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In Rosenthal’s Centipede Game, if at the start of play it is commonly known
that the players will choose rationally at vertices that are actually reached, then
the backward induction outcome results; that is, the first player “goes out” at the
first move. Journal of Economic Literature Classification Numbers: C72, C73, D82.
© 1998 Academic Press, Inc.

1. INTRODUCTION

In perfect information (P1) games, common knowledge of rationality
implies that the backward induction outcome is reached (Aumann, 1995;
henceforth [A]). Conceptually, this result depends on the notion of coun-
terfactual conditional. 1t is assumed common knowledge that each player i
would act rationally at each of his vertices v, even when i knows that v will
not be reached; in [A], we called this condition substantive rationality.
Though it is generally acknowledged that counterfactual reasoning is
inescapable in game theory, much of the discussion of [A] (e.g., Binmore,
1996) has revolved around the counterfactual nature of substantive ratio-
nality.

An alternative condition, called material rationality in [A], stipulates
that i act rationally at those of his vertices that are actually reached. The
counterfactual component of this condition is much smaller than in sub-
stantive rationality. Though the players must still consider what actions
might be taken at unreached vertices, nothing is a priori assumed about
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these actions; in particular, they are not required to be rational. Unfortu-
nately, common knowledge of material rationality does not in general lead
to the backward induction outcome; see, e.g., Game 1 in [A].

In recent years, Rosenthal’'s (1982) centipede game has become a
touchstone of the theory of Pl games. Almost every paper on the subject
mentions it, and in many it is the chief object of analysis.! Much of this
discussion revolves around the counterfactual aspect of substantive ratio-
nality. It is therefore of some interest that in the particular case of the
centipede game, common knowledge of material rationality is sufficient to
ensure backward induction; one need not assume rationality at unreached
vertices. The stronger, more subtle condition of substantive rationality is
not needed in the centipede game.

As in [A], time plays an important role. Here, like there, “common
knowledge” refers to the start of play. “Rationality’” means that when
choosing, the chooser does not know of a choice that yields him more; in
[A], we called this ex post rationality.? Thus, what we show here is that in
Rosenthal’s centipede game, if at the start of play there is common knowledge
of ex post material rationality, then the backward induction outcome results:
the first player *'goes out” immediately.

2. FORMAL STATEMENT OF THE RESULT AND
OUTLINE OF THE PROOF

We freely use the terminology and notation of [A]. At first, we work with
general Pl games, specializing to the centipede game only afterward.

Let v be a vertex of Player i. Denote by Q" the event “v is reached,”
i.e., the set of all states w for which the branch of the game tree
determined by the strategy profile s(w) goes through v. Recall that the
partition J; of () represents i’s information at the start of play. Let
H." be the join (coarsest common refinement) of J; and the partition
{Q", ~ Q). Conceptually, X" represents i’s information when he learns
whether v is reached; that is, the information he had at the start of play,
updated by the information that v is (or isn’t) reached.® If E is an event,
K/E denotes the union of those elements of the partition " that are
included in E. In words, K E is the event that i will know E when learning
whether v is reached; or for short, i knows E at v. The operators K;

! Most recently, Binmore has used it as a prime witness in his (1996) critique of [A].

2 Please see Sections 4b and 5 for further discussion of these concepts.

1 i gets other information between starting play and reaching v, then his information “at
v is finer than ", It may be seen that our result remains true in that case (cf. [A, Sect. 5e]).
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FIG. 1. Thegame I';,.

continue to refer to the start of play; thus K E is the event that i knows E
at the start of play, and CKE is the event that at the start of play, E is
commonly known.

