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Abstract. Formal Interactive Epistemology deals with the logic of knowledge
and belief when there is more than one agent or ``player.'' One is interested
not only in each person's knowledge about substantive matters, but also in his
knowledge about the others' knowledge. This paper examines two parallel
approaches to the subject. The ®rst is the semantic approach, in which
knowledge is represented by a space W of states of the world, together with
partitions Ii of W for each player i; the atom of Ii containing a given state o
of the world represents i 's knowledge at that state ± the set of those other
states that i cannot distinguish from o. The second is the syntactic approach,
in which knowledge is embodied in sentences constructed according to certain
syntactic rules. This paper examines the relation between the two approaches,
and shows that they are in a sense equivalent.

In game theory and economics, the semantic approach has heretofore been
most prevalent. A question that often arises in this connection is whether, in
what sense, and why the space W and the partitions Ii can be taken as given
and commonly known by the players. An answer to this question is provided
by the syntactic approach.
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0. Introduction

In interactive contexts like game theory and economics, it is important to
consider what each player knows and believes about what the other players
know and believe. Here we discuss and relate two formalisms ± the semantic
and the syntactic ± for analyzing these matters. The current paper treats
knowledge only; probability is left to a companion paper (Aumann 1999).

The semantic formalism consists of a ``partition structure:'' a space W of
states of the world, together with a partition of W for each player, whose atoms
represent information sets1 of that player; W is called the universe. Like in
probability theory, events are subsets of W; intuitively, an event is identi®ed
with the set of all those states of the world at which the event obtains. Thus an
event E obtains at a state o if and only if o A E, and a player i ``knows'' E at
o if and only if E includes his information set at o. For i to know E is itself an
event, denoted KiE: it obtains at some states o, and at others does not. The
knowledge operators Ki can therefore be concatenated; for example, KjKiE
denotes the event ``j knows that i knows E.''

The syntactic formalism, on the other hand, is built on propositions, ex-
pressed in a formal language. The language has logical operators and con-
nectives, and also operators ki expressing knowledge: If e is a sentence, then
kie is also a sentence, whose meaning is ``i knows e.'' The operators ki can be
iterated: The sentence kjkie means ``j knows that i knows e.'' Logical relations
between the various propositions are expressed by formal rules.

There is a rough correspondence between the two formalisms: Events
correspond to sentences, unions to disjunctions, intersections to conjunctions,
inclusions to implications, complementation to negation, and semantic
knowledge operators Ki to syntactic knowledge operators ki. But the corre-
spondence really is quite rough; for example, only some ± not all ± events
correspond to syntactically admissible sentences.

While the semantic formalism is the more convenient and widely used of
the two, it is conceptually not quite straightforward. One question that often
arises is, what do the players know about the formalism itself? Does each
know the others' partitions? If so, from where does this knowledge derive? If
not, how can the formalism indicate what each player knows about the others'
knowledge? For example, why would the event KjKiE then signify that j
knows that i knows E?

Another point concerns the interpretation of the concept ``state of the
world.'' In game theoretic applications, for example, the state of the world
often speci®es the players' actions. Some feel that this restricts the freedom of
action of a player, by ``forcing'' him, at the state o, to choose the action that
o speci®es for him. Why, they ask, should he not be allowed, if he wishes, to
choose a di¨erent action at that state?

More generally, the whole idea of ``state of the world,'' and of a partition
structure that accurately re¯ects the players' knowledge about other players'
knowledge, is not transparent. What are the states? Can they be explicitly de-
scribed? Where do they come from? Where do the information partitions

1 I.e., he can distinguish between states o and o 0 if and only if they are in di¨erent atoms of his
partition.
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come from? What justi®es positing this kind of model, and what justi®es a
particular partition structure?

One may also ask about the global properties of the partition structure.
We have seen that there is a rough correspondence between the semantic and
syntactic models. Do global properties of the partition structure correspond to
anything syntactic? For example, if the partition structure is ®nite, does this
correspond to anything in the syntactic formalism? Can ®niteness of the par-
tition structure be formulated in syntactic terms ± that is, in plain English?

A related point is that the semantic formalism is not canonical: There are
many essentially di¨erent partition structures. Which is the ``right'' one?

These questions are not unanswerable. For example, an answer to the last
question (which is the ``right'' partition structure?) is that it usually doesn't
matter; proofs using the semantic formalism generally work with any partition
structure. We also hold that the issue of the players' ``freedom of action,''
while super®cially puzzling, poses no real problem (Aumann and Branden-
burger 1995, Section 7a, p. 1174). Yet all in all, there is little doubt that con-
ceptually and philosophically, the semantic formalism is comparatively subtle.

In contrast, the syntactic formalism is entirely straightforward. One rea-
sons from explicit hypotheses to explicit conclusions using explicit, transpar-
ent rules of deduction. There are no philosophical subtleties, no problems with
the meaning of the sentences that enter the syntactic formalism. And this for-
malism is canonical.

Thus the semantic formalism appears to involve nontrivial conceptual
issues. There are two approaches to these issues. One is to deal with them
on the verbal, conceptual level, while retaining the semantic formalism as
a formal primitive. In the other, the semantic formalism ± the partition
structure ± is no longer taken as primitive, but is explicitly constructed from
another formalism.

In the past, such explicit constructions have employed a hierarchical proce-
dure (see Section 10c). While perfectly coherent, these hierarchical procedures
are cumbersome and far from transparent. Here, we construct a canonical
semantic partition structure in a more straightforward way, directly in terms
of the syntactic formalism. In this construction, the states are simply lists of
propositions. Each state o is de®ned by specifying those propositions that hold
at o; any list of propositions that is complete, coherent and consistent in the
appropriate sense constitutes a state.

Before presenting this construction, we set forth both the semantic (Sec-
tions 1, 2, 3) and the syntactic (Sections 4, 5) formalisms in detail. Section 1
presents the foundations of the semantic formalism for the fundamental case
of one player, including an axiomatic development of the knowledge operator.
Section 2 develops the many-player case, concentrating on a succinct presen-
tation of the fundamental properties of common knowledge. Section 3 is a
conceptual discussion of the semantic formalism, presenting in more detail
some of the issues discussed above, and setting the stage for the subsequent
canonical construction in terms of the syntactic formalism. Section 4 formally
presents the syntactic formalism, and Section 5 discusses it. Section 6 con-
structs the canonical semantic partition structure in terms of the syntactic
formalism, and Section 7 is a conceptual discussion of this construction. Sec-
tion 8 establishes in precise terms the above-discussed ``rough'' correspon-
dence between the syntactic and the semantic formalisms. In Section 9, this is
used to show that a list of sentences in the syntactic formalism is logically
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consistent if and only if it has a semantic ``model.'' Section 10 is devoted to
additional discussion, including discussion of the relationship between the
``direct'' construction of the canonical semantic partition structure that is
presented here, and the hierarchical construction to which we alluded above.
An appendix discusses the cardinality of the canonical universe (which, when
there is more than one player, is at least that of the continuum).

This paper originated in notes for a series of lectures given at Yale Uni-
versity in 1989, and informally circulated, in various forms, for many years
thereafter. Much of the material is basically due to others, and has been
known for some time2, though perhaps not in the form presented here.
Nevertheless, this is not a review; there is no attempt to cover any signi®cant
part of the literature, nor even to cite it. Rather, it is largely expository; the
purpose is to make the basic facts of interactive epistemology accessible in a
succinct form that should be useful for game theorists and economists.

Doing justice to all the relevant previous work would take more e¨ort,
time and space than we can a¨ord here. However, we do wish to cite one
particular work to which we owe the greatest immediate debt: Dov Samet's
``Ignoring Ignorance and Agreeing to Disagree'' (1990), from which we drew
the simple but ingenious and fundamental idea of formally characterizing a
state of the world by the sentences that hold there.

1. The semantics of knowledge for a single individual

In this section we present and examine the relationships between ®ve di¨er-
ent but equivalent semantic formalizations of knowledge: knowledge func-
tions, information functions, information partitions, knowledge operators,
and knowledge u®elds (universal ®elds).

We start with a set W whose members are called states of the world, or
simply states. An event is de®ned as a subset of W; the family of all events is
denoted E. This formalism may be familiar to some readers from probability
theory; an event in the ordinary sense of the word, like ``it will be sunny to-
morrow,'' is identi®ed in the formalism with the set of all states at which it is
sunny tomorrow. Union of events corresponds to disjunction, intersection to
conjunction, and complementation �@� to negation. For example, the event
``it will snow or rain tomorrow'' is the same as the union of the event ``it will
snow tomorrow'' with the event ``it will rain tomorrow.'' When E and F are
events with E HF , we will say that E entails F.

We will assume given a function k on W, which we call the knowledge
function. The range of k is an abstract set, whose members represent di¨erent
possible ``states of knowledge'' of some ®xed individual i. Thus, k�o� repre-
sents the knowledge that i possesses when the true state of the world is o. For
example, this knowledge might include today's weather, but not tomorrow's.
A related way of thinking about k�o� is as the signal that i receives from the
outside world when the true state of the world is o.

De®ne a function I on W by

I�o� :� fo 0 A W : k�o 0� � k�o�g: �1:1�

2 E.g., Fagin et al. (1995); Hintikka (1992); Kripke (1959); Lewis (1969).
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In words, I�o� is the set of all those states that i cannot distinguish from o.
Thus if o is the true state of the world, i will usually not know this; he will
know only that some state in I�o� is the true one. I�o� consists of those states
o 0 that i considers possible.

The reader may verify that for any states o and o 0,

o A I�o�; and �1:11�

I�o� and I�o 0� are either disjoint or identical: �1:12�

Any function I on W satisfying 1.11 and 1.12 is called an information function.
From 1.11 and 1.12 it follows that the distinct I�o� form a partition of W; that
is, they are pairwise disjoint and their union is W. We call this partition i 's
information partition, and denote it I; atoms of I are called information sets.
The family of all unions of events in I, denoted K, is a universal ®eld, or
u®eld for short; that is, it is closed under complementation and under arbitrary
(not necessarily ®nite or denumerable) unions, and therefore also under arbi-
trary intersections. It is called i 's knowledge u®eld.

Now de®ne an operator K : E! E as follows: for any event E,

KE is the union of all the events in I that are included in E: �1:2�
Equivalent forms of this de®nition are

o A KE if and only if I�o�HE; and �1:21�
KE is the largest element of K that is included in E: �1:22�

In words, KE is the event that i knows that the event E obtains3; more ex-
plicitly, the set of all states o at which i knows that E contains o (he usually
will not know the true o).

From 1.22 it follows that KE A K for all E. Conversely, if E A K; then
1.22 yields E � KE, so each member of K has the form KE. Thus we con-
clude that

K � KE :� fKE : E A Eg: �1:23�
In words, K is the family of events that express i 's knowing some particular
event.

The reader may verify, directly from its de®nition, that the operator K has
the following properties (for all events E and F):

KE HE �1:31�
E HF implies KE HKF �1:32�
@KE HK@KE: �1:33�

3 By ``obtains'' we mean ``happened, is happening, or will happen.'' Time is irrelevant; we want to
avoid tenses. If the reader wishes, he can think of a state o of the world as a complete possible
history, from the big bang until the end of the world. Thus ``it will snow tomorrow'' and ``it
snowed yesterday'' are both events, which may or may not ``obtain'' at a given o.
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In words, 1.31 says that a person can only know something if it is true; and
1.33, that if he does not know something, then he knows that he does not
know it. 1.32 expresses the intuition that if E entails F, and i knows that E,
then he may conclude that F, so he knows F. Any operator K : E! E sat-
isfying 1.31 through 1.33 is called a knowledge operator.

Note also that

K 7
a

Ea

� �
�7

a

K�Ea�; �1:4�

where the intersection may be over an arbitrary index set; this, too, follows
directly from 1.2. In words, 1.4 says that i knows each of several events if and
only if he knows that they all obtain.

Rather than starting with the knowledge function k as a primitive, and
deriving from it the information function I, the information partition I, the
knowledge operator K, and the knowledge u®eld K, one can start from any
other one of these ®ve and derive the other four from it. The only one of these
derivations that is not entirely straightforward4 is that starting with K; we
show below how to do this. To have a term for the relationship between the
objects k; I;I;K ;K de®ned in this section, call any two of them associated.

We now show how I; k;I and K can be derived if we start with a knowl-
edge operator K as a primitive. So suppose we are given such a K, i.e., an
operator K : E! E satisfying 1.31 through 1.33. It is enough to de®ne I, as
we have already noted that I, k, and K can be derived from I. We de®ne

I�o� :�@K@fog: �1:5�

In words, 1.5 de®nes I�o� as the set of all those states at which i does not
know that o did not occur; i.e., those he cannot distinguish from o, the ones
he considers possible. This is precisely the intuitive meaning of I that is em-
bodied in the original de®nition 1.1. To justify the de®nition (1.5), we must
show

Proposition 1.6. As de®ned from K by 1.5, I is an information function and
satis®es 1.21.

