 1 q q , we can restate the final implication iii as follows:

pU is action-optimal if the maximum of h p , pU over pŽ .
is attained at p s pU .
U 4 Ž .Thus, p is a fixed point of the set-valued mapping q ª
Ž .arg max h p, q .p

Ž 5.Applying this analysis to the example, we see that the randomized
planning-optimal decision}CONTINUE with probability 2r3}is also ac-
tion-optimal. Indeed, if this is the behavior at the other intersection, then
the probability that the current intersection is X is a s 3r5. Therefore
the expected payoff from choosing CONTINUE at the current intersection

Ž . Ž . wŽ . Ž .with probability p is h p, 2r3 s 3r5 ? 1 y p ? 0 q p ? 1r3 ? 4 q p ?
Ž . x Ž . wŽ . x Ž .2r3 ? 1 q 2r5 ? 1 y p ? 4 q p ? 1 , which equals 8r5 for all p . So
p s 2r3 maximizes it; thus pU s 2r3 is action-optimal.

So there is no paradox: the planning-optimal choice of 2r3 is also
action-optimal.

Moreover, pU s 2r3 is the unique action-optimal decision. Indeed,

1
h p , q s 1 y p ? 0 q p 1 y q ? 4 q pq ? 1Ž . Ž . Ž .

1 q q

q
q 1 y p ? 4 q p ? 1Ž .

1 q q

4 y 6q p q 4qŽ .
s .

1 q q

3This probability is the ‘‘consistent belief’’ of P & R; but unlike P & R, we consider it to be
the one that is appropriate to this problem. In the Appendix we derive it from a formal
model. Informally, since the driver always goes through X, but only q of the time through Y,

Ž . Ž .the ratio of the probabilities is 1 to q, so they must be 1r 1 q q and qr 1 q q . These
Žprobabilities may also be derived from a ‘‘fair lottery’’ approach see Footnote 3 in Aumann,

.Hart, and Perry, 1997 .
4 Ž U U . Ž .Formally, p , p is a symmetric Nash equilibrium in the symmetric game between

Ž‘‘the driver at the current intersection’’ and ‘‘the driver at the other intersection’’ the
.strategic form game with payoff functions h .

5 Ž .For the pure case, see Section 6 d below.
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FIG. 2. Multiple action-optimal decisions.

Given q, the maximizing p therefore is: 0 for q ) 2r3; 1 for q - 2r3; and
anything for q s 2r3. Thus the only fixed point is pU s 2r3.

The notion of action-optimality defined here is mathematically identical
Ž .to the ‘‘modified multiselves approach’’ described near the end Section 7

of P & R. But unlike P & R, we consider this notion to be the natural and
correct formulation of the driver’s decision problem at the action stage.
See Section 6 below for further discussion.

5. A MORE CHALLENGING EXAMPLE, WITH MULTIPLE
ACTION-OPTIMAL DECISIONS

We have seen that, in the specific example of P & R, randomized
planning optimality and action optimality coincide. This is not always so!
While, in general, any planning-optimal randomized decision is also
action-optimal,6 we will now show that there may be action-optimal
choices that are not planning-optimal. Surprisingly, there may even be
action-optimal choices that, at the intersections, look better than the
planning-optimal choice.

6 Proposition 3 of P & R and also the end of the Appendix below.
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FIG. 3. A more challenging example.

For a simple example with action-optimal decisions that are not plan-
ning-optimal, change the payoffs to be 1 at A, 0 at B, and 2 at C}see Fig.
2. The unique planning-optimal choice is CONTINUE, i.e., p s 1. There are,

U U Uhowever, three action-optimal decisions: p s p s 1, p s 0, and p s1 2 3
Ž U1r4 e.g., to see that p s 0 is action-optimal, note that if the decision at2

.the other intersection is EXIT, then it is indeed optimal to EXIT now too .
This leads us to the next point: When there are multiple action-optimal

choices, how do their payoffs compare? Of course, when computed at
START, the one that is planning-optimal yields the maximum payoff. But
how does it look at the current intersection? In the example above,

Up s p s 1 yields the highest payoff among all the action-optimal deci-1
Ž U U . Ž U U .sions also when compared at the intersections; i.e., h p , p ) h p , p1 1 i i

for i s 2, 3. But this is not always so when there are more than two
intersections. Indeed, consider an example with three intersections, the
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payoff being 7 at the first EXIT, 0 at the second EXIT, 22 at the third EXIT,
Ž .and 2 if always CONTINUE see Fig. 3 . Then:

Ž . Ži The unique planning-optimal decision is p s 0 with a payoff
.of 7 .

