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LONG CHEAP TALK1

BY ROBERT J. AUMANN AND SERGIU HART

With cheap talk, more can be achieved by long conversations than by a single
message—even when one side is strictly better informed than the other. (“Cheap talk”
means plain conversation—unmediated, nonbinding, and payoff-irrelevant.) This work
characterizes the equilibrium payoffs for all two-person games in which one side is bet-
ter informed than the other and cheap talk is permitted.

KEYWORDS: Cheap talk, communication, long conversation, incomplete informa-
tion, game theory, signalling, joint lottery, dimartingale, di-span.

1. INTRODUCTION

STRATEGIC INFORMATION TRANSMISSION has been studied in economic the-
ory for over a quarter of a century. Most formal models in this area allow for
at most one message from each player. Yet in practice, as in negotiation or
bargaining, protracted exchanges of messages are often observed. Does this
make economic sense? Can a long exchange convey substantive information
that cannot be conveyed by a single message?

Here we examine this question in the context of “cheap talk.” The answer
is “yes”: Long cheap talk may lead to outcomes preferred by all players to
those achievable with single messages. We will characterize all the equilibrium
outcomes to which it can lead, in any two-person game in which one player is
initially better informed than the other.

Cheap talk is just that: cheap—neither costly nor binding; and talk—
not some roundabout form of communication, like mediation. Unlike “sig-
nalling,”2 cheap talk—plain conversation—is “payoff-irrelevant;” there is no
“credibility cost.” The players don’t strike, don’t get educated, and don’t issue
guarantees; they simply talk. They may or may not tell the truth, and may or
may not believe each other. To be sure, that there is no credibility cost does not
mean that there is no credibility; depending on the circumstances, the cheap
talk may itself create positive motivation for the players to believe each other
(Examples 2.1 and 2.2 below). It is this motivation that forms the crux of our
analysis.

In a sense, cheap talk is communication in its purest and simplest form:
purest in that there is no direct impact on the payoff, and simplest in that there
is no intermediary.

The literature on cheap talk addresses two issues, almost diametrically op-
posite. One is how cheap talk restricts the set of outcomes—equilibrium refine-
ment; see Section 10. The other is how cheap talk expands the set of outcomes.

1Research partially supported by grants of the Israel Academy of Sciences and Humanities.
We thank the anonymous referees and the co-editor for their very careful reading and insightful
comments.

2As in Spence (1974) and Zahavi (1975); for a survey, see Kreps and Sobel (1994).
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One way, of course, is by revealing substantive information; see Example 2.1.
Another is by agreeing on a compromise; for example, in the Battle of the
Sexes (Example 2.3) the players can, with cheap talk, reach the compromise
payoff (4�4), which is not feasible without communication. The current study
concerns this second issue—what equilibria are added by cheap talk.

In the model of this paper, Nature chooses one of several two-person games
in strategic form (bimatrices), using a commonly known probability distribu-
tion; the chosen one is called the true bimatrix. The row player, Rowena, is
informed of the true bimatrix, but the column player, Colin, is not (this is the
information phase). The players then talk to each other for as long as they wish
(the talk phase). When they finish talking, each one takes a single action (i.e.,
chooses a row or column) in the true bimatrix; this is the action phase. The
players receive the payoffs that the true bimatrix prescribes for their actions.
The entire process described in this paragraph is called the cheap talk game.

Informationally, this model is the simplest possible: Only Colin has anything
substantive to learn.3

We characterize all Bayesian Nash equilibrium payoffs in all such games.
The idea is to think of the talk phase as a series of revelations by Rowena, in-
terspersed with agreements between Rowena and Colin. The agreements and
revelations in the talk phase, and the choices in the action phase, must be op-
timal given one another; and it must be optimal for the players to keep the
agreements and to reveal truthfully. Examples—some of which require long
cheap talk—are provided in Section 2.

The revelations and agreements must come in the order prescribed, and
there may be arbitrarily many of them. There are no shortcuts: The first revela-
tion motivates an agreement, this motivates another revelation, this motivates
another agreement, and so on. Any attempt to combine several revelations,
or several agreements—to reveal too much too soon, or to agree to too much
too soon—destroys the equilibrium. Just possibly, there is a lesson here for
conducting negotiations.

In proving our result, we make use of the geometric concepts of diconvexity
and dimartingale (Aumann and Hart (1986)), concepts that also provide a tool
for actually computing the equilibrium payoffs.

The paper is organized as follows: Section 2 illustrates the phenomenon un-
der study; inter alia, it presents games requiring one, two, three, and an infinity
of cheap talk “stages,” each stage being either an agreement or a revelation.
The formal model is presented in Section 3 and discussed in Section 4; though
largely verbal, this presentation is entirely precise. Section 5 first formu-
lates the “behavioral” result to which we alluded above—the characterization

3“Substantive” means that the information is about parameters that are not under the players’
control—like the payoff function—as distinguished from information about the players’ inten-
tions.
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of cheap talk equilibria in terms of alternations of agreements and revela-
tions (Theorem A)—then outlines an informal “demonstration” of this result.
Section 6 explains the notion of “dimartingale,” the chief ingredient in the
geometric characterization of the equilibrium payoffs, which enables also an
“explicit” calculation of the equilibrium payoffs. Section 7 formulates this geo-
metric characterization (Theorem B) and then “demonstrates” it informally.
As will be explained in Section 3, in cheap talk games the formal notion of
“strategy” is not quite straightforward; Section 8 provides the required concep-
tual and technical clarifications. Section 9 discusses extensions and variations.
The relevant literature on cheap talk and related issues, which is quite large, is
reviewed in Section 10. Finally, the Appendix provides formal proofs.

2. SOME EXAMPLES

EXAMPLE 2.1—Credible Signalling. Rowena and Colin are playing one of two
bimatrix games, T or B (see Figure 1), with probability 1

2 each; Rowena knows
which, Colin does not. Colin must choose left (L) or right (R); Rowena has no
choice. Before choosing, Colin may talk with Rowena, who may, if she wants,
tell him the true game; but she need not tell the truth, and Colin has no direct
way of verifying her statements.

Here it is clear that Rowena should tell Colin the truth, and that Colin should
believe her. To express this formally, think of “Nature” choosing T or B with
probability 1

2 each, and informing Rowena—but not Colin—of the game cho-
sen. We distinguish two games. In the silent game, Rowena and Colin may not
talk after Rowena gets her private information and before Colin acts; in the
cheap talk game, they may. The only equilibrium payoff (in fact, the only pay-
off) in the silent game is then (2�2), whereas in the talking game, there is an
equilibrium with payoff (4�4)—precisely that described above.

Such situations are quite familiar; for example, Colin may take Rowena to
dinner, and ask her to recommend a restaurant.

EXAMPLE 2.2—Signalling that is Not Credible. The framework is as in the
previous example, but T and B are as in Figure 2. Here Rowena would like
Colin to play R no matter what the true game is. So Rowena would like Colin
to believe that the true game is B, which would motivate him to play R. So she

FIGURE 1.—Credible signalling.
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FIGURE 2.—Non-credible signalling.

may tell him that the true game is B, no matter what it really is. But he wasn’t
born yesterday; it’s not so easy to pull the wool over his eyes. He knows that
no matter what the true game really is, Rowena is motivated to say that it is B.
So he ignores what she says; it is as if she had remained silent. And indeed, the
equilibrium payoffs in the talking game are precisely as in the silent game: the
only one is (2�3).

If the true game really is B, it is to the advantage of both that she tell him
the truth, and that he believe her; they would get (4�4) instead of (0�0). Nev-
ertheless, he cannot believe her.

This situation, too, is very familiar. Think of Rowena as a job applicant and
Colin as a potential employer. Rowena knows whether or not she is qualified,
but wants the job in any case. So when she tells him that she is qualified, he
cannot believe her, even if she really is. The signal, even when true, is not cred-
ible.

EXAMPLE 2.3 —Compromising. Here the framework is slightly different:
There is only one game, the familiar Battle of the Sexes (Figure 3). Rowena
chooses up (U) or down (D); Colin chooses L or R. The silent game has three
equilibrium payoffs: (6�2), (2�6), and (1 1

2 �1 1
2). In the talking game, the play-

ers can agree on a 1
2 – 1

2 lottery to determine whether to play UL or DR; once
the outcome of the lottery is known, they are motivated to stick to it. So (4�4),
too, is an equilibrium payoff of the talking game. Note that the lottery must
be jointly controlled; both players must be convinced that the probabilities are
indeed 1

2 – 1
2 , and both must observe its outcome. (See Section 4.3.)

In this case substantive information is not conveyed; all the substantive in-
formation is commonly known at the beginning of play, so there is nothing to
convey. The cheap talk serves a different purpose—to reach a compromise.

FIGURE 3.—Compromising.
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FIGURE 4.—Partial revelation.

EXAMPLE 2.4—Credible Signalling with Partial Revelation. Returning to the
framework of Examples 2.1 and 2.2, consider the game of Figure 4. If Rowena
does not reveal which game is being played, Colin’s probabilities for T and B
remain 1

2 – 1
2 ; so he is motivated to choose C , which yields 0 to Rowena (see Fig-

ure 5, which graphs Colin’s expected payoff for each of his choices as a function
of the probability q that he assigns to T ; the thick line denotes his best-reply
payoff). If she does reveal the game being played, Colin is motivated to choose
LL or RR, as the case may be, so she again gets 0. To get 1, she must motivate
Colin to choose L or R; this she can do by a partial revelation, i.e., by hinting
what the correct game is, while leaving some doubt in his mind. For example,
she could use a noisy channel, which transmits the correct information with
probability 3

4 . It then follows from Bayes’ rule that after he receives the com-
munication from Rowena, Colin’s q is either 3

4 or 1
4 , according to whether T

or B is the real game. In the first case, he is motivated to choose L, in the sec-
ond R (see Figure 5); either way, Rowena gets 1. Thus cheap talk can, in this
case, convey substantive information; but only by partial revelation.

In technical terms, the silent game has only one equilibrium, whose payoff
is (0�5); whereas the talking game has also an equilibrium with payoff (1�6)
(= 3

4(1�8)+ 1
4(1�0)), which Pareto dominates (0�5).

EXAMPLE 2.5 —Signalling and then Compromising. Suppose that in the
game4 of Figure 6, the players wish to achieve an expected payoff of (4�4).
This could be done by playing as in Example 2.3 (“Compromising”)—i.e.,
1
2UL+ 1

2DR—in the game T , and playing A in B. But then, Colin would have
to know which is the true game. Can Rowena credibly convey this information
to him?

She can; but she must tell him the true game first. Only afterwards, if it is T ,
should they perform the lottery that determines whether to play UL or DR.
Indeed, suppose the lottery is performed first, and calls for DR in T ; and sup-
pose the true game is indeed T . Then Rowena will be motivated to say that it
is B, which calls for Colin to play A; this yields to Rowena a payoff of 3, rather
than the 2 she would have gotten under the compromise.

4We thank Elchanan Ben-Porath for pointing out an error in a previous version of this example.
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FIGURE 5.—Colin’s payoffs in Example 2.4.

We have here the beginnings of a negotiation over time: a process requiring
two stages, consisting of a revelation of information followed by a compromise.

EXAMPLE 2.6—Compromising and then Signalling. This game (Figure 7) dif-
fers from that of Figure 4 in that not only L and R, but also LL and RR, yield
positive payoffs to Rowena. The silent game still has a unique equilibrium pay-
off, namely (0�5). In the talking game, partial revelation (as in Example 2.4)
yields (3�6), which Pareto dominates (0�5), as before. But now there is also

FIGURE 6.—Signalling and then compromising.
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FIGURE 7.—Compromising and then signalling.

a fully revealing equilibrium whose payoff Pareto dominates (0�5): Rowena
simply tells Colin which game is being played (using a noiseless channel), and
Colin responds accordingly, which yields a payoff of (1�10).

Rowena prefers the partial revelation, Colin the full revelation. So they can
compromise: decide on full or partial revelation by tossing a fair coin. This
yields (2�8). Clearly, the compromise must come before the signal, since it de-
termines the nature of the signal. So, as in the previous example, the conversa-
tion has two stages, but the order of signalling and compromising is reversed.

EXAMPLE 2.7—Signalling, Compromising, and Signalling. The talking version
of this game (Figure 8) has an equilibrium with three “talk stages”: first a par-
tial revelation, then a compromise governed by a jointly controlled lottery, and
finally either a full or a partial revelation (depending on the lottery’s outcome).
First, Rowena reveals whether or not the true game is5 BB. If it is not, then the
game is that of Figure 7, which calls for a compromise followed by either a
full or a partial revelation, and yields an expectation of (2�8) (see the previous
example). If it is, then Colin plays A, which again yields (2�8).

If the compromise came before the first revelation, and called for Rowena
to reveal fully at the third talk stage—thus yielding her 1—then at the first talk
stage, she would have been motivated to say that the true game is BB. Colin
would then play A, which yields her 2 in both T and B—more than the 1 she

FIGURE 8.—Signalling, compromising, and signalling.

