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A Survey of Cooperative Games without Side Payments

1. SCOPE OF THE PAPER

We begin by giving intuitive definitions of our terms. Start out with a
game, either in extensive or in normal form. The game becomes coopera-
tive if we allow the players to communicate before each play and to make
binding agreements about the strategies they will use (either mixed or
pure). We say that side payments are allowed if there is a common medium
of exchange, such as money, which can be transferred between the players
before or after the play. We say that utility is transferable if the increment
to the payoff of a player caused by a transfer of money is proportional to
theamount of moneytransferred [33]. Theclassicaltheory of n-persongames
as first conceived by von Neumann and Morgenstern [45], and later elab-
orated upon by many other writers, is concerned exclusively with coopera-
tive games in which side payments are allowed and utility is transferable.
It is commonly assumed that this involves an interpersonal comparison
of utility, but this is false; it is only necessary that each individual’s utility
be an increasing linear function of money, and nothing need be said
about the constant of proportionality (indeed any statement about the
constant of proportionality is meaningless within the framework of N-M!
utility theory). However, it is true that mathematically, N-M games can
be treated as if the payoff were in money rather than in utility.

It is also often assumed that the N-M theory and its subsequent elabora-
tions depend in an essential way on side payments and transferable utility;
this is also false, as is shown by the small but growing body of recent work
which parallels the N-M theory but deals with cooperative games in which
side payments are either altogether forbidden, or are allowed but utility is
not transferable. It is this body of work that I wish to survey here. Inci-
dentally, recall that noncooperative games include cooperative games as a
special case, cooperative games without side payments include cooperative
games with side payments, and the case of transferable utility is the most
special of all. Cooperative games without side payments and cooperative
games with side payments but without transferable utility present many of
the same problems, and since the former are more general we restrict much
of our discussion to them.

Revised version of a lecture delivered at the Princeton Conference on Recent Advances in
Game Theory, October 1961.

! von Neumann—Morgenstern.

This chapter originally appeared in Essays in Mathematical Economics in Honor of Oskar
Morgenstern, edited by M. Shubik, pp. 3-27, Princeton University Press, Princeton, 1967.
Reprinted with permission.
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2. MOTIVATION

Cooperative games without side payments are of considerable impor-
tance in the applications. In some situations side payments are impossible
because there is no common medium of exchange, or such a medium, if it
exists, is irrelevant; think of the international situation. In other cases side
payments are called bribes and are ruled out for ethical or legal reasons,
while cooperation is considered perfectly all right. Finally, even when side
payments are legal, utility usually is nonlinear in money, and this may
result in a situation which is not covered by the N-M theory. It is this last
fact that caused Luce and Raiffa to state that the N-M theory is *“for many
purposes next to useless” [19, p. 233]. We do not share this view, because if
money is substituted for utility the N-M theory still applies to any situation
in which probabilistic considerations are considered irrelevant;® but we
do feel that an extension of the N-M theory to the no-side-payment case
is useful.

3. THE CHARACTERISTIC FUNCTION

Let us now begin with a description of some of the work that has been
done in this field. There are three widely used models for studying n-person
games: the extensive form, the normal form, and the characteristic
function.

The extensive form is essentially a mathematical representation of the
rules of the game. The normal form is the “payoff matrix”—a list of
strategies for each player, together with a payoff vector for each n-tuple
of strategies. The characteristic function gives for each coalition the set
of payoff vectors that that coalition can “assure’ its players. There are, of
course, connections between the various forms; the normal form can be
calculated from the extensive form, and the characteristic functionfrom the
normal form. However, each form is suited for different kinds of investi-
gations. We will begin our study of cooperative games without side
payments with the characteristic function.

Let us represent the payoff to each player by a coordinate of Euclidean
space; thus we will be working in Euclidean space of dimension equal to the
number of players, and in its subspaces. We denote by XN the set of players,
by E¥ the Euclidean space in which we are working, and by ES the sub-
space of E¥ spanned by the axes belonging to the players in a subset S of N.
Points of E¥ are called payoff vectors, of ES payoff S-vectors. The charac-
teristic function associates with each S = N a subset o(S) of ES. Intuitively,
v(S) represents the set of payoffs that S can assure itself. When side pay-
ments are allowed and utility is transferable (this will henceforth be called

* Even when they are relevant the N-M theory applies in a much wider range of
situations than has often been supposed; see §8.
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the N-M case), #(S) is the closed half-space
[xeES: 3x'<f(9),
igS

where f(S) is the N-M characteristic function (i.e., the total amount of
money that S can assure itself). A typical such half-space is illustrated in
Figure 1 for the 2-player case; v(S) is the whole area to the *“southwest”

of the line x! 4+ x* = f(S).
z%%‘, x!