U UŽ .ii There are three action-optimal decisions: p s p s 0, p s1 2
7r30, and pU s 1r2.3

Ž . U U Uiii The ex-ante expected payoffs for p , p , and p are, respec-1 2 3
tively, 7, 8519r1350 f 6.31, and 6.5.

Ž . Ž U U . U U Uiv The ex-post expected payoffs h p , p for p , p , and p are,1 2 3
Ž U U .respectively, 7, 7378r1159 f 6.37, and 50r7 f 7.14; thus h p , p is3 3

U UŽ . Ž .larger than h p , p ' h p, p .1 1

The reader may ask, since the choice is among three possibilities
yielding 7, f 6.37, or f 7.14, why does the driver not choose the action
with the highest yield, namely pU? The answer, of course, is that at the3
action stage, the driver cannot choose among pU , pU , and pU. His beliefs1 2 3
there are not under his control; he cannot choose what to believe. Action
optimality is a condition for consistency of beliefs and rational behavior. If
the player is to be consistent at the action stage, he must believe in one of
the three possibilities pU , pU , pU ; but which one is not up to him at that1 2 3
stage.

We have already pointed to the formal similarity between action-opti-
mality and game equilibria. Choosing between the pU is much like choos-i
ing between game equilibria, which is something that the individual player

Žin a game cannot do}it must be done by an outside force like a custom
.or a norm , or by all the players somehow coordinating their actions.

In our case, there is only one player, who acts at different times.
Because of his absent-mindedness, he had better coordinate his actions;
this coordination can take place only before he starts out}at the planning
stage. At that point, he should choose pU. If indeed he chose pU , there is1 1
no problem. If by mistake he chose pU or pU , then that is what he should2 3

Ždo at the action stage. If he chose something else, or nothing at all, then
.at the action stage he will have some hard thinking to do.

Once having coordinated on pU , there is no incentive for the driver to1
choose pU at the action stage. Nevertheless, one may ask whether at that3
stage he will be sorry that he did not coordinate on pU rather than on pU.3 1
After all, if he had, his expectation now would be f 7.14, which is greater
than the 7 he now expects! If the answer is ‘‘yes,’’ we have a conceptual
puzzle; why should the driver get himself into a situation where at START

he is sure that he will be sorry at every intersection he reaches? Why not
avoid the sorrow by coordinating on pU in the first place?3
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FIG. 4. An automatic car.

But the answer is ‘‘no’’; he should not be sorry. Having chosen pU , he1

knows he must be at X when finding himself at an intersection. Being at
X is like being at START}i.e., at the planning stage}and then the best
choice is pU and only pU. So when reaching an intersection after having1 1

chosen pU , the driver is not sorry that he indeed chose pU rather than pU.1 1 3

Why, then, is the driver’s expectation at an intersection nevertheless
larger for pU than for pU? The reason is that at an intersection, his belief3 1

as to where he is if he chose pU differs from his belief when he chose pU.3 1

Having chosen pU , he knows he must be at X. If he had chosen pU , he1 3

would have attributed probabilities 4r7, 2r7, and 1r7 to being at X, Y,
and Z. He ‘‘prefers’’ the latter distribution, because it gives him a chance
of already having passed the ‘‘dangerous’’ intersection Y and a better shot
at the high payoff of 22. But as we said above, one cannot choose one’s
beliefs, and it makes little sense to discuss ‘‘preferences’’ between them.
Specifically, since he does know that he is at X, it would be silly for him to
say, ‘‘I wish I had chosen the other plan, because then in my ignorance I
would have been deluded into expecting a higher payoff than now.’’

To clarify this point, consider the example in Fig. 4. The car is automatic
and EXITS with probability 1r2 at each intersection. The decision maker is
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FIG. 5. Clear-headed or absent-minded?

a passenger, who sleeps during most of the trip. At START, he is given the
option to be woken either at both intersections, or only at X. In the first
option he is absent-minded: when waking up, he does not know at which
intersection he is. We call the second option ‘‘clear-headedness.’’