Indeed, by proving that I satis®es 1.21, we show that it is associated with K
in the sense explained at the end of Section 1. Thus if we start with I, de®ne K
from it by means of 1.2, and then apply the de®nition (1.5), we get back an
information function identical to that with which we started.

Proof of Proposition 1.6: In this proof, we may use only 1.5 and 1.31 through
1.33, not formulas derived from the de®nitions in the body of the text.

To show that I is an information function, we must establish 1.11
and 1.12. To prove 1.11, note that @fogIK@fog by 1.31, so fogH
@K@fog � I�o�. 1.12 will be established below.

4 Starting from K, we call two states equivalent i¨ they are not separated by K, and de®ne I to
consist of the equivalence classes.
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Now de®ne K by 1.23 (remember that K is now the primitive); we then
assert that

I�o� A K; and �1:61�

I�o� is the intersection of all members of K containing o: �1:62�

To prove 1.61, note that by 1.33, I�o� �@K@fog � K@K@fog A KE �
K. To prove 1.62, suppose o A F A K. Then F � KE for some E in E. Thus
@KE �@F H@fog. So by 1.33 and 1.32, @KE HK@KE HK@fog.
Hence I�o� �@K@fogHKE � F . Thus I�o� is included in every member
F of K that contains o, and so in their intersection. For the reverse inclusion,
note that by 1.11 and 1.61 (which we have already proved), I�o� itself is an
element of K containing o, and therefore it includes the intersection of all
such elements.

To prove 1.12, note that either o is contained in precisely the same
members of K as o 0, or not. If yes, then 1.62 yields I�o� � I�o 0�. If not,
then w.l.o.g. there is an F in K with o A F and o 0 A @F ; then by 1.62,
I�o�X I�o 0� �q.

To prove 1.2, we ®rst show

KE is the disjoint union of those

events I�o� that are included in E: �1:63�

Indeed, that the union is disjoint follows from 1.12. Next, if I�o�HE, then by
1.5, 1.33, and 1.32, I�o�HKI�o�HKE. Hence the union in question is
included in KE. On the other hand, if o A KE, then by 1.11 and 1.62,
o A I�o�HKE, so every element of KE is in the union in question, so the
union includes KE.

1.2 now follows from 1.11, 1.12, and 1.63. 9

Notes to Section 1

(i) An alternative for 1.32 is the intuitively more transparent

K�E XF� � K�E�XK�F�; �1:64�

which says that i knows two things if and only if he knows each. Note that
1.64 implies5 1.32; indeed, if E HF then 1.64 yields KE � K�E XF� �
KE XKF HKF . But from Note (i) it follows that in the presence of the other
two conditions, 1.32 implies 1.4 and a fortiori 1.64, so that the two systems
(with 1.32 and with 1.64) are equivalent.

(ii) Note that

KW � W: �1:7�

5 The converse is false (as a referee pointed out): take W :� f1; 2; 3g, KE :� EnfminEg.
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Indeed, Kq �q, by 1.31; so WIKW � K@q � K@KqI@Kq �
@q � W, by 1.33, and 1.7 follows. In words, 1.7 says that if an event obtains
at all states of the world, then i knows it.

(iii) Condition 1.33 is sometimes called negative introspection. A related
condition is

KE � KKE; �1:8�

sometimes called positive introspection, which says that if a person knows
something, then he knows that he knows it. 1.8 follows from 1.31 and 1.33, as
follows: @KE � K@KE, so KE �@K@KE, so KKE � K@K@KE �
@K@KE � KE. From 1.8 and 1.23 it follows that

K � fE : E � KEg: �1:9�

2. Common knowledge

Let N be a collection of several individuals i, each with his own knowledge
function ki, knowledge operator Ki, knowledge u®eld Ki, information parti-
tion Ii, and information function Ii; the space W of states of the world and
the u®eld E of events remain the same for all individuals. We call N the
population.

Call an event E common knowledge (in the population) if all know E, all
know that all know it, all know that all know that all know it, and so on ad
in®nitum. Formally, de®ne operators K m from E to E by

K 1E :� 7
i AN

KiE; K m�1E :� K 1K mE; �2:1�

then de®ne Ky by

KyE :� K 1E XK 2E X . . . : �2:2�

If o A KiE, we say that ``i knows E at o.'' Thus KiE is the set of all states
of the world at which i knows E; in other words, KiE is the event that i knows
E. If o A KyE, we say that ``E is commonly known at o;'' and KyE is the
event that E is commonly known. Similarly, K 1E is the event that E is mutu-
ally known (between the individuals in N), and K mE that E is m'th level
mutual knowledge. Thus m'th level mutual knowledge of E means that all
relevant individuals know E, all know that all know it, and so on, but only m
times; and an event is common knowledge i¨ it is mutual knowledge at all
levels.

Lemma 2.3. KiK
yE � KyE for all i.

Proof: The inclusion H follows from 1.31. For the opposite inclusion,
2.1 and 1.4 yield KiK

yE�Ki7
y
m�1K mE�7y

m�1KiK
mE I7y

m�1K 1K mE �
7y

m�2 K mE I7y
m�1K

mE � KyE. 9

270 R. J. Aumann



Lemma 2.4.

KyE HE; and �2:41�
E HF implies KyE HKyF : �2:42�

Proof: Follows from 2.1, 2.2, 1.31, and 1.32.

Call an event F self-evident if KiF � F for all i; that is, if the event itself
entails everyone knowing it (in other words, whenever it obtains, everyone
knows that it obtains). For example, if two people enter into a contract6, then
it is self-evident to them that they do. From 1.9 we get

An event is self -evident if and only if it is in 7
i AN

Ki: �2:5�

Theorem 2.6. KyE is the largest event in 7
i AN

Ki that is included in E.
In words: E is commonly known if and only if some self-evident event that
entails E obtains.

Proof: By 2.3, 1.8, and 2.41, KyE is in 7
i AN

Ki and is included in E. If
E IF A 7

i AN
Ki, then F A Ki, so KiF � F by 1.8, so KyF � F by 2.1, so

F � KyF HKyE by 2.42. 9

Corollary 2.7. Ky is a knowledge operator, and the associated knowledge u®eld
is 7

i AN
Ki.

Remark. The events in 7
i AN

Ki are those that are in all the Ki; those that

are common to them all. This provides an additional rationale for the term
``common knowledge;'' it is knowledge that is, in a sense, common7 to the
protagonists. Of course, the main rationale for the term ``common knowl-
edge'' is that its everyday meaning8 corresponds nicely to the formal de®nition
at 2.1.

6 In common law, a contract is sometimes characterized as a ``meeting of the minds.'' Interpreted
more broadly ± i.e., epistemically only, without necessarily involving the element of mutual com-
mitment ± the idea of ``a meeting of the minds'' nicely encapsulates the notion of a self-evident
event.
7 To be sharply distinguished from the knowledge that results if the protagonists share (tell each
other) what they know. The latter corresponds to the u®eld, sometimes denoted 4

i AN
Ki , com-

prising unions of events of the form 7
i AN

Ei, where Ei A Ki for each i. This is quite di¨erent from
7

i AN
Ki; in particular, 7

i AN
Ki is included in (represents less information than) each of the Ki,

whereas 4
i AN

Ki includes each of them (represents more information).
8 Suppose you are told ``Ann and Bob are going together,'' and respond ``sure, that's common
knowledge.'' What you mean is not only that everyone knows this, but also that the announce-
ment is pointless, occasions no surprise, reveals nothing new; in e¨ect, that the situation after the
announcement does not di¨er from that before. This is precisely what is described in 2.6; the event
``Ann and Bob are going together'' ± call it E ± is common knowledge if and only if some event ±
call it F ± happened that entails E and also entails all players' knowing F (like if all players met
Ann and Bob at an intimate party). Contrast the familiar missionary story, in which announcing
the facts changes the situation dramatically, in spite of everybody's knowing the facts, knowing
that everybody knows them, and so on up to the 36'th order. If the facts had been common
knowledge, in the everyday meaning of the phrase, the announcement would have changed
nothing.
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Proof: Each u®eld K is associated with a unique information partition I, and
so by 1.2, with a unique knowledge operator K (given by 1.22). By 2.6, Ky is
the knowledge operator associated with the u®eld 7

i AN
Ki. 9

Corollary 2.8. KyE HKy�KyE�, and @KyE HKy�@KyE�.
In words: If an event is commonly known, then it is commonly known that it
is commonly known; if it is not commonly known, then it is commonly known
that it is not commonly known.

Proof: A consequence of 2.7, using 1.8 and 1.33. 9

Remark 2.9: KyW � W.
In words: An event obtaining at all states is commonly known at each state.

Proof: 1.7 and 2.7. 9

The information partition and information u®eld corresponding to the
knowledge operator Ky are denoted Iy and Ky respectively. W is called the
universe. The member of Ky are called common knowledge subuniverses, or
simply subuniverses; they are the self-evident events. The atoms of Iy are
called common knowledge components (of W); they are the minimal non-empty
subuniverses. The structure consisting of the universe W, the population N,
and the knowledge functions ki of the individuals i is called a semantic
knowledge system.

In the sequel, we sometimes consider common and mutual knowledge
among the individuals in a speci®ed proper subset N 0 of N. Thus in Section
10A, we treat a world with three individuals, and consider common and mu-
tual knowledge among two out of the three. In that case, the same de®nitions
and notation as above apply, with N replaced by N 0.

3. Discussion

When we come to interpret the model introduced in Section 2, an inevitable
question is, ``what do the participants know about the model itself ?'' Does
each ``know'' the information partitions Ii of the others? Are the Ii them-
selves in some sense ``common knowledge''? If so, how does this common
knowledge come about ± how does each individual get to know what the
others' partitions are? If not, how does the model re¯ect each individual's in-
formation ± or lack of information ± about the others' partitions? To do this
right, doesn't one need to superpose another such model over the current one,
to deal with knowledge of (or uncertainty about) the Ii? But then, wouldn't
one need another and yet another such model, without end even in the trans-
®nite domain?

Addressing this question in 1976, we wrote as follows: ``. . . the implicit
assumption that the information partitions . . . are themselves common
knowledge . . . constitutes no loss of generality. Included in the full description
of a state o of the world is the manner in which information is imparted to the
two persons. This implies that the information sets I1�o� and I2�o� are indeed
de®ned unambiguously as functions of o, and that these functions are known
to both players.''
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In 1987, we were more expansive: ``While Player 1 may well be ignorant of
what Player 2 knows ± i.e., of the element of I2 that contains the `true' state o
of the world ± 1 cannot be ignorant of the partition I2 itself. . . . Indeed, since
the speci®cation of each o includes a complete description of the state of the
world, it includes also a list of those other states o 0 of the world that are, for
Player 2, indistinguishable from o. If there were uncertainty about this list on
the part of Player 1 (or any other player), then the description of o would not
be complete; one should then split o into several states, depending on which
states are, for 2, indistinguishable from o. Therefore the very description of
the o's implies the structure of I2, and similarly for all the Ii. The description
of the o's involves no `real' knowledge; it is only a kind of code book or dic-
tionary. The structure of the Ii also involves no real knowledge; it simply
represents di¨erent methods of classi®cation in the dictionary.''

That is all well and good as far as it goes; but it leaves some important
questions unanswered.

Can such a ``dictionary'' actually be constructed? Isn't there some kind of
self-reference implicit in the very idea of such a dictionary? If it can neverthe-
less be constructed, is the construction in some sense unique, ``canonical''? If
not, which of the possible ``dictionaries'' would the participants use?

The most convincing way to remove all these questions and doubts is to
construct W and the Ii ± or equivalently, the ki ± in an explicit, canonical,
manner, so that it is clear from the construction itself that the knowledge
operators are ``common knowledge'' in the appropriate sense. This will be
done in Section 6, making use of the syntactic formalism. But ®rst, we intro-
duce the syntactic formalism for its own sake.

4. The syntactic knowledge formalism

As in Section 2, we assume given a set N of individuals, called the population.
We start by constructing a certain ``language'', in purely formal terms; after-
wards we interpret it. The building blocks of the language are the following
symbols, constituting the keyboard:

Letters from an alphabet X :�fx; y; z; . . .g; taken as fixed

throughout; and the symbols 4;:; �; �; and ki �for all i in N�:
A formula is a ®nite string of symbols obtained by applying the following
three rules in some order ®nitely often:

Every letter in the alphabet is a formula: �4:11�
If f and g are formulas; so is � f �4 �g�: �4:12�
If f is a formula; so are : � f � and ki� f � for each i: �4:13�

In the sequel, we often omit parentheses when the intended meaning is clear,
and we use f ) g as an abbreviation for �: f �4 g.