X+ 22 (S

FIGURE 1

Returning to the no-side-payment case, we assume the following condi-
tions for our characteristic function:

v(S) is convex, closed, and non-empty. 0))
x €v(S), y €ES, x > y=y € u(S). 2
(S UT)> v(S) x o(T) for S and T disjoint. 3)

The vector inequality in (2), like all subsequent vector inequalities, is
meant to hold for each coordinate.

Intuitively, convexity follows from the fact that players can mix and
correlate their strategies. Closedness is mainly a question of mathematical
convenience and is satisfied in all applications that I can think of. Condi-
tion (2) says that if a coalition can assure itself of a payoff vector x, it can
also assure itself of anything coordinate-wise less. The last condition is
superadditivity; any vector whose components can be obtained by each
of two disjoint coalitions acting separately can also be obtained by them
when acting together. In Figure 2 we show a typical set of the form #(S)
in two dimensions.

We have defined a characteristic function; in order to define a game in
characteristic function form, we need an additional concept that is not
needed in the N-M theory. This is the set H of outcomes that “can actually
occur.” H has a very close connection with v(¥): its “top” coincides with
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™,

FIGURE 2

the “top” of »(N) (see Figure 3), or in precise terms
v(N) = {x € E¥: 3 y € H such that y > x}. 4)

The difference between »(N) and H is that (N) consists of those vectors
x that N can “guarantee,” in the sense that it can get at least x; whereas
H is the set of vectors such that N can get exactly x.

Summing up, a game in characteristic function form is a pair (v, H),
where v is a characteristic function obeying (1), (2), and (3), and H is a
convex proper subset of E¥ satisfying (4).

Sometimes it will be assumed that H is a convex compact polyhedron;
this is justified if one thinks of the game in characteristic function form as
being generated from a finite game in normal form. On other occasions, it
is more convenient to assume that H = v(N); this is justified, for example,
if one makes an assumption of “free disposal.” The latter assumption is
the one more suited to the N-M case.

The set of conditions ((1) through (4)) that we have assumed for v and
H is by no means the only possible one, and in fact almost every paper on
the subject uses a different variant of the set of assumptions. In particular,
for many purposes super-additivity (3) is unnecessary, sometimes convexity
is not needed either, and for other purposes condition (4) is unnecessary.
The conditions given here have been chosen for convenience in exposition,

/777, H
NN\ viN)

+ Coordingte axes

~

FIGURE 3
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and so for many of the theorems they are stronger than necessary. The
reader is referred to the original papers for statements of alternative
conditions under which the various theorems hold.

In the N-M theory, various kinds of payoff vectors are distinguished
according to their “‘rationality” attributes. A payoff vector is said to be
individually rational if each player gets at least what he can guarantee
himself, and group rational if the whole group cannot play in such a way
that each player gets more. The same notions can be defined in our context;
precisely, x is individually rational if for each player i, we have x' >
max v({i}); and x is group rational if there is no payoff vector y € »(N)
such thaty > x. Let usdenote by H,,, H,, and H, the subsets of H obtained
by imposing individual and group rationality in various combinations;
these sets, together with H, correspond to the sets of payoff vectors that
have been studied in the N-M theory [39, 50]. In particular H,, corre-
sponds to what is usually called the set of “imputations.”

Note that the characteristic function »(S) does not necessarily have to be
interpreted as the set of payoff vectors that S can assure itself; if preferred,
it may be interpreted in any other way, such as what a coalition “thinks it
can get.” It is also possible that a game is given a priori in characteristic
function form, like the following voting game:

Let the number of players be odd, and let C be a convex compact subset
of E¥. The game consists of the players “voting™ for a member of C by
majority rule. If a majority agrees on a point x of C, then x is the payoff
vector (to all players); otherwise each player i gets only his personal mini-
mum m* in C, i.e. min {x*: x € C}. It is easy to see how this can be general-
ized to weighted majority games and to simple games in general.

To describe the characteristic function, let CS denote the projection of
C on ES, and let m5 denote the S-vector {m‘},.s. Then

(if S is winning) the set of all S-vectors that
are < a member of C%;

(if S is losing) the set of all S-vectors that
are < m®.

oS) =

4. THE VON NEUMANN-MORGENSTERN SOLUTION

We can now develop a theory of games parallel to the N-M theory. The
two most important elements of that theory are the solution and the core.
First, we define domination:

Let x, y € E¥, and let x¥ denote the projection of x on ES. Then

x >syc>d,rqev(5),xs>ys

X > y<>4, X >gy for some S.
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Let K = E¥. Just as in the N-M theory, a solution of K is a subset ¥ of
K such that no two members of K dominate each other, and every mem-
ber of K not in ¥ is dominated by some member of V. The core of K
(denoted by C(X)) is the set of members of K not dominated by other
members of K.

THEOREM 1. A solution of H; is a solution of H,,, and conversely.