5Rowena’s message is thus “two B” or “not two B.”
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FIGURE 9.—An unboundedly long conversation.

gets according to plan. Nor can the compromise come after the final revelation,
for the reason given in the previous example. Thus it must come at the precise
time at which it is scheduled—between the two revelations—neither sooner
nor later. So here the conversation has three stages.

EXAMPLE 2.8 —An Unboundedly Long Conversation. This example (Fig-
ure 9), due to Forges (1990a), has a nice interpretation in terms of a job as-
signment scenario. “Unboundedly long” does not mean “infinitely long”: The
conversation ends almost surely, but one cannot say beforehand by when. In
the silent game, Colin is motivated to choose C , so that Rowena gets 0. By
sending a single—fully revealing—message, she can motivate Colin to choose
LL or RR, as the case may be, and so improve her payoff to 6. The question
arises whether the talking game has an equilibrium that yields her more than 6.

If the conversation may not exceed some given length, the answer is “no”;
but if we permit unboundedly long conversations, the answer is “yes”: There is
an equilibrium yielding (7�9 2

7). Since the example is already in the literature,
we do not go further into it here. Aumann and Maschler (1995, p. 311) pro-
vide an extended discussion of this striking example in the context of repeated
games; their discussion applies, almost without change, to the context of cheap
talk.

3. THE MODEL: FORMULATION

Let Γ = (Γ 1� � � � � Γ κ) be a collection of two-person games in strategic form
(bimatrices), all of the same size; p = (p1� � � � �pκ) a probability vector; and
M a “keyboard”—a finite set with members a, b, . . . , called “keystrokes.” We
assume that |M|> 1; i.e., there are at least two keystrokes. The model has three
phases, each ending before the next starts. In the information phase, a bimatrix
Γ k is picked at random from the collection Γ in accordance with the probability
vector p; the row player Rowena is informed of k, the column player Colin is
not.6 The talk phase has infinitely many time periods 1�2� � � � . At each period t,

6Boldface letters signify random variables. The value of k is Rowena’s type, or the state of nature,
or simply the state.
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each player sends a message to the other, consisting of a single keystroke; the
two messages are sent simultaneously. The messages for the next period, t+ 1,
are sent only after the messages of period t are received. Finally, in the action
phase, the players simultaneously choose a row and a column, and are paid off
in accordance with the entry in Γ k in the chosen row and column.

Perfect recall is assumed throughout the three phases; i.e., at any stage, each
player knows what he previously did as well as what he previously knew. The
entire model is assumed commonly known between the players.

This defines a cheap talk game, or simply talking game, in extensive form.
In form it is a little unusual, in that time has order type ω+ 1; that is, there
is an infinite sequence of time periods, with one additional period after the
whole sequence. Though conceptually this offers no difficulty, formally defin-
ing “strategy” in such a context is a little delicate; we postpone doing so until
Section 8, after we have discussed the model and results on a more substantive
level.

4. THE MODEL: DISCUSSION

4.1. Interpretation of the Keys

Use of the term “keyboard” in describing the talk phase is deliberate. The
keystrokes are empty vessels, given meaning only by the particular equilibrium
of which they are part. Thus in Example 2.1, the following is an equilibrium: At
the first stage of the talk phase, Rowena sends the message a if the true game
is T , and b if the true game isB; Colin sends the message a. At each subsequent
stage, each player sends the message a. In the action phase, Colin chooses L if
Rowena sent a at the first stage of the talk phase, R if she sent b. The thing to
note is that there is nothing intrinsic about the interpretation of the keys; the
equilibrium works just as well if we associate b with T and a with B.

The size of the keyboard—the number of keys—is unimportant; any size—
2 or larger—yields the same results. In fact, the equilibrium payoffs would not
change even if the keyboard had different sizes at different stages, or even
if it were infinite at some or all stages; this follows from our proof (see the
Appendix).7

4.2. Conversation Length

Some readers may raise eyebrows at the infinite length of the talk phase. The
reason is to provide maximum latitude for negotiation. Any artificial restriction
on the length of the conversation would distort the outcome; inter alia, termi-
nal effects could propagate backwards, as in the finitely repeated Prisoner’s

7However, in more general contexts—when there is initial incomplete information on both
sides—the set of equilibrium payoffs may depend on the size of the keyboard (Amitai (1996a)).
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Dilemma, or in overlapping generations models with finite horizon. The play-
ers should be allowed to talk for as long as they wish, and this is impossible
with a finite talk phase.

Note that in all the examples of Section 2, the conversation is finite.8�9 For
cheap talk with bounded conversation length, see Section 9(c).

4.3. Simultaneous Messages, Compromises, Joint Lotteries

Though common courtesy calls for people to speak one at a time, the model
allows for simultaneous messages. There are several reasons for this. Concep-
tually, a model with alternating speakers could, in principle, introduce undesir-
able and artificial asymmetries. For example, there is sometimes a significant
asymmetry between making an offer and responding to it. Complete symmetry
is maintained in the model by the expedient of simultaneous messages.

Technically, simultaneous messages enable the construction of jointly con-
trolled lotteries—or simply joint lotteries—even when there is no random device
with jointly observed outcomes (Aumann, Maschler, and Stearns (1968)). Such
lotteries are essential for compromising. Thus suppose that in the Battle of
the Sexes (Example 2.3), the players wish to randomize between the outcomes
(6�2) and (2�6) with 1

2 – 1
2 probabilities. They can do so by each sending, in

the first stage of the talk phase, the messages a and b with probability 1
2 each;

and then, in the action phase, playing UL if the messages were the same (aa
or bb), and DR if they were different (ab or ba). Indeed, the probability of
each of these two eventualities is 1

2 , and neither player can by himself change
it; moreover, once it is determined what the players are to play—UL or DR,
as the case may be—either player would lose by deviating. So the described
strategies are indeed in equilibrium.10

For talk without simultaneous messages—which we call polite talk—see Sec-
tion 9(b).

5. CHARACTERIZING THE EQUILIBRIUM PAYOFFS BEHAVIORALLY

5.1. Formulation

An equilibrium of the talking game is an ordinary Nash (or Bayesian Nash)
equilibrium. That is, Colin’s strategy maximizes his expected payoff given
Rowena’s strategy and the probability vector p; and the strategy of each of

8Or better, effectively finite: After a certain stage, the messages do not affect the outcome.
9In Example 2.8 the length is unbounded, but still finite with probability 1.
10Composing such 1

2 – 1
2 joint lotteries can generate any λ–λ′ lottery between two outcomes X

and Y (where 0 < λ < 1 and λ′ = 1 − λ). Indeed, express λ as a binary number 0�ε1ε2 � � � (with
εn ∈ {0�1}), and conduct a sequence of 1

2 – 1
2 joint lotteries until the first time aa or bb obtains; if

this occurs at stage n, then the outcome is determined by the nth digit of λ (it is X if εn = 1 and
Y if εn = 0).
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Rowena’s types k maximizes that type’s payoff (i.e., the payoff in Γ k) given
Colin’s strategy. Payoffs are (κ+ 1)-dimensional objects, denoted (a�β); here
a is a κ-vector, whose components are the payoffs to Rowena’s κ types, and
β is Colin’s expected payoff (expectation over k).

Call a pair of strategies in the talking game canonical if it has the following
form: In the talk phase, even-numbered periods are devoted to joint lotteries,
odd-numbered periods to unilateral signals from Rowena to Colin. Specifically,
in each even period, the players conduct a joint lottery with 1

2 – 1
2 probabilities

(using the messages a and b; see Section 4.3); denote the outcome s if the
messages are the same, d if they are different. In each odd period t, Rowena
sends the messages a, b with respective probabilities π�1 − π; here π may
depend on k� on t, on the messages (a or b) that Rowena actually sent in odd
periods before t, and on the lottery outcomes (s or d) actually obtained in even
periods before t. In the action phase, the players choose mixed actions, which
may depend on all the messages that Rowena actually sent at odd periods of the
talk phase, and on all the lottery outcomes actually obtained in even periods;
in addition, Rowena’s choice may depend on k. Call an equilibrium canonical
if the strategy pair constituting it is canonical.

THEOREM A: In a cheap talk game, a vector (a�β) is the payoff to an equilib-
rium if and only if it is the payoff to a canonical equilibrium.

This formalizes the view of the talk phase as a series of revelations by
Rowena, interspersed with agreements between Rowena and Colin. Though
the “agreements” are technically lotteries, the informal interpretation is
broader. Bargaining may be viewed as a lottery; a priori, either side may come
out “ahead.”11 Thus what this paper suggests is that extended negotiations—
with revelations interspersed between “pure” bargaining sessions—occur natu-
rally in the context of cheap talk, even when one side is strictly better informed
than the other.

Theorem A characterizes the equilibrium payoffs in “behavioral” terms. One
would like also to have an explicit characterization, which gives a clear picture
of what the equilibrium payoffs actually are. In the ensuing sections (6–7, after
the demonstration of Theorem A in 5.2) we provide such a characterization, in
terms of the theory of dimartingales (Aumann and Hart (1986)).

5.2. Informal Demonstration of Theorem A

For simplicity we take the keyboard to consist of just two keystrokes, a and b.
The formal proof does not use this restriction.

11This is not to say that all or even most bargaining is conducted by tossing a coin; rather, that
ex ante, the outcome is not clear to either side—even when no substantive information is revealed
during the bargaining process.
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“If” is immediate. To demonstrate “only if,” let γ′ = (σ ′� τ′) be an equi-
librium of the talking game. We wish to construct a canonical equilibrium
γ = (σ� τ) with the same payoffs. At each period of the talk phase, γ′ calls for
Rowena and Colin to send simultaneous messages, which depend on the history
up to then; assume for the moment that Colin chooses a or b with probabilities
1
2 – 1

2 . We mimic this in γ by a message from Rowena followed by a joint lottery;
thus each period in γ′ is replaced by two periods in γ. Rowena’s t’th period
message in γ′ becomes her (2t − 1)’th message in γ, and Colin’s t’th period
message in γ′ is replaced in γ by a joint lottery in period 2t (with, say, s corre-
sponding to a and d to b). This induces a correspondence between γ-histories
and γ′-histories, finite as well as infinite.12 The correspondence between finite
histories defines γ in the talk phase, and that between infinite histories defines
γ in the action phase. In particular, γ specifies the same (mixed) actions for a
given infinite γ-history that γ′ specifies for the corresponding γ′-history.

Clearly, γ is canonical and has the same payoffs as γ′. To see that it is an
equilibrium, note first that nothing that Colin can do can change the outcomes
of the joint lotteries. Thus Colin can influence the outcome at the action phase
only; but there his choice was a best reply to σ ′, so it is also a best reply to σ .
Therefore τ is indeed a best reply to σ .

Also nothing that Rowena can do can change the probabilities of the joint
lotteries. Her only influence is in the messages she sends in the odd periods and
the mixed actions she takes in the action phase. But then again, since these are
the same in σ as in σ ′, it follows that σ is a best reply to τ.

Here we have assumed for simplicity that Colin’s signals in γ′ all have 1
2 – 1

2
probabilities. The argument may be extended to arbitrary probabilities; see
footnote 10.

6. DIMARTINGALES

Recall that a martingale is a sequence z =(z0� z1� z2� � � �) of random variables,
with values in some Euclidean space Z, such that for each t, the expectation of
zt+1 given (z0� z1� z2� � � � � zt) is zt . Intuitively, one may think of a particle split-
ting, each resulting particle splitting again, and so on, the center of mass of
each particle always remaining the same. One may also think of a tree, with
an element zv of Z—called z’s value at v—associated with each node v, and a
probability distribution on v’s sons; the martingale condition is that z’s value
at v be equal to the expectation of z’s value at v’s sons. A classical instance of a
martingale is the sequence of posterior probabilities of an event when one con-
ditions on more and more information. More generally, the sequence of condi-
tional expectations of some fixed random variable, when conditioned on more

12For example, the 3-period history (a�a)� (a�b)� (b�b) in γ′ corresponds to all 6-period
histories in γ of the form (a� ·)�s� (a� ·)�d� (b� ·)�d—for instance, (a�b)� (a�a)� (a�a)� (b�a)�
(b�b)� (a�b). Note that in γ, Colin’s messages in odd periods are irrelevant.
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and more information, is a martingale. An important property of martingales,
which we use repeatedly, is the Martingale Convergence Theorem: A bounded
martingale converges almost surely. The expectation of a martingale is the ex-
pectation of any zt ; by the definition of martingale, all these expectations are
the same.

Now let A�B�Q be Euclidean spaces, from now on fixed, and let Z =
A × B × Q; thus each point in Z has the form (a�β�q). A dimartingale13

is a Z-valued bounded martingale ((a0�β0�q0)� (a1�β1�q1)� (a2�β2�q2)� � � �)�
where at+1 = at when t is even, qt+1 = qt when t is odd, and (a0�β0�q0) is a
constant (which is therefore also the expectation of the dimartingale). Thus
the q- and a-coordinates never split simultaneously; rather, they alternate:
The a-coordinate splits in odd periods, the q-coordinate in even periods. The
β-coordinate may split in any period.