A list is a set of formulas. A list L is called logically closed, or simply
closed, if

� f A L and f ) g A L� implies g A L: �4:2�
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It is called epistemically closed if

f A L implies ki f A L; �4:3�
and strongly closed if it is both logically and epistemically closed. The strong
closure of a list L is the smallest strongly closed list9 that includes L. A
tautology10 is a formula in the strong closure of the list of all formulas having
one of the following seven forms (for some f; g; h and i):

� f 4 f � ) f �4:41�

f ) � f 4 g� �4:42�

� f 4 g� ) �g4 f � �4:43�

� f ) g� ) ��h4 f � ) �h4 g�� �4:44�

ki f ) f �4:51�

ki� f ) g� ) ��ki f � ) �kig�� �4:52�

: ki f ) ki : ki f : �4:53�

A formula g is a consequence of (or follows from) a formula f if f ) g is a
tautology.

The set of all formulas with a given population N and alphabet X is called
a syntax, and is denoted S�N;X�, or just S. For convenience11, assume that
N and X are ®nite or denumerable; it follows that S is denumerable.

5. Interpretation of the syntactic formalism

The syntactic formalism is subject to di¨erent interpretations; for now, we
present only one. The letters of the alphabet represent what may be called
``natural occurrences'': substantive happenings that are not themselves de-
scribed either in terms of people knowing something, or as combinations of
other natural occurrences using the connectives of the propositional calcu-
lus12. Such a ``natural'' occurrence might be, ``it will snow tomorrow.'' Not all
possible natural occurrences need be represented in the alphabet; normally,
one restricts oneself to natural occurrences that are ``relevant'' to the matter
under discussion. In many cases of interest these constitute a ®nite set, perhaps
even with just one element.

9 The intersection of all strongly closed lists including L; it is itself strongly closed, and is included
in all strongly closed lists that include L.
10 See the next section for an informal explanation of this concept.
11 This is used only twice ± in 8.7 and in the appendix ± and even there can be circumvented.
12 The distinction between ``natural occurrences'' and arbitrary ``occurrences'' is analogous to
that between ``states of nature'' and ``states of the world'' that one sometimes sees in the literature.
We ourselves don't like this distinction; in the context of the current general treatment, we con-
sider it arti®cial. But it is often used by economists, game theorists, and others who treat knowl-
edge formally, and for the present we go along (but see Section 10b).
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The symbol ``ki'' means ``i knows that . . .''. So if x stands for ``it will snow
tomorrow,'' then kix stands for ``i knows that it will snow tomorrow.'' The
symbol ``:'' means ``it is not true that'', and the symbol ``4'' means ``or''.
Parentheses have their usual meaning. Thus a formula is a ®nite concatenation
of natural occurrences, using the operators and connectives13 of the proposi-
tional calculus, and the knowledge operators ki.

In ordinary discourse, a ``tautology'' is a statement that is logically neces-
sary, one that embodies no empiric knowledge, nothing substantive about the
real world, one whose truth is inherent in the meaning of the terms involved
(like ``a circle is round''). That is the meaning intended here. For example,
formulas of the form 4:4�, which embody the axioms of the propositional cal-
culus, are tautologies; so are formulas of the form 4:5�, which embody funda-
mental properties of knowledge.14

A logical deduction from a tautology is also a tautology. This is embodied
in the condition that the set of tautologies be logically closed, i.e., obeys 4.2
(called the rule of modus ponens): if f and f ) g are tautologies, so is g.

In addition, the set of tautologies is epistemically closed, i.e., obeys 4.3
(this is called the rule of necessitation15): if f is a tautology, so is ki f . In e¨ect,
this says that each individual knows each tautology, and that this is a logical
necessity. Thus it is part of the logical infrastructure that the individuals are
logically consistent. It follows that everybody knows this itself as a logical
necessity, so that, for example, if f is a tautology, then so are kjki f , kikjki f ,
and so on. In this sense, one might say that it is ``commonly known'' that all
individuals reason logically, though in the syntactic formalism, common
knowledge has not been formally de®ned.

The formal de®nition of tautology in Section 4 embodies precisely these
principles: A tautology is de®ned as a formula that follows from the axioms of
logic (including the logic of knowledge) by repeated use of modus ponens and
the rule of necessitation.

In applications, the semantic and the syntactic formalisms have similar
functions: Either may be used formally to analyze interactive situations ± such
as games or economies ± in which the knowledge of the protagonists plays a
role. In principle, the syntactic formalism is the more straightforward; it sim-
ply represents the usual methods of logical deduction. Thus given a hypothesis

13 As is well known, all the connectives of the propositional calculus can be de®ned in terms of 4
and :.
14 Substantively, the knowledge ``axioms'' 4:5� correspond roughly to the de®ning properties 1:3�
of the semantic knowledge operator K; but there is a noteworthy di¨erence between 1.32 and 4.52.
Both have the same conclusion ± that if i knows the hypothesis of an implication, then he knows
the conclusion ± but their hypotheses are di¨erent. The hypothesis of 1.32 is the implication itself;
that of 4.52, that i knows the implication, which seems stronger. To reconcile the two, note that
the set inclusion used in the semantic formalism denotes logical ± or better, tautological ± impli-
cation; to say that E HF means that by the very de®nitions of E and F, it cannot be that F hap-
pens unless E does. Indeed, E HF is not an event, and so cannot hold at only some states of the
world; it is either true ± a logical necessity ± or false. On the other hand, the formula f ) g ±
which simply stands for : f 4 g ± is not a logical necessity; it may hold sometimes ± under certain
circumstances ± and sometimes not. Unlike with E HF , therefore, it makes sense to talk of i 's
knowing f ) g; and then one cannot conclude that i knows g from his knowing f unless f ) g is
not merely true, but in fact i knows f ) g.
15 This term is inherited from modal logic, where ``necessity'' plays a role like that of ``knowl-
edge'' in epistemic logic. In that context, the rule of necessitation says that tautologies are not just
true, but ``necessarily'' true.
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f, we may conclude that g if and only if f ) g is a tautology. The semantic
formalism is more roundabout. In it, sentences are replaced by ``events'' ± sets
of states of the world. Speci®cally, a sentence f is replaced by the set of those
states of the world at which f obtains. To conclude g from f, one shows that
the corresponding events G and F satisfy F HG; i.e., that F entails G, that g
obtains at each state of the world at which f does.

What we here call a ``tautology'' is in formal logic sometimes called a
``theorem,'' the term ``tautology'' being reserved for sentences that ``hold at''
each state of each semantic knowledge system. Actually, the two meanings are
equivalent, as will be shown below (9.4). Using the term ``theorem'' in this
connection would cause confusion with the more usual kind of theorem ± the
kind that appears in papers like this, and in particular in this paper itself.

Though in principle the syntactic formalism is more straightforward, in
practice the semantic formalism is often more useful.16 On the other hand, the
semantic formalism is beset by the conceptual di½culties discussed in Section
3 and in the introduction. To overcome these di½culties, we now construct an
explicit canonical semantic knowledge system, using the syntactic formalism
introduced in Section 4.

6. The canonical semantic knowledge system

As in Section 4, assume given a ®nite population N and an alphabet X. Call a
list L of formulas coherent if

: f A L implies f B L; �6:1�
complete if

f B L implies : f A L: �6:2�
De®ne a state o of the world, or simply a state, as a closed, coherent, and
complete list of formulas that contains all tautologies. Denote the set of all
states W�N;X�, or simply W. For all individuals i, de®ne a knowledge function
ki on W by specifying that for all states o,

ki�o� is the set of all formulas in o that start with ki: �6:3�
The system comprising W, N, and the ki is called the canonical semantic
knowledge system for the population N and the alphabet X (or simply the
canonical system).

7. Interpretation of the canonical system

Intuitively, once a state o of the world has been speci®ed, there can be no
remaining uncertainty, or at least no ``relevant'' uncertainty. This means that
at o, each of the denumerably many possible formulas is either de®nitely true

16 This is an empirical observation; we are not sure of the reason. Part of it may be that the
semantic formalism is set theoretic, and set theory has more immediacy and transparency than
formal logic. For example, a syntactic tautology, no matter how complex, corresponds in the
semantic formalism simply to the set W of all states.
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or de®nitely false. Our device is formally to de®ne a state o as the list of those
formulas that are true at o.

Thus for each formula f, either f itself or its negation : f must be in the
list that de®nes o (completeness), and only one of these two alternatives can
obtain (coherence). Also, the ordinary processes of logical deduction are as-
sumed valid at each state; anything that follows logically from formulas true
at a certain state is also true at that state. This is embodied in two conditions.
The ®rst is that each state o is logically closed, which means that modus
ponens (4.2) is satis®ed at o () stands for ``implies''). The second is that all
tautologies are true at each state.

At a given state o, which formulas does individual i know? Well, it is all
written in the list that de®nes o. He knows exactly those formulas that it says in
the list that he knows: namely, those formulas f such that ki f is in the list. The
list of all such ki f is ki�o�. So an individual can distinguish between two states
o and o 0 if and only if ki�o�0 ki�o 0�, i.e., if and only if he knows something
at one state that he does not know at the other. The other representations of
knowledge ± Ii;Ii;Ki and Ki ± are then de®ned from ki as in Section 1.

We can now address the question raised in Section 3, whether each indi-
vidual ``knows'' the information partitions Ii of the others. The Ii are de®ned
in terms of the information functions ki, and so in terms of the operators
ki (which, in the formulation of Section 6, replace the ki as primitives of the
system). Thus the question becomes, does each individual ``know'' the oper-
ators ki of the others (in addition, of course, to his own)?

The answer is ``yes.'' The operator ki operates on formulas; it takes each
formula f to another formula. Which other formula? What is the result of
operating on f with the operator ki? Well, it is simply the formula ki f .
``Knowing'' the operator ki just means knowing this de®nition. Intuitively, for
an individual j to ``know'' ki means that j knows what it means for i to know
something. It does not imply that j knows any speci®c formula ki f .

Suppose, for example, that f stands for ``it will snow tomorrow.'' For j to
know the operator ki implies that j knows that ki f stands for ``i knows that it
will snow tomorrow;'' it does not imply that j knows that i knows that it will
snow tomorrow (indeed, i may not know this, and perhaps it really will not
snow).

In brief, j 's knowing the operator ki means simply that j knows what it
means for i to know something, not that j knows anything speci®c about what
i knows.

Thus the assertion that each individual ``knows'' the knowledge operators
ki of all individuals has no real substance; it is part of the framework. If j did
not ``know'' the operators ki, he would be unable even to consider formulas in
the language of Section 4, to say nothing of knowing or not knowing them.

From this we conclude that all individuals indeed ``know''17 the functions
ki, as well as the partitions Ij .

17 It should be recognized that ``knowledge'' in this connection has a meaning that is somewhat
di¨erent from that embodied in the operators ki and Ki; that is why we have been using quotation
marks when talking about ``knowing'' an operator or a partition. That an individual i knows an
event E or a formula f can be embodied in formal statements �o A KiE or ki f 2 o) that are well
de®ned within the formal systems we have constructed, and whose truth or provability can be
explicitly discussed in the context of these formal systems. This is not the case for ``knowing'' an
operator or a partition. For discussion of a related point, see Section 10a.
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We conclude this section by recalling the end of Section 3, where we said
that ``the description of the o's involves no `real' knowledge; it is only a
kind of code book or dictionary.'' We have now explicitly constructed this
``dictionary;'' the construction is canonical (given the set N of individuals and
the alphabet X); no self-reference is involved; and all individuals ``know'' the
description of the model, including the partitions Ii.

8. The relationship between the syntax and semantics of knowledge

In the foregoing we developed two related but distinct approaches to inter-
active epistemology. The states-of-the-world construction presented in Sec-
tions 1 and 2 embodies the semantic approach. The approach of Section 4,
involving a formal ``language,'' is syntactic. In our development, the syntactic
approach is the more fundamental: In Section 6, we de®ne semantics (states o
and knowledge functions ki) in terms of syntax (the formal language).

There are some obvious correspondences between the two approaches.
Formulas (syntactic) correspond to events (semantic); disjunction, conjunc-
tion, and negation correspond to union, intersection, and complementation;
the knowledge operators ki to the knowledge operators Ki. By ``correspond'',
we mean ``have similar substantive content''. Thus ``i knows that it will snow
or rain tomorrow'' is expressed by ki�x4 y� in the syntactic formalism and by
Ki�Ex WEy� in the semantic formalism, where x and Ex stand for ``it will snow
tomorrow'', and y and Ey for ``it will rain tomorrow''. Formally, ki�x4 y�
and Ki�Ex WEy� are distinct objects; the ®rst is a string of letters, connectives,
operators and parentheses, the second a set of states. But substantively, they
express the same thing.