This corresponds to a theorem in the N-M theory first proved by Shap-
ley [50]. The proof, which is not difficult, is given in [23]. Henceforth a
solution of a game is a solution of H,, for that game.

THEOREM 2. Every 2-person game has a unique solution, namely all of
H,,. This is also the core of H,,.

This too is easy to prove. The first difficult theorem is:

THEOREM 3. Every 3-person 0-sum game has a solution.

A 3-person 0-sum game is one in which H is contained in the hyperplane

3
> x* = 0. Theorem 3 is proved in Peleg [23]. The 0-sum restriction may
i=1
seem somewhat strange in a non-side-payment context; however, it makes

sense if one assumes that the payoff to a game is in money, that no money
enters or leaves the game from outside, that chance and mixed strategies
are irrelevant, and that side payments, though obviously possible, are
illegal. In addition, the proof was a considerable technical achievement,
and pointed the way to the subsequent:

THEOREM 4. Every 3-person game for which H is a polyhedron has a
solution.

This is proved in Stearns [30]. In the same place Stearns classifies all
solutions to 3-person games.

The biggest problem left open by von Neumann and Morgenstern in
their book [45] was that of the existence of a solution for an arbitrary n-
person cooperative game with side payments and transferable utility. The °
problem remains unsolved to this day. One of the methods they used to
attack this problem [45, pp. 266-271 and pp. 587-603] was to define the
notion of solution for an abstract relation defined on an abstract set
(abstracting from the game situation, where it is defined for the domina-
tion relation on the set of imputations). They then studied the solution
notion in this abstract framework, seeking conditions of a general nature
that would ensure the existence of a solution and that would be satisfied in
the game context. This work was carried on by Richardson and others (see
for example [40, 47]), but though many interesting sufficient conditions
for existence were found, none could be proved to apply to the game con-
text. In 1959, Kalisch and Nering [41] constructed a game with a countable
infinity of players and showed that it has no solution, thus showing that
the completely “abstract’ approach to proving the existence theorem could
not work. However, the imputation space in the Kalisch-Nering example
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is not compact. Thus there remained the hope that a “modified abstract™
approach could be made to work, in which account would be taken of
topological properties of the imputation space and the domination rela-
tion. This hope has recently been shattered by Stearns (unpublished?),
who proved:

THEOREM 5. There is a 7-person game with no solution.

The original problem proposed by von Neumann and Morgenstern—
for games with side payments and transferable utility—remains open.

We mention that it is possible to construct a theory of composition of
games that parallels the N-M theory, but that yields simpler and more
intuitive results [3, 5, 7].

Isbell [16] has constructed a theory of cooperative games without side
payments in which he makes use of the notion of N-M solution. However,
his work is not based on the characteristic function model presented in

§3.
5. THE CORE

Let K = E¥. The Core of K (denoted by C(K)) is the set of members
of K not dominated by other members of X.

THEOREM 6. Assume either that H is a convex compact polyhedron, or
that H = v(N). Then C(H) = C(H,) = C(H,) = C(H},).

In other words, all the ““interesting” cores are equal, so we are justified in
referring to the “core of a game.” This is trivial in the N-M theory, but no
longer so in the current theory. Under the first of the two assumptions, the
proof was first published in [3]; subsequently it was considerably simplified
by Stearns (unpublished). We sketch the simplified proof here.

The difficult part is to prove that imposing group rationality, either on
H or on H,, does not change the core. For example, take H; we must prove
that C(H) = C(H,). C(H) = C(H,) is easily established. The crux of the
proof is the opposite inclusion. For x € E¥, denote max, |x'| by ||x|. We
need the following

LEMMA. There is a positive number M (depending on H only) such that
for all ze H — H,, there is a Z € H, such that 2 > z and for each i € N,
#—z> |2 - z||M.

In words, the lemma states that for each z in H that is not already in the
top of H, we can find a ray that leads to the top of H, and that is increasing
in all coordinates at a rate that is uniformly (i.e., independently of z)
bounded away from 0. The lemma is true only because H is a polyhedron;
for example, in Figure 4, as the points z approach the x!-axis, the rate
of increase of x! along the dotted lines tends to 0. Indeed, there
are counter-examples to Theorem 5 if it is not assumed that H is a

3 A previous published version [31] has the disadvantage that some of the v(S) are empty.
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polyhedron [3]. The proof of our lemma is given in [3], and will not
be repeated here.

FIGURE 4

Let x € C(H,). We will suppose that x ¢ C(H), i.e., x is dominated via
some S by an element y of H, and will then construct an element 2 of H,
which also dominates x; this will be a contradiction. Roughly, this is done
by taking an element z very close to x on the line segment Xy which joins
x and y, and constructing the corresponding Z. Now either

i) Zis far from z, or
i) 2 is close to z.

