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ASPHERICITY OF ALTERNATING KNOTS!

By ROBERT J. AUMANN
(Received October 28, 1955)

1. Introduction

A space is said to be aspheric if all its homotopy groups of order higher than 1
vanish. A knot K (of multiplicity =1) imbedded in the 3-sphere S° is said to be
aspheric if S — K is aspheric. The object of this paper is to prove that all al-
ternating knots are aspheric. Two applications of this result are given at the end
of the paper.

The basic tool used in the proof is an ‘“‘addition’” theorem for aspheric spaces
due to J. H. C. Whitehead [4]. It may be stated as follows:

TueoreM 1.1. Let (X; A, B) be a triangulable triad, where A and B are con-
nected and A n B has a finite number of components C; . Suppose that

1. A, B, and all the C; are aspheric.

2. For each of the C; , the injections

2'1*:1!'1(0,') i 1r1(A) and
12*:m1(C;) — m(B) are isomorphisms inio.

Then X 1is aspheric.
The proof is given in [4].

2. Asphericity of the product of aspheric knots

DeFinTION 2.1. Let K be a knot in 8%, ¥ a polygonal 2-sphere on S°, U; and
U. the closures of the two components into which S* is divided by Y. Suppose
that ¥ meets K at precisely two points, z; and 2, , and that H is a polygonal line
segment on Y whose end points are z; and z, . Suppose further that the portions
into which K is divided by z and 2, are called K; and K,, and that we set
KivH = K,,K;uH = K, . Then each K; must lie entirely in one or the other
of the U;, and in fact meets Y only along H; furthermore, each K, is a knot. If
K, and K, lie in distinet U;, then K is called a product of K, and K, .

The object of this section is to prove that a product of two aspheric knots is
aspheric. In the lemmas that follow, we will use the notation introduced in 2.1,
and will moreover assume the asphericity of K; and K, . We will omit the proofs
of some lemmas; these will offer no difficulty to the reader.

Lemma 2.2. Y — H s a deformation retract of both Uy, — H and U, — H.

Lemma 2.3. Uiy — Ky is aspheric, k = 1, 2.

1 Except for the applications given in Section 10, this paper forms the substance of a
doctoral thesis presented at the Massachusetts Institute of Technology in February, 1955.
I should like to express my gratitude to Professor George W. Whitehead not only for his
supervision of my thesis, but also for his guidance and teaching throughout my stay at
M.IT.
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Proor. We confine ourselves to the case k¥ = 1. We have that (U, — H) v
(U, — K,) = 8* — K, is aspheric. But, by 2.2, Y — H is a deformation retract
of Uy — H, and hence (Y — H) v (U, — K;) = U, — K, is a deformation re-
tract of 8° — K, . Hence it has the same homotopy type as 8° — K, and in
particular it is aspheric.

CoROLLARY 2.4. U, — K 1s aspheric, k = 1, 2.

LemMma 2.5. Y — K has the homotopy type of a l-sphere; in particular, it is
aspheric.

Proor. Y — K = Y — (21 v 22), and thus is a 2-sphere from which two points
have been removed. The result follows at once.

LemMma 2.6. If K has one component, then the injection

7 H\(Y — K) = H,(Ux — K)

is an isomorphism into, k = 1, 2.

Proor. Surround U; n K by a small closed tubular neighborhood M in U,.
Then M is® a deformation retract of M — K, and it follows that H,(M) =
H,(M — K) = Z (Z denotes an infinite cyclic group). If we apply the Mayer-
Vietoris theorem to the triad (U, ; M, Cl (U, — M)), we obtain® the exact
sequence

y ok
0 = Ha(Us) — H:() L0 H(M) @ Hy (C (Ui — M)) — Hy(Us) = 0.

| |

Z 0
Hence j;* is an isomorphism onto, and H, (C1 (U, — M)) = Z. Since C1 (U, — M)
is a deformation retract of U, — K, it follows that H,(U, — K) = Z. Now by
24, H(Y — K) = Z. Let R be the component of ¥ n M that is closer to z ,
¢ a singular cycle of ¥ — K whose image is R and which belongs to a non-zero
member of H;(Y — K). Since R is a deformation retract of M, and since c is
patently not zero-homologous in R, it follows that ¢ is not zero-homologous
in M either. Hence, since 7;* is an isomorphism, ¢ is not zero-homologous in
Cl (U, — M) either. Now the injection from H;(Cl (Uy — M)) into H,(Ur — K)
is the inverse of the homomorphism induced by the retraction; it is therefore an
isomorphism, and ¢ is not zero-homologous in U, — K either. Hence Image
7* # 0. Hence Kernel j* does not exhaust the whole group. If Kernel j* £ 0,
then Image j* is a finite group, i.e. Z has non-trivial finite subgroups, an ab-

surdity. Hence Kernel j* = 0, q.e.d.
LemMma 2.7. If K has one component, then the injection

7:*:'7!'1(Y - K) — 7l'1(U/c - K)

1s an tsomorphism into, k = 1, 2.