The di-span14 of a set G in Z is defined as the set of all expectations of di-
martingales whose limits are almost surely inG. To get a feeling for the di-span,
consider the corresponding notion for ordinary (rather than di-) martingales.
Thus, (provisionally) define the “span” of G as the set of all expectations of
bounded martingales whose limits are almost surely in G. Then it may be seen

FIGURE 10.—Left: The set G= {a�b� c�d�e} (the solid dots) and its di-span (the hatched area
and the line segments). Right: A dimartingale for v, which reaches G in 5 steps.

13This term was coined by Aumann and Maschler (1995), though the concept was introduced
already in Hart (1985). A bimartingale, as in Aumann and Hart (1986), is a dimartingale without
the β-coordinate. The definitions and results of Aumann and Hart (1986) translate in a straight-
forward manner from the “bi” to the “di” setup. For example, a set G⊂ A × B × Q is diconvex if
its sections corresponding to constant a—i.e., {(β�q) ∈ B × Q : (a�β�q) ∈G}—and to constant
q—i.e., {(a�β) ∈ A × B : (a�β�q) ∈G}—are all convex sets.

14Short for “diconvex span (relative to the a- and q-directions),” the term used in Aumann and
Maschler (1995).
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FIGURE 11.—Left: The set G= {a�b� c�d} (the solid dots) and its di-span (the square and the
four line segments). Right: A dimartingale for v, which reaches G with probability 1.

that the span of G is the same as its convex hull. Since a dimartingale is a spe-
cial case of a martingale, it follows that the di-span of a set is included in its
convex hull. The di-span is illustrated in Figures 10 and 11 in two instances,
both with A (horizontal axis) and Q (vertical axis) one-dimensional and no B.
In Figure 10 one needs up to 5 consecutive operations of “diconvexification”
(convexifying either horizontally or vertically).15 In Figure 11, diconvexifica-
tion does not help—G is already diconvex—and the di-span is obtained using
dimartingales that are unbounded in length (this so-called “four frogs” config-
uration is Example 2.5 in Aumann and Hart (1986); it is the basis of Forges’
(1990a) example—our Example 2.8).

7. CHARACTERIZING THE EQUILIBRIUM PAYOFFS GEOMETRICALLY

7.1. Formulation

In Section 3, we defined the talking game determined by a collection Γ =
(Γ 1� � � � � Γ κ) of bimatrices and a probability vector p = (p1� � � � �pκ). In or-
der to characterize the equilibria of the talking game, we need to refer to a
game defined in precisely the same way, except that the talk phase is elimi-
nated, so that the action phase comes immediately after the information phase.
This is called the silent game (determined by Γ and p); in it, the informed
player cannot send any signals to the uninformed player, and the players can-
not reach compromise agreements. As in the talking game, payoffs are (κ+1)-
dimensional objects, denoted (a�β), where a is a κ-vector, whose components
are the payoffs to the κ types of Rowena, and β is Colin’s expected payoff.

15In this example, the di-span of G is the same as the diconvex hull of G—the smallest diconvex
set containing G.
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An equilibrium of the silent game is an ordinary Nash (or Bayesian Nash)
equilibrium: Colin chooses a mixture of columns, and for each k Rowena
chooses a mixture of rows, such that Colin’s choice maximizes his expected
payoff given p and given Rowena’s choices, and for each k, Rowena’s choice
maximizes her payoff in Γ k given Colin’s choice.

To characterize the equilibria in the talking game determined by Γ and p,
one must consider probability vectors q = (q1� � � � � qκ) other than p. The rea-
son is that the signals that Colin gets from Rowena during the talk phase may
change his initial probabilities for the various Γ k. In fact, it is convenient to
consider all possible q—the entire simplex of κ-dimensional probability vec-
tors. We proceed as follows:

• For each q, denote by E(q) the set of all equilibrium payoffs in the silent
game determined by Γ and q.

• When some of the probabilities qk vanish, we will, for reasons explained
later, modify the set of equilibrium payoffs by allowing the corresponding types
of Rowena to get more than what the equilibrium payoff provides. Denote the
set of modified payoffs by E+(q); thus a (κ+ 1)-vector (â�β) is in E+(q) if and
only if there is an (a�β) in E(q) with âk ≥ ak for all k and âk = ak when qk > 0.

• Finally, the graph of the correspondence E+ is denoted grE+; it lives in a
(κ+ 1 + κ)-dimensional Euclidean space A × B × Q with points (a�β�q).

THEOREM B: Let pk > 0 for all k = 1� � � � � κ. Then (a�β) is the payoff to an
equilibrium in the talking game determined by Γ and p if and only if (a�β�p) is
in the di-span of grE+.

To recapitulate: To get the set of equilibrium payoffs in the talking game de-
termined by Γ and p, consider, for all probability vectors q, the equilibrium
payoffs of the silent game determined by Γ and q. On the boundary of the
q-simplex only, modify these payoffs by allowing types of Rowena with van-
ishing q-probability to get more. This defines the modified equilibrium payoff
correspondence; consider the di-span of its graph. The section of this di-span
corresponding to q = p is the set of equilibrium payoffs in the talking game
determined by Γ and p. See Figure 12 for a schematic representation: The
graph of the (modified) equilibrium payoff correspondence of the silent game
is the curve vewxyz; in particular, the silent game at p has a unique equilibrium
payoff, given by e. The di-span of this graph is the hatched area, and the sec-
tion of the di-span at q= p—the segment ef—gives the equilibrium payoffs of
the talking game at p.

In addition to its intrinsic interest, this geometric characterization is useful
on a “practical” level: It enables the explicit calculation of the equilibrium pay-
offs (using di-convexity and di-separation arguments; see Aumann and Hart
(1986)).
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FIGURE 12.—Equilibrium payoffs.

7.2. Informal Demonstration of Theorem B

7.2.1. “Only If”: From Equilibrium to Martingale

The demonstration is a matter of some delicacy. We first describe the rough
idea, then point out the difficulties and how to overcome them. The difficulties
are conceptual rather than technical; they lie at the heart of the matter.

As in the demonstration of Theorem A, we take the keyboard to consist of
the two letters a and b only; this restriction will not be used in the formal proof
in the Appendix.

Let γ be an equilibrium of the talking game determined by Γ and p; set
γ = (σ� τ) = (σ 1� � � � �σκ� τ), where σk is the strategy of Rowena’s type k
(henceforth Rowenak). Let the expected payoff of γ be (a�β). We must con-
struct a dimartingale whose expectation is the (κ+ 1 + κ)-dimensional vector
(a�β�p) and whose limit is almost surely in grE+.

By Theorem A, we may take γ to be canonical, and thus to induce an infinite
random stream of “messages”—signals from Rowena alternating with joint lot-
tery outcomes. We model the process as a binary tree. Each of the 2t vertices
at level t corresponds to a history up to and including the t’th period. The root
is thus the beginning of the game (before any messages—the “empty history”).
It has two sons, corresponding to the two signals that Rowena may send in the
first period. Each of these sons has two sons, generated by the two outcomes
of the joint lottery performed in the second period. Continue in this way, alter-
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nating signals with lotteries according to the strategies in γ. For each vertex v,
let βv be Colin’s payoff at16 v; let akv be the payoff of Rowenak at v; let pk

v

be Colin’s probability at v that Rowena is of type k; and set av = (a1
v� � � � � a

κ
v)

and pv = (p1
v� � � � �p

κ
v). Denote the two sons of v by w and w′, and the whole

process by (a�β�p).
To make (a�β�p) into a martingale, we must specify a probability distribu-

tion on the sons of each node v, so that the value of (a�β�p) at v is the expec-
tation of its values at its sons. At lottery nodes, there is no problem; simply use
the lottery probabilities 1

2 – 1
2 . But matters are more complicated at signalling

nodes. Several possibilities come to mind. For each type k = 1�2� � � � � κ, we
can use the probabilities πk

w that at v, Rowenak picks w. This is appropriate for
Rowenak, because the expectation of her payoffs at w and w′ equals her payoff
at v. But it is inappropriate for types of Rowena other than k, since πk

w may be
different for different k. And it is also inappropriate for Colin’s payoff βv, and
for his probability vector pv; for these, we should use πw := p1

vπ
1
w +· · ·+pκ

vπ
κ
w,

which is the total probability (and also Colin’s probability) at v that Rowena
picks w. So there are κ+ 1 mutually inconsistent possibilities, none of which
seem to fulfill all requirements.

To overcome this difficulty, consider a signalling node v at which Rowenak
chooses each signal with positive probability. Then we must have akw = akw′ ; for
if akw > akw′ , say, then Rowenak could gain by picking w with probability 1. So

akw = akw′ = akv �(7.1)

since the payoff at v is an average of the payoffs at w and w′. But then akv =
λakw + (1 − λ)akw′ for any probability λ; in particular, for λ= πw� We conclude
that if each type of Rowena sends each signal with positive probability at each
signalling node, and if at signalling nodes v we assign probability πw to w being
picked, then (a�β�p) does become a martingale.

Moreover, it is a dimartingale. Indeed, we have just seen that if v is a sig-
nalling node at which both sons have positive probability, then aw = aw′ . If, on
the other hand, v is a lottery node, then Rowena’s message at v is independent
of k, and so has no informational content; therefore pw = pw′ = pv, confirming
the dimartingale property.

By the Martingale Convergence Theorem, the martingale (a�β�p) con-
verges almost surely; denote the limit (a∞�β∞�p∞). At the action phase, the
players are faced with the silent game in which Colin’s probability for k is pk

∞.
So at the action phase they must, almost surely, play an equilibrium in this
silent game, since γ is an equilibrium in the talking game. So (a∞�β∞) must
be an equilibrium payoff in this silent game; that is, (a∞�β∞) is in E(p∞). So
(a∞�β∞�p∞) is in grE . We have already seen that (a�β�p) is a dimartingale;
its expectation is (a�β�p) (what the players expect at stage 0). Thus (a�β�p)

16Here “payoff” means “expected payoff,” and “at v” means “conditional on v being reached.”
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is the expectation of a dimartingale whose limit is almost surely in grE ; that is,
(a�β�p) is in the di-span of grE . So a fortiori, it is in the di-span of grE+, as
was to be shown.

So far, so good. But what if σk calls, at a signalling node v, for Rowenak to
pick w, say, for sure? The above reasoning then breaks down: She is indeed
motivated to choose the signal with the higher payoff, and does choose it, for
sure. So we do not get a dimartingale, or for that matter, even a martingale.

But that is not the worst of it. It is not clear what at all is meant by “choosing
the signal with the higher payoff.” What is the payoff? Since w′ is impossible
under σk, how is akw′ defined? If Colin hears the signal leading to w′, he can-
not conclude that Rowena has “deviated.” He does not know her type, and w′

may well be possible under σ for types other than k; so Colin will continue
to do what τ prescribes. But how will Rowena herself continue? Her strategy
σk prescribes responses to possible deviations of Colin, but not to her own
deviations.17

These are not minor technical difficulties. The case where Rowena’s signal
makes a difference to her is basic in cheap talk; it is the issue in our very first
example (2.1). This cannot be swept under the rug.

To deal with it, we revise the definition of akv . Any node v is possible under
Colin’s strategy τ, so what Colin does after18 v is determined by τ. Redefine
akv as the expected payoff of Rowenak at v if from then on, she plays a best
reply to Colin’s strategy. This definition of akv is meaningful whether or not
v is k-possible (i.e, possible under σk); in the former case, it coincides with
the previous definition (i.e., as Rowenak’s expected payoff). Indeed, σk is then
itself a best reply to τ, by the definition of equilibrium; so the best-reply payoff
is the same as the expected payoff. Thus as shown above (see (7.1)), if v is a
signalling vertex both of whose sons are k-possible, then akw = akw′ = akv with the
revised definition as well.

Now return to the case when w, say, is k-possible, but w′ is not. Then

akv = akw ≥ akw′ ;(7.2)

for otherwise Rowenak would be motivated to pick w′ instead of w, and then
continue with a best reply to τ. But there is nothing to prevent strict inequality
in (7.2), so (a�β�p) is not a martingale.

The key to resolving the difficulty is the remark that though w′ is a per-
fectly good node in the tree, it cannot occur under σk. If Colin hears the signal

17To be sure, the standard definitions of “strategy” do prescribe what a player should do in
situations that she herself has excluded. But that is a matter of convenience only; when discussing
ordinary (rather than perfect) equilibria, as here, such prescriptions have no optimality proper-
ties, and play no role in the analysis.

18The significant part here is what τ prescribes for the action phase; for the talk phase, it is
1
2 – 1

2 at each stage.
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leading to w′, he knows that Rowena’s type is not k, so pk
w′ = 0; that is, in equi-

librium Rowena never actually gets akw′ . So if we modify the value of akw′ , we do
not change the expectation of the whole process; it remains ak. Specifically, we
can raise the value of akw′ to the level of akw; the expectation of the process is
still ak, and we get the required dimartingale property (as in (7.1)). Of course,
we must make corresponding modifications on the entire martingale.

The result, denoted â and called Rowena’s virtual payoff (as distinguished
from the real payoff a), should be a bounded martingale with

âkv ≥ akv(7.3)

and

âkv = akv when pk
v > 0(7.4)

for all k and v. The actual construction of â will be left to the formal proof in
the Appendix.