In the first case, it follows from the lemma that all the coordinates of Z
must be considerably greater than those of z; since z is close to x, it follows
that £ > x, contradicting x € H,. In the second case, it follows that Z is
close to x. Hence from y >g x we deduce that y >g Z, and hence it follows
that 25 € (S) (from property (2) of the characteristic function). But
#5 > z5 > x5, and therefore # >g x, which gives us the desired contra-
diction.
More precisely, we suppose without loss of generality that x = 0. Let
o = min,g )y, where y >g x. Let z € yx be such that |z] < é/(M + 1).
Then ' — z* > || — z||/M for all i. Hence if |2 — z|| > dM|/(M + 1),
then 2! — z* > 8/(M + 1). Then
0
i __ i __ i i $i__ i __ _ =
P=p— > -2 — |z > /(M +1) TE

contradicting 0 € H,. Hence ||z — z|| < dM/(M + 1). Hence for all i,
=42 -z + |zl < M/(M + 1) + 6/(M + 1) = 6.
Hence for i € S, #* — y' < max; £ — min; y* < 6 — 6 = 0. Hence 5 <
y5. Hence 25 € »(S), and £ > x, contradicting x € C(H,).

Under the second of the two assumptions, Theorem 6 was proved by
Burger [7]; the proof is simpler than under the first assumption. Burger’s
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paper is the first to make systematic use of the assumption H = v(N); this
makes for a considerably simpler theory.

When is the core of a game non-empty? In the N-M case, a necessary
and sufficient condition for the non-emptiness of the core has been given
by Shapley [51], in terms of ‘“balanced” collections of coalitions. A
similar condition has been given (independently) by Bondareva [35].
Using this notion of balanced collections, Scarf [27] recently obtained a
sufficient condition for the non-emptiness of the core in the no-side-
payment case as well.

For each S < N, define a vector eg in E¥ by

1 if ieS;
esi'—'—'
0 if i¢sS.

A collection & of subsets S of N is called balanced if it is possible to
assign to each S in & a non-negative number dg, such that
2 Oses = ey.
Ses
For example, if N = {1, 2, 3}, then & = {{1, 2}, {2, 3}, {1, 3}} is balanced,
where the dg are given by d; 5y = (5.4 = 0y 5 = &
Scarf’s theorem may now be stated as follows:

THEOREM 7. Let H = v(N). Assume that for every balanced collection
& of subsets of N, we have

N ((S) x EY~%) < u(N).
Ses

Then the core is non-empty.

The importance of this theorem may be illustrated by the fact that it
implies the existence of a competitive equilibrium in a market (cf. §8);
since the proof of Theorem 7 is ‘‘clementary” in the sense that it does
not involve fixed point theorems, it follows that the existence of
competitive equilibria may also be given an “‘elementary” proof.

6. VALUE

To motivate the notion of *“value” as used in game theory, we can do no
better than quote Shapley [49]: “At the foundation of the theory of games
is the assumption that the players of a game can evaluate, in their utility
scales, every ‘prospect’ that might arise as a result of a play.... One
would normally expect to be permitted to include, in the class of ‘prospects,’
the prospect of having to play a game. The possibility of evaluating games
is therefore of critical importance.”

The value problem has been treated for games with side payments and
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transferable utility (the N-M case) by Shapley [49] and Selten [48], and in
the no-side-payment case by Nash [21, 22], Harsanyi [9, 11, 12], Isbell
[17], Miyasawa [20], and Shapley [28]. In all treatments the value assigns
to each game one (or sometimes more than one) payoff vector. Often the
treatment proceeds from the normal rather than the characteristic function
form, and in at least one case [48] it proceeds direct from the extensive
form. Here we will confine ourselves to discussing the Shapley value, for
games in characteristic function form.

The Shapley value was defined for the N-M case in [49], as an imputa-
tion satisfying a certain set of axioms. It was proved to be unique, and was
shown to have the following probabilistic interpretation: The Shapley
value of player i is the expected value of the random variable f(S U {i}) —
f(S), where S is the set of players “before” i in a random ordering of all
the players, and f'is the N-M characteristic function. This definition clearly
depends on a numerical value for f, and it is not at all clear how it can be
generalized to a no-side-payment characteristic function as defined in §3.

Very recently Shapley [28] succeeded in giving an elegant definition of
his values in the no-side-payment case by means of a reduction to the N-M
case. His procedure is as follows: Let us be given a no-side-payment game
with characteristic function v, and let us imagine what would happen if we
were to allow side payments. We would then obtain an N-M game, and
this would have a Shapley value, say w = (w!, . .., w"). If it happens that
w € ¥(N), i.e., that the players can attain w without actually making side
payments, then w would be an excellent candidate for the Shapley value of
the original game. Suppose that we now re-scale the original game, i.e.,
multiply the payoff of each player i by some non-negative constant p’,
and then allow side payments. We would then obtain another N-M game
(generally different from the one discussed above), and this too would have
a Shapley value. Shapley proved that for an appropriate choice of the
scaling factors p‘, the Shapley value of the resulting N-M game is attain-
able by the players in the original (but re-scaled) no-side-payment game
without actually making side payments. The scaling factors can then be
eliminated and a Shapley value for the original (unscaled and no-side-
payment) game results. We use the indefinite article advisedly; the value
is no longer unique, because a number of different sets of scaling factors
may yield attainable outcomes.