2 A dot over a symbol denotes the set of boundary points.
3 The symbol Cl denotes the closure.
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Proor. Consider the commutative diagram

yk
m(Y — K) 2 m(U, — K)

i
lp o’
%

where p and p’ are the natural homomorphisms from homotopy groups to homol-
ogy groups. By 2.5 and 2.6, p and j* are isomorphisms into. Hence o’ o 7* =
J* o p is an isomorphism into as well. It follows that ¢* cannot have positive
kernel, q.e.d.
LemMma 2.8. ¢* 7s an isomorphism into, whether K has one component or more.
Proor. Let K’ be the component of K that intersects V. If we let 4* and 7,*
be the injections

¥ im(Y — K) »m(U, — K')
and ’[4*:7|"1(U/¢ - K) g 7!'1(Uk - K’),

then we have #;* = 7,* o *. By 2.7, 73* has kernel zero. Hence * must have ker-
nel zero, q.e.d.

TaEOREM 2.9. Under the conditions described at the beginning of this section,
K is aspheric.

Proor. This is a consequence of 1.1,2.4, 2.5, and 2.8; we must set X = S° — K,
A=U,—K,and B = U, — K.

3. The projection of a knot

We may take S° to be the union of two closed tetrahedra, T, and T, , whose
boundaries are identified; thus we may set 7, = T, = S°. At the same time it
will be convenient to single out one point s e S° not lying on K, and to place a
cartesian co-ordinate system on S° — s = R®so that

(3.1) One of the faces of §° lies in the  — y plane R’ of R’; this face will be

called F.
(3.2) The projection p:R* — R* given by p((z, y, 2)) = (z, y) takes K into
Int F.

(3.3) p is a regular projection (see [3]).

(3.4) If p(a) = p(b), a,b e K, a 5 b, then a lies inside a straight segment of K.

The images under p of the points described in 3.4 are called double points,
and the segments of P = p(K) connecting double points are called sides of P.
It will be assumed from now on that P is connected.

As is well known, P divides S into two classes of regions, called “black’ and
“white’” for convenience, in such a way so that each side is always the common
boundary of a black and a white region ; these regions are all connected and simply
connected proper open subsets of the 2-sphere, and are therefore open disks.
Pick an orientation w on §°, and call this the “positive” orientation; w induces
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Qn g

. D e
€,
Fig. 1

““positive” orientations on each of the black and the white regions. We will de-
note the white regions by W, the black regions by B, and the double points by d.

We can now construct a function®* A = Ag from the set D of all double points
d of P to the set consisting of 1 and —1, as follows: Let the two white regions on
whose boundary d lies be W' and W?, and let p~'(d) = z: u 2, where z; has the
larger z-co-ordinate. Let @ be a small circular neighborhood of d. The portion
of P lying within Q is the projection of two disjoint segments of K, & and &,
where z; €£;, 7 = 1, 2. Suppose we divide P n Q into four segments, {7, 7, ] =
1, 2, having only d in common, such that {i v ¢i lies in W, and ¢ v ¢F = p(E).
(See Figure 1.)

DEerFmNITION 3.5. If the orientation induced on W* by {1, oriented from Qn ¢
to d, is w, then A(d) = 1. If it is —w, then A(d) = —1.

Note that this definition is completely unambiguous. For if {1, oriented as
indicated, induces w on W', then it induces —w on the black region B' on whose
boundary {1 lies. But ¢} also lies on the boundary of B'; hence {3, oriented from
dto " n ¢, induces —w on B', and therefore induces w on W?. But then {1, ori-
ented from € n ¢} to d, must also induce w on W>.

It is a well-known fact (see [3]), that once the white and black regions are de-
termined, a knot is determined to within equivalence by its projection P and
the function A. An alternating knot is characterized by the property that A is a
constant and that P is connected (we have been assuming the latter all along).
It will be no loss-of generality to assume that A = 1 always for the alternating
knots that will be considered in this paper.

4, The graph of a knot

Let us suppose that the white region W has n sides, and let A be a closed cir-
cular disk with n equally spaced points 8; on its boundary, it being understood

4 A coincides with Reidemeister’s Incidence number » for the black regions on which &
lies, in those cases when = 0 (see [3]).
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that 6; and 6., are adjacent. The arcs into which A is divided by the 8; are called
the sides of A. There is a mapping

a:A— (W)

that takes each side of A onto a side of P and each of the §; onto a double point
of P, and that is one-one except possibly on the §; ; i.e., it is the extension to A
of a homeomorphism from Int A onto W.

If n > 2, then the order of the §; on A induces an orientation on A and hence on
A; we stipulate that this orientation shall go into w under . We further stipu-
late that the radit of A, i.e. the straight lines #; connecting the center § of A
to the 8;, go into polygonal segments under ¢. We set o(n:) = g¢:, Uig: = A.
The union of all the 4 for all the white spaces W of P will be called the graph
of K, and will be denoted by G or Gk . The vertices of G are the ¢(6), which will
also be called the centers of the white spaces W of P; in each white space, there
is one and only one center. Note that P n G = D, though none of the points
of D are vertices of G. The points of D will also be called double points of G.
Note that as a graph, P is determined by G; and it then follows from the remark
at the end of the previous section that

REMARK 4.1. 4 knot is determined to within equivalence by its graph G and the
values of A on the double points of G.

b. Products of knot projections

DermNiTION 5.1. Let Y7 be a polygonal 1-sphere on F, V; and V, the closures
of the two components into which S is divided by ¥; . Suppose that the inter-
section of P with Y; consists of precisely two points, z; and z,, which are not
double points of P; we set PnV; = Py, PnV, = P;. Let H, be one of the
segments into which Y7 is divided by z; and z; , and set PivH,= P, ,P,uH, =
P, . If P, and P, lie in distinet V;, then P is called a product of P, and P, , and
(P, Ax) is called a product of (P1, Ax|D n Py) and (P:, Ax| D n P;). (The
product is denoted by a dot between the factors.)