The purpose of this section is to formalize the correspondence between
syntactic and semantic entities, to embody it in precise theorems. We will see
that the correspondence is not complete; whereas every formula f corresponds
to a unique event Ef , it is not the case that every event corresponds to some
formula. Roughly, the reason is that formulas are ®nite concatenations,
whereas events can also express in®nite concatenations (e.g., in®nite unions).
But subject to this caveat (i.e., if one considers events of the form Ef only),
we will see that there is a perfect ``isomorphism'' between the syntactic and
semantic approaches.

Unless otherwise stated, the population N and the alphabet X ± and so also
the syntax S � S�N;X� ± will be taken as ®xed, as in Section 4.

In the sequel, we use the following standard notations (for arbitrary for-
mulas f and g):

f 5 g :� : �: f 4: g�; �8:01�

f , g :� � f ) g�5 �g) f �: �8:02�

The following syntactic formulation of ``positive introspection'' will be
needed in the sequel:

Proposition 8.1. Any formula of the form ki f , kiki f is a tautology.

Proof: Analogous to the proof of 1.8.
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We proceed now to a precise formulation of the ``isomorphism'' between
the syntactic and semantic approaches. If f is a formula, de®ne

Ef :� fo A W : f A og: �8:2�

In words, Ef is the set of all states of the world containing the formula f,
i.e., the set of all states at which f is true; in other words, it is the event
that f obtains.

The ``isomorphism'' is embodied in the following three propositions ( f and
g denote arbitrary formulas, i an arbitrary individual):

Proposition 8.3.

@Ef � E: f ; �8:31�

Ef WEg � Ef 4g; �8:32�

Ef XEg � Ef 5g: �8:33�

Proposition 8.4. KiEf � Eki f .

Proposition 8.5. Ef HEg if and only if f ) g is a tautology.

Though 8.4 is analogous to the components of 8.3, we have stated it sepa-
rately because its proof lies considerably deeper. From 8.4 we will deduce that
for any event E (not necessarily of the form Ef ),

o A KiE iff E I 7
ki f Ao

Ef : �8:51�

In words, 8.51 says that KiE is the event that E follows logically18 from the
formulas f that i knows. For a discussion of this result, see Section 10a.

From 8.5 it follows19 that

Ef � Eg if and only if f , g is a tautology: �8:52�

In words, 8.52 says that logically equivalent formulas correspond to the same
event20.

The proofs require some preliminary work. Call a formula f elementary if
it contains no ki. A theorem of the propositional calculus is de®ned as an ele-
mentary formula that yields the truth value T for each assignment of truth
values to the letters appearing in it (using the usual rules for calculating truth
values).

18 E IF means that E is a logical consequence of F. Compare Proposition 8.5 and Footnote 15.
19 A formal derivation is given below.
20 The term ``isomorphism'' usually denotes a one-one correspondence that preserves the relevant
operations. In our case, the correspondence between formulas and events is not one-one, even
when one considers events of the form Ef only. But from 8.52, it follows that there is a one-one
correspondence between events of the form Ef and equivalence classes of formulas (under logical
equivalence); and by 8.3 and 8.4, this correspondence indeed preserves the relevant operations.
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Lemma 8.61. Let e be a theorem of the propositional calculus, possibly in a
syntax di¨erent from the given one21. Let f be a formula (in the given syntax)
that is obtained by substitution22 from e. Then f is a tautology, and so is in each
state o.

Proof: Let S be the given syntax, S 0 a syntax containing e. Since e is a theo-
rem of the propositional calculus, it can be derived23 by repeatedly applying
modus ponens to formulas of the form 4.4. (recall that the rule of modus ponens
allows one to derive h from g and g) h). The formal expression of modus
ponens is 4.2, so e is in the closure of the list of formulas of the form 4:4� in
S 0. Now f is obtained from e by substituting appropriate formulas in S for
the letters in e. If we make these substitutions already in the original formulas
of the form 4:4� in S 0 from which e was derived, then we obtain formulas of
the form 4:4� in S. If we then follow exactly the same derivation step by step,
we obtain f. Thus f is in the closure of the list of formulas of the form 4:4� in
S. A fortiori it is in the strong closure of the list of formulas of the form 4:4�
and 4:5�, i.e., the set of tautologies. 9

Remark 8.62: If f and f ) g are both in a state o, then g A o.

Proof: Follows from 4.2, since each state is by de®nition closed.

The following proposition is important in its own right, and also as a
lemma for 8.3.

Proposition 8.63. For all states o and formulas f and g,

: f A o if and only if f B o; �8:631�

f 4 g A o if and only if � f A o or g A o�; �8:632�

f 5 g A o if and only if � f A o and g A o�; �8:633�

f ) g A o if and only if � f A o implies g A o�; and �8:634�

f , g A o if and only if � f A o if and only if g A o�: �8:635�

Proof: 8.631 restates the coherence (6.1) and completeness (6.2) of o. Next, by
8.61, f ) � f 4 g� and g) � f 4 g� are in each state, so ``if '' in 8.632 follows

21 I.e., with a di¨erent alphabet. The reason for this caveat is that we may need more letters than
are available in the given alphabet for which to substitute di¨erent formulas, though each of these
formulas is in the given syntax. For example, let there be two individuals 1, 2, and let the given
alphabet have only one letter x. Then 8.61 implies that k1x5 k2x) k1x is a tautology, but this
would not be so if the e of the lemma had to be in the given syntax.
22 Of course, if the substitutes (the formulas being substituted for the letters in e) are elementary,
then f itself is a theorem of the propositional calculus. Our lemma applies to the more general case
in which the substitutes may contain knowledge operators ki.
23 See, e.g., Hilbert and Ackermann (1928), p. 22¨. They use the rule of substitution as well as
modus ponens; our approach obviates the need for the rule of substitution, by using axiom sche-
mas (families of axioms obtained by substituting arbitrary formulas for f ; g, and h) rather than
axioms.
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from 8.62. To prove ``only if,'' suppose that on the contrary, f 4 g A o and
f B o and g B o. Since o is complete, it follows that : f A o and : g A o.
Now by 8.61, �: f ) �: g) :� f 4 g��� A o. So : f A o and 8.62 yield
�: g) :� f 4 g�� A o. So : g A o and 8.62 yield : � f 4 g� A o. So the co-
herence of o yields � f 4 g� B o, contrary to what we assumed. This proves
8.632, and the other assertions follow from it, from 8.631, and from the de®-
nitions of 5;), and ,. 9

Proof of Proposition 8.3: Let o A W. By the meaning of the symbol @ (com-
plementation), 8.2, 8.631, and again 8.2, we have

o A @Ef iff o B Ef iff f B o iff : f A o iff o A E: f ;

this proves 8.31. The proofs of 8.32 and 8.33 are similar; instead of 8.631, we
use 8.632 and 8.633 respectively. 9

Proposition 8.4 requires more preparation. Denote the list of all tautolo-
gies by T. If L is any list, denote by L� the smallest closed list that includes24
LWT.

Lemma 8.64. If f A L and g A L, then f 5 g A L�.

Proof: L� contains f ) �g) � f 5 g��, which is a tautology by 8.61, and by
hypothesis it contains f. So since it is closed (4.2), it contains �g) � f 5 g��.
But it also contains g. So since it is closed, it contains f 5 g. 9

Corollary 8.641. If f and g are tautologies, so is f 5 g.

Proof: Since T is by de®nition strongly closed, it is closed. So T� � T. The
corollary now follows by setting L :� T in 8.64. 9

Lemma 8.65. L� consists of all consequences of ®nite conjunctions of formulas
in L.

Proof: By 8.64, all ®nite conjunctions of formulas in L are in L�. Also all
tautologies are in L�, so since L� is closed, all consequences of ®nite con-
junctions of formulas in L are in L�.

It remains to show that the set of all such consequences is closed. So sup-
pose that f is a ®nite conjunction of formulas in L, that g is a consequence of f,
and that g) h is a tautology; it is su½cient to show that h is also a conse-
quence of f. But g being a consequence of f means that f ) g is a tautology.
So by 8.641, � f ) g�5 �g) h� is a tautology. By 8.61, �� f ) g�5
�g) h�� ) � f ) h� is a tautology. So since T is closed, f ) h is a tautology.
So h is a consequence of f. 9

Call L consistent if for all formulas f,

f A L� implies : f B L�: �8:66�

24 The intersection of all closed lists including LWT; it is itself closed, and is included in all
closed lists that include LWT.
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Lemma 8.67. If L1 HL2 H � � � is a nested sequence (possibly ®nite) of consis-
tent lists, then its union Ly :�6

m
Lm is consistent.

Proof: By 8.65, L�y �6
m
L�m. So if 8.66 is false, then there are m, n, and f with

f A L�m and : f A L�n . W.l.o.g. nUm, so Ln HLm, so L�n HL�m, so f A L�m and
: f A L�m, contrary to the hypothesis that Lm is consistent. 9

Lemma 8.68. Let L be a consistent list, f a formula with : f B L�. Then
L [ f f g is consistent.

Proof: If not, then by 8.65, there are formulas g1; g2; . . . ; gm and h1; h2; . . . ; hn

in L, and a formula e, such that �g5 f � ) e and �h5 f � ) : e are tautolo-
gies, where g :� g1 5 g2 5 � � �5 gm and h :� h1 5 h2 5 � � �5 hn. Hence
by 8.641, ��g5 f � ) e�5 ��h5 f � ) : e� is a tautology. By 8.61,
���g5 f � ) e�5 ��h5 f � ) : e�� ) ��g5 h� ) : f �� is a tautology. Since
the set of tautologies is closed, we deduce that �g5 h� ) : f is a tautology.
Now g5 h is a ®nite conjunction of formulas in L, so we deduce that
: f A L�, contrary to our hypothesis. 9

Lemma 8.69. Every state o is consistent.

Proof: By de®nition, o is closed and includes T, so o � o�. But then the
consistency of o follows from its coherence. 9

Proposition 8.7. A list L is consistent if and only if there is a state o with
LHo.

Proof: If: Follows from 8.69.
Only if: Suppose that L is consistent. We must ®nd a state that includes L.

Let � f1; f2; . . .� be an enumeration of all formulas. We will de®ne a nested
sequence L1 HL2 H � � � (possibly ®nite) such that L�y is a state, where
Ly :�6

m
Lm. Set L1 :� L. Suppose L1;L2; . . . ;Lm have been de®ned. If for

each formula f, either f A L�m or : f A L�m, then the sequence ends with Lm.
Otherwise, let f m be the ®rst fn such that f B L�m and : f B L�m, and de®ne
Lm�1 :� Lm W f f mg. An induction using 8.68 then shows that all the Lm are
consistent. So by 8.67, their union Ly is consistent. Now L�y contains all the
L�m, so by construction, it contains, for each formula fn, either fn or : fn; i.e.,
it is complete. Moreover, since Ly is consistent, L�y cannot contain both.
Thus L�y is complete and coherent. Moreover it is closed and contains all
tautologies, so it is a state; denoting it o completes the proof. 9

Lemma 8.71. Let e be a theorem of the propositional calculus, possibly in a
syntax di¨erent from the given one25. Let f be a formula (in the given syntax)
that is obtained by substitution from e. Then ki f is a tautology for all i.

Proof: By 8.61, f is a tautology; since the set T of tautologies is by de®nition
strongly closed, 4.3 yields ki f A T. 9

Lemma 8.72. ki� f 5 g� , �ki f �5 �kig� is a tautology.

25 See Footnote 21.
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Proof: By 8.71, ki�� f 5 g� ) f � is a tautology, and so a member of each o.
So by 4.52 and 4.2, ki� f 5 g� ) ki f is a tautology. Similarly, ki� f 5 g� ) kig
is a tautology, and it follows that

ki� f 5 g� ) �ki f �5 �kig� is a tautology: �8:721�

For the other direction, note ®rst that by 8.61, f ) �g) � f 5 g�� is a
tautology. So by 8.71, ki� f ) �g) � f 5 g��� is a tautology. So by 4.52,
�ki f � ) ki�g) � f 5 g�� is a tautology. Again by 4.52, �ki�g) � f 5 g��� )
��kig� ) ki� f 5 g��. Combining the last two observations, we deduce that
�ki f � ) ��kig� ) ki� f 5 g�� is a tautology, and from this it follows that
��ki f �5 �kig�� ) ki� f 5 g� is a tautology. The proof may be completed by
applying 8.641 to this and to 8.721. 9

Lemma 8.73. Let o and o 0 be states, and let ki�o�Ho 0. Then ki�o 0� � ki�o�.