Define a history h as an infinite path in the tree. By the Martingale Conver-
gence Theorem, (â�β�p) converges almost surely; its limit (â∞�β∞�p∞) asso-
ciates a vector (âh�βh�ph) with (almost) each history h, namely the limit of the
vectors (âv�βv�pv) for v in h. At the action phase, the players are faced with
the silent game in which Colin’s probability for k is pk

h. Let akh be the payoff of
Rowenak if γ is played in the action phase; as βh is Colin’s payoff, (ah�βh) is in
E(ph). Now it may be seen that (7.3) yields âkh ≥ akh (a.s.). If pk

h > 0, then pk
v > 0

for each v in h, so by (7.4), âkv = akv for each v in h, so âkh = lim âkv = limakv = akh.
Thus âkh ≥ akh always, and âkh = akh when pk

h > 0. Since (ah�βh) is in E(ph), it
follows that (âh�βh) is in E+(ph); i.e., (âh�βh�ph) is in grE+. Since this is so
for (almost) all histories h, we deduce that the expectation of the dimartingale
(â�β�p) is in the di-span of grE+. We have already seen that the expectation of
(β�p) is (β�p); that the expectation of â is a follows from (7.4). So (a�β�p)
is in the di-span of grE+. This completes the demonstration of “only if” in
Theorem B.

To summarize: Start with a random process (a�β�p) described by a binary
tree, as in the fourth paragraph of this section; assign Colin’s probabilities to
the edges. If each type of Rowena assigns positive probability to each node,
then the process is a dimartingale; so the expectation (a�β�p) of the process
is in the di-span of grE , and a fortiori in that of grE+, as was to be shown.
If not, revise the definition of ak to be the payoff to a best reply of Rowenak
to Colin’s strategy τ. Let v be a k-possible signalling node with exactly one
k-possible son w. Then ak at the other son w′ cannot be larger than at w. If
it is equal, leave it as is. If smaller, lift it until it is equal; the result is called
the virtual payoff of Rowenak at w′. Then, lift the payoff at the descendants
of w′ so as to obtain a dimartingale, with the virtual payoff âk equal to the
“real” payoff ak at k-possible nodes, and not smaller than the real payoff at
k-impossible nodes; thus the expectation of (â�β�p) is (a�β�p), and is in the
di-span of grE+, as was to be shown.
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7.2.2. “If”: From Martingale to Equilibrium

Here we are given a dimartingale (â�β�p) whose expectation (a�β�p) is
in the di-span of grE+, and construct an equilibrium γ = (σ 1� � � � �σκ� τ), with
payoff (a�β), of the talking game determined by Γ and p.

We again use the tree representation. Call a node v a “lottery node” or a
“signalling node” according to whether â or p splits there. Assume for simplic-
ity that the tree is binary and that the probabilities on the edges emanating
from lottery nodes are 1

2 – 1
2 . We first describe the strategies in the talk phase.

At lottery nodes, both players play 1
2 – 1

2 . At signalling nodes v, only Rowena
sends a signal—or equivalently, picks a son w—and her choice may depend
on her type k. If v is k-possible, define the probability that σk picks w at v as
πk
w := pk

wπw/p
k
v , where πw is the probability that the dimartingale assigns to

the edge leading from v to w; note that the terms on the right side are given as
part of the martingale. One may verify that this is the “right” definition of πk

w;
that is, Colin’s probability at w of Rowenak is precisely pk

w (use Bayes’s rule
inductively). If v is k-impossible, it does not matter how σk is defined there.

At the action phase, the players have behind them a history h consisting
of nodes in the talk phase. Denote the limit of (âv�βv�pv) for v in h by
(âh�βh�ph); by the Martingale Convergence Theorem it exists, and by the hy-
pothesis is in19 grE+. So there is an equilibrium eh of the silent game deter-
mined by Γ and ph, with payoff (ah�βh), where âkh ≥ akh for all k and âkh = akh
when pk

h > 0. Define γ in the action phase by stipulating that the players play
eh after h.

It can be checked that the payoff of γ is indeed20 (a�β). To show that γ is an
equilibrium, we must show that neither player can profitably deviate in either
the action or the talk phase. For the action phase this follows from eh being a
silent game equilibrium. At lottery nodes in the talk phase, neither player can
alone change anything, and so cannot gain by deviating. Suppose finally that v
is a signalling node, with sons w and w′. Colin has nothing to do at v, and so
cannot gain by deviating.

It remains to show that Rowenak cannot get more than ak by deviating at the
signalling nodes. The crux of the argument here is that, no matter what proba-
bilities Rowenak uses at the signalling nodes, the sequence âk always remains
a martingale. Indeed, at any signalling node v one has âkv = âkw = âkw′ by the
dimartingale property, so the expectation λâkw + (1 − λ)âkw′ equals âkv for any
probability λ that Rowenak may use at v (instead of πk

w). Therefore, in partic-
ular, the expectation of âk

∞ is âk
0 = ak for any signalling strategy of Rowenak.

Now the payoff of Rowenak at the action phase is akh, which is ≤ âkh ; therefore
what she can get is bounded from above by the expectation of âk

∞—which, as
we have just seen, equals ak no matter how she behaves at the signalling nodes.

19For almost all histories; henceforth we omit this caveat.
20The real payoffs akv can differ from âkv only when it does not matter; that is, for nodes v with

pk
v = 0—which means that the probability of Rowenak reaching v is 0.
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8. STRATEGIES

An unusual aspect of the cheap talk game is that time has order type ω+ 1;
that is, there is an infinite sequence of time periods, with one additional pe-
riod after the whole sequence. That makes the matter of formally defining
strategies—to which we now turn—not entirely straightforward.

Some readers may prefer to skip this section—which they may do with little
or no loss in understanding the paper. Strictly speaking, though, it is part of the
statement of our results, not only of the proofs; that is why we do not relegate
it to an appendix. One cannot talk about equilibria if one does not know what
a strategy is.

Since we are primarily—indeed exclusively—interested in mixed strategies,
we start at once by defining them, bypassing the formal definition of pure strat-
egy. Denote by I and J the action sets of Rowena and Colin in the action
phase (rows and columns of Γ ); let ΞR and ΞC be copies of the probability
space consisting of the unit interval [0�1], with the Borel sets as events and
Lebesgue measure (i.e., the uniform distribution) as the probability measure.
A t-period history, t = 0�1�2� � � � , is a sequence consisting of t pairs of key-
strokes. An infinite or complete history is an infinite sequence of pairs of key-
strokes. Denote the set of all t-period histories by Ht , of all infinite histories
by21 H∞. A mixed strategy τ of Colin consists of a sequence of measurable func-
tions τ1� τ2� � � � , and a measurable function τ∞, where τt :ΞC ×Ht−1 →M for
t = 1�2� � � � , and τ∞ :ΞC ×H∞ → J; here Ht−1 has the discrete structure (all
sets are measurable), and H∞ as well as ΞC × H∞ and ΞC × Ht−1 have the
usual product structure.22 Rowena’s mixed strategies σ are defined similarly:
σt :ΞR ×Ht−1 ×K →M for t = 1�2� � � � , and σ∞ :ΞR×H∞ ×K → I, where K
is the collection of states {1� � � � � κ} (corresponding to the collection of games
{Γ 1� � � � � Γ κ}; recall that Rowena knows the state).

Operationally, the players pick mixed strategies σ and τ, simultaneously, be-
fore the beginning of play. Then, chance picks (ξR�ξC�k) in ΞR ×ΞC ×K at
random, using the uniform distribution on each of ΞR and ΞC and the distri-
bution p on K, all three being independent (Rowena is informed of ξR and k
only, and Colin of ξC only). At period 1 of the talk phase, the messages sent by
Rowena and Colin are σ1(ξR�k) and τ1(ξC), respectively. At period t, the mes-
sages are σt(ξR�ht−1�k) and τt(ξC�ht−1), where ht−1 is the (t− 1)-stage history
consisting of the messages sent by both players in the previous t − 1 stages. In
the action phase, the actions taken are σ∞(ξR�h∞�k) and τ∞(ξC�h∞), where
h∞ is the complete history of all messages sent by both players in the talk phase.
The bimatrix Γ k determines the payoff.

21I.e., Ht = (M ×M)t ; note that there is exactly one 0-period history, namely the empty se-
quence.

22For H∞ , this is the smallest σ-field containing all finite rectangles: sets of the form S1 × · · · ×
St × (M ×M)× (M ×M)× · · · for some finite t, where Sr ⊂M ×M for all r ≤ t.
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Set Ξ := ΞR × ΞC × K. For fixed σ and τ, each point ξ in Ξ determines
payoffs (real numbers) a(ξ) and b(ξ) to Rowena and Colin respectively. The
total payoff for the mixed strategy pair (σ� τ) is the expectation of (a�b)—its
integral over Ξ. For this to be defined, we need the following:

PROPOSITION 8.1: (a�b) is a measurable mapping from Ξ to R2.

The proof of this proposition may be found in Appendix A.5.
In brief, the (ω+ 1)th period—the action phase—is based on infinite histo-

ries, of which there are a continuum. A pure strategy must specify a function
from this continuum to the player’s actions; not just any function, though, but
one that is measurable in the appropriate sense.23 A mixed strategy, therefore,
should be a probability distribution over such functions. Defining distributions
over function spaces is not straightforward; see Aumann (1961, 1963). The
approach adopted here resembles that of Aumann (1964); for the underlying
idea, see Section 3 of that reference.

9. DISCUSSION

This section discusses a number of extensions and variations of our model.
(a) Complete Information. In the special case where there is complete in-

formation (i.e., κ= 1, as in Example 2.3), cheap talk adds only the “weighted
averages” of the Nash equilibria of the silent game. In other words, here cheap
talk is equivalent to adding lotteries with publicly observed outcomes to the
silent game.24 Geometrically, the set of equilibrium payoffs of the talking game
is just the convex hull of the set of equilibrium payoffs of the silent game.25

(b) Polite Talk. Consider the case where at each period only one player can
send a message; call this polite talk. The parallel of Theorem B for polite talk is
based on dimartingales ((at�βt �qt))t=0�1�2���� that satisfy at+1 = at for even t and
(βt+1�qt+1)= (βt �qt) for odd26 t.

23For example, if Colin plays 1
2 – 1

2 at each stage, then we want each pure strategy s of Rowena
to induce a payoff; this will be so if and only if s is measurable with respect to the product σ-field
on H∞ (the set of infinite histories). Here, the main thrust of measurability is not informational
(in the sense of “what can a strategy depend on”); indeed, the product σ-field separates points,
which means that a strategy is allowed to treat any two histories differently. Rather, measurability
is needed so that payoffs can indeed be “measured” (see the discussion in Aumann (2001)).

24Lotteries with privately observed outcomes yield the correlated equilibria.
25A direct proof of this known result is as follows: In an equilibrium of the talking game, after

(almost) every possible history of talk, the mixed actions must form an equilibrium of the silent
game, and the talking phase induces a probability distribution over histories, and thus also over
silent equilibria. The converse follows using jointly controlled lotteries.

26Compare this with the definition of Section 7. The addition here is that in the periods in
which only Colin talks, his expected payoffs following all his possible messages must be equal
(exactly as is the case for Rowena’s payoffs when she talks), which makes the β-coordinate stay
constant as well (in addition to the q-coordinate).
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FIGURE 13.—Unbounded polite talk.

When there is complete information,27 this yields the bi-span of the set of
Nash equilibrium payoffs of the silent game. For a simple example, consider
the game of Figure 13: The set of silent equilibrium payoffs that lie in the
positive orthant consists of the four diagonal entries of the game matrix (the
points a = (3�4), b = (4�2), c = (2�1), and d = (1�3)), to which polite talk
adds the square and the four line segments (see Figure 11 Left).28 For example,
the payoff v = (2�2) is obtained as follows (cf. Figure 11 Right): In the first
period, Rowena says “stop” or “continue” with equal probabilities 1

2 – 1
2 . If she

said “stop,” the talk ends and they play the first row and the first column (i.e.,
the silent equilibrium with payoffs a = (3�4)). If she said “continue,” then in
the second period Colin chooses (with equal probabilities) either “stop”—after
which they play the second row and the second column (i.e., b)—or “continue.”
And so on. It may be verified that each player in his or her turn is indifferent
between “stop” and “continue,” and so one gets an equilibrium of the polite
talk game.29

(c) Bounded Talk, or Talk with a Deadline. If there is an a priori bound on the
number of talk periods (a “deadline”), the di-span of Theorem B is replaced
by the diconvex hull of grE+ (Section 6), which is in general a strictly smaller
set (for example, in Figure 11, the diconvex hull of G is just G itself).

The same applies to polite talk, even when there is complete information.
In the example of Figure 13, bounded polite talk does not yield any new equi-
librium payoffs in the positive orthant beyond those of the silent game (i.e.,
{a�b�c�d}).

To gain some intuition on the difference between bounded and unbounded
talk, think of the finitely vs. the infinitely repeated discounted Prisoner’s
Dilemma. The finite repetition has a last period, from which everything “unrav-
els” backward, so that only a repetition of the one-shot equilibrium is possible.
In contrast, the infinitely repeated game has no last period. So in each period,
the players can look to the future; what they expect to gain there may balance

27And thus a and β are each one-dimensional, and there is no q-coordinate.
28The silent game has additional equilibrium payoffs, all of them lying in the negative orthant.