TueorEM 5.2. Under the conditions of 5.1, there are knots K; and K, such that
P; = p(K;), p | K; satisfy 3.2, 3.3, and 3.4, and Ag; = Ax | D n P;.

ReMARK. The restriction ¥; C F in 5.1 is inessential, but makes the proof
of 5.2 easier. In actuality, it would be sufficient to assume ¥; < S

Proor. By the Jordan Theorem, one of the V;, say V;, must lie in F. Suppose
the z-co-ordinates of K are strictly bounded from above by a. and from below
by a;. Let U, = V; X [a1, az], where [a; , a,] is the closed interval from a; to
a: . Let H be an arbitrary segment on U; = Y such that p(H) = H, without
double points. Then 2.1 is satisfied, p | K; = P, and p | K satisfy 3.2. Further-
more, H; contains no double points of Image p, and it follows that H; contains no
double points of Image p | K; ; thus p | K; satisfy 3.3 and 3.4 also. Lastly, if we
take the region containing points of S* not in F to be black, then a point in a
white region of P; will also lie in a white region of P, and thus if d is a double
point of P;, we obtain without difficulty that Ag,(d) = Ag(d). This completes
the proof.
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6. The index of the graph

Denote by \; the arcs of A joining 6; and 8,4, , and set I; = o();). If there are
only two é; , denote by Ao that arc which when oriented from & to 8; , induces an
orientation on Int A that goes into w under ¢. Denote the regions into which G
divides S® by M, ; then we have the following lemma:

LemMmaA 6.1. Each M}, contains one and only one black region By , and By is the
only black region that M) meets.

Proor. (a) We first prove that there is at least one black region that meets
M, . Let d be an arbitrary double point lying on M; . Let @ be a disk with center
d of radius so small so that @ n G consists of two straight line segments meeting
at d, and @ n P consists of four straight line segments meeting at d. 2n G
divides @ into two regions, R; and R, , each of which contains two segments of
2 n P. Each point on P is a boundary point of a black region, and hence for each

Fia. 2

of the two regions B, and R, , there is a black region meeting it. Since M must
meet at least one of B; or R, (as d is a boundary point of M), it follows that
M, must meet a black region. This region will be called B, . (See Figure 2.)

(b) We next prove that M; D By . For, if not, then M, must have a boundary
point in B . But M; C @, and it follows that G must meet a black region, which.
is impossible, as ( is contained in the union of the closures of the white regions.

(c) Finally, we show that each M, contains only one black region. Let m denote.
the number of M;’s, w the number of white regions, b the number of black re-
gions, o(D) the number of double points. In the graph P, each vertex d e D lies
on precisely four edges, and each edge has precisely two vertices d e D. Hence
the number of edges of P is 20(D). Since the number of faces of P is given by
b + w, Euler’s formula yields

o(D) — 20(D) + (b + w) = 2,
or b=2+4 o(D) — w.
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On the other hand, in the graph G the vertices are the centers of the white spaces,
so that there are precisely w vertices. What is more, there is one and only one
double point on each edge of G; thus the number of edges of G is o(D). It follows
that

w — o(D) +m = 2,
or m=2+4 oD) —w = b.

We already know that each M, contains at least one black region. Since there
are no more black regions than M;’s, each M} can contain only one black region,
q.e.d.

Let z be the center of the white space W.

DerFmNITION 6.2. Given k, we define the index I(x) of M} on z by

(1) If z is not a boundary point of M, , I;(z) = 0.

(2) If z is a boundary point of M, , we let I,(x) + 1 be the number of distinct
l; bounding W that lie in M, .

Thus if only one of the [, lies in M, , then I;(x) = 0. The index measures the
multiplicity with which a region M, meets a vertex z. The index will also be
denoted by I.(z; @), in order to show explicitly its dependence on G.

DeriNiTION 6.3. The index of a vertex x of G is given by

I(z; G) = Zk Ii(z; G);
the index of the entire graph G is given by
1G) = 2. 1(z; G).

The proof of the asphericity of non-trivial alternating knots is accomplished by
induction on the index /[G]. In this induction, the proof that the theorem holds
for I[G] = 0 is more difficult than the inductive step. We will deal with the in-
ductive step first. It is sufficient to prove that every alternating knot K whose
graph @ has index larger than zero is the product of two alternating knots K,
and K, each of whose graphs has index less than I[G]. For then by the induction
hypothesis, K; and K, are both aspheric; and from 2.9 it then follows that K is
aspheric as well.

LemMA 6.4. Let K be an alternating knot whose projection P has a graph G of
positive index. Let A denote a function identically equal to 1; we may assume without
loss of generality that Ax = Ao . Then there are two knot projections P, and P,
with graphs Gy and G, respectively, such that

(1) (P, AK)‘—~ (Pl,Ao)'(szAo)
(2) max (/[G1], I[Ge]) < I[G].