Proof: Any formula in either ki�o� or ki�o 0� has the form ki f . Suppose,
therefore, that ki f A ki�o�. Then since ki�o�Ho 0, it follows that ki f A o 0,
so by the de®nition of ki�o 0�, we get ki f A ki�o 0�. Conversely, suppose that
ki f A ki�o 0�. If ki f A o, then also ki f A ki�o�, and we are done. Otherwise,
: ki f A o, by 6.2. So by 4.53 and 4.2, ki: ki f A o. So ki: ki f A ki�o�. Since
ki�o�Ho 0, we deduce ki: ki f A o 0. So by 4.51 and 4.2, : ki f A o 0. Since o is
coherent, it follows that ki f B o 0, contradicting ki f A ki�o 0�Ho 0. 9

Proof of Proposition 8.4: We start with the inclusion I. Let o A Eki f , which
means that ki f A o (by 8.2). We must show that o A KiEf , i.e. (by 1.21) that
Ii�o�HEf . So let o 0 be a state with ki�o 0� � ki�o�. Since ki f A o, it follows
from 6.3 that ki f A o 0. So f A o 0 by 4.51 and 4.2; so again by 8.2, o 0 A Ef .
This holds for all o 0 with ki�o 0� � ki�o�, i.e., for all o 0 in Ii�o�. Thus
Ii�o�HEf , as asserted. This demonstrates �.

To demonstrate H, let o A KiEf . Then by 1.21,

Ii�o�HEf : �8:74�

We wish to show that o A Eki f , which by 8.2 is the same as ki f A o. Setting
L :� ki�o�, we obtain from 8.74, 1.1, 8.2, and 8.73 that for all states o 0,

LHo 0 implies f A o 0: �8:75�

From this it follows that f A L�. For if not, then by 8.68, LW f: f g is con-
sistent. So by 8.7, there is a state o 0 including LW f: f g, which contradicts
8.75 (because of the coherence of o 0).

Since f A L�, it follows from 8.65 that f is a consequence of a ®nite con-
junction of formulas in L. Since L is de®ned as ki�o�, all formulas in L start
with ki. Thus there are formulas ki f1; ki f2; . . . ; ki fm in L such that �ki f1 5
ki f2 5 � � �5 ki fm� ) f is a tautology. So by 4.3 and T being strongly closed,
ki��ki f1 5 ki f2 5 � � �5 ki fm� ) f � is a tautology. So by 4.52 and 4.2,
ki�ki f1 5 ki f2 5 � � �5 ki fm� ) ki f is a tautology. Using 8.72 and that
kikig, kig is a tautology (8.1), we deduce that �ki f1 5 ki f2 5 � � �5 ki fm� )
ki f is a tautology. So ki f A L�, by 8.65. Now L � ki�o�Ho, and o is closed,
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so o includes the smallest closed list L� that includes L. So ki f A o, as was to
be proved. 9

We proceed next to prove 8.5. First, an auxiliary proposition that is of
interest on its own.

Proposition 8.8. A formula is a tautology if and only if it is in every state.

Proof: ``Only if '' is part of the de®nition of state. To prove ``if '', suppose that
g A o for all states o. Then : g B o for all o, so by 8.7, the list f: gg is not
consistent. So by 8.66, there is an f in f: gg� with : f A f: gg�. By 8.65, it
follows that both f and : f are consequences of : g. Thus both : g) f and
: g) : f are tautologies, so �: g) f �5 �: g) : f � is a tautology. Now
�: y) x�5 �: y) : x� ) y is a theorem of the propositional calculus, so
by 8.61, �: g) f �5 �: g) : f � ) g is a tautology. But the list of all tau-
tologies is closed, since it is strongly closed; so g is a tautology. 9

Proof of Proposition 8.5: Suppose ®rst that f ) g is a tautology. Then it is in
every state o. Hence if f A o, then since o is closed, it follows that g A o.
Hence Ef � fo A W : f A ogH fo A W : g A og � Eg. This proves ``if ''.

Conversely, suppose that f ) g is not a tautology. Then by 8.8, there
is a state o that does not contain f ) g, so contains : � f ) g�. Now
: � f ) g� ) � f 5: g� is a tautology by 8.61, so it is in o. Since o is closed,
it follows that f 5: g A o; so by 8.633, f A o and : g A o, so g B o. So Ef is
not included in Eg. This proves ``only if ''. 9

We come now to the proofs of 8.51 and 8.52; it is convenient to start
with 8.52.

Proof of 8.52: f , g is a tautology i¨ f ) g and g) f are tautologies,
which is i¨ Ef HEg and Eg HEf , i.e., Ef � Eg. 9

For the proof of 8.51, two more lemmas are needed (again of interest in
their own right).

Lemma 8.81. Ii�o� �7
g A ki�o�Eg.

Proof: To show H, suppose o 0 A Ii�o� and g A ki�o�; we must prove o 0 A Eg.
By 1.1, ki�o 0� � ki�o�, so g A ki�o 0�Ho 0, so o 0 A Eg by 8.2.

To show �, suppose o 0 A Eg for all g A ki�o�. Thus by 8.2, g A o 0 for
all g A ki�o�; i.e., ki�o�Ho 0. Hence by 8.73, ki�o 0� � ki�o�, so by 1.1,
o 0 A Ii�o�. 9

Lemma 8.82. 7
g A ki�o�Eg �7

ki f Ao
Ef .

Proof: To show H, note that by 1.4 and 8.4, Ki7ki f Ao
Ef �7

ki f Ao
KiEf �

7
ki f Ao

Eki f �7
g A ki�o�Eg, and then use 1.31. To show �, note that

7
ki f Ao

Ef H7
kikih A o

Ekih �7
h: kih Ao

Ekih �7
g A ki�o�Eg, where H follows

from the intersection of a smaller family being larger, and the ®rst � sign from
8.1 and 8.52 (which has already been proved). 9
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Proof of 8.51: If: Assume E I7
f : ki f Ao

Ef ; from 1.32, 1.4, 8.4, and 8.2 we get

KiE IKi7f : ki f Ao
Ef �7

f : ki f Ao
KiEf �7

f : ki f Ao
Eki f I7

f : ki f Ao
fog � fog.

Only if: Assume o A KiE. Then by 1.21, Ii�o�HE. So by 8.82 and 8.81,
7

f : ki f A o
Ef �7

g A ki�o�Eg HE. 9

We conclude this section with

Proposition 8.9. A list is a state if and only if it is complete and consistent.

Proof: By 8.69, every state is complete and consistent. Conversely, let L be a
complete consistent list. By 8.7, there is a state o with LHo. If the inclusion
is strict, there is a formula f with f A o and f B L. Since L is complete,
: f A L, so : f A o, so f B o by the coherence of o, contradicting f A o. 9

9. Representations and models

This section treats the notion of ``model.'' The idea is to ``interpret'' syntactic
formulas as events in a semantic knowledge system S (not necessarily the
canonical system). The letters x; y; z; . . . of the alphabet are interpreted as
certain distinguished events X ;Y ;Z; . . . in S; the syntactic knowledge oper-
ators ki as semantic knowledge operators Ki; and disjunctions, conjunctions,
and negations as unions, intersections, and complements respectively. Thus
each formula f corresponds to a unique event F in S, constructed from the
distinguished events X ;Y ;Z; . . . like f is constructed from the alphabet letters
x; y; z; . . . :

Substantively, f and F have similar content; to say them in English, one
uses the same words. There is, however, a subtle di¨erence between them. A
syntactic formula f is, so to speak, ``context-free;'' the semantic system S
provides the context, the environment. Thus, f entails nothing except the for-
mula itself and its logical consequences ± strictly in the sense of Section 4. The
corresponding event F may entail much more, depending on the system S
in which F is imbedded. Speci®cally, F entails all those events G that include
F, although G may correspond to a formula g that does not follow from f
``logically'' ± in the sense of Section 4 ± but only, so to speak, in the ``context''
of S.

A formula f is said to hold at a state o in S if o is a member of the event F
corresponding to f. A model of a list L of formulas is a state o in a semantic
knowledge system S at which each formula in L holds. The main result of this
section, Proposition 9.2, is that a list is consistent if and only if it has a model.
In practice, pointing to a model is the major practical tool for proving con-
sistency of lists ± or indeed, proving that an individual formula is not tauto-
logically false; proving consistency directly, by syntactic methods only, is
notoriously cumbersome. The other side of the same coin is Corollary 9.3,
which says that a formula g ``follows'' from a list L if and only if g holds in
every model of L. This, too, is a major tool in practical applications. As
promised in Section 5, we also show that the tautologies are precisely those
formulas that hold at each state of each semantic knowledge system (Corol-
lary 9.4).

One simple application of these ideas is Corollary 9.5 ± that the canonical
knowledge system W de®ned in Section 6 is non-empty, i.e., that there exists at
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least one complete coherent list for every population and alphabet. Obvious as
this may sound, it is not easily established by purely syntactic methods. But
using the idea of model, it is immediate. One need only point to a state (any
state) in a semantic knowledge system (any such system ± for example, the
system with one state only). The set of all formulas holding at that state is
closed, complete and coherent, and contains all tautologies (Lemma 9.21).

A more substantial application is to issues of cardinality. Using 9.2, one
may show that when there are at least two players, the canonical system has a
continuum of states, even when the alphabet has just one letter. Two proofs
are known. One is by Hart, Heifetz, and Samet (1996) ± henceforth HHS; the
other is in the appendix to this paper. Both are based on Proposition 9.2. HHS
prove that there is a continuum of states by exhibiting a continuum of lists,
each of which is consistent in itself, but any two of which are mutually in-
consistent; by 8.7, each of these lists can be expanded to a state. HHS's proof
is shorter and more elegant than ours; we adduce the latter here ``for the rec-
ord,'' and because its method, though clumsier than HHS's, may sometimes
be applicable where theirs is not (needless to say, the opposite is also true).

To complete the picture, we will show in the appendix that when there is
only one individual (and the alphabet is ®nite), then W is ®nite. This under-
scores the relative complexity of many-person epistemology when compared
with one-person epistemology.

We proceed now to the formal treatment. Fix a population N and an
alphabet X :� fx; y; . . .g; let S :� S�N;X � be the corresponding syntax. Re-
call (from Section 2) that a semantic knowledge system (or simply knowledge
system for short) consists of a population, a universe Ŵ, and knowledge
functions26 k̂i for each individual i; denote the knowledge operators in such a
system by K̂i, and the u®eld of events by Ê. For brevity, we will sometimes
denote the whole knowledge system simply by Ŵ, rather than �Ŵ;N; �k̂i�i�.
This is standard mathematical usage: A group is de®ned as a pair consisting of
a set G and a multiplication, but the group (i.e., the pair) is itself often denoted
G; a metric space is a set together with a metric, but the space and the set are
often denoted by the same letter; and so on.

De®ne a representation of S as a knowledge system �Ŵ;N; �k̂i�i�, together
with a function j : S! Ê satisfying

j�: f � �@j� f �; j� f 4 g� � j� f �W j�g�; and

j�ki f � � K̂ij� f �:
�9:1�

We will slightly abuse our terminology by using ``representation'' to refer also
to just Ŵ itself, or just j itself (not just to the pair consisting of the knowledge
system and j). Given j and a particular formula f, we will also call j� f � the
``representation of f.''

Remark 9.11: For each knowledge system Ŵ, each function from the alphabet
X into Ê has a unique extension to a representation of S.

26 The carets (hats) are to distinguish these objects from the speci®c universe W and knowledge
functions ki de®ned in Section 6.
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Proof: Follows from 9.1, as each formula f results from a unique sequence of
operations :;4, and ki. 9

Remark 9.11 implies that one can think of a representation of S simply as
an (arbitrary) knowledge system Ŵ, together with an (arbitrary) speci®cation
of events j�x�; j�y�; . . . corresponding to the letters of the alphabet. Intui-
tively, the events j�x�; j�y�; . . . may be thought of as the ``natural'' events.

Given a representation j of S and a state ô in Ŵ, de®ne

f�ô� :� f f A S : ô A j� f �g: �9:12�

In words, f�ô� is the list of all formulas that hold at ô, i.e., whose represen-
tation j� f � obtains at ô.

Let LHS be a list. De®ne a model for L as a representation �Ŵ; j� of S
together with a state ô in Ŵ at which all formulas in L hold (i.e., ô A j� f � for
all f in L).

Proposition 9.2. A list L of formulas is consistent if and only if it has a model.