Separation arguments as in Aumann and Hart (1986) imply that there is no interaction between
these and the four points in the positive orthant (since there are no points in the other two
orthants); therefore any polite talk equilibrium payoff in the positive orthant can be based only
on a, b, c and d.

29An interesting sidelight is that though the number of talk periods is unbounded, its expecta-
tion is just 2.
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out any immediate loss from playing a strategy that is nonoptimal myopically
(i.e., from the viewpoint of a single period).

With cheap talk it is similar. For example, in the polite talk game discussed
at (b) above, consider an equilibrium with positive payoffs. Each possible talk
history30 must result in an equilibrium at the action phase, which must be one
of the four diagonal boxes of the game matrix of Figure 13 (with payoffs a, b,
c, and d). If the talk phase were bounded in length, then at the last talk pe-
riod, each possible message would determine one of these outcomes. But all
such outcomes would have to yield the same payoff to the player who talks at
that period—which could happen only if the outcomes were identical.31 So the
message at the last period would be irrelevant; working backwards, we con-
clude that all possible histories would lead to the same outcome—so bounded
polite talk adds no new (positive) equilibrium payoffs.

This argument depends crucially on there being a last period. If there is no
last period, then at each period the player talking there can either stop or con-
tinue, both of which lead to the same payoff for him. But if the talk is bounded,
then at some point he can no longer choose “continue,” and the whole thing
unravels.

For talk that ends at a random time—specifically, with a certain fixed proba-
bility after each period—see Amitai (1996b).

(d) Publicly Observed Signals, or Sunspots. If, in addition to messages be-
tween the players, there are also publicly observed signals, then jointly con-
trolled lotteries are no longer needed. However, as our analysis shows, it is
important for such “sunspots” to be available in each period and not just at the
beginning of the game, so they can be interspersed with Rowena’s signals as
needed.

10. THE LITERATURE

For a good nontechnical introduction to some of the main issues of cheap
talk, see the survey of Farrell and Rabin (1996).

An early study of the issue examined here—equilibrium expansion by cheap
talk—is Crawford and Sobel (1982) (see also Green and Stokey (1980)). Their
models are similar to ours, but less general in several ways; most importantly,
they permit only one (cheap) message to be sent, from Rowena to Colin. This
sounds reasonable on the face of it, as only Rowena has something substantive
to say; but as we have seen, it involves significant loss of generality. This is
precisely what the current paper explores.

The opposite issue—that of equilibrium restriction, or refinement, under
cheap talk—has been dealt with extensively by several authors. One approach
is to assume a common language (that is, messages have intrinsic given mean-

30One with positive probability.
31Since the four outcomes have different payoffs to each of the two players.
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ing); see Farrell (1993), Rabin (1990), Aumann (1990), Matthews, Okuno-
Fujiwara, and Postlewaite (1991), Blume and Sobel (1995), Rabin and So-
bel (1996), and Zapater (1997). Another approach uses evolutionary stability
considerations; see Robson (1990), Wärneryd (1993), Blume, Kim, and Sobel
(1993), Kim and Sobel (1995), and Banerjee and Weibull (2000).

The current study grew out of the theory of repeated games of incomplete
information with undiscounted payoffs; see Aumann, Maschler, and Stearns
(1968) and the large literature cited in Aumann and Maschler (1995), in par-
ticular Hart (1985) and Forges (1992). Very loosely speaking, the early stages
of repeated game equilibria correspond to the talk phase,32 the later ones to
the action phase. For various reasons, cheap talk is simpler and “cleaner” than
repetition; to cite just two examples, one does not have the problem of defining
the repeated game payoff as some kind of limiting average, and one avoids the
complexities of individual rationality in the repeated context.

In our model, one side is strictly better informed than the other, and so has
nothing to learn. When there is incomplete information on both sides—both
have something to learn—the situation is a good deal more complex; see Ami-
tai (1996a), which is based on the work presented here. Amitai (1996b) con-
tains another extension of our model; see Section 9(c).

Another direction of generalization retains the “cheapness,” but replaces the
“talk” by something less direct, like a mediator. This is the subject of general
communication systems or mechanisms, consisting of an impartial “mediator”
who receives input messages from the players and sends them output messages
(for a survey, see Myerson (1994)). All the messages are private (each message
is known only to its sender and receiver). The mediator may use randomiza-
tions when determining the outputs (as functions of the inputs). However, the
mediator is not a player: it is a device that follows its (commonly known) pro-
gram to the letter. A general communication game is a game to which a com-
munication system has been added, without affecting the payoffs; its equilibria
are called communication equilibria. In this framework, the cheap talk equi-
libria are precisely that subset of the communication equilibria that use only
plain public communication. For a restricted class of communication systems—
“public mediated talk”—see Lehrer and Sorin (1997).

In games of complete information—when Rowena has just one type—
general mechanisms lead to all correlated equilibria (Aumann (1974)), whereas
long cheap talk leads only to all weighted averages of Nash equilibria (see Sec-
tion 9(a))—a much smaller set. In games of incomplete information, where
inputs from the players may be relevant, the set of communication equilibria
is determined by finitely many inequalities (the “incentive-compatibility” con-
straints, which are obtained using the “Revelation Principle”33).

32In an undiscounted repetition, no finite number of stages can affect the payoff, so they may
be used for communication.

33Which asserts that every communication equilibrium may be obtained by a direct mechanism:
one in which the players report their private information to the mediator who then recommends
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When there are more than two players, the restriction to direct “talk” is less
effective in circumscribing the set of equilibria: With at least three, or four,
or five players—depending on the specific conditions—mediators can be em-
ulated by cheap talk. Thus in the complete information case, essentially all
correlated equilibrium payoffs in the original game are Nash equilibria in an
appropriately specified cheap talk game; and in the case of incomplete infor-
mation, all equilibrium outcomes of general mechanisms are Nash equilibria
of an appropriately specified cheap talk game (Barany (1992), Forges (1990b),
Ben-Porath (1998, 2002), Gerardi (2000)). Rather than a sequence of simple
agreements and revelations, as here, this literature uses complex, sophisticated
communication protocols in which “telephone conversations” (private one-
way communication between pairs of players through a secure channel) take
the place of a mediator. The presence of more than two players enables the
construction of protocols in which no single player can profitably affect the
outcome.

A related literature is that of computer science,34 specifically cryptography,
with its “public key” techniques (“one-way” or “trapdoor” functions, “oblivi-
ous transfer,” and so on). In situations in which the players are computation-
ally restricted and the appropriate cryptographic mechanisms exist, mediators
may be emulated even when there are only two players (Yao (1986), Goldre-
ich, Micali, and Wigderson (1987), Goldwasser and Levin (1991), Urbano and
Vila (2002)). Moreover, this can be done also when the players have unlimited
computational abilities, provided, again, that there are more than two players
(Ben-Or, Goldwasser, and Wigderson (1988), Rabin and Ben-Or (1989)).

The spirit of this “emulation” literature is quite different from that of the
current work. Here we try to model what may happen in real-life, informal,
face-to-face cheap talk, where players react naturally to revelations and agree-
ments. The emulation literature is resourceful and impressive, but contrived;
real-life face-to-face negotiations (unlike, perhaps, via the internet) would
hardly use such protocols.

There are a growing number of applications of cheap talk to specific models;
see the references in Farrell and Rabin (1996) and, recently, Baliga and Morris
(2002), Baliga and Sjöström (2001), and Battaglini (2002).

Finally, two recent works are worthy of particular notice. Simon (2002, Ex-
ample 4, p. 98) exhibits a game in which bounded cheap talk adds nothing
to the silent game equilibrium payoffs, whereas unbounded cheap talk yields
equilibria that are Pareto superior to all silent game equilibria (though the pa-
per is about repeated games, this example applies without change to cheap
talk). Krishna and Morgan (2002) exhibit games where just two periods of

to them what to play, and, where, in equilibrium, everyone reports truthfully and follows the
recommendation.

34We thank Michael Ben-Or for guiding us here. A recent survey and further references are
included in Canetti (2000).
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cheap talk yield equilibria that are Pareto superior to all equilibria of the one-
period cheap talk.
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A. APPENDIX

This appendix is devoted to the formal proof of our results.

A.1. Preliminaries

We start by recalling the notations, definitions, and statements. There are two players, player 1
(Rowena) and player 2 (Colin). K = {1�2� � � � � κ} is the set of states (of nature), or, equivalently,
of types of player 1. I and J are the finite action sets of player 1 and player 2, respectively. For
each state k ∈ K, the game Γ k is given by two payoff matrices Ak and Bk , of size I × J (i.e.,
Ak(i� j) and Bk(i� j) are the payoffs to player 1 and player 2, respectively, when player 1 chooses
i ∈ I, player 2 chooses j ∈ J, and the state is k ∈K). The (common) prior probability distribution
on K is35 p ∈ ∆(K).
A.1.1. The Silent Game

The underlying (or “silent”) game Γ (p) consists of two phases, as follows:
• Information phase: The state k ∈ K is chosen according to the probability distribution p.

Player 1 is then told the chosen (“true”) k, while player 2 is not.36

• Action phase: Player 1 chooses an action i ∈ I and, simultaneously, player 2 chooses an action
j ∈ J; they receive payoffs Ak(i� j) and Bk(i� j), respectively (k is the true state).

A mixed strategy of player 1 in Γ (p) is a K-tuple of mixed actions, i.e., x = (xk)k∈K , with
xk ∈ ∆(I) for all k ∈K; a mixed strategy of player 2 in Γ (p) is a mixed action y ∈ ∆(J). Such a
pair (x� y) constitutes a (Bayesian–Nash) equilibrium in Γ (p) if 37

ak :=Ak(xk� y)= max
x̃∈∆(I)

Ak(x̃� y)� for all k ∈K; and

β :=
∑
k∈K

pkBk(xk� y)= max
ỹ∈∆(J)

∑
k∈K

pkBk(xk� ỹ)

35For a finite setX , the set of probability distributions on X is ∆(X) := {q ∈ RX
+ : ∑x∈X qx = 1},

the (|X| − 1)-dimensional unit simplex.
36Our analysis extends to any case where player 1 knows everything that player 2 knows, and

perhaps more (in epistemic terms: the information partition of player 1 is finer than that of
player 2). Indeed, any such case may be reduced to a combination of situations where, as in
this paper, player 1 knows the state of nature and player 2 does not (see Mertens, Sorin, and
Zamir (1994) or Hart (1985, first paragraph on page 120)).

37Note that the action of type k of player 1 is a best reply even when that type’s probability pk

is 0. This is convenient for the “modified” definition below.
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(we have extended Ak and Bk bilinearly to pairs of mixed actions). The resulting equilibrium
payoffs are the vector a= (ak)k∈K ∈ RK to player 1 and the scalar β ∈ R to player 2. Let E(p) be
the set of equilibrium payoffs of Γ (p). Note that it is nonempty for all p (replace each type of
player 1 by an agent, and apply the existence theorem of Nash (1951) to the resulting (κ + 1)-
player game).

When some coordinates of p vanish, we need the following modification (Hart (1985)): If
pk = 0, then the corresponding coordinate ak of a may be arbitrarily increased. Thus we define
for each p ∈ ∆(K) the set of modified equilibrium payoffs E+(p) as the set of all (a�β) ∈ RK × R

such that there exist (xk)k∈K ∈ [∆(I)]K and y ∈ ∆(J) satisfying:

ak ≥Ak(xk� y)= max
x̃∈∆(I)

Ak(x̃� y)� for all k ∈K;(A.1)

ak =Ak(xk� y) if pk > 0� for all k ∈K; and(A.2)

β=
∑
k∈K

pkBk(xk� y)= max
ỹ∈∆(J)

∑
k∈K

pkBk(xk� ỹ)�(A.3)

The graph of the modified equilibrium payoff correspondence is

grE+ := {
(a�β�p) ∈ RK × R ×∆(K) : (a�β) ∈ E+(p)

}
�

A.1.2. The Talking Game

Given the “keyboard” M with |M| > 1, the talking game (or, cheap talk extension) ΓC(p) is
obtained by adding a “talk phase” to the silent game Γ (p) before the “action phase,” but after
the initial “information phase.” Formally, ΓC(p) is a game of perfect recall, consisting of three
phases:

• Information phase: As in Γ (p).
• Talk phase: At each t = 1�2� � � � , player 1 chooses a message m1

t ∈M and player 2 chooses a
message m2

t ∈M (these choices are made independently); then they are both told (m1
t �m

2
t ).• Action phase: As in Γ (p).

In Section 8 we formally defined (mixed) strategies σ and τ of the two players. Together with
the initial choice of the state k (according to p), a pair of strategies (σ� τ) generates a sequence
of pairs of messages and a pair of actions, which results finally in payoffs a and b (all these
are random variables, on the space Ξ). The expected payoffs of (σ� τ) are (a�β) ≡ (aσ�τ�βσ�τ)
where ak := E[a | k = k], a := (ak)k∈K , and β := E[b]. A pair of strategies (σ� τ) constitutes a
(Bayesian–Nash) equilibrium in ΓC(p) if

akσ�τ = max
σ̃
akσ̃�τ� for all k ∈K; and

βσ�τ = max
τ̃
βσ�̃τ�

Denote by EC(p) the set of equilibrium payoff vectors (a�β) of ΓC(p). Note that E(p)⊂ EC(p) for
all p (any equilibrium of the silent game is an equilibrium of the talking game—called a “babbling
equilibrium”—in which the players ignore all the messages of the talk phase).