Proor. We note that since the index of K is larger than zero, there must be
at least one vertex z of G, and one M, , such that I.(xz; G) > 0. Let W be the
white region in which z lies, [ and I’ two sides of W lying in M, , X\ and A’ the
inverse images under ¢ of 7 and 7’ respectively, 8 and 8’ arbitrary points lying in



ASPHERICITY OF ALTERNATING KNOTS 381

A and )\’ respectively. Connect 8 and 8’ to 6 by straight lines « and o', and set
o(a) = A, d(e’) = A’. A u A’ is a simple curve starting at o(B8), ending at
a(8’), containing z, and lying entirely within W. By 6.1 and 6.2, both ¢(8) and
o(8’) must lie on B, . They may therefore be connected by a simple polygonal
curve A” lying entirely within B; . Then A v 4’ v 4” is a polygonal 1-sphere on
F intersecting P at only two points, namely ¢(8) and o(8’), which are not double
points of P. Hence A v A’ u A” satisfies the conditions for Y, stated in 5.1.

Furthermore, we claim that P; and P, lie in distinet V;, according to the
terminology of 5.1. Indeed, W is also a simple closed curve, and divides S* into
two disconnected regions, V; and V, . If P, and P, both lie in V;, say, then it
follows that W lies entirely within V; . This implies that Int W and V, are dis-
joint. But V; = A v A’ v A”, and it follows that Int W is disjoint from 4 v 4’,
which is absurd. By 5.1 it now follows that

(P, AK) = (P1,AolDﬂPl)'(Pg,Aniang)
= (P1, 80)- (P2, Q).

The first part of our theorem is thus proved.
Let us now examine the relationship of the graphs G; to the graph G. For
definiteness, we look at G . Except for the white region W, all of the white re-
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gions of P, are either removed entirely or remain unchanged versions of the
white regions of P; of course, those white regions of P lying on the other side of
Y, from P; are not represented at all among the white regions of P; . Except for
By, all the black regions of P, are also unchanged versions of the black regions
of P. The change that must be made in B, in order to convert it from a black
region of P to a black region Bi of P, is a very simple one; we simply take Bi
to be By u V,, where V, is the region of S* containing P, . Similarly W is defined
to be W n V;. (See Figure 3.)

Let x; be the center of W, and let M be the region of 8* — @, containing Bj .
Then I:(z: ; Gi) < Ii(x; G). This may be seen as follows: Each complete side
of W' not intersecting Y, is also a complete side of W. If such a side lies in M},
then it lies on B; ; but Bi=B.uV, , and since a side of W' not intersecting
Y, cannot lie on V5, , it follows that it must lie on B . Hence it lies in M . Hence
the number of distinct sides of W lying in M} and not intersecting ¥, does not
exceed the number of distinct sides of W lying in M, and not intersecting
Y1 . Furthermore, there are exactly two sides of W lying in M} and intersecting
Y., namely [ and I, while there is only one side of W* lying in M} and intersect-
ing Y, ,.namely the side containing A v A’, since all the rest of Y, lies strictly
inside By . Hence I;(x; G) exceeds Ix(x: ; 1) by at least 1.

Next, let us consider a region of S* — G, which is not Mi ; we call it M, .
M cannot intersect ¥, and so lies entirely in the interior of V, . It is therefore
equal to some component M, of S — G. M. intersects precisely as many sides
of white regions of P; as M, does; and each such complete side of a white region
of P; is also a complete side of a white region of P, as none of them intersect Y .
Hence for each center x; (z # 1) associated with P, , we may write

Iz ; Gh) = L(z: ; @);
and for 7 = 1, we may write
I(x ; Gy) = L(z; Q).
Summing up, we obtain
IG)] = 22 2o Lz ; Gy)
2o L@ Gr) + 2ia 2o Lui 5 GY)
Ly 5 G) + D L1 5 G) + D Dos Lo 3 Gh)
< Ii(x; G) + 2a L(x; G) + i 2o L(i 5 G);

we must keep in mind that s runs over the indices of only those regions of S* — G
that lie within V, , and 7 runs over the indices of only those centers that lie within
V, . If we now let ¢ run over the indices of all regions of 8> — @, and allow j to
run over the indices of all centers, then we obtain that the last expression above is

< Lix; G) + Dpa Lu(x; G) + 2 im Dt Lz 3 G)

I
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= 20N 6) + 2 2 Li(zs 5 @)
= I[G].

Hence I[G4] < I[G], and our theorem is proved.

THEOREM 6.5. Let K be an alternating knot whose graph G has positive indezx.
Then K is the product of two alternating knots whose graphs have lower index than G.

Remark. This theorem completes the inductive step, leaving us to prove
asphericity in the case in which the index is zero.

Proor. This is an immediate consequence of 6.4 and 5.2.

7. The canonical form of a knot

In accordance with 6.5, we assume from now on that the knot K possesses a
graph G of zero index. Let H be a “tube” around @ of small radius; that is, H
is the set of all points in R’ at a distance <e¢ from G, where ¢ is some number
sufficiently small so as not to obscure the “structure’” of G; it will become clear
in the course of the sequel how small £ must be chosen. We may assume without
loss of generality that in the neighborhood of a double point, G consists of one
straight line segment; if this is not already so, it can be achieved by slight dis-
tortions in the mappings o.