In a given state w, call i ex post rational at v if there is no strategy that i
knows at v would have yielded him a conditional payoff at v larger than
that which in fact he gets; call i ex post materially rational if he is ex post
rational at each of his reached vertices. Denote by R the event* “i is ex
post rational at v;” then the event “i is ex post materially rational,”
denoted RY, is given by
R"= N (~Q"UR)), (1)

vev;
where V; is the set of i’s vertices (for each of i’s vertices v, either v is not
reached, or i is ex post rational at v). The event “all players are ex post
materially rational,” denoted R, is the intersection of all the R

Denote by I',, the game in Fig. 1; this is one of Rosenthal’s (1982)
“centipede” games. Another centipede game, denoted I',,_,, is obtained
by denying Bob the option of choosing across at his last move.

THEOREM. CKRM C I in the game T..

In words: In Rosenthal’s centipede game, if it is commonly known at the
start of play that all players choose rationally at all reached vertices, then
the first player “goes out” at the first move. Needless to say, this result
holds also for any game ordinally equivalent to T’.

The idea of the proof is as follows: Let m be the last vertex that is
reached at any state in CKR"; thus in some state w in R, the vertex m is
reached, and it is commonly known that no vertex beyond m is reached. If
m is the first move in the game, we are finished. Otherwise, suppose
w.l.o.g. that m belongs to Ann. Then when the vertex just before m is
reached in », Bob knows that he can improve his payoff by going down
rather than across; this contradicts his ex post material rationality.

A formal proof is given in the next section.

* For a characterization of R} in symbols, see (3) in Section 3.
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3. PROOF

We begin with some preliminaries. Recall that 4!(s) denotes i’s condi-
tional payoff at the vertex v for the strategy profile s. Denoting the initial
vertex of the game tree by o*, define i, == h¥"; that is, h,(s) is i’s actual
payoff if the strategy profile s is played. Recall that s,(w) is i’s strategy in
state @, and s(w) = (s(w),...,s,(w)) is the profile of all the players’
strategies in that state. Functions defined on  (like s or s,), which appear
in boldface, may be viewed like random variables in probability theory. An
assertion about such a function corresponds to an event, which we denote
by putting square brackets around the assertion. For example, [s; = s,] is
the event that i chooses the strategy s; (i.e., the set of all states « for
which s,(w) = s; holds); [1{(s; t;) > h{(s)] is the event that i’s conditional
payoff at v would have been higher if he had chosen the strategy ¢; rather
than what he did choose; and [4,(s) = 3] is the event that i’s actual payoff
is 3. As in [A], we assume that if i chooses the strategy s;, then he knows
that he chooses it; in symbols,

[s; =s.] cK,[s;,=s;]  forall strategies s, of i. (2)
The event i is ex post rational at v is given by

R} = ﬂ (NKiU[hf(S; 1) > th‘!(S)])' (3)

LES,

where S, is the set of i’s strategies (for each of his strategies ¢;, it is not the
case that i knows at v that ¢, would yield him a higher conditional payoff
at v than the strategy he chose).

The following four lemmas from [A] will be needed:

LeEmmA 4. CKE = K,CKE.

LEmMmA 5. IfE CF, then K,E C K,F.

LEmMMA 6. K,E N K,F = K,(E N F).

LemmA 7. CKE CE.

These lemmas are standard in knowledge theory, and also easily proved
directly. They yield:
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LEMMA 8. If a” is an action of i at v, then [s" = a"] C K[s" = a"] (if i
chooses a® at v, then he knows that he does).

Proof. Let AY be the set of those strategies s; of i for which s/ = a".
Then by (2) and Lemma 5,

[si=a']= U [si=s]1c U Kis; =s]

s; €AY 5, €AY
c U Ki[s! =a’] = K,[s = a']. ©
s; €AY

Finally, note that if v is a vertex of i, then
K.(E) nQ'cK/(E N QY). (9)

Formally, this follows without difficulty from the definitions. Intuitively, if
v is reached, then at v, Player i knows this, as well as what he knew at the
beginning of play.