To simplify the formal description, we adopt the convention that if x
and y are vectors, then xy denotes the vector whose ith coordinate is x*y".
For each vector p > 0, define a characteristic function v, from the given
one v by

v,(S) = {y € ES: there is an x € o(S) such that y < pSx}.

It may be verified that v, satisfies the axioms for a characteristic function.



41

A Survey of Cooperative Games without Side Payments

Now define an N-M characteristic function f by
£5(S) = max {3 y*: y € v,(S); (5
€S

it is not difficult to show, by using (4), that the maximum is attained. Let
w(p) be the Shapley value for f,. Then a pair (p, w) is called a valuation of
the original characteristic function v if p # 0, w(p) = pw, and w € »(N).
Shapley’s theorem is:

THEOREM 8. Every game has a valuation.

The first investigation of what amounts to a cooperative game without
side payments is due to Nash [21]; Nash’s “bargaining problem” is the
same thing as a 2-person game in characteristic function form, in the sense
of §3. Each such game has a unique valuation (p, w), in which w is the Nash
solution. Like the Nash solution in the 2-person case, the valuation in the
general case is derivable from a small number of abstract axioms [28].

7. THE BARGAINING SET M,*

In the context of the bargaining set, the object of interest is not a
payoff vector, but a payoff configuration, i.e., a pair consisting of a payoff
vector and a coalition structure (partition of the players into disjoint
coalitions). Furthermore the possibility that certain coalitions are “for-
bidden” (for example because of legal restrictions or communication
difficulties) is admitted. For the N-M case, M, is defined elsewhere in this
volume [37] as a set of payoff configurations enjoying certain stability
properties. Peleg [46] has proved that in the N-M case it is non-empty for
each choice of a coalition structure, i.e., for each coalition structure there
is a payoff vector such that the resulting pair is stable in the required sense.
Unlike the situation for Shapley values, it is here quite easy to generalize
the definition of M,’ to the no-side-payment case, and in fact this can be
done in two ways; the more appropriate of the two generalizations is
denoted M,*. However, the existence theorem does not generalize.

THEOREM 9. There is a 4-person game for which M, is empty (for
appropriate choice of coalition structure).

The example is due to Peleg [24]. A positive result obtained by Peleg in
the same paper is:

THEOREM 10. In a game in which only 2-player coalitions are permitted,
M} is non-empty for each coalition structure.

The proof makes use of the Eilenberg-Montgomery fixed-point theorem
[38].

8. GAMES WITH SIDE PAYMENTS BUT WITHOUT
TRANSFERABLE UTILITIES

Consider a game given by an N-M characteristic function f, i.e., a
numerical function defined on the set of all subsets of N satisfying the
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super-additivity condition
SEUDSAS)+AT) for SN T=¢.

Give this game the following interpretation: Each coalition S may go to a
“referee’” and receive exactly f(S) dollars, on condition that it has agreed
beforehand on how this money should be divided.

For each player i, let u,(b) be! the utility of player i for b dollars, in the
sense of N-M ([45, pp. 617-632]; also [19, pp. 12-38]). We will assume
that u, is bounded,® continuous, and strictly increasing in b. Define a func-
tion u from E¥ to itself by

u(x) = ux’) (6)

for all x € E¥N and i € N. Let v’ be the function defined on the subsets S of
N by

v'(S) = { y € ES: There is an x in EV such that
gsx‘ =f(S)and y < u'g(x)l. (7

Intuitively, v'(S) is the set of payoff vectors, expressed in terms of utilities,
that are attainable by the coalition S. However, v’ is not a characteristic
function in the sense of §3, because v'(S) may fail to be convex. We there-
fore replace v'(S) by its convex hull; intuitively, this means that the coali-
tion S will in general agree on a lottery that will determine the division of
the f(S) dollars, rather than agreeing on a specific division. We thus define
a function v by

v(S) = convex hull v'(S). (8)

Then v satisfies conditions (1)-(4) (where for convenience we take H= v(N);
it is of course neither compact nor polyhedral).

Suppose now that in the original game f, we exclude the possibility that
the players will use lotteries to divide the payoffs. In that case the utility
functions of the players become irrelevant, because their purpose is to
represent preferences between lotteries. To represent preferences between
actual sums of money (as distinguished from lotteries over such sums),
utilities are not needed, as the dollar amount is a perfectly good measure
for this purpose. And in fact, the reasoning leading to the N-M solution
is then valid when the payoffs are expressed in money. Therefore we may
calculate the N-M solutions (or the core, bargaining set, y-stable payoff
configurations, and so on) of the characteristic function f as given, express-
ing the result in dollar terms, and the intuitive validity of the result is not

¢ u; is determined only up to an additive and a positive multiplicative constant.
These constants may be chosen independently for the various players (indeed there is
no meaningful way of correlating them).