Let us now take an arbitrary double point d and consider a small neighborhood
of d in @. For convenience, we take d to be the origin of co-ordinates, and the
small neighborhood of d in @ to be the section of the z-axis extending from
z = —1 to z = 1. The surface H corresponding to this section of G' may be
characterized by the equations

-1

A
A

x 1

Yy = €cos b
2z = gsin 6,

where 0 is the parameter denoting the angle which the line from the point
(z,y,2) on H to the point (z, 0, 0) makes with the line from (z, 0, 0) to
(z, —1,0), and we fix § = 37 at (z, 0, &).

We now define a knot K’ as follows: Except in the neighborhood of a double
point, K’ is given by H n R®. In the neighborhood of d, i.e., in the portion of H
characterized by the above equations, K’ has two components, the first having
the equation

0 = imx + i,

and the second having the equation

0 = inx — im.
K’ is defined in a similar fashion for the other double points.
It is important to note that the definition of K’ does not depend on which side
of d is chosen to be along the negative z-axis and which side along the positive
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z-axis. This is easily seen if we choose a new co-ordinate system in which the-
former positive x-axis becomes the negative z-axis,and the former negative z-axis
becomes the positive z-axis, while the z-axis remains unchanged (the direction
of the z-axis is not at our disposal, since A, which is to remain invariant, was de-
fined in terms of the direction of the z-axis). If we agree that the “usual”’ orienta-
tion induced by the co-ordinate system (i.e., the orientation induced by ((1, 0),
(0, 1), (0, 0)) on the triangle bounded by those points) shall agree with w, then
this new co-ordinate system, which we will denote by (z/, ¥/, 2’), is simply a
rotation of the old one by 7; we have

= —x
y = -y
2 =z
¢’ is defined to be 0 at the point 2’ = 0, ¥y’ = —¢, 2/ = 0, and 3= at the point

2 =0,y =0,2 = ¢. Thatis tosay, 0 isOatz = 0,y = ¢,z = 0, and 47 at
z =0,y = 0,2 = & The equations of K’ near d in terms of the new co-ordinate
system are

0 = inrz’ +

and 9 = Loz’ —

(S

™

[N

T respectively.

In terms of the old co-ordinate system, these are simply

—b6+ 7= in(—2) + ir

and -0+ 7= ir(—x) — i respectively,
ie., 0= irx + ir
and 0 = irx — im respectively,

which are the same equations as those we obtained before. Summing up, we have
proved

TuroreM 7.1. K’ is invariantly defined in terms of the direction of the z-axis and
of w.

TuEOREM 7.2. G 1s the graph of K'.

Proor. Let P’ = p(K’). If we declare the regions of S — P’ containing ver-
tices of ( to be white regions, and the others to be black regions, then no side of
P’ is the common boundary of two white regions. One way of seeing this is by
noting that a side that is the common boundary of two white regions has to have,
at any given point, fwo half-edges of G within a distance of ¢ from it, each of the
two half-edges radiating from a different vertex. It is clear that if ¢ is sufficiently
small, this is impossible except in the neighborhood of double points.

Similarly, by construction it is apparent that every point ¢ of P’ lies within
¢ of some half-edge v of (. The side of P’ containing ¢ therefore bounds the white
region determined by the vertex of @ lying in 4. Thus each side of P’ bounds one,
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but not two, white regions. Hence it must bound one white region and one black
region, and our division of S* — P’ into white and black regions turns out to be
in accordance with the rules.

Finally, it is immediate by construction that the double points of P’ are the
same as the double points of G. If we fix attention on a given white region W, we
see that from its center, a vertex of @, there radiate half-edges to all the double
points of P’ lying on W. But these are precisely the double points of P’ lying on
W.Hence G n W may be considered that portion of the graph of P’ that lies in
W, and it follows that the graph of P’ is indeed G.

THEOREM 7.3. Ag/ s a constant.

REMARK. Because w is taken to be the usual orientation on R’, Ag- is in fact
identically 1. But this fact is unimportant. If it had turned out to be —1, we
would have either altered the definition of K’, or fixed attention on alternating
knots whose A is identically —1.

Proor. This is a consequence of the fact that K’ is defined near d without
reference to the particular d under consideration.

TaeoreM 7.4. K’ is equivalent to K.

ReMARK. In view f this theorem, we will henceforth take K to be equal to K'.

Proor. This is a consequence of 7.3, 7.2, and 4.1.

It should be noted that K has now ceased to be polygonal; strictly speaking,
this is against the rules. What we should now do is approximate K’ by a poly-
gonal K. However, such a procedure is clearly possible, does not alter the proof
materially, and merely complicates matters. We will therefore refrain from
carrying out this portion of the proof in detail.

8. Application of Whitehead’s theorem

We are now ready to proceed with the proof of asphericity. Set X = §* — K,
A=H—K, B=Cl(§8 — H) — K. The proof of asphericity will be ac-
complished by the application of 1.1 to the triad (X; A, B). Several of the lem-
mas of this section are constructions which can be easily performed in view of the
detailed geometrical situation described in the previous section. The proofs of
these lemmas will be omitted.