A.1.3. Behavior Strategies

Our cheap talk game is a game of perfect recall. In such games, there is no need for a player
to correlate his choices at different information sets. It suffices to consider only behavior strate-
gies, which specify a probability distribution at each decision node; any mixed strategy has an
equivalent behavior strategy that yields the same payoffs, no matter what the opponents do, and
vice versa (see Kuhn (1953), Aumann (1964), and, specifically for our case where time has order
ω+ 1, Mertens, Sorin, and Zamir (1994, Exercise II.1.d.8(c), page 76)). In our case, a behavior
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strategy τb for Colin is a sequence of functions τbt :Ht−1 → ∆(M) for t = 1�2� � � � , and a measur-
able function τb∞ :H∞ →∆(J); for Rowena, we have σb

t :Ht−1 ×K →∆(M) for t = 1�2� � � � , and
σb

∞ :H∞ ×K →∆(I).
In the proof (in Section A.4), we will use only the “easy” part of this equivalence: Given a

behavior strategy, one constructs an equivalent mixed strategy, by performing all the randomiza-
tions (in ∆(M) and ∆(I) or ∆(J)) before the play starts, rather than at each stage t = 1�2� � � � �∞
(see Aumann (1964, Sections 7 and 9)).

A.1.4. The Diconvex Span

The diconvex span of grE+ , denoted di-span(grE+), is the set of all triples (a�β�p) in RK ×
R × ∆(K) for which there exists an (RK × R × ∆(K))-valued bounded martingale (zt )t=0�1���� ≡
((ât �βt �pt ))t=0�1���� (on some probability space (Υ�F�Π)) that is adapted to a nondecreasing se-
quence (Ft )t=0�1���� of finite fields38 and satisfies, Π-a.s.,

z0 = (a�β�p);(A.4)

z∞ ∈ grE+; and(A.5)

ât+1 = ât for even t� and pt+1 = pt for odd t�(A.6)

where z∞ ≡ (â∞�β∞�p∞) := limt→∞ zt (it exists a.s. by the Martingale Convergence Theorem).

A.2. Organization of the Proof

The proof is structured as follows: In the next two sections we fix p ∈ ∆(K), and assume that
pk > 0 for all k ∈ K. In Section A.3 we prove that every equilibrium of the talking game gen-
erates an appropriate dimartingale (Proposition A.8). Then, in Section A.4, we start from any
such dimartingale and construct an equilibrium of the talking game (Proposition A.16). Putting
this together yields Theorem B. Theorem A now follows,39 since the equilibrium constructed in
Section A.4 is a canonical equilibrium. Finally, if some coordinates of p vanish, we first replace
K by the support of p, namely40 {k ∈K : pk > 0}.

The proof here parallels the proof of the Main Theorem of Hart (1985).41 However, a good
part of the work there was needed to handle the infinite streams of payoffs, and to obtain uniform
approximations; here one needs instead to manage infinite histories.

Let L be a strict bound on all possible payoffs, i.e., L> |Ak(i� j)|� |Bk(i� j)| for all i ∈ I, j ∈ J
and k ∈K.

A.3. From Equilibrium to Martingale

Let (σ� τ) be an equilibrium of ΓC(p), with payoffs a ∈ RK for player 1 and β ∈ R for player 2.
We will construct an appropriate dimartingale.

It will be convenient to work with the probability space Ω :=K× (M×M)∞ × I× J, endowed
with the usual product σ-field. Ω is the set of all “realizations” ω = (k�m1

1�m
1
2� � � � �m

1
t �m

2
t �

38That is, zt is Ft -measurable for each t. By Remark 4.11 in Aumann and Hart (1986), there is
no loss of generality in taking the fields to be finite.

39One can also prove Theorem A directly—as indicated in Section 5.2—without resorting to
dimartingales.

40In fact, our arguments show that grE+
C = di-span(grE+), where E+

C is the modified equilibrium
payoff correspondence for the talking game (obtained from EC by arbitrarily increasing payoffs
of types with probability 0).

41See Aumann and Maschler (1995, Postscripts to Chapter Five, pp. 294–311) for an outline of
that proof.
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� � � � i� j), consisting of a state of nature k, a sequence of messages (an “infinite history”)
(m1

t �m
2
t )t=1�2���� ∈ (M ×M)∞ , and a pair of actions i ∈ I and j ∈ J. All the random variables—

k�m1
t �m2

t �ht�h∞� i� j and so on—are now defined on42 Ω. Denote by P ≡ Pσ�τ�p the probability
distribution on Ω generated by σ�τ and p, with E ≡Eσ�τ�p the corresponding expectation opera-
tor. Thus, for example, P[k = k] =pk and

P[m1
t =m | ht−1 = ht−1�k = k] = λ({ξR ∈ΞR : σt(ξR�ht−1� k)=m})�

where λ is Lebesgue measure. All statements in this proof should be understood to hold P-almost
surely.

In this part of the proof we will consider also histories consisting of the first t + 1 messages of
player 1 together with the first t messages of player 2: For each nonnegative integer s = 0�1�2� � � � ,
put

gs :=
{
ht ≡ (m1

1�m
2
1� � � � �m

1
t �m

2
t )� if s = 2t is even;

(ht�m
1
t+1)≡ (m1

1�m
2
1� � � � �m

1
t �m

2
t �m

1
t+1)� if s = 2t + 1 is odd,

and let gs be the corresponding random variable (thus, for instance, g2t = ht). The set of all such
histories gs is Gs :=Ms ; an infinite history h∞ will also be denoted g∞ (and so G∞ ≡H∞). Let Gs
be the finite field on Ω generated by43 gs . Then (Gs)s is an increasing sequence of fields converging
to G∞ ≡ H∞ , the σ-field generated by g∞ ≡ h∞ .

We start with the (posterior) probabilities on the state k. For each s = 0�1� � � � �∞ (note: in-
cluding s = ∞) and each k in K, let pks be the conditional probability that the state is k, given a
history gs of talk:

pks := P[k = k | gs]
(again, P = Pσ�τ�p). Put ps := (pks )k∈K ∈ ∆(K).

PROPOSITION A.1: The sequence (ps)s=0�1���� is a bounded martingale adapted to the sequence of
finite fields (Gs)s=0�1���� satisfying, P-almost surely,

(i) p0 =p;
(ii) ps → p∞ as s→ ∞; and
(iii) ps+1 = ps for all odd s.

PROOF: The martingale property is immediate since (Gs) is an increasing sequence of fields
converging to the σ-field G∞—which implies (ii). G0 is the trivial field, hence (i). Finally, the
addition from gs to gs+1 for odd s, say s = 2t − 1, is player 2’s message m2

t , which is independent
of k; therefore the conditional probability of k does not change from s to s + 1. Q.E.D.

Next consider the payoff of player 2. For each s = 0�1� � � � �∞, define

βs := E
[
Bk(i� j) | gs

]
�

The following is immediate:

PROPOSITION A.2: The sequence (βs)s=0�1���� is a bounded martingale adapted to the sequence of
finite fields (Gs)s=0�1���� satisfying, P-almost surely,

(i) β0 = β; and
(ii) βs →β∞ as s→ ∞.

42Formally, they are projections to the appropriate coordinates: If ω= (k�m1
1�m

2
1� � � � � i� j) ∈

Ω then k(ω)= k; m1
1(ω)=m1

1; h1(ω)= (m1
1�m

2
1); i(ω)= i; and so on.

43The smallest σ-field on Ω such that gs is measurable; it is generated by all sets of the form
{ω : gs(ω)= gs} for some gs ∈Gs (since Gs is finite).
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For player 1, the considerations are more intricate. Given the strategy τ of player 2, we define
aks , for each k in K and each s in N, as the highest payoff that player 1 can achieve against τ in
state k after the history gs :

aks := sup
σ̃

Eσ̃�τ�p

[
Ak(i� j) | gs

]
�

where the supremum is over all strategies σ̃ of player 1 such that Pσ̃�τ�p[gs | k = k] > 0. It is
well defined for any history gs in Gs that is not ruled out by τ; in particular, for all gs with
P[gs = gs] ≡ Pσ�τ�p[gs = gs] > 0. Note that aks depends only on the continuation of τ after gs ;
neither p, nor σ̃(·� ·� ?) for ? �= k, nor σ̃t(·� ht� k) for t < s/2, matter.

PROPOSITION A.3: For every k in K, the sequence (aks )s=0�1���� is a bounded supermartingale
adapted to the sequence of finite fields (Gs)s=0�1���� satisfying, P-almost surely,

(i) ak0 = ak;
(ii) aks = E[aks+1 | gs] for all odd s; and
(iii) aks = max[aks+1 | gs] for all even s.

Note: The meaning of condition (iii) should be clear: Conditional expectation is replaced by
“conditional maximum.” That is, for every gs in Gs , the value of aks on the atom {gs = gs} of Gs is
the maximum of the values of aks+1 on this set; i.e., it is the maximum of the values of aks+1 on all
the atoms of Gs+1 that are included in {gs = gs} (these atoms are {gs+1 = (gs�m

1
t+1)} for all m1

t+1 in
M , where s = 2t).

PROOF: When s = 2t − 1 is odd, the addition from gs ≡ (ht−1;m1
t ) to gs+1 ≡ ht is m2

t , whose
distribution depends only on τ, and is independent of player 1’s strategy σ̃ . When s = 2t is even,
note that, in order to obtain the best-reply payoff aks given gs ≡ ht , player 1 must choose his next
message m1

t+1 so as to maximize his continuation payoff aks+1. This proves (ii) and (iii).
Condition (iii) implies aks ≥ E[aks+1 | gs]; together with the equality in (ii), it implies that the

sequence (aks ) is a supermartingale, bounded by L (which bounds all possible payoffs). Finally,
(i) just says that σ(·� ·� k) is a best reply to τ in state k (recall that pk > 0). Q.E.D.

From the supermartingale (aks ) we generate a martingale (âk
s ) as follows: Starting with

âk
0 := ak0 �

assume inductively that âk
s has been defined. Then44

âk
s+1 :=




âk
s � if s is even;

L− L− âk
s

L− aks
(L− aks+1)� if s is odd.

(A.7)

We have the following:

PROPOSITION A.4: For every k in K, the sequence (âk
s )s=0�1���� is a bounded martingale adapted

to the sequence of finite fields (Gs)s=0�1���� satisfying, P-almost surely,
(i) âk

0 = ak;
(ii) aks ≤ âk

s < L for all s ≥ 0; and
(iii) âk

s+1 = âk
s for all even s.

44It appears simpler to define âk
s+1 := aks+1 + (âk

s − aks ) when s is odd; but the resulting martin-
gale could be unbounded—which leads to other complications.



1650 R. J. AUMANN AND S. HART

PROOF: To prove (ii), assume inductively that it holds for s (starting with s = 0, where it is
clearly true). For even s, we then have âk

s+1 = âk
s ≥ aks ≥ aks+1, the last inequality following from

(iii) of Proposition A.3. For odd s, note that the definition in (A.7) is equivalent to

âk
s+1 = λks aks+1 + (1 − λks )L�

where λks ∈ (0�1] is determined by âk
s = λks aks + (1 −λks )L; from this (ii) follows for s+ 1. Finally,

the martingale property holds for even s by (A.7) and for odd s by Proposition A.3(ii):

E[âk
s+1 | gs] = λks E[aks+1 | gs] + (1 − λks )L= λks aks + (1 − λks )L= âk

s � Q.E.D.

Now consider the action phase. Let y(h∞) ∈ ∆(J) be the mixed action of player 2 following
the infinite history of talk h∞:

y(h∞)(j) := PΞ({ξC : τ∞(ξC�h∞)= j})
for45 each j ∈ J, and put y(h∞):=(y(h∞)(j))j∈J . Note that the resulting random variable y :=
y(h∞) satisfies P-a.s. y(j)= P[j = j | h∞]. Similarly, let

xk(h∞)(i) := PΞ({ξR : σ∞(ξR�h∞� k)= i})
for each i ∈ I and k ∈K, and put xk(h∞) := (xk(h∞)(i))i∈I ∈ ∆(I)—this is the mixed action of
player 1 when the state is k. Then xk := xk(h∞) satisfies xk(i)= P[i = i | h∞�k = k] (P-a.s.). We
consider player 2 first.