We ®rst prove

Lemma 9.21. Let �Ŵ; j� be a representation of the syntax S, and let ô A Ŵ.
Then f�ô� A W.

In words: For a ®xed representation, the list of all formulas that hold at a
given state ô is closed, coherent, complete, and contains all tautologies; i.e., it
is a state in the canonical knowledge system.

Proof: Set o :� f�ô�. We must prove that the list o is closed, coherent, com-
plete, and contains all tautologies.

To say that o is closed means that it satis®es 4.2; i.e., that ( f A o and
f ) g A o) implies g A o; i.e., that

�ô A j� f � and ô A j��: f �4 g��� implies ô A j�g�: �9:22�

Now

ô A j� f � and ô A j��: f �4 g�� iff ô A j� f �X j��: f �4 g��; �9:23�

and since j� f �X j�h� � j� f 5 h� by 9.1, we have

j� f �X �j�: f �W j�g�� � j� f �X �@j� f �W j�g��H j�g�; �9:24�

putting together 9.23 and 9.24 yields 9.22.
We prove next that o contains all tautologies. First we show

if e is a tautology; then j�e� � Ŵ: �9:25�

Indeed, let T̂ be the list of all formulas e such that j�e� � Ŵ. Using 9.1 and
1.31 through 1.33, we verify directly that every formula with one of the
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seven forms 4.41 through 4.53 is in T̂. Moreover, if f A T̂ and f ) g A T̂
then Ŵ � j� f � and Ŵ � j� f ) g�, so Ŵ � j��: f �4 g� � �@j� f ��W j�g� �
�@Ŵ�W j�g� �qW j�g� � j�g�, so g A T̂; thus T̂ is closed. Finally, if f A T̂,

then j�ki f � � K̂ij� f � � K̂iŴ � Ŵ (by 1.7), so T̂ is strongly closed. Thus T̂ is
strongly closed and contains all formulas of the form 4.41 through 4.53, so it
includes the strong closure of the list of all formulas of this form, i.e., the list
of all tautologies; this proves 9.25. It follows that ô A Ŵ � j�e� for all tautol-
ogies e, so o contains all tautologies, as asserted.

Finally, to verify completeness (6.2) and coherence (6.1), note that

: f A o iff ô A j�: f � iff ô A @j� f � iff ô B j� f � iff f B o:

Thus o is a closed, coherent, complete list that contains all tautologies; i.e.,
o � f�ô� is a state. 9

Proof of Proposition 9.2: Only if: Let the knowledge system consist of the state
space W together with N and the knowledge functions ki constructed in Sec-
tion 6. De®ne j� f � :� fo A W : f A og (� E f , by 8.2). By 8.3 and 8.4, j sat-
is®es 9.1. Since L is consistent, there is a state o that includes L (8.7). So each
formula f in L is in o, so o is in all the corresponding j� f �.

If: Let the model be �Ŵ; j; ô�. Then LH f�ô�. By 9.21, f�ô� is a state, so
by 8.7, L is consistent.

Corollary 9.3. Let L be a list, g a formula. Then g is a consequence of a ®nite
conjunction of formulas in L if and only if every model for L is also a model for
fgg. (In words, a formula ``follows'' from a list if and only if it holds in every
model of that list.)

Proof: Recall that L� denotes the list of all consequences of ®nite conjunctions
of formulas in a list L (8.65). If g is not in L�, then by 8.68, L [ f: gg is con-
sistent, so by 9.2 has a model, which by 9.13 is not a model for fgg. In the
opposite direction, if it is not the case that every model for L is also a model
for fgg, then L has a model that is not a model for fgg, and so by 9.21 is a
model for f: gg, hence also for LW f: gg. So by 9.2, LW f: gg is consistent,
so by 8.68, g B L�. 9

Corollary 9.4. A formula f is a tautology if and only if for any representation,

j� f � � Ŵ (in words, if and only if f holds at each state in each representation).

Proof: ``Only if '' follows from 9.21. To show ``if,'' note ®rst that by 8.3 and
8.4, the canonical semantic knowledge system W, together with the function j
on S de®ned by j� f � :� E f , constitute a representation of S. So by hypoth-
esis, E f � j� f � � W, which means that f is in every state of W. So by 8.8, f is a
tautology. 9

Corollary 9.5. The canonical knowledge system W is non-empty.

Proof: By Lemma 9.21, f�ô� is always in W; so it is enough to show that there
exists some semantic knowledge system, and that is obvious (for example, the
one with one state only).
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Note to Section 9

In this note we show that every representation of S can be thought of as a
common knowledge subuniverse of W. More precisely, for every represen-
tation there is a common knowledge subuniverse of W such that the given
representation is isomorphic, in a natural sense, to this common knowledge
subuniverse.

Given a representation �Ŵ; j� of the syntax S, denote Ŝ :� j�S�H Ê, and
call the events in Ŝ syntactic. In words, a syntactic event is one of the form
j� f �; one that corresponds, under the representation j, to a formula in the
syntax S.

Now let �Ŵ1; j1� and �Ŵ2; j2� be two representations of S; set Ŝj :�
jj�S�; j � 1; 2. Call j1 and j2 isomorphic if there is a one-one mapping F (an

isomorphism) from Ŝ1 onto Ŝ2 such that j2 � F � j1 (see the diagram at 9.6).

S

j1

���! ���!j2

Ŝ1 ���!
F

Ŝ2

�9:6�

Let �Ŵ; j� be a representation of S. By 9.21, for each state ô in Ŵ, the list
f�ô� is a state o in W. The set of all o obtained in this way is a subset of W,
which we denote Wj. Formally, Wj :� f�Ŵ�. In words, a state in W is in Wj i¨
it corresponds to some ô in Ŵ under the representation j; i.e., i¨ it consists of
precisely those formulas f for which the representation j� f � holds at ô.

Denote by G j the smallest common knowledge subuniverse27 of W that
includes Wj. By associating with G j the population N and the knowledge
functions kijG j, we obtain a knowledge system; denote the set of events in this
system by Ej. De®ne j� : S! Ej by

j�� f � :� E f XG j: �9:61�

Proposition 9.7. �G j; j�� is a representation of S, which is isomorphic to �Ŵ; j�.

For the proof of 9.7, we need several lemmas. In the statements of these
lemmas, f, g, and h denote arbitrary formulas.

Lemma 9.71. f�j� f �� � E f XWj.

Proof: We have f�j� f �� � ff�ô� : ô A j� f �g, so o A f�j� f �� i¨ there is an
ô A j� f � with o � f�ô� � fg : ô A j�g�g, and this is so i¨ f A o A Wj; thus
f�j� f �� � fo A Wj : o A f g � E f XWj. 9

Lemma 9.72. Wj HE f i¨ Ŵ � j� f �.

27 See the end of Section 2.
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Proof: Wj HE f i¨ f A o for all o in Wj; that is, i¨ for each ô in Ŵ, we have
f A f�ô� � fg : ô A j�g�g; that is, i¨ ô A j� f � for all ô in Ŵ; i.e., Ŵ �
j� f �. 9

Corollary 9.73. If Wj HE f , then Wj HKiE f .

Proof: By 9.72, Wj HE f yields Ŵ � j� f �. Hence by 9.1, Ŵ � K̂iŴ �
K̂ij� f � � j�ki f �. So again by 9.72, Wj HKiE f . 9

Lemma 9.74. If Wj HE f , then G j HE f .

Proof: Set F :�7E f , where the intersection is over all f with Wj HE f . From
1.4, 8.4, and 9.73, it follows that KiF � F for all i. Thus F is self-evident, and
so a subuniverse of W. By de®nition, F IWj. Hence F includes the smallest
subuniverse that includes Wj, namely G j. But by its de®nition, F is included in
each E f for which Wj HE f , so the lemma is proved. 9

Lemma 9.75. j��g� � j��h� i¨ j�g� � j�h�.

Proof: If: Assume j�g� � j�h�. Then by 9.71, Eg XWj � f�j�g�� � f�j�h�� �
Eh XWj. Thus for each o in Wj, we have g A o i¨ h A o, which, by 8.635, is
equivalent to �g, h� A o. Now set f :� �g, h�. Then f A o for each o in
Wj; that is, Wj HE f . So by 9.74, G j HE f � Eg,h. Thus �g, h� A o for
each o in G j; that is, g A o i¨ h A o for each such o; that is, j��g� �
Eg XG j � Eh XG j � j��h�.

Only if: Suppose j�g�0 j�h�; w.l.o.g. let ô A j�g�nj�h�. Set o :� f�ô� �
f f : ô A j� f �g. Then o A f�Ŵ� � Wj HG j, and g A o but h B o. Hence
o A Eg XG j � j��g� but o B Eh XG j � j��h�, so j��g�0 j��h�. 9

Proof of 9.7: To prove that �Wj; j�� is a representation of S, we establish 9.1
for j�. From 9.61 and 8.31 we get

j��: f � � E: f XG j � �@E f �XG j � G jn�G j XE f �
� G jnj�� f �: �9:76�

From 9.61 and 8.32 we get

j�� f 4 g� � E f 4 g XG j � �E f WEg�XG j � j�� f �W j��g�: �9:77�
From 9.61, 8.4, 1.4, and G j being a subworld, we get

j��ki f � � Eki f XG j � KiE f XG j � KiE f XKiG
j

� Ki�E f XG j� � Kij
�� f �: �9:78�

Combining 9.76 through 9.78, we conclude28 that j� is indeed a representa-
tion of S.

28 The conclusion from 9.38 uses the fact that the knowledge operator for the universe G j is
Ki jEj; this follows from G j being a subuniverse.
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That j� is isomorphic with j follows from 9.75. 9

10. Discussion

(a) The meaning of the knowledge operators Ki

Proposition 8.4 says that when Ki is applied to a syntactic event Ef , its
meaning corresponds precisely to that of the knowledge operator ki on the
formula f. But the domain of Ki includes all events ± all subsets of W ± not just
syntactic events. Thus one may ask how to interpret KiE for events E that are
not syntactic (e.g., in®nite unions of syntactic events). Speci®cally, is it still
correct that KiE means ``i knows E ''?

This question is in the interpretive realm; the answer depends on how we
think about it. On the straightforward intuitive level, the answer is ``no.'' With
the de®nition in Section 6, the correct interpretation of KiE is not that ``i
knows E '', but that ``E follows logically from the syntactic events that i
knows'' (see 8.51). An individual i may know something without its following
logically from the syntactic events (formulas) that he knows; in that case, KiE
does not obtain, though it is the case that ``i knows E ''.

For example, i might know an in®nite disjunction without knowing any of
the partial ®nite disjunctions. Thus suppose that the alphabet contains in®-
nitely many letters x1; x2; . . . : The event Ex1

WEx2
W � � � signi®es that ``at least

one of the xm obtains''. But Ki�Ex1
WEx2

W � � �� does not signify that ``i knows
that at least one of the xm obtains''; rather, it signi®es the stronger statement
that ``it follows from the formulas known to i that at least one of the xm ob-
tains.'' For this, i must know some ®nite disjunction x1 4 x2 4 � � �4 xm.

More generally, we have

Proposition 10.1. If f1; f2; . . . ; are formulas, then

Ki�E f1 WE f2 WE f3 W � � �� � Eki f1 WEki� f14 f2�WEki� f14 f24 f3� � � � :

Proof: That the right side is included in the left follows from 1.32, 8.3 and 8.4.
To prove the opposite inclusion, let o A Ki�E f1 WE f2 WE f3 W � � ��: Then by
1.21,

Ii�o�HE f1 WE f2 WE f3 W � � � : �10:11�

Setting L :� ki�o�, we obtain from 8.74, 1.1, 8.2, and 8.73 that for all states
o 0,

LHo 0 implies f1 A o 0 or f2 A o 0 or � � � : �10:12�

Therefore the list LW f: f1;: f2; . . .g is not consistent; for if it were, then by
8.7, it would be included in a state, contrary to 10.12. So by 8.67, already one
of the lists LW f: f1; . . .: fmg is not consistent. Therefore LW f: f1 5� � �5: fmg ± and so also LW f:� f1 4 � � �4 fm�g ± are not consistent. So
: � f1 4 � � �4 fm� is not in any state o 0 that includes L. So f1 4 � � �4 fm is in
every state o 0 that includes L. In particular, f1 4 � � �4 fm is in every state o 0
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with ki�o 0� � ki�o�. Thus Ii�o�HE f14���4 fm . So by 1.21 and 8.4,

o A Ki�E f14���4 fm� � Eki� f1 4���4 fm�

HEki f1 WEki� f14 f2�WEki� f14 f24 f3� � � � : 9

For another illustration29, consider an alphabet with just one letter x.
Let N � f1; 2; 3g (three individuals). The statement ``x is common knowledge
between 1 and 2'' describes the event30 Ky

12Ex. But ``3 knows that x is not
common knowledge between 1 and 2'' does not describe the event K3@Ky

12Ex.
Indeed, ``3 knows that x is not common knowledge between 1 and 2'' means
that 3 knows that mutual knowledge of x between 1 and 2 (Section 2) fails at
some level, but he (3) need not know at which level it fails31. On the other
hand, K3@Ky

12Ex signi®es that mutual knowledge of x between 1 and 2 fails at
some speci®ed level m that 3 knows.