Denote the plane z = ¢ by Z;, the plane 2 = —e& by Z;. Define the graph
@ as follows: Except in the neighborhood of double points, @ = (Zin H) u
(Z, n H). In the neighborhood of a double point, we define G’ as consisting of two
components, which are given by the following equations (we adopt the notation
of the previous section):

0=1lrx+
and 0 = irx.

As in the previous section, G’ is invariantly defined.
Define a map r:G’ — @G as follows: Except in the neighborhood of a double
point, r; is simply the projection p. In the neighborhood of a double point, let
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g = (z, y, 2) be a point of @’. Then r1(q) = (z, 0, 0). It is clear that r, is a cover-
ing mapping.

Lemma 8.1. There are deformation retractions® ro:tA n B — G’ and rs:4 — G
such that ryor, = 13| A n B.

THEOREM 8.2. A is aspheric.

Proor. By 8.1, A has the homotopy type of G. But G is a graph, and hence its
universal covering space, a tree, has the homotopy type of a point. Hence G is
aspheric, and the theorem follows.

TureoreM 8.3. The components of A n B are aspheric.

Proor. By 8.1, A n B has the homotopy type of G’. The proof is now similar
to that of 8.2.

LemMA 8.4. B has the homotopy type of Cl (S* — H).

LeEMMA 8.5. There is a deformation retraction ry: H — G — H.

LEmMA 8.6. There is a deformation retraction rs:S° — G — CI (S8° — H).

Proo¥. Define rs by 75 | H — G = r,, 15| S° — H = identity.

Lemma 8.7. Ty — G and T. — G have the homotopy types of T, and T, .

TueoreM 8.8. B is aspheric.

Proor. We note first that by 8.4 and 8.6, B has the homotopy type of $* — G.
Next, we apply 1.1 to the triad (S* — G; Ty — G, T. — G). Since T; and T,
are clearly aspheric, it follows from 8.7 that 7y — G and T, — G are aspheric
as well. Furthermore,

(Tl—-G)n(Tg—G'):Sz—G:U_,MS.

Each of the M, is an open disk, and hence is first of all aspheric, and secondly
has a fundamental group equal to zero. It follows that the injections from each
of the components of S* — G into T, — G and T; — G must be isomorphisms
into. Hence all the conditions of 1.1 are satisfied and it follows that S° — G is
aspheric, g.e.d.

TueoreM 8.9. For each of the components C; of A n B, the injection

’1:1*:’"‘1(01') — 1l'1(A)
18 an isomorphism into.
Proor. We first assume that A n B has only one component (the case of the

non-orientable Reidemeister surface). Let 7,:4 n B — A be the inclusion map-
ping. Then by 8.1, the diagram

AnB- @
‘[11 lh
A B, @

is commutative. It follows that for the homomorphisms induced by these map-
pings on the fundamental groups, we have r;* o 5;* = r* o n,* . 1, is a covering

8 All deformation retractions will be onto.
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mapping, and hence r,* has kernel zero; r, is a deformation retraction, and hence
r* is an isomorphism onto. It follows that the right side of the above equation
must have kernel zero; Therefore 7;* has kernel zero also.

The proof is the same when A n B has two components, C; and C, (the case
of the orientable Reidemeister surface); we simply replace A n B by C; or C, .

9. The injection 7,*

It remains to prove that %*:m(C;) — m(B) is an isomorphism into. We con-
fine ourselves to the case in which A n B is connected; the proof in the other
case is entirely analogous. A

Let Wi be a white region, d; = d one of its double points. Let gi:I — g, be
a path starting at the center x/ of W and ending at the double point d; . Suppose
d; to be a point of @’ lying over d;. Then there is a unique path §i:7 — @’
starting at d; such that r 0§l = gi. Up to the present we have indexed the
double points d; , and consequently also the d; , in the positive orientation around
a certain white region W7. We now abandon this notation and simply let the
d; range over all the points of G’ lying over double points of G. We thus obtain
20(D) distinct d; , each of which has a different index. We then have that with
each d; there are associated two paths, §i' and §i*, corresponding to the two
white regions on whose boundary d; lies. We set

fo= @™
(the choice of which path comes first is arbitrary). Call the points 77" (z7) vertices
of @'. Then f;is a path in G’ starting at one vertex, ending at another, and passing
through precisely one d; .

The construction of the fundamental group of G’ may be accomplished by
means of a well-known process. We first pick a maximal tree 7 in ¢, and a base
point yo ; Yo is a vertex of @', and every other vertex of G’ also lies in 7”. For each
vertex y; of @ there is a unique edge-path in 7" starting at yo and ending at y; .
Hence it follows that there is a path h;: I — T’ starting at yo and ending at y;
and unique up to homotopy. h; may be considered to be the unique product of
successive fi’s or their inverses; indeed, with each edge of the unique edge-path
we may associate an f;, and these will be the f;’s entering into h; . Let d;; be an
edge of G’ not lying in 7", starting at y; and ending at y;. Let h;; be a path
whose image is d;;, starting at y; and ending at ;. Then the loop h;-hs;- k7
represents a member of 7;(G’); it is well known that the set of all these members
is a set of free generators for m(G’). It is clear that h;; may be taken to be a
single f; (or its inverse); in fact, that f; whose end points are y; and y; is the h;;
we want. It follows that there is a set of products of f;’s and their inverses that
represent a set of free generators of m(G’). Summing up, we have proved

LemMA 9.1. Each member of m1(G’") may be represented by a product of f.’s or
their tnverses.