* The boundedness assumption is not strictly necessary but simplifies the discussion
considerably; moreover it is intuitively very acceptable (cf. Isbell [16], p. 360).
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based on any consideration of “linear utility,” “transferable utility,”
“comparable utility,”” or indeed any utility whatsoever.

All this is based on the assumption that probabilistic considerations are
for some reason excluded. If they are admitted, then utilities become
relevant and indeed crucial; we must therefore replace the function f by
the function v defined in (7) and (8), and use the corresponding definition of
solution (§4). The question then arises: What is the relation, if any,
between the solutions to f and the solutions to v?

THEOREM 1. If the utility functions u; are concave, then a subset F of
EY is a solution to f if and only if u(F) is a solution to v.

Theorem 11 asserts that if the utility functions are concave, then the
same utility distributions—and so also the same money distributions—
result when the characteristic function of §3 is used rather than the original
N-M characteristic function. It follows that for the validity of solution
theory as described in [45] it is not necessary to assume that utilities are
linear in money, as is usually supposed,® but only that they are concave.
The concavity assumption is an eminently reasonable one, and is often
made in the literature.

The theorem is intuitively not surprising, because concave utilities mean
that the players never prefer a gamble to its expectation, and hence the
function v does not offer them different possibilities than the function f.
The proof is very simple. From the concavity of the u; it follows that
v’ = v, and hence u is a domination-preserving 1-1 correspondence from
the space I, of imputations in the game f onto the corresponding space
H,, for v. Theorem 11 follows from this property of u.

It is rather curious that for simple games f (i.e., f taking the values 0 and
1 only), a result superficially similar to Theorem 11 holds in the diametric-
ally opposed case, when the utility functions are all convex (i.e., the players
always like a gamble at least as well as its expectation). Assume the utility
functions are normalized so that «,(0) = 0 and u,(1) = 1. Then (in general)
u(l;,) # H,, and hence u does not provide a correspondence between I,,
and H,,; but I;; and H,, are formally equal, and the identity is a domination
preserving 1-1 correspondence between them. Here again, the result is
easy to understand intuitively: a coalition of these gamblers will never split
the money, always preferring a lottery in which one member gets all with a
certain probability; the probabilities in the solutions to v then correspond
to sums of money in the solutions to f.

Is there always a domination-preserving 1-1 correspondence between
I,, and H;,? The answer is no. Consider the 3-person simple majority
game (f(S) = 0 or 1 according as S has one or more members). Let the
utility functions be the piecewise linear functions graphed in Figure 5.

¢ cf. the quotation from Luce and Raiffa in §2.
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H,, is pictured in Figure 6. A 1-1 domination-preserving mapping from
H,, onto I;, would have to take both the points (3, },4) and (}, 1, 3
of H,, onto the point (}, {, §) of I, an absurdity (parentheses and com-
mas are omitted in the figures and henceforth in the text).

We close this section with an example of what happens when a pessimist
(concave utility) plays a simple majority game with two optimists (convex

FIGURE 6, PART I
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FIGURE 6, PARrT II

utility). Let f be as in the previous paragraph, and let the utility functions
be as graphed in Figure 7. The 3-point solution of f is 430, 104, 044, it
being understood that the coordinates of the vectors in the solution are
expressed in dollars. This solution applies when lotteries are excluded.
When lotteries are admitted, we must pass from £ to v. u(l,;) is pictured in
Figure 8; it may be seen that H,, is formally equal to I;,. Hence v also has
the 3-point solution 110, 404, 044, but this time the coordinates of the

uy(b) u,(b) = ub)

roj—
Sivs

Ny
i

FIGURE 7
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vectors are expressed in utility units rather than in dollars. If we translate
back into dollars, we find that the solution is 30, 0%, 031. The point 03
cannot be attained by a distribution of money, but is attained by a }-}
lottery for f(23) between players 2 and 3. However, }30 is attainable by a
distribution of the sum f(12), without recourse to lotteries. It follows that
if the coalition 12—consisting of the pessimist and an optimist—forms,

wd

001

L

1C0

o0 U(I|g)

FIGURE 8

then the willingness of the optimist to take risks puts the pessimist at a
very considerable material disadvantage, even though in the end no risks
are taken by either player.

If all the points of the solution of v had been attainable without recourse
to lotteries, then this phenomenon would not have occurred. This follows
from the fact that in an arbitrary n-person game, if a solution V of v is
included in u(I,), then u=(V) solves f. The proof is an easy consequence of
Theorem 1.