As in the previous discussion, the question at X is not operative}what
to do}but only whether it makes sense to be ‘‘sorry.’’ If he chose
clear-headedness, his expectation upon reaching X is 1r4. If he had
chosen absent-mindedness, then when reaching X he would have at-
tributed probability 2r3 to being at X and 1r3 to being at Y. Therefore

Ž . Ž . Ž .his expected payoff at that point would have been 2r3 ? 1r4 q 1r3 ?
Ž .1r2 s 1r3, which is larger than 1r4. Is he therefore sorry that he chose
to be clear-headed? Clearly this would be absurd, as the payoffs do not
depend on his choice.

To make this even more striking, assume that when he is not absent-
Ž .minded, the probability of CONTINUE is increased to 4r7 Fig. 5 . Then

ex-ante the clear-headed option is actually preferred to the absent-minded
option}it yields 16r49 rather than 1r4. But, upon reaching X, the
clear-headed option still yields 16r49, whereas the absent-minded option
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Ž .yields 1r3 as above , which is bigger then 16r49. Surely, it would be
absurd for the decision maker to wish he were absent-minded}it would
be sticking his head in the sand!

Another issue that these examples raise is this7: Assume the driver in
Fig. 3 has chosen pU at START. His expected payoff there is then 6.5. But,3
he is certain to go through X, where his expected payoff becomes f 7.14.
For a treatment of this issue}which is entirely different from that of the

Ž .current paper}please see Aumann, Hart, and Perry 1997 .

6. DISCUSSION

This section elaborates on a number of different matters.

Ž .a Decision Points. Part of the problem in P & R’s analysis is in their
interpretation of information sets. Recall that the extensive form describes
the way a game is played. The play proceeds from one node to the next, as
each player is called upon to make a choice whenever a decision node of
his is reached. Of course, when asked to make a choice, he possesses
certain information. This is accurately described by information sets: two
decision nodes where a player’s information is the same belong to the
same information set. But decisions are made at nodes, not at information

Ž .sets cf. the first observation of Section 2 .
In games with perfect recall, a given information set can be reached only

once}at a single node}in any one play of the game. Therefore, there is
no harm in identifying decision points with information sets in such games,
though even there the decision point is basically a node. But in games with
absent-mindedness, when an information set may be visited more than
once, it is simply incorrect to identify decision points with information sets.

Ž .b Control. At each intersection, the driver ‘‘expects’’ that he will do
the same at the other intersection. He expects it, and maximizes given that
expectation, and the maximizing behavior turns out the same as the
expectation; that is precisely action-optimality. But expecting is not deter-
mining. He cannot, in fact, determine it}he cannot control what happens
at the other intersection.

In their Section 7, P & R discuss what they call the ‘‘modified multi-selves
approach,’’ which is the same as our notion of action-optimality. They
write that this approach ‘‘assumes that a decision maker, upon reaching an
information set, takes his actions to be immutable at future occurrences of
that information set . . . .At the other extreme one finds the opposite axiom

7 We are grateful to the associate editor in charge of the current paper for raising this
question.
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for which only one self resides in the information set and expects that,
were the information set to occur again, he would adopt whichever

Ž .behavior rule he adopts now’’ their italics .
Piccione and Rubinstein’s ‘‘opposite extremes’’ are in fact identical. The

key element is control. At the action stage}once the driver reaches an
intersection}there is no way that he can control or even affect what he
does at the other intersection. So from his viewpoint, here and now, his
future action really is ‘‘immutable.’’ But that does not contradict P & R’s

Ž .EXIT ‘‘opposite axiom’’ the ‘‘one self’’ approach . As we said above,
expecting to do the same at the other intersection does not imply that the
driver can determine here what happens there.

While P & R’s ‘‘opposite axiom’’ is correct as written, their formalization
of it is inappropriate. This formalization, which leads to ‘‘EXIT with
probability 5r9,’’ is based on the incorrect assumption that at the first
intersection X the driver can control what he does at the second intersec-
tion Y.