CoROLLARY 9.2. Each member of m(G’) may be represented by a product of
fi's or their tnverses in which no f; is preceded or followed by its tnverse.
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REMARK. In point of fact, it is not too difficult to see that with this restriction
the product becomes unique (i.e., the order of the f; is unique; the multiplica-
tions may of course be performed in any order in which one chooses, leading to
products that are in general not equal but homotopic). We do not need this fact,
but in any case we will call this product the canonical product corresponding to
the member of m(G’) in question.

Note that the double points of G” all lie in R?, and in fact in a black region.

LemMa 9.3. In the canonical product, no two successive factors have their double
points lying in the same My .

Proor. By 9.2, the two factors, say f; and f;, can only have one end point in
common. Call this end point yo . We adopt the notation of Section 7.

We may assume without loss of generality that y, lies above R? that for¢ = 1
and 2, f; starts at yo , and that the portion of the image of f; that is higher than
R’ lies over the half plane x < 0. We fix attention on the white region W whose
center is 71(yo).

The point d; has the co-ordinates (0, 1, 0). We may connect it by a straight
line segment to the point e; of P that has the co-ordinates (—1, 1, 0). This
straight line segment does not intersect G (in the neighborhood of d; it is parallel
to @); hence e; lies in the M in which d; lies. Let us orient the section d;e; of P
given by

y = — sin imx

0zz= —1
in the positive direction from d; to e; . This orientation induces the positive orien-
tation w on the cell E; bounded by de; , by the line segment

z= —1

0=sy=1,
and by the line segment

y =

0zz= —1

Since E; has no interior points lying on P, it must lie either completely within or
completely outside of W. On the other hand, some of the boundary points of E;
are interior points of W, e.g. the point (—1, 0, 0). Hence E; must lie completely
within W. Since the positive orientation from d; to e; along d.e; induces the
positive orientation on E;, it follows that it must also induce the positive orien-
tation on W. (See Figure 4.)

Now let us assume that e; and e, lie in the same [; , say [, . Since at least one of
the end points of the [; on which e; lies must be d; , it follows that both d; and
d, are end points of [;. But by 9.1, f; and f, are not the same, so that d; and
ds must be distinct. Hence the two end points of [y are d; and d, .



ASPHERICITY OF ALTERNATING KNOTS 389

F1c. 4

The segment de, is simply a part of I, . We know that the positive orientation
on W induces an orientation on die;, that goes from dy to e; . Hence it induces an
orientation on [, that goes from d; to d; . But by the same reasoning, the positive
orientation on W must induce an orientation on [, that goes from d. to d; .
Thus the assumption that e; and e, lie in the same [; has led to a contradiction.
Hence it follows from the assumption that I(G) = 0 that ¢, and e, lie in distinct
M, . But since ¢; and d; lie in the same M , it follows that d; and d; lie in distinct

M, , qed
We now construct a covering space for S —@. Set Si =T, — G, 7=1,2.
We construct a class &, of copies 87, Si'%2, ---, Sit® % ... of S;, where the

1; each range from 1 to the number m of distinet M} , and ¢ may be any even
positive integer, with the sole restriction that in any specific copy of S; , we have
1 # 4,4, J=1,---,t— 1. Similarly, we construct a class &, of copies
Sit, Syt .. Sprfeete Lo of 8, with precisely the same stipulations as
above, except that ¢ is restricted to be an odd positive integer. Note only that
the copy indexed by 0 is omitted in this case. Set & = &; u &, . Since each
member of & is a copy of one of the original S;, there exist homeomorphisms

(0. D)
¢; :S; — S;7,

(t) being an abbreviation for the expression %7, - - - 7., or, if { = 0, for the ex-
pression 0. Define M{” for k = 1, --- , m by

Ml(ct) — ¢§,t) (Mk)
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Note that the subscript j is always uniquely defined by the superscript (¢);
in fact it is 1 if ¢ is even and is 2 if ¢ is odd. We will call this function of ¢ by the
name q(t).

Now take the union of all the members of &, and identify M3i with M. % and
M? with M{%* in the natural mannerif k 5 4, . Call the resulting identification
space B. Define 6:B — S* — G by 6| S = (¢:”)". Then 6 is well-defined, and
we have

LemMA 9.4. B is a covering space of S — G with 6 as covering mapping.

REMARK. In fact, B is the universal covering space of 8* — G. We do not need
this fact.

PROOF. 6 is certainly a local homeomorphism on Int S{”, since there are no
identifications there. Let [s] be an abbreviation for jij, - - - 75, or for 0 if s = 0.
It is sufficient to prove that each M} is identified with precisely one other copy
of My, which we will call M}", and that q(f) # ¢(s). We distinguish several
cases, with which we will deal one by one.

(a) (¢) = 0. In this case we set [s] = k. No other identifications are made.

(b) (1) = k. In this case we set [s] = 0. Although we have a term ¢; in the
superscript (£), no other identifications are made because 7; is the last term of the
superscript and 7; = k.