So much for the preliminaries, which apply to all PI games. We come
now to the proof itself, which, of course, refers to the centipede game only.
Denote the vertices 1,2,...,r, and let m be the last vertex that is reached
in any state in CKR"; thus

CKRM c ~ Qm*1, (10)
and there is a state o with
we Q" (11)

and
® € CKRM. (12)

If m = 1, we are finished. Assume therefore that m > 1. Let m belong to
Ann, say m = 2k — 1 > 3. From (12), Lemma 4, (10), and Lemma 5 we
get

w € CKRM = K,CKR" Cc K ~ Q"*1, (13)

where B stands for Bob. By the definition of Q/, we have O™ c Q™1 so
by (11),

we Q" (14)

By (11) and Lemma 8, w € [s% ™! = across] = Ky[s’% ' = across]; from
this, (13), and Lemma 6, we get o € Ky([sh ! = across]\ Q™**1). So by
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(14), (9), and the rules of the game,
o€ Kg’*l([s;’;* = across| N (Q"7IN Q")) = Kpmh(Qm\ Q)
= Kp Hhy(s) = 2k — 1]. (15)
In particular, applying Lemma 5 to Kj'~*,
wng'_l[si1 = across Whenj=1,3,...,m—2], (16)

where A stands for Ann. Now let ¢; be a strategy of Bob that chooses
across at all vertices of Bob before m — 1, and chooses down at m — 1.
Then

[s), = across for j = 1,3,...,m — 2| < [hy(s;ty) = 2k];

so from (16), w € K~ Y[ hy(s; t5) = 2k]; so from (15) and Lemmas 6 and 5
applied to K1,

w € Kp~([hy(sity) = 2k] N [hy(s) = 2k — 1])
C Ky hy(sitg) > hy(s)]. (17)
By (12), Lemma 7, (1), K'Q" = Q, (3), and Lemma 6,
0 € CKRM cRM cRY c~Qm PURp?
C~ KU ~ KT by (i) > ()]
=~ KyH(Q"7h 0 [ (sitp) > h(9)]). (18)

Since m — 1 is reached in each state in Q™ !, it follows from the
definition of &, that

hy~H(s(v)ity) = hg(s(v)ity) and hy~'(s(v)) = hg(s(v))
for each v in Q. Therefore
Q"0 [y (sity) > hyHS)] = Q70 [hy(sity) > ha()];
so (18), Lemma 6, and K/'Q" = Q" yield
€ ~Kp Q" 1N [hy(s;ty) > hy(s)])
=~Kp ' Q") U ~KE [ hg(sitg) > hy(s)]
=~ Q" U ~Kp T hg(sitp) > hg(s)],
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which is inconsistent with (14) and (17). This completes the proof when m
belongs to Ann; when it belongs to Bob, the proof is similar. ©

4. DISCUSSION

a. Subjunctives

Much of the discussion of the centipede game has centered around the
following argument: On the one hand, we are told that under common
knowledge of rationality (CKR), Ann must go out at her first move. On the
other hand, the backward induction argument for this is based on what the
players would do if Ann stayed in. But, if she did stay in, then CKR is
violated, so the argument that she will go out no longer has a basis.

We have argued elsewhere ([A]; Aumann, 1996) that the above argu-
ment is unsound. Be that as it may, this note shows that the whole issue
may be circumvented. It is not necessary to use the subjunctive mood; the
proof in this note refers only to rationality at vertices that are actually
reached, not to whether players “would” play rationally if their vertices
“were” reached. Rather than reasoning from what happens after a given
vertex, it reasons from what happens before: If some vertex is the last that
can possibly be reached, then already the one before it should have been
the last. This is quite different from the backward induction proof in [Al.

b. Time

The formal contrast between the ex post notion of rationality and the ex
ante notion of common knowledge may disturb some readers, but closer
examination reveals no awkwardness. Rationality is inherently ex post:
Whether or not a given choice is rational necessarily depends on the
information available at the time of the choice. This has nothing to do with
the knowledge—or common knowledge—of such rationality, which may
well refer to an entirely different time. It makes perfect sense to speak of
common knowledge at the start of play that the players will choose
rationally if and when one of their vertices is actually reached. That,
precisely, is the hypothesis of this note.