Ž .c Consistent Analysis. Conceivably, P & R could challenge the first
observation in Section 2}that at the action stage, the driver can control
only what he does at the current intersection. Perhaps, after all, by some
unspecified psychic process, he can control also what he does at a
subsequent intersection. But in that case, he will have exercised this
control already at the first intersection, and anything that he may think he
is doing at the second intersection has no real effect. This makes the
analyses at the action and planning stages identical, and then surely there
is no paradox.

Another possibility is that the mysterious psychic process affects the
decision at the subsequent intersection}say with some probability}but
does not fully determine it. To analyze this possibility one would have to
spell out just how the process works, and take it into account in the
planning stage.

One could also consider a model in which the driver gets at most one
chance to change his plan}at the first or second intersection, but not at
both. In that case, too, he should take this into account in the planning
stage, and again no paradox results.

In brief: One may consider various different scenarios. Whatever its
specifications are, the precise scenario must be taken into account at the
planning as well as at the action stage. The analyses at the action and
planning stages must be consistent}they must analyze the same scenario.

Ž . Ž .d The Pure Case. Piccione and Rubinstein P & R probably agree
that the pure case is not particularly interesting. Be that as it may, it turns
out that in that case there is no action-optimal decision. If the driver EXITS

at the other intersection, he should CONTINUE here, and if he CONTINUES at
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8 Ž Ž .the other intersection, he should EXIT here. Formally, h p, 1 is maxi-
Ž . .mized at p s 0, and h p, 0 at p s 1.

Even though this is a one-person decision problem, randomized behav-
ior is necessary at the action stage, because there are two independent
decisions there. So how should the driver behave at the action stage?
There is no clear answer. How do you play ‘‘Matching Pennies’’ when
limited to pure strategies?

Ž .e Tying Knots. There is one particular scenario in Figure 1 that
deserves further attention. Assume that the driver has a handkerchief in
his pocket. Whenever he goes through an intersection, he ties a knot in the
handkerchief, if there was no knot; or he unties the knot, if there was one.

Ž .At the beginning i.e., at START , it is equally probable that the handker-
chief had or did not have a knot. The driver}absent-minded as he
is}does not remember which was the case.

Thus, at each one of the two intersections, the probability of having a
knot in the handkerchief is 1r2. Therefore the driver does not learn
anything about the intersection from the fact that there is or there is not a
knot. The condition that ‘‘he does not know at which intersection he
currently is’’ is satisfied.

However, the handkerchief allows the driver to use the following strat-
egy: ‘‘EXIT if there is a knot, CONTINUE if there is not.’’ This is clearly

Žbetter than anything he can do without the handkerchief it yields a payoff
.of 2 . The handkerchief has made it possible to separate the intersections

without identifying them. It serves as an external correlation device. Of
course, other things could be used}like sunspots, policemen, and so on
Žfor instance, assume the single policeman in town chooses at random at

.which intersection to be .
In all these cases, the driver can behave differently at the two intersec-

tions. But then he should take this into account at the planning stage as
Ž Ž . .well}and again there is no paradox see Subsection c above .

8 This may sound like P & R’s argument in the pure case, but it isn’t. Given the planning-
optimal decision}which in the pure case is CONTINUE}P & R claim that at the action stage,
the driver should switch to EXIT. They base this on 1r2 y 1r2 probabilities of being at the
two intersections; these probabilities are derived from the assumption that the driver indeed
CONTINUES. But if he decides to EXIT, this assumption makes no sense: the probabilities
cannot be computed as if he had chosen CONTINUE. As in Section 3, when calculating the
expected payoff of switching plans, you cannot use probabilities as if you had not switched.

In contrast, we say that if the driver EXITS at the other intersection, he should CONTINUE

here, and if he CONTINUES at the other intersection, he should EXIT here. That is a different
kettle of fish altogether.
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7. CONCLUSION

At the action stage, the driver must assume that the other decision is
fixed at the action-optimal value. This is consistent with the optimal choice
at the planning stage. Thus, the example of the absent-minded driver
displays no dynamic inconsistency.

APPENDIX

Ž .We provide here the precise derivation of the function h p, q of
Section 4. Recall that p and q denote the probabilities of CONTINUE at the

Ž .current and at the other intersection, respectively, and h p, q denotes the
resulting expected payoff at the current intersection. For now, think of p
and q as fixed.