The results of this section, hitherto unpublished, are the outcome of
conversations between M. Maschler and the author. Though they are not
deep, they shed light on the relation between utilities and n-person games.
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9. MARKET GAMES

Recently a good deal of attention has been paid to market games, which
are in fact cooperative games without side payments, essentially in charac-
teristic function form. The game-theoretic tool most significant in this
connection is the core; it has been shown that for markets with “many”
traders (this notion has been formalized in a number of different ways) the
notion of core is essentially equivalent to that of Walrasian “competitive
equilibrium.” Under certain conditions it appears that Shapley’s valuation
(see §6) is closely connected with the competitive equilibrium as well.
Finally, Scarf’s core-theorem (Theorem 7) yields the non-emptiness of
the core of a market game under wide conditions, and by using this an
“elementary” existence proof for the competitive equilibrium can be
obtained. For details, the reader is referred to the original papers
(Debreu and Scarf [8], Aumann [4, 34], Vind [32], Shapley [28], Scarf
[27D.

10. THE NORMAL FORM

The passage from the normal to the characteristic function form is not
without its pitfalls. Even in the case of games with side payments and
transferable utility (the N-M case), it is not generally agreed that the
characteristic function as derived from the normal form by von Neumann
and Morgenstern adequately represents the game; this is chiefly because
for games that are not constant-sum, it does not always take adequate
account of threats. Nevertheless the N-M definition is useful for some
purposes, and we now examine how it can be generalized to the no-side-
payment game.

In the N-M case, if f'is the characteristic function and S is a coalition,
then f(S) is the maximum amount that S can guarantee itself; by
the minimax theorem N — S can prevent S from getting more. Here
these two approaches—what S can guarantee itself, and what N — S can
prevent—are no longer equivalent. We write down definitions correspond-
ing to both approaches.’

v,(S) = the set of all payoff S-vectors x such that §
can guarantee that it will get at least x.

v4(S) = the set of all payoff S-vectors x such that N — §
cannot prevent S from getting at least x.

By “getting at least x”* we mean getting an amount that is at least x* for
each player i; and by “can guarantee” or ‘‘can prevent” we mean the
existence of a single (correlated) strategy that guarantees or prevents,
independent of the actions of the other players.

? These definitions were first explicitly given in [5].
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When side payments are allowed,
0(S) = 0)(S) = [x € E%: T %' < f(9)),

where f(S) is the N-M value of S. That v, and v, are in general different is
seen by means of the 3-person game,?

1,-1[ 0,0

0, o’ —1,1

where the rows represent strategies of the coalition {1, 2}, the columns
represent strategies of player 3, and the entries are payoff {1, 2}-vectors
(the payoffs to player 3 are irrelevant). A picture of v,({1, 2}) and vy({1, 2})
is given in Figure 9.

(-1,0)
\\‘\\
N 27077 vg(S)
§ a
(0,-n NN vg(S)
FIGURE 9

Whether the a-notion or the f-notion is preferable is a matter of taste.
Both satisfy the axioms for characteristic functions [3]; that is an advan-
tage of the axiomatic treatment. The «-notion seems to be intuitively more
appealing, but as we shall see the S-notion has a certain technical advan- -
tage.

Some authors have considered the discrepancy between v,(S) and v,4(S)
to be a disturbing phenomenon. We noted above that v,(S) = v,(S) for
games with transferable utility side payments. Jentzsch [18] has investi-
gated the possibility of obtaining a wider class of games with the same
property. The general tenor of his result is negative, i.e., v, and v cannot
be expected to coincide unless one is talking about games that to start
with are very similar to games with transferable utility side payments. To
give a more precise description of his result, let us for the moment fix
attention on a single coalition S. If we are interested in this coalition only,
then in the (transferable utility) side-payment case we can substitute the
following ‘“‘adjusted normal form™ for the usual, normal form: The
“adjusted normal form” is a matrix whose rows are pure strategies of S,

8 See Jentzsch [18] and Aumann [3].



49

A Survey of Cooperative Games without Side Payments

whose columns are pure strategies of N — S, and whose entries are the
total payoff to S for the appropriate strategy n-tuples. What this really
means is that after S and N — § have chosen strategies, S can pick any
vector whose sum does not exceed the entry (the redistribution is made
possible by the side payments). Use of mixed (i.c., correlated) strategies
on the parts of S and N — S will yield a numerical payoff for S which is
the appropriate mixture of the pure payoffs, and which S can also allocate
between its members as it sees fit. It is exactly the “value” of this adjusted
normal form, when considered as a 2-person O-sum game, that gives the
N-M characteristic function f(S).