c. Probability

Our theorem carries over without change to probabilistic models, in
which play is defined as rational if and only if it maximizes expected utility
(caution: this applies to rationality only; knowledge—and common knowl-
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edge—must still be defined in terms of absolute certainty, not probability
1 belief). As above, the expectations must be ex post. Compare Aumann
(1996), Sections 1 and 9.

d. The Proof

The reader may wonder why we adduce such a lengthy formal proof for
an argument that while not immediate, seems simple enough once one has
found it. The reason is that this area is very tricky, and unless one is
extremely careful and formal, it is easy to go astray—as we have found, to
our dismay, on more than one occasion. (The same remark applies to [A].)

5. PREVIOUS WORK

This section, which discusses technical relations between the current
note and [A], may be omitted without affecting the understanding of the
rest of the note.

“Common knowledge” (CK) here is precisely the same as in [A]l. “Ex
post rationality” here is the same as “rationality” in [Al, except that the ex
post knowledge operators K appearing in the definition (3) of ex post
rationality replace the ex ante knowledge operators K; appearing in the
definition [A, (3)] of rationality. Thus the terminology here is fully coordi-
nated with that of [A]. To avoid confusion, we henceforth call the rational-
ity concept of [A] by the name “ex ante rationality.”

Ex post rationality is stronger than (i.e., implies) ex ante rationality [A,
Sect. 5e], so CK of ex post rationality implies CK of ex ante rationality. [A]
shows that CK of ex ante substantive rationality implies backward induc-
tion; therefore, CK of ex post substantive rationality also does. Thus,
though [A] formally uses the less intuitive ex ante version of rationality,
the same result with the more intuitive ex post version follows easily.

The reason that [A] uses the less intuitive ex ante version is that it is
simpler than the ex post version—that it requires less baggage, both
formal and conceptual. Specifically, the ex ante version works directly with
the same partitions J; that are used to define CK, rather than with the ex
post partitions J". Since the ex ante result is logically stronger, nothing is
lost.

Why, then, don’t we use the simpler ex ante version here too? The
reason is that here, unlike in [A], the ex ante version won’t do; CK of ex
ante material rationality does nor yield backward induction in the cen-
tipede game. To show this, we now adduce an example of a centipede
game in which there is common knowledge of material rationality—in the
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ex ante sense of [A], but not the ex post sense used here—and the first
player does not “‘go out” at the first vertex.

Recall that a player is ex ante materially rational if he is ex ante rational
at each of his reached vertices. Denote by R4 the event “all players are
ex ante materially rational;” in symbols,

R0 0 (~000 ) (Rl > sED)|

i vev; tES;

Consider now the game I';, with a state space () consisting of three states,
a, B,vy. Ann’s partition at the beginning of play is («, 8y), whereas Bob’s
is (aB,v). Ann’s strategy is (across, down) in state «, (down, across) in
states B and vy. Bob’s strategy is across in states a and B, down in state v.
It may be seen that both players are (ex ante) materially rational at all
three states, so all states are in CKR“™, but in state «, the players play
across at the first two moves.

Bob’s behavior in state « may seem strange, since he knows that if his
vertex is reached, Ann will go down at her next vertex, so it would be
advantageous for him to go down rather than across. But, at the start of
play, Bob does not know whether the state is « or B. If it is «, he can
improve his conditional payoff at his vertex by switching to down; this
translates to a gain in actual payoff, because in state «, his vertex is
actually reached. If the state is B, his conditional payoff is larger if he goes
across than if he goes down, so he “loses” by switching. But, this *“loss” is
only in the conditional payoff, not the actual payoff, because in state 8, his
vertex is not reached. And he knows this, already at the start of play!
Nevertheless, the fact remains that at the start of play he is not sure that
he can improve his conditional payoff at his vertex, so by our definition, he
is rational. This quirk in the definition of ex ante material rationality
provides additional motivation for the ex post notion used here.
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