PROPOSITION A.5: P-almost surely,

β∞ = max
y∈∆(J)

∑
k∈K

pk∞B
k(xk� y)=

∑
k∈K

pk∞B
k(xk� y)�

PROOF: Recalling the definition of β∞ , we have

β∞ = E
[
Bk(i� j) | h∞

] =
∑
k∈K

P[k = k | h∞]E[
Bk(i� j) | h∞�k = k

]
=

∑
k∈K

pk∞
∑
i∈I

∑
j∈J

P[i = i | h∞�k = k]P[j = j | h∞]Bk(i� j)

=
∑
k∈K

pk∞B
k(xk� y)�

It remains to show that, P-almost surely, y is an optimal response to (xk)k∈K in the silent game
Γ (p∞). Indeed, the eventD(j) := {∑k∈K pk∞B

k(xk� y) <
∑

k∈K pk∞B
k(xk� j)} is null for each j in J;

otherwise, the following strategy τ̃ would have increased the payoff of player 2 in ΓC(p): Let
τ̃∞(ξC�h∞) := j for all ξC when h∞ ∈D(j) and τ̃ = τ otherwise (thus, τ̃ is identical with τ except
that, in the action phase, j is always chosen after any history of talk h∞ belonging to D(j)). Q.E.D.

We now come to player 1. The sequence (âk
s ) is a bounded martingale; let âk

∞ be its P-a.s.
limit, and put â∞ = (âk∞)k∈K .

PROPOSITION A.6: P-almost surely, for every k in K,
(i) âk

∞ ≥ maxx∈∆(I) Ak(x� y)≥Ak(xk� y); and
(ii) if pk∞ > 0, then âk

∞ = max x∈∆(I)Ak(x� y)=Ak(xk� y).

45We write PΞ for the probability measure on Ξ (recall Section 8).
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PROOF: Consider the following strategy σ̃ of player 1: During the talk phase, it is the av-
erage nonrevealing strategy derived from σ ; in the action phase, it is, for every state k, an
optimal reply to player 2’s strategy τ. Formally, take Ξ̃R := ΞR × K with the uniform distri-
bution on46 ΞR and the distribution p on K (independently), and define47 σ̃t (̃ξR�ht−1� k) ≡
σ̃t((ξR� ?)�ht−1� k) := σt(ξR�ht−1� ?) for all k� ? ∈ K, ξR ∈ ΞR, ht−1 ∈ Ht−1 and t ≥ 1; and48

σ̃∞ (̃ξR�h∞� k) ∈ arg maxi∈I Ak(i� y(h∞)) for all ξ̃R ∈ Ξ̃R , h∞ ∈H∞ and k ∈K. Denote P̃ := Pσ̃�τ�p
and Ẽ := Eσ̃�τ�p. The construction of σ̃ implies that all histories of talk are realized with the
same probability in all states k, and moreover that this probability is identical to the (overall)
P-probability; i.e., P̃[gs = gs] = P̃[gs = gs | k = k] = P[gs = gs] for all s = 0�1� � � � �∞, all gs ∈Gs ,
and all k ∈K.

Recall that âk
s ≥ aks (Proposition A.4(ii)), and that aks was defined as the highest payoff that

player 1 can achieve in state k against τ, given gs . We therefore have

âk
s ≥ aks ≥ Ẽ

[
Ak(i� j) | gs

] = Ẽ
[
Ẽ

[
Ak(i� j) | h∞

] | gs
]

= E
[
Ẽ

[
Ak(i� j) | h∞

] | gs
]

=E
[

max
x∈∆(I)

Ak(x� y) | gs
]
�

the last equality following from the definition of σ̃∞ , and the last but one from the fact that P̃ and
P coincide on H∞ . As s → ∞, the right-most expression converges to maxx∈∆(I) Ak(x� y) (since
this is H∞-measurable). Together with âk

s → âk
∞ , it yields (i).

Next, recall Propositions A.1 and A.4: The sequence ((âs�ps)) is a bimartingale, and therefore
(ps · âs)≡ (

∑
k∈K pks âk

s ) is a martingale (see Hart (1985, Proposition 3.18): from s to s + 1 either
â is constant—when s is even—or p is constant—when s is odd). Hence its (a.s.) limit p∞ · â∞
satisfies E[p∞ · â∞] =E[p0 · â0] =p · a. But

p · a = E
[
Ak(i� j)

] =E
[
E

[
Ak(i� j) | h∞

]]
= E

[∑
k∈K

P[k = k | h∞]E[
Ak(i� j) | h∞�k = k

]]

= E

[∑
k∈K

pk∞A
k(xk� y)

]
�

Putting it together yields

E

[∑
k∈K

pk∞âk
∞

]
= E

[∑
k∈K

pk∞A
k(xk� y)

]
�

Recalling (i), this implies that âk
∞ =Ak(xk� y) whenever pk∞ > 0, thus (ii). Q.E.D.

Together, the last two propositions yield the following:

PROPOSITION A.7: P-almost surely,

(â∞�β∞�p∞) ∈ grE+�

46Recall that ΞR is isomorphic to [0�1].
47This is tantamount to player 1 ignoring the k chosen by Nature, selecting ? ∈K according to

p (independently of k), and playing in the talk phase as if the state were ?.
48“arg max” denotes the set of maximizers; to make the choice specific (and H∞-measurable),

choose always, say, the smallest such i relative to some fixed order of the finite set I.
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PROOF: If pk∞ > 0 for all k, then Propositions A.5 and A.6(ii) imply that the strategies (xk)k∈K
for player 1 and y for player 2 form an equilibrium in Γ (p∞), with payoffs (â∞�β∞). If some
coordinates of p∞ vanish, then for every k in K with pk∞ = 0, replace xk by a best reply x̃k to y (for
instance, take x̃k := σ̃∞ (̃ξR�h∞� k) for the strategy σ̃ constructed in the proof of Proposition A.6).
These changes from xk to x̃k will not affect the result of Proposition A.5, since the corresponding
coefficients pk∞ vanish. Therefore y remains a best reply of player 2. As for player 1, his payoff in
state k is Ak(xk� y)= maxx∈∆(I) Ak(x� y)= âk

∞ if pk∞ > 0, and Ak(̃xk� y)= maxx∈∆(I) Ak(x� y)≤ âk
∞

if pk∞ = 0. Therefore (â∞�β∞�p∞) indeed belongs to grE+ . Q.E.D.

The next proposition summarizes this part of the proof.

PROPOSITION A.8: Let (a�β) ∈ EC(p), where pk > 0 for all k in K. Then (a�β�p) ∈
di-span(grE+).

PROOF: The martingale ((âs�βs�ps))s=0�1���� satisfies all requirements (see Section A.1.4) by
Propositions A.1–A.7. Q.E.D.

A.4. From Martingale to Equilibrium

We now assume that a point (a�β�p) ∈ di-span(grE+) is given with pk > 0 for all k ∈
K, and we will construct a canonical equilibrium of the talking game ΓC(p). Thus, let
(Υ�F�Π)� (Ft)t=0�1����� (zt )t=0�1���� and z∞ be as in Section A.1.4.

Following Hart (1985, Section 5.1), we modify the process so that, for every t, each atom of
the finite field Ft splits into exactly two atoms of Ft+1, with conditional probability 1

2 each. Thus
Π(Ft)= 1/2t for all atoms Ft of Ft . Also, by (A.4) we may take F0 to be the trivial field {∅�Υ }.
Without loss of generality we therefore assume that Υ is the space of binary sequences {0�1}∞;
the field Ft is generated by the first t coordinates (thus: an atom of Ft corresponds to a sequence
of t binary digits); F is the product σ-field; andΠ is the uniform distribution (i.e., the coordinates
are independent and each one is 0 or 1 with probabilities 1

2 – 1
2 ).

We start with the limit of the dimartingale, and construct from it mixed choices of the players
(to be used in the action phase).

PROPOSITION A.9: There exist random variables (xk)k∈K ∈ [∆(I)]K and y ∈ ∆(J) on Υ satisfy-
ing:49

(i) âk
∞ ≥Ak(xk� y)=maxx∈∆(I) Ak(x� y)� for all k ∈K (a.s.);

(ii) âk
∞ =Ak(xk� y) if pk∞ > 0, for all k ∈K (a.s.);

(iii) β∞ = ∑
k∈K pk∞B

k(xk� y)≥ maxy∈∆(J)
∑

k∈K pk∞B
k(xk� y) (a.s.); and

(iv) lim inft→∞ âk
t ≥ maxx∈∆(I) Ak(x� y)� for all k ∈K.

PROOF: Let Υ1 be the event that zt → z∞ and z∞ ∈ grE+; thus Π(Υ1)= 1. On Υ1, (i)–(iv) are
readily obtained from (A.1)–(A.3).50 To guarantee (iv) on the remaining (null) event Υ0 := Υ\Υ1,
we proceed as follows: Let IR := {c ∈ RK : there exists y ∈ ∆(J) such that ck ≥ maxx̃∈∆(I) Ak(x̃� y)
for all k ∈ K} be the set of individually rational payoff vectors for player 1. Then â∞ ∈ IR a.s.
(by (A.1) since z∞ ∈ grE+ a.s.). This yields ât = E[â∞|Ft ] ∈ IR everywhere (since (ât )t=0�1���� is a
bounded martingale converging a.s. to â∞ , the set IR is convex, and finally ât has finitely many
values), and therefore lim inft→∞ ât ∈ IR everywhere (since the set IR is closed). Hence we can
choose y on Υ0 so that (iv) holds there too. Q.E.D.

49(i)–(iii) hold Π-almost everywhere, whereas (iv) holds everywhere (in fact, as we will see in
the proof of Proposition A.15 below, it suffices to have (iv) satisfied whenever limt→∞ âk

t exists).
50Using a “measurable selection theorem”—see Hildenbrand (1974, Lemma D.II.2.1) or Klein

and Thompson (1984, Theorem 14.2.1).
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For the talk phase, let M be the given set of messages. We select two distinct elements of
M , and denote them a and b. We start by associating a binary digit δt to each pair of messages
(m1

t �m
2
t ) at time t as follows:51

• For odd t = 1�3�5� � � � : put δt := 1 if m1
t = a, and put δt := 0 otherwise;

• For even t = 2�4�6� � � � : put δt := 1 if either m1
t =m2

t = a, or m1
t �= a and m2

t �= a, and put
δt := 0 otherwise.

Thus each history of talk ht = (m1
r �m

2
r )
t
r=1 ∈Ht—where t may be finite or infinite—is mapped

into a binary sequence dt = (δr)
t
r=1; denote this mapping by Φ. Note that Φ maps H∞ onto Υ

and that, for finite t, the sequence dt = Φ(ht) corresponds to an atom of Ft ; we will abuse our
notation and denote this atom by dt or Φ(ht).

We can now define the pair of strategies σ and τ for the two players in ΓC(p); it is convenient
to define them in terms of their behavior equivalents σb and τb (recall Section A.1.3):

• In the talk phase at even period t: Both players choose their messages to be52 a or b with
probabilities of 1

2 each—regardless of history and, for player 1, also of k. Formally,53

σb
t (ht−1� k)(m) := 1

2
; and

τbt (ht−1)(m) := 1
2
;

for all even t = 2�4�6� � � � , all ht−1 ∈Ht−1, all k ∈K and m= a�b.
• In the talk phase at odd period t: Player 2’s message is54 a or b with equal probabilities of 1

2
each. As for player 1, let ht−1 ∈Ht−1 be the history, and let dt−1 :=Φ(ht−1) be the corresponding
atom of Ft−1. For each k ∈ K, write pk

t−1 for the value of pkt−1 on Φ(ht−1), and pk
t�a , pk

t�b for
the values of pkt on the two atoms of Ft into which Φ(ht−1) splits, namely, Φ(ht−1;a�m2

t ) and
Φ(ht−1;b�m2

t ), respectively (note that pk
t�a and pk

t�b do not depend on m2
t by the definition of

Φ). If pk
t−1 > 0, then messages a and b are sent with probabilities pk

t�a/(2p
k
t−1) and pk

t�b/(2p
k
t−1),

respectively. If pk
t−1 = 0, then a and b are sent with equal probabilities. Formally,

σb
t (ht−1� k)(m) := pk

t�m

2pk
t−1

� if pk
t−1 > 0;

σb
t (ht−1� k)(m) := 1

2
� if pk

t−1 = 0; and

τbt (ht−1)(m) := 1
2
;

for all odd t = 1�3�5� � � � , all ht−1 ∈Ht−1, all k ∈K and m= a�b.
• In the action phase: Let h∞ be an infinite history in H∞, with corresponding d∞ :=Φ(h∞) ∈

Υ ; put (xk)k∈K ∈ [∆(I)]K and y ∈ ∆(J) for the value on d∞ of (xk)k∈K and y� respectively—as

51WhenM contains more than 2 elements, we identify with b all m ∈M that are different from
a. For odd t, δt = 1 corresponds to a and δt = 0 to b; for even t, δt = 1 corresponds to s and
δt = 0 to d (cf. Section 5.1).

52One may wish, for reasons related to perfectness, to ensure that all messages have positive
probability—and so, that all deviations are undetectable. This may be done throughout by split-
ting the probability of b among all m �= a.

53For each m ∈ M , we write σb
t (ht−1� k)(m) for the m-component of the probability vector

σb
t (ht−1� k) ∈ ∆(M).

54Player 2’s message here is irrelevant.
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given by Proposition A.9. We define

σb
∞(h∞� k) := xk; and

τb∞(h∞) := y;
for all k ∈K and all h∞ ∈H∞.

This completes the definition of the two strategies.

PROPOSITION A.10: (σ� τ) is a canonical pair of strategies.