Formally, Ky
12Ex :� K 1

12 XK 2
12Ex X � � �, where K m

12 denotes m'th level mu-
tual knowledge between 1 and 2. Thus @Ky

12Ex �@K 1
12Ex W@K 2

12Ex W � � � :
So as before, K3@Ky

12Ex signi®es that 3 knows some ®nite disjunction
@K 1

12Ex W@K 2
12Ex W � � �W@K m

12Ex. Since this disjunction equals32 @K m
12Ex,

it follows that K3@Ky
12Ex signi®es that mutual knowledge of x between 1 and

2 fails at a level known to 3, as asserted.
Note that there is no event E HW that signi®es ``3 knows that x is not

common knowledge between 1 and 2''. Events can only represent statements
that are constructed from (®nite) formulas by means of negation, conjunction
and disjunction (possibly in®nite or even non-denumerable). The statement ``3
knows that x is not common knowledge between 1 and 2'' is not of this kind.
In contrast, ``x is common knowledge between 1 and 2'' does describe an
event (i.e., a subset of W), though not a syntactic event; and of course, the
same holds for ``x is not common knowledge between 1 and 2''. Also, ``3
knows that x is common knowledge between 1 and 2'' describes an event,
namely the event K3@Ky

12Ex; this is because knowledge operators commute
with intersections (1.4), but not with unions.

Up to now in this section, we have taken the ``intuitive'' view: that there is
some informal notion of knowledge, not embodied in the syntactic knowledge
operators ki, that enables us to speak of, say, ``knowing'' an in®nite dis-
junction even when we don't know any of the partial ®nite disjunctions. But it
is possible also to take a di¨erent, more formal view: that in an essay of this
kind, it is not appropriate to discuss concepts that are not given formal,
mathematical expressions. With this view, all relevant knowledge is embodied
in formulas; the term ``knowledge'' is meaningful only when it is derived from
knowledge of formulas.

If we take this view, we must adjust our answer to the question that begins
this section, ``does KiE mean `i knows E '?'' The answer now becomes ``yes.''
Substantively, nothing has changed; as before, KiE still means ``E follows

29 Communicated by Moshe Vardi.
30 See Section 2; we do not distinguish between Ky

12 and Ky
f1; 2g.

31 For example, this could happen if 2 tells 3, ``x is not common knowledge between 1 and me,''
and 3 knows that 2 tells the truth.
32 If x is mutual knowledge at the m'th level, it certainly is at any lower level.
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logically from the formulas that i knows.'' But with the new view, there is no
other knowledge; all knowledge is embodied in formulas; you can't know
something unless it follows logically from the ®nite formulas that you know.

Under this view, 10.1 may be stated verbally as follows: ``i knows an in®-
nite disjunction of formulas if and only if he knows the disjunction of some
®nite subset of these formulas.''

One may take this view as representing a procedural position only, ac-
cording to which one should not discuss a concept (such as knowledge of in-
®nite disjunctions) that is not part of the formal framework. But one can also
take it as representing a deeper philosophical position, somewhat reminiscent
of the intuitionistic school of mathematics that was popular at the beginning
of this century. According to this position, the in®nite is at best a useful ab-
straction ± a shorthand for avoiding complex, cumbersome formulations.
Substantively, all real knowledge must, in the end, be ®nitely describable.

While we ®nd this position attractive, we do not take an unequivocal stand
on these matters. We are pragmatists; our purpose is to develop epistemic
machinery that will be useful in the applications. When all is said and done,
there is little real di¨erence between the views and positions we have de-
scribed; they only represent di¨erent ``angles,'' di¨erent ways of looking at the
same thing. The reader may choose the approach he prefers ± or supply his
own.

(b) An alternative interpretation of the letters of the alphabet

In Section 5, we interpreted the letters in the alphabet as ``natural occur-
rences'': substantive happenings that are not themselves described either in
terms of people knowing something, or as combinations of other natural
happenings using the connectives of the propositional calculus. An alternative
interpretation is that a letter of the alphabet may represent any occurrence
whatsoever. Usually, the letters will repre sent occurrences in which one is
particularly interested, the objects of the analysis. If they happen to refer to
an individual knowing something, or to involve logical connectives, that is
alright.

A basic rationale for the ®rst interpretation is to avoid logically in-
equivalent representations of the same occurrence, which would lead to
``states of the world'' that are in practice impossible. Thus if x denotes ``it will
snow tomorrow'', and y denotes ``2 knows it will snow tomorrow,'' then for-
mally there is a state o at which both k2x and : y hold, and this is nonsensi-
cal. By restricting the alphabet to ``natural'' occurrences, we seek to avoid this
awkwardness.

The trouble with this is that though a natural occurrence is most directly
described without knowledge operators or logical connectives, it may have
practical implications that do involve them; and then we are back with the
original problem. For example, ``Alice and Bob played a game of chess'' im-
plies that ``Bob knows that Alice won or Bob knows that Alice did not win'',
and this implication is commonly known. A formal system that always
avoided this awkwardness would be quite cumbersome, and it does not seem
worthwhile to try to construct one.

We have seen that in the alternative interpretation, where a letter may
represent any occurrence whatsoever, there may well be ``impossible'' states:
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states that conform to the formal consistency requirements of Section 6, but
that cannot occur when the meaning of the letters is taken into account (like
the state o discussed above, containing both : y and k2x, even though y and
k2x have the same meaning). Di¨erently put, it may happen that in a speci®c
application, there are logical connections between the formulas constituting a
syntax; connections that are inherent in the interpretations of the letters of the
alphabet within the application ± and so are commonly known ± but that do
not follow from the axioms of the propositional calculus (4.4) and of knowl-
edge (4.5). In such an application, we will wish to reserve the term ``state'' for
those states that are actually ``possible'' ± states at which the logical con-
nections that are inherent in the interpretations of the letters are satis®ed and
are commonly known. The states that are in this sense ``possible'' constitute a
common knowledge subuniverse of W.

(c) Knowledge hierarchies

The ®rst explicit constructions33 of canonical semantic formalisms were hier-
archical. For simplicity, suppose there are just two players. Start with a set H
of mutually exclusive and exhaustive ``states of nature,'' which describe some
aspect of reality (like tomorrow's temperature in Jerusalem) in terms not
involving knowledge. Let H 1 be the set of non-empty subsets of H;H2 the
set of non-empty subsets of H � H1;H3 the set of non-empty subsets of
H � H1 � H2, and so on. A knowledge hierarchy hi of a player i has in®nitely
many levels. Level 1 describes i 's information about the true state s of nature;
formally, it is a member h1

i of H 1 (the set of members of H that i thinks could
be the true s). Level 2 describes i 's information about the state of nature and
the information h1

j of the other player j about the state of nature;34 formally, it

is a member h2
i of H2 (the set of members of H � H1 that i thinks could be the

true �s; h1
j ��. Level 3 describes i 's information about the triple consisting of the

state of nature, j 's information h1
j about the state of nature, and j 's

information h2
j about i 's information h1

i about the state of nature; formally, it

is a member h3
i of H3 (the set of members of H � H1 � H 2 that i thinks could

be the true �s; h1
j ; h

2
j �). Proceeding in this way, we generate the entire hierarchy

hi :� �h1
i ; h

2
i ; . . .�; it embodies i 's information about the state of nature, about

the players' knowledge about the state of nature, about the players' knowl-
edge about that, and so on.

Not all sequences hi in H 1 � H2 � � � � are feasible hierarchies of i; some
consistency conditions must be met. For hi to be feasible, it must be that (i) i 's
information at each level is consistent with his information at all previous
levels, (ii) i knows that j considers i 's information possible, and (iii) i knows
that j 's hierarchy hj is feasible. Formally, we ®rst de®ne feasibility for ®nite

sequences �h1
i ; . . . ; hm

i �, using induction on the level m. At level 1, all non-
empty subsets of H are feasible. For m > 1, call �h1

i ; . . . ; hm
i � feasible if

33 Which were in the probabilistic context; see the companion paper to this one (Aumann 1999).
34 Though i 's information about the state of nature is already embodied in his Level 1, it is not
enough at Level 2 to specify just his information about j's Level 1; we need his information about
the pair �h0; h1

i �.
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(i) hmÿ1
i is the projection of hm

i on H mÿ1,
(ii) if �s; h1

j ; . . . ; hmÿ1
j � is in hm

i , then �s; h1
i ; . . . ; hmÿ2

i � is in hmÿ1
j , and

(iii) if �s; h1
j ; . . . ; hmÿ1

j � is in hm
i , then �h1

j ; . . . ; hmÿ1
j � is feasible.

De®ne a hierarchy for i as a sequence hi in H1 � H 2 � � � � with �h1
i ; . . . ; hm

i �
feasible for each m.

Call a pair �hi; hj� of hierarchies of i and j mutually consistent if each player

considers the other's hierarchy possible; formally, if �h1
j ; . . . ; hmÿ1

j � is in hm
i ,

and �h1
i ; . . . ; hmÿ1

i � is in hm
j , at each level m.

This yields an explicit construction of a canonical semantic formalism,
where a state is identi®ed with a mutually consistent pair of hierarchies, the
universe is the set of all states, and i 's partition of the universe separates be-
tween two such pairs g and h if and only if gi 0 hi.

While this construction looks quite di¨erent from that of Section 6, they
are in fact equivalent. If, say, the alphabet has r letters x1; . . . xr, then H con-
sists of 2 r ``states of nature,'' corresponding to the 2r possible speci®cations of
xj or : xj for each j � 1; . . . ; r. At each o in W, a unique such state of nature
obtains. Moreover, o determines, for each player i, the states of nature that i
considers possible at o; for example, if kix1 is in o, then i can exclude any
state of nature with : x1. Thus h1

i ± and so also h1
j ± can be read o¨ from o;

similarly, h2; h3; . . . can be read o¨ from o. One can reason similarly in the
opposite direction, and conclude that the two constructions are equivalent.

Though they are equivalent, the construction in Section 6 above is far
simpler, more transparent and more straightforward.35

Note that two states of the world o and o 0 are in the same element of i 's
partition of W if and only if they correspond to the same knowledge hierarchy
of i. Thus i 's knowledge hierarchies correspond precisely to the atoms of his
information partition; each can be read o¨ from the other. In particular, it
follows that the knowledge hierarchy of any one player determines precisely
the common knowledge component of the true state of the world.

Appendix: Cardinality of the canonical state space

Here we show that when there are at least two players, the canonical system
has at least a continuum of states, even when the alphabet has just one letter.
By contrast, with only one player (and ®nitely many letters), the number of
states is ®nite. For background, see the beginning of Section 9.

De®ne a context as a pair consisting of a population N and an alphabet X.
Call a context �M;Y� larger than a context �N;X� if they are not the same
and each component of �M;Y� includes the corresponding component of
�N;X�. Proposition 9.2 yields:

Remark A.1: A list L that is consistent in a context �N;X� is also consistent in
any larger context.

35 In fact, the hierarchy construction is so convoluted that we present it here with some di½dence.
Speci®cally, we have not checked carefully that the three conditions (i), (ii), (iii) really are the
``right'' conditions for feasibility.
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Proof: Since L is consistent in �N;X�, it has a model in that context. This can
be converted to a model for L in the larger context by de®ning k̂j and j�z� in
an arbitrary fashion when j is not in N and z is a letter not in X (e.g., one can
de®ne the k̂j as constants and the j�z� as Ŵ). 9

Proposition A.2. If 2U jNjU@0 and 1U jXjU@0, then jWj � 2@0 .

Before proving A.2, we develop some machinery. Let Ŵ be a universe, i an

individual. We shall say that two states ô and ĥ in Ŵ are i-adjacent if ô A Îi�ĥ�,
adjacent if they are i-adjacent for some i. By 1.1, adjacency is symmetric and
re¯exive. De®ne the distance d�ô; ĥ� as the minimal length of a chain from
ô to ĥ in which successive members are adjacent; formally, as the smallest
integer mV 0 for which there exist states ô0; ô1; . . . ; ôr in Ŵ with ô �
ô0; ôr � ĥ, and ôjÿ1 adjacent to ôj for j � 1; . . . ; r. Note that the distance
between a state and itself is 0, between di¨erent adjacent states 1, and between
states in di¨erent common knowledge components y; and that d is a metric
on Ŵ. Denote by B�ô; r� the ball with center ô and radius r, i.e., the set
fĥ : d�ô; ĥ�U rg.