(¢) (¢) has more than one component, and for its last term ¢, we have ¢, = k.
In this case we set [s] = 7; - %;—;. Then M 11 must be identified with M{?
because 7;—; # k, since we must have 7;_; # 7, . What is more, no other identifi-
cations are made because 7, = k.

(d) For the last term 7; of (£), we have 1, k. In this case we set

[s] = 21+« ik

Since i; # k, no other identifications are made.

Note that in each case q(t) #= q(s).

LemMa 9.5. A compact subset of B can meet only finitely many members of S.

Proor. Let Q be a compact subset of B. Let Ni? be the union of S{” and the
interiors of all the members of & that meet S{”. Then N{” is an open set and
the set of all N{” is an open covering of B. Hence a finite number of N{” suffice
to cover Q. But each N{” meets only m + 1 members of &. Hence Q may be
covered by a finite number of members of &. Since each member of & meets
only a finite number of other members of &, our lemma is proved.

LemMa 9.6. The injection i5*:m(G’) — m(S* — G) is an isomorphism into.

Proor. Let 5 be a non-trivial member of m(G’); then the canonical product
representing 5 has more than one factor. It is sufficient to prove that 7s*(y) is
not the identity.

Let F be the canonical product representing m and let 7:G' — S°* — G be
the inclusion mapping. Then ¢ o F is a path in S°* — G. If i5*(n) is the 1dent1ty,
then 45 o F is zero-homotopic in S* — G. Hence it may be lifted into a loop in B.
That is to say, there is a map F':] — B such that F’(0) = F'(1) and 6o F’ =
’is oF .
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Since I is compact, F'(I) must be compact as well. Hence by 9.5, the number
of components of () in the S{” that F'(I) meets is bounded. Let s be the maxi-
mum number of components of a superscript that actually occurs in a member
of S that F'(I) meets. That is, we have that F’(I) meets an S{”, but it is not
true that F'(I) meets any Si? with ¢ > s.

Set F' = [,/ ;» where we are stipulating that 6o fﬁi = fi;. Suppose that
fi,(I) meets S{”, and that indeed f,(1) e Si”. Let the next factor of F’ be fi, .
(0of§j) (I) = fi;(I) certainly crosses some M, ; hence f:-,.(I) must cross an
M for j = 0 and 1. However, f:, and f%, cannot cross the same M5", for other-
wise fi, and f;; would cross the same M} , a violation of 9.3. Thus for either
j =0 orj=1, we must have that f;, crosses an M  with & # 4, . But this
M{” is identified with M(™*, so that fi,(I) meets M"* (with 4,41 = k), and
therefore also meets S{({1)), contrary to the assumption that F’(I) meets no
Si with ¢ > s. Thus we have shown that for a non-trivial 7, 7*(y) cannot be
the identity, so that 4* must be an isomorphism into.

Let 45:B — S* — G be the inclusion mapping.

LemMa 9.7. The injection is*:m(B) — m(S® — @) is an isomorphism onto.

Proor. Let 77:B — CI(B) be the inclusion mapping (the closure is to be
taken in S*). Then the injection ¢;* is an isomorphism onto. Hence it is sufficient
to prove that the injection

is*:m(Cl(B)) — m(S* — @)

is an isomorphism onto. From r; o 7 = identity, it follows that rs* o 4s* = iden-
tity. But since 75 is a deformation retraction, r7s* is an isomorphism onto, and so
7s* must be an isomorphism onto as well.

TuEOREM 9.8. The injection

12*¥:m(4 n B) — m(B)

s an tsomorphism into.
Proor. Let 79:G’ — A n B be the inclusion mapping. Then the diagram

AnB L@

4k

B — §-¢
(Z]

is commutative. It follows that the diagram
*
m1(4 n B) I, m(G")

z'2*j Jis*

m1(B) ";GI' m(S* — G)
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is commutative as well, since r* = (4,*)" (this is a consequence of the fact
that 7,07 is the identity and 7. is a deformation retraction). What is more,
both r.* and 4s* are isomorphisms onto (r, is a deformation retraction; 7s* by
9.7). Since %;* is an isomorphism into (by 9.6), %.* is an isomorphism into as well.
TuaEOREM 9.9. Alternating knots are aspheric.
Proor. Follows from 1.1, 8.2, 8.3, 8.8, 8.9, and 9.8.

10. Applications

DermiTion 10.1. A knot K is said to be separable if it possesses a disconnected
projection.

TuEOREM 10.2. No alternating knot is separable.®

Proor. For, if it were, it would not be aspheric, contrary to 9.9.

DermviTioN 10.3. Let K be a knot of multiplicity 1. K is called A-unknotted
if m(S® — K) is infinite cyclic. K is called D-unknotted if there exists a map
f:E — S°, where E is a triangulated 2-cell, such that f is a simplicial non-de-
generated map of E into some rectilinear subdivision of S°, f maps E topolog-
ically onto K, and f(E — E) c S* — K.

Lemma 10.4. If K is aspheric and D-unknotted, then K is A-unknotted.

The proof is given in [2].

Lemma 10.5. If K is alternating and A -unknotted, then K is unknotted.

The proof is given in [1].

TaeoreM 10.6. If K is alternating and D-unknotted, then K is unknotted.
(This is Dehn’s Lemma for alternating knots.)

Proor. Follows from 9.9, 10.4, and 10.5.
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