PROOF: By definition (see Section 5.1). Q.E.D.

Recall that Ω := (M ×M)∞ × I × J ×K denotes the space of “realizations”; let P = Pσ�τ�p be
the probability distribution induced by σ , τ, and p on Ω.

PROPOSITION A.11: For all t ≥ 0, all ht in Ht and all atoms dt of Ft ,
(i) P[Φ(ht )= dt] = 1/2t =Π(dt); and

(ii) P[k = k | ht = ht] = pkt (Φ(ht )) for all k in K.

PROOF: Induction on t: Clearly (i) and (ii) hold for t = 0 (recall that p0 =p by (A.4)). Assume
they hold for t − 1.

If t is even, then both players choose their messages a or b with equal probabilities 1/2, so
P[m1

t = m2
t ] = 1/2, so55 P[Φ(ht )] = (1/2)P[Φ(ht−1)] = (1/2)(1/2t−1) = 1/2t . Also, m1

t is inde-
pendent of k, so P[k = k | ht] = P[k = k | ht−1] = pkt−1(Φ(ht−1)) (by (ii) for t − 1), which equals
pkt (Φ(ht )) by (A.6).

If t is odd, then

P[k�m1
t | ht−1] = P[m1

t | ht−1�k] · P[k | ht−1]
= σb

t (ht−1�k)(m1
t ) · P[k | ht−1]

= pk
t (Φ(ht ))

2pk
t−1(Φ(ht−1))

pk
t−1(Φ(ht−1))= 1

2
pk
t (Φ(ht ))

(we have used the definition of σb
t and (ii) for t − 1). Summing over all values k ∈ K of

k yields P[m1
t | ht−1] = 1

2 (since pt is a probability vector), so P[Φ(ht )] = (1/2)P[Φ(ht−1)] =
(1/2)(1/2t−1)= 1/2t . Moreover,

P[k | ht] = P[k�m1
t | ht−1]

P[m1
t | ht−1] =

1
2 pk

t (Φ(ht ))
1
2

= pk
t (Φ(ht ))�

which completes the proof. Q.E.D.

Now H∞ and F are the σ-fields on Ω and Υ , respectively, generated by the finite fields Ht

and Ft ; so, since pt → p∞, Proposition A.11 yields the following:

COROLLARY A.12:
(i) P ◦Φ−1 =Π (i.e., P[Φ(h∞) ∈W ] =Π(W ) for all W ∈ F); and

(ii) P[k = k | h∞] = pk∞(Φ(h∞)) (P-a.s.), for all k in K.

55The equality P[Φ(ht )] = 1
2P[Φ(ht−1)] should be understood to mean P[Φ(ht ) = dt] =

1
2P[Φ(ht−1) = dt−1] for all dt and dt−1 (with dt = (dt−1� δt)). The same applies to the other ex-
pressions here, like P[k�m1

t | ht−1] and so on.
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We come now to the payoffs.

PROPOSITION A.13:
(i) E[Ak(i� j) | k = k] = ak for all k in K; and

(ii) E[Bk(i� j)] = β.

PROOF: By construction of σ∞ and τ∞ we have (a.s.)

E
[
Bk(i� j) | h∞�k = k

] =Bk
(
xk(Φ(h∞))� y(Φ(h∞))

);
we will write this as Bk(xk� y) ◦Φ for short (and similarly for the other expressions below). Corol-
lary A.12(ii) and Proposition A.9(iii) imply:

E
[
Bk(i� j) | h∞

] =
∑
k∈K

P[k = k | h∞]E[
Bk(i� j) | h∞�k = k

]

=
∑
k∈K

pk∞B
k(xk� y) ◦Φ= β∞ ◦Φ�

Taking expectation yields E[Bk(i� j)] = E[β∞ ◦Φ] = EΠ[β∞] (by Corollary A.12(i); we write EΠ

for the expectation, with respect to Π, over the space Υ ). The sequence (βt ) is a bounded mar-
tingale converging to β∞, so EΠ [β∞] = β0 = β, proving (ii).

The argument for (i) is similar, but slightly more complex. By (i) and (ii) of Proposition A.9,
together with the construction of the strategies σ∞ and τ∞ , we have for all k ∈K (a.s.)

E
[
Ak(i� j) | h∞�k = k

] =Ak(xk� y) ◦Φ≤ âk
∞ ◦Φ; and(A.8)

E
[
Ak(i� j) | h∞�k = k

] =Ak(xk� y) ◦Φ= âk
∞ ◦Φ if pk∞ ◦Φ> 0�(A.9)

From (A.8) we get (using, again, Corollary A.12(i) and the fact that (ât ) is a bounded martingale
converging to â∞):

E
[
Ak(i� j) | k = k

] = E
[
E

[
Ak(i� j) | h∞�k = k

]]
≤ E

[
âk

∞ ◦Φ] = EΠ

[
âk

∞
] = âk

0 = ak�(A.10)

Together with (A.9) and Corollary A.12(ii) this yields

E
[
Ak(i� j)

] = E

[∑
k∈K

P[k = k | h∞]E[
Ak(i� j) | h∞�k = k

]]

= E

[∑
k∈K

pk∞âk
∞ ◦Φ

]
=EΠ[p∞ · â∞]�

The sequence (pt · ât ) is a bounded martingale (again, since (zt ) is a dimartingale) which con-
verges a.s. to p∞ · â∞ , so EΠ[p∞ · â∞] = p0 · â0 = p · a. So E[Ak(i� j)] = p · a= ∑

k∈K p
kak. But

E
[
Ak(i� j)

] =
∑
k∈K

P[k = k]E[
Ak(i� j) | k = k

] ≤
∑
k∈K

pkak

by (A.10), so there must be equality in (A.10) for each k (since pk > 0 for all k); this
proves (i). Q.E.D.

Thus the payoffs induced by the pair of strategies (σ� τ) are indeed (a�β). Next, we show that
(σ� τ) is an equilibrium point in ΓC(p). We start with player 2.
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PROPOSITION A.14: The strategy τ is a best reply of player 2 to the strategy σ of player 1 in ΓC(p).

PROOF: Let τ̃ be any strategy of player 2 in ΓC(p), and write P̃ for the resulting probability
measure Pσ�̃τ�p on Ω, and Ẽ for the expectation with respect to P̃ .

First, we claim that the result of Proposition A.11 holds also with P̃ instead of P . Indeed, the
same inductive proof applies: At even t we still have P̃[m1

t = m2
t ] = 1

2 regardless of the choice of
m2

t , since m1
t is uniform on {a�b}, and also P̃[k | ht] = P̃[k | ht−1] since m1

t is independent of k.
At odd t, player 2’s choice m2

t never enters the computations. So Corollary A.12 applies too:
P̃ ◦Φ−1 =Π and P̃[k = k | h∞] = pk∞ ◦Φ for all k in K.

Second, let ỹ := τ̃∞(h∞) ∈ ∆(J) be the (mixed) choice of player 2 in the action phase, according
to τ̃. Then

Ẽ
[
Bk(i� j) | h∞

] =
∑
k∈K

P̃[k = k | h∞]Ẽ[
Bk(i� j) | h∞�k = k

]

=
∑
k∈K

pk∞B
k(xk� ỹ) ◦Φ

≤
∑
k∈K

pk∞B
k(xk� y) ◦Φ= β∞ ◦Φ�

the inequality following from Proposition A.9(iii). Taking expectation yields

Ẽ
[
Bk(i� j)

] ≤ Ẽ[β∞ ◦Φ] = EΠ[β∞] = β0 =β

(the second equality follows from P̃ ◦Φ−1 =Π). Q.E.D.

It remains to show the following:

PROPOSITION A.15: The strategy σ is a best reply of player 1 to the strategy τ of player 2 in ΓC(p).

PROOF: Let σ̃ be any strategy of player 1 in ΓC(p), and write P̃ for the resulting probability
measure Pσ̃�τ�p on Ω, and Ẽ for the expectation with respect to P̃ . Through the mapping Φ, this
generates a new probability measure56 Π̃ := P̃ ◦Φ−1 on Υ .

First, we claim that (ât ) is a bounded martingale also with respect to Π̃, i.e., EΠ̃ [ât+1 | Ft ] = ât
for all t ≥ 0; indeed, at even t we have ât+1 = ât (recall (A.6)), and at odd t the conditional
probabilities from Ft to Ft+1 remain the same (since player 2 chooses his message uniformly in
{a�b}). Therefore (ât ) converges Π̃-a.s.

Next, recall that player 2’s strategy τ∞ in the action phase was defined so as to satisfy every-
where lim inft âk

t ◦Φ ≥ maxx∈∆(I) Ak(x� y) ◦Φ for all k ∈K (see Proposition A.9(iv)57). For each
k, player 1’s payoff in the action phase is thus bounded from above by lim inft âk

t ◦Φ. Taking the
expectation of this bound (with respect to the probability P̃ induced by the talk phase) yields
Ẽ[lim inft âk

t ◦ Φ] = EΠ̃[lim inft âk
t ] = âk

0 (the first equality since Π̃ = P̃ ◦ Φ−1, and the second
since (ât ) is a bounded martingale converging Π̃-a.s.). But âk

0 = ak, so player 1’s expected payoff
vector from σ̃ against τ is at most a. Q.E.D.

Putting together Propositions A.10 and A.13–A.15, we get the following result.

56Deviations of player 2 in the talk phase cannot affect the probabilities, whereas those of
player 1 can (due to the odd periods where “signalling” occurs); this is the reason there was no
Π̃ in the Proof of Proposition A.14.

57The reason for “everywhere” rather than “almost everywhere” should be clear now: It needs
to apply for any probability measure Π̃, not just for Π.
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PROPOSITION A.16: Let (a�β�p) ∈ di-span(grE+), where pk > 0 for all k ∈K. Then there exists
a canonical equilibrium of ΓC(p) with payoffs (a�β).

A.5. Measurability

PROOF OF PROPOSITION 8.1: Fix a pair (σ� τ) of mixed strategies. Let a�b be numbers. We
must prove that the set Ξa

b of all sample points ξ leading to the payoff (a� b) is measurable.
Consider the diagram

Ξ−→Ξ×H∞ −→ I × J ×K −→ R2�(A.11)

The first arrow is the talk phase: Applied to a sample point ξ≡ (ξR� ξC�k), the strategies σ and
τ generate a history h∞; thus ξ goes to (ξ�h∞). The second arrow has two components: The first
corresponds to the action phase—depending on the history h∞ and again on the sample point ξ,
the strategies σ and τ generate certain actions—and the second to the information phase (it is
the projection (ξR� ξC�k)→ k). The actions and the state, in turn, generate payoffs; this is the
last arrow.

The set Ξa
b is obtained by starting with (a� b) in R2 and then going backward in the diagram.

If all the arrows represent measurable mappings, then the inverse images are all measurable, and
it follows that Ξa

b is indeed measurable. The second arrow is defined by the action components
σ∞ and τ∞ , which are measurable by definition, and by the projection mapping from Ξ onto K,
which is of course measurable. The last arrow poses no problem, as I × J ×K is finite, so all its
subsets are measurable, so all mappings from it are measurable.

It remains to prove that the first arrow is measurable. Consider the infinite diagram:

Ξ
id�σ1�τ1−−−−−→Ξ×H1

id�σ2�τ2−−−−−→Ξ×H2
id�σ3�τ3−−−−−→Ξ×H3 −→ · · · �

where id stands for the “identity” map. To understand the diagram, start with a ξ in Ξ. Applying
the identity yields ξ in Ξ; applying σ1 yields a message m1

1 from Rowena to Colin; applying τ1

yields a message m2
1 from Colin to Rowena; putting them together yields a 1-stage history h1

in H1. Next, again applying the identity yields ξ in Ξ and h1 in H1; applying σ2 yields a message
m1

2 from Rowena to Colin; applying τ2 yields a message m2
2 from Colin to Rowena; combining

(m1
2�m

2
2) with the 1-stage history h1 previously obtained yields a 2-stage history h2 in H2. And so

on.
Since the σt and τt are measurable, each of the arrows in the above diagram represents a

measurable mapping. So their concatenations—the induced mappings from Ξ to Ξ ×Ht—are
also measurable. We are, for the moment, interested only in the second components of these
mappings—the induced mappings from Ξ to Ht—which we call ηt . Putting all the ηt together58

yields a mapping η∞ from Ξ to H∞. We claim that η∞, too, is measurable.
To show this, consider a finite rectangle in H∞ . This has the form St × (M ×M)× (M ×M)×

· · · , where St ⊂ Ht for some finite t. The inverse image of this finite rectangle under η∞ is the
same as the inverse image of St under ηt . Since ηt is measurable, so is this inverse image. So all fi-
nite rectangles in H∞ have measurable inverse images. So all sets “generated” by finite rectangles
(i.e., sets in the smallest σ-field containing the finite rectangles) have measurable inverse images.
But these are precisely the measurable sets. So all measurable sets inH∞ have measurable inverse
images. But that is the meaning of η∞ being measurable.

We saw above that the two other arrows in Diagram (A.11) are measurable. So their concate-
nation is also measurable. This completes the proof. Q.E.D.

58ηt+1 is obtained from ηt by adding the messages sent in period t + 1.
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