Define two random variables, Z and t. Z is the end-node that is
eventually reached, and t is the current time. Thus Z takes the values A,
B, and C; as for t, we are only interested in two values, say t s 1, which is
the time when X is visited, and t s 2, which is the time when Y is visited
Ž .if CONTINUE is chosen at X .

Without any information, it is equally probable that the current time t is
1 or 2:

P t s 1 s P t s 2 s 1r2;Ž . Ž .
otherwise, the two decision points would be distinguishable. This holds for

Ž .the total probability not conditional on one end-node or another .
From the definition of p and q, we have:

< <P Z s A t s 1 s 1 y p , P Z s A t s 2 s 1 y q ,Ž . Ž .
< <P Z s B t s 1 s p 1 y q , P Z s B t s 2 s q 1 y p ,Ž . Ž . Ž . Ž .
< <P Z s C t s 1 s pq, P Z s C t s 2 s qp.Ž . Ž .

Putting it all together yields

P Z s A and t s 1 s 1 y p r2,Ž . Ž .
P Z s A and t s 2 s 1 y q r2,Ž . Ž .
P Z s B and t s 1 s p 1 y q r2,Ž . Ž .
P Z s B and t s 2 s q 1 y p r2,Ž . Ž .
P Z s C and t s 1 s pqr2,Ž .
P Z s C and t s 2 s qpr2.Ž .

The ‘‘current intersection’’ N is defined as the intersection, if any, visited
at the current time t. If t s 1, it is necessarily X ; if t s 2, it is Y if Z s B
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Ž .or Z s C, and ‘‘none’’ if Z s A we write this as N s B . Thus we obtain
Ž . Ž . Ž . Ž � 4.P N s X s P t s 1 s 1r2; P N s Y s P t s 2 and Z g B, C s
Ž . Ž . Ž . Žq 1 y p r2 q qpr2 s qr2; and P N s B s P t s 2 and Z s A s 1 y
.q r2.

Ž .The expected payoff h p, q at the current intersection can thus be
written as

< � 4h p , q s P N s X N g X , Y E u Z N s XŽ . Ž .Ž . Ž .
< � 4q P N s Y N g X , Y E u Z N s Y ,Ž .Ž . Ž .

Ž .where u Z is the payoff at the end-node Z. Therefore
1r2

h p , q s 1 y p ? u A q p 1 y q ? u B q pq ? u CŽ . Ž . Ž . Ž . Ž . Ž .
1r2 q qr2

qr2
q 1 y p ? u B q p ? u C .Ž . Ž . Ž .

1r2 q qr2

Thus, conditional on currently being at an intersection, the probability is
Ž . Ž .1r 1 q q that it is X, and qr 1 q q that it is Y. These are the

Ž‘‘consistent beliefs’’ of P & R. Note that the beliefs about the identity of
the current intersection depend only on the behavior at the other intersec-
tion}not at the current one, where nothing has yet been done. Hence

.these probabilities are a function of q and not of p.
Next, let x and y denote the probabilities of CONTINUE at X and Y,

Ž .respectively. The expected payoff at START is then

f x , y [ 1 y x ? u A q x 1 y y ? u B q xy ? u C .Ž . Ž . Ž . Ž . Ž . Ž .
Ž .A behavior p is planning-optimal if it maximizes f p, p over p. To

compare planning-optimality with action-optimality, note that
1 q 1 q 1 1

q ? h p , q q y ? u A s f p , q q f q , p .Ž . Ž . Ž . Ž .ž / ž /2 2 2 2 2 2
Ž .Denote this expression by g p, q ; the right side may be interpreted as the

expected payoff, evaluated at START, of choosing p at one intersection and
q at the other, but without knowing which is which. Now pU is action-opti-

Ž U .mal if it maximizes h p, p over p, the second argument being fixed at
U Ž U . Up . Equivalently, since h p, p is, for fixed p , a positive linear transfor-

Ž U . Ž . Umation of g p, p see above , it follows that p is action-optimal if and
U Ž U . w Ž U . Ž U .xonly if p maximizes g p, p s f p, p q f p , p r2 over p. This

implies that the randomized planning-optimal decision p is action-optimal.
Indeed, the first-order necessary conditions of the two problems are
identical; they are moreover sufficient for action-optimality, where the
function to be maximized is linear.9

9 This argument is general; it proves Proposition 3 of P & R.
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