Recall (Section 2) that K̂ 1Ê : 7
i AN

K̂iÊ; K̂
mE :� K̂ 1�K̂ mÿ1Ê�.

Lemma A.31. ô A K̂iÊ i¨ all states i-adjacent to ô are in E.

Proof: By 1.23, ô A K̂iÊ i¨ Îi�ô�H Ê; but Îi�ô� consists of precisely those
states that are i-adjacent to ô, so it follows that ô A K̂iÊ i¨ all states i-adjacent
to ô are in Ê. 9

Corollary A.32. ô A K̂ 1Ê i¨ Ê IB�ô; 1� (i.e., i¨ each state adjacent to ô is in
E).

Proof: We have ô A K̂ 1Ê i¨ ô A K̂iÊ for all i; by A.31, this holds i¨ for all i,
all states i-adjacent to ô are in E; and this, in turn, holds i¨ each state adja-
cent to ô is in E. 9

Lemma A.33. ô A K̂ nÊ i¨ Ê IB�ô; n�.

Proof: By induction on n. For n � 1 this is A.32. Suppose the lemma true
up to nÿ 1. Then ô A K̂ nÊ i¨ ô A K̂ 1�K̂ nÿ1Ê�; by A.32, this is so i¨
K̂ nÿ1Ê IB�ô; 1�, which means that

d�ĥ; ô�U 1) ĥ A K̂ nÿ1Ê: �A:331�

But by the induction hypothesis, ĥ A K̂ nÿ1Ê i¨ Ê IB�ĥ; nÿ 1�, i.e., i¨
d�x̂; ĥ�U nÿ 1) x̂ A Ê. Thus A.331 holds i¨

d�ĥ; ô�U 1) �d�x̂; ĥ�U nÿ 1) x̂ A Ê�;

which is the same as

��d�ĥ; ô�U 1�5 �d�x̂; ĥ�U nÿ 1�� ) x̂ A Ê: �A:332�
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We thus conclude that

ô A K̂ nÊ iff A:332 holds for all ĥ and x̂: �A:333�

Now it is a theorem of the ®rst order predicate calculus (and may be veri®ed
directly) that

�Ex̂��Eĥ��P�ĥ; x̂� ) Q�x̂�� , �Ex̂���bĥ��P�ĥ; x̂�� ) Q�x̂�� �A:334�

for any predicates P and Q. Also, it may be veri®ed that

�bĥ���d�ĥ; ô�U 1�5 �d�x̂; ĥ�U nÿ 1�� , d�x̂; ô�U n: �A:335�

Together, A.333, A.334, and A.335 yield

ô A K̂ nÊ iff �Ex̂��d�x̂; ô�U n) x̂ A Ê�: 9 �A:336�

Corollary A.34. ô A @K̂ n@Ê i¨ Ê XB�ô; n�0q (i.e., i¨ there is a state in Ê
whose distance from ô is at most n).

Proof: ô A @K̂ n@Ê i¨ ô B K̂ n@Ê; by A.33, this holds i¨ it is not the case
that @Ê IB�ô; n�, i.e., i¨ Ê XB�ô; n�0q. 9

Proof of Proposition A.2: Since jNjU@0 and jXjU@0, the set of formulas is at
most denumerable, so the set of sets of formulas has cardinality U2@0 . Since a
state o is a set of formulas, it follows that jWjU 2@0 .

To prove jWjV 2@0 , we will construct a continuum of di¨erent lists, each of
which is consistent, but any two of which contradict each other. Since any
consistent list can be extended to a state (8.7), it will follow that there is a
continuum of states. To show that the lists are indeed consistent, we construct
models for them (9.2).

By A.1, we may assume w.l.o.g. that jNj � 2 and jXj � 1. The models we
construct all use the same universe Ŵ. This universe has @0 states, denoted
ô0; ô1; ô2; . . . : The information partition Î1 of individual 1 consists of
the events fô0; ô1g; �ô2; ô3g; fô4; ô5g; . . . : The information partition Î2 of

individual 2 consists of fô0g; fô1; ô2g; fô3; ô4g; . . . : One can think of Ŵ
as a sequence of lattice points in the plane, �0; 0�; �0; 1�; �1; 1�; �1; 2�; �2; 2�;
�2; 3�; . . . ; then k̂1 is the ®rst coordinate (the vertical projection), and k̂2 the
second coordinate (the horizontal projection). Note that ôn is adjacent only to
itself, to ônÿ1 and to ôn�1, and that therefore the distance d�ôn; ôm� between
states ôn and ôm is jnÿmj.

Since there is only one letter x in the alphabet, in order to de®ne a
representation, we need only specify to which ôn we assign x and to
which : x (9.11). Start out by assigning : x to ô0 and x to ô1. After that,
de®ne a sequence of blocks with successive lengths 3; 32; 33; . . . : The last
state in the l'th block Dl is thus ô1�3�32�����3l � ô�3l�1ÿ1�=2, the ®rst
state in Dl is ô1�3�32�����3lÿ1�1 � ô�3l�1�=2, and the middle state in Dl is
ô��3l�1�=2����3lÿ1�=2� � ô3l . Hence

B�ô3l ; �3l ÿ 1�=2� � Dl: �A:35�
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For each l, de®ne an operator Ql : Ĉ! Ĉ (i.e., from events in Ŵ to events

in Ŵ) by Ql�Ê� :�@K̂ 3l@K̂ �3
lÿ1�=2�Ê�. From A.33 and A.34 it follows that

ô A Ql�Ê� iff there is a ball of radius �3l ÿ 1�=2 included
in Ê whose center is within a distance 3l of ô: �A:36�

Now suppose given an arbitrary in®nite sequence d :� �d1; d2; . . .� of 0's
and 1's. Denote by jd the representation that assigns x to each ô in Dl if
dl � 1, and assigns : x to each ô in Dl if dl � 0. From A.35 and A.36 it fol-
lows that

ô0 A Qljd�x� if dl � 1; �A:37�

the ball required by A.36 is simply Dl. Next, we assert

ô0 A @Qljd�x� if dl � 0: �A:38�

Contrariwise, suppose that dl � 0 and ô0 A Qljd�x�. Since ô0 A Qljd�x�, it
follows from A.36 that within a distance at most 3l from ô0, there lies the
center of a ball ± say Cl ± of radius �3l ÿ 1�=2, all states in which are assigned
x. But since dl � 0, the entire l'th block Dl is assigned : x; since o0 is
also assigned : x;Cl must be included in fo1gWD1 WD2 W � � �WDlÿ1 �
fo1; . . . ;o�3lÿ1�=2g. This set has diameter36 �3l ÿ 3�=2, so the diameter of Cl

is U�3l ÿ 3�=2. But Cl has radius �3l ÿ 1�=2, and so diameter V �3l ÿ 1�=2;
this contradiction proves A.38.

De®ne an operator k1 : S! S (i.e., from formulas to formulas) by
k1 f :� k1 f 5 k2 f . De®ne km inductively by km f :� k1�kmÿ1 f �, and de®ne

ql :� : k3l: k�3
lÿ1�=2. From 9.1 we get

Qljd�x� � jd�qlx� and @Qljd�x� � jd�: qlx�: �A:39�

For each sequence d, let Ld be the list � f 1
d ; f 2

d ; . . .�, where f l
d :� qlx if

d � 1, and f l
d :� : qlx if d � 0. From A.37, A.38, and A.39, it follows that for

each d, the intersection of the events jd� f l
d� contains ô0, and so is non-empty.

Hence �Ŵ; jd� is a model for Ld, and so Ld is consistent (9.2). But any two lists
Ld contradict each other. For, there must be some l such that dl � 1 for one
of the lists whereas dl � 0 for the other; and for that l, the two corresponding
formulas f l

d are precisely the negatives of each other. Since there is a contin-
uum of di¨erent d, we have constructed a continuum of lists, each of which is
consistent, but any two of which contradict each other. 9

In contrast to A.2, we have

Proposition A.4. If there is only one individual �jNj � 1� and the alphabet X is
®nite, then W is ®nite.

36 The diameter of a set in a metric space is de®ned as the maximum (or supremum) distance
between two points.
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To prove A.4, we need some lemmas. Since there is only one individual, we
write k for ki.

Lemma A.41. k� f 4 kg� , �k f 4 kg� is a tautology for all f and g.

Proof: This is most quickly proved directly from the de®nitions in Section 4;
but we prefer verbal reasoning37, which makes the proof more transparent.
We use 8.8, which says that a formula is a tautology i¨ it is in every state.
Thus given an arbitrary state o, we must show �k� f 4 kg� , �k f 4 kg�� A o.
To this end, we use 8.63, which enables us to replace symbols like 4;:, and
) by the corresponding words. The process is facilitated by writing ``f '' for
the more cumbersome f A o; thus ``f '' means ``f holds at o''.

We wish to prove that ``k� f 4 kg�'' i¨ ``k f 4 kg''. To show ``if '', assume
``k f 4 kg''. If ``kf '', then ``k� f 4 kg�'' (4.52), so we are done. If ``kg'', then
``k�kg�'' (8.1), so ``k� f 4 kg�'' (4.52), and again we are done.

To show ``only if '', assume ``k� f 4 kg�''. Then `` f 4 kg'' (4.51). If ``kg'',
then ``k f 4 kg'', so we are done. Otherwise ``: kg'', so ``k : kg'' (4.53), so
``k� f 4 kg�'' and ``k : kg'', so ``k� f 4 kg�5 k�: kg�'', i.e., ``k�� f 4 kg�5
: kg�'' (8.72), i.e., ``k� f 5: kg�'', so ``kf '' (4.52), so ``k f 4 kg'', and again we
are done. 9

Corollary A.42. k�k f 4 kg� , �k f 4 kg� is a tautology.

Proof: A.41 and 8.1. 9

Corollary A.43. k� f 4: kg� , �k f 4: kg� is a tautology.

Proof: A.41, 4.51, and 4.53. 9

Call a formula fundamental if it is either a letter in the alphabet or has
the form kg, where g is elementary (contains no knowledge operators). Say
that a formula has depth 1 if it is constructed from atomic formulas by using
the symbols 4;:; �, and ( only. Thus a formula has depth 1 if and only if the
knowledge operator is not concatenated.

Lemma A.44. If jNj � 1, every formula is equivalent38 to a formula of depth 1.

Proof: De®ne a formula of depth n inductively by specifying that it be con-
structed from formulas of the form h and kh, where h is a formula of depth
nÿ 1, by using the symbols 4;:; ), and ( only. Clearly, each formula is of
depth n for some n. Thus it su½ces to prove that a formula of depth 2 is
equivalent to one of depth 1; and for this, it su½ces to prove that if h is of
depth 1, then kh is equivalent to a depth 1 formula.

So let h be a formula of depth 1. Thus h is constructed from letters and
from formulas of the form kg ± where g is an elementary formula ± by using
the symbols of the propositional calculus only. Replace each occurrence in h

37 E.g., using words like ``or'' and ``not''.
38 Recall that f is tautologically equivalent to g ± or simply equivalent for short ± if f , g is a
tautology.
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of a formula of the form kg by a new letter, one that does not occur in the
original alphabet. We thus get a new formula h 0, which does not contain any
knowledge operators. Write h 0 in its conjunctive normal form, i.e., as a con-
junction of disjunctions of letters and their negatives39. Now replace the new
letters ± those that replaced formulas of the form kg ± by the original formulas
that they replaced. We thus conclude that

h@� f1 4G kg11 4G kg124 . . .�5 � f2 4G kg21 4G kg224 . . .�5 . . . ;

where � stands for equivalence, G stands for either nothing or :, and in this
instance, three does �. . .� indicate a ®nite sequence. From 8.72, A.41, A.42 and
A.43 we then get

kh@�k f14G kg114G kg124. . .�5�k f24G kg214G kg224 . . .�5 . . . ;

and the right side is a formula of depth 1. 9

Proof of Proposition A.4: From the conjunctive normal form it follows that
with a given ®nite alphabet, there are at most ®nitely many inequivalent
elementary formulas (only ®nitely many inequivalent disjunctions, so only
®nitely many inequivalent conjunctions of these disjunctions). Since f@g
implies40 k f @kg, it follows that there are only ®nitely many formulas of the
form kf where f is elementary. Hence there are only ®nitely many inequivalent
®rst order formulas. The proposition now follows from A.44. 9
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