The adjusted normal form can be generalized to cover games with non-
transferable utility side payments. Suppose that a pair (p, ¢) of strategies
(of S and N — S) yields a payoff S-vector x. By the use of side payments,
S can redistribute the income from x among its members, but because
utility is not assumed to be transferable, total utility will not be conserved
in the redistribution. The set of all payoff S-vectors that can be obtained
from x by means of redistributions of this kind will be a subset of ES that
satisfies conditions (1) and (2) for characteristic functions (closedness,
convexity, unboundedness towards the southwest); such subsets of ES
will be called S-catalogues, or simply catalogues.® The adjusted normal
form for games with nontransferable utility side payments is thus a matrix
whose entries are catalogues rather than numbers. As in the previous case,
it is possible to consider mixed outcomes, corresponding to mixed strate-
gies: a mixture of two catalogues (with specified probabilities) is simply
the set of mixtures of its members (with the same probabilities), and is itself
a catalogue.

If we now restrict the catalogues in the entries to be half-spaces of the
form Zx' < k, then we are back in the transferable utility case, and it
follows that v,(S) = vy(S). Jentzsch asked whether we could not still assure
v4(S) = v4(S) by imposing a weaker restriction on the catalogues that
appear in the adjusted normal form. More precisely, consider a family
& of S-catalogues; let us call a game adjusted to F if in its adjusted normal
form, all payoffs—including the mixed ones—are in #. Then what con-
ditions must be placed on & in order to ensure that for every game that is
adjusted to F, we have v,(S) = v,(S)?

Let us call an & for which this holds determinate. Jentzsch showed that
the condition of being determinate is a very strong one:

THEOREM 12. Let us call a catalogue F regular if it has a supporting
hyperplane in each positive direction,® and assume that every member of

* Presumably because you can pick from them whatever you want.

1 Le., for each vector x with positive coordinates, there is a hyperplane that supports
# and is perpendicular to x. Figure 2 illustrates a regular catalogue, and Figure 1
illustrates one that is not regular.
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F is regular. If & is determinate, then of every three members of F, one
is a probability mixture of the other two (and in particular lies between the
other two).

The theorem does not apply directly to the N-M case, because half-
spaces are not regular. But in all practical cases side payments are limited,
and this makes the catalogues regular and the theorem applicable.

Since the motivation for this work derives from an analysis of games
with side payments but without transferable utility, it is natural to ask for
conditions on the utility functions u; of the players i in S that will lead to
games for which! v,(S) = vy(S). Suppose, for example, that the utility
function of each player for a (positive) amount of money b is that suggested
by Bernoulli, namely log 5. Then if S has a total amount of money d to
divide between its members (d positive), the resulting catalogue is

[y e ES: Zexp () < d),
€S

where exp is the exponential function (exp (b) = €®). Jentzsch remarked
that it can be shown from his results that the family of all such catalogues,
as d varies, is determinate. This means that in side-payment games played
by players all of whom have the utility function log b, we have v,(S) =
v4(S).

ﬁWhat other S-tuples of utility functions have this property? This ques-
tion was answered by B. Peleg in [25]. It turns out that there are very few
of them. His chief result is as follows: Suppose that the utility functions of
the players i in S are concave and have the property that v,(S) = v4(S) in
any game in which these players participate, providing that the players
all have personal minima of 0 (i.e., v({i}) = v4({i}) = (— 0, 0]). Then
either u(b) = log b for all i in S, or there is a 4 obeying 0 < 4 < 1 such
that for all i in S, u,(b) = b*, or there is a 1 obeying A < 0 such that for all
iin S, u(b) = —>b*. This underscores the fact that equivalence between the
a- and the B-notions is a very rare event.

The concepts we have described may be applied to supergames, i.e.,
long sequences of plays of a cooperative game without side payments. We
look for stable behavior in such games. There are two ways of approaching
this problem. One is to treat the entire supergame as a single game, and use
stability criteria appropriate for a single game. The other way is to specu-
late as to what kind of behavior in the individual plays constituting the
supergame would lead to stability in the long run. Now if we are going to
follow the first method, then one of the concepts we could use would be
Nash’s equilibrium point [44]. Recall that this is a strategy n-tuple, or

1! This question is not connected with that investigated in §6, where the characteristic
function was given and there was no question of mixed strategies and of the difference
between v, and v;.
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“point,” such that no individual can gain by deviating from it, while the
others retain the same strategies they were previously using. Since we are
discussing cooperative games, it would be more appropriate to consider a
point such that no coalition can gain by deviating from it while the others
retain the same strategies. Let us call such a point a strong equilibrium
point.

Let us now try the other approach. If a coalition is expecting more plays,
then the question of whether it can improve its lot for fixed strategies of
the other players becomes irrelevant, because the other players will not
keep their strategies fixed, but will take counteraction on subsequent plays.
The question is: when can a coalition be sure of a higher payoff ? Obviously
some kind of core notion is involved here; the surprising fact is that it is
not the core according to the a-notion but rather according to the S-notion.

THEOREM!'? 13.  The f-core of a game coincides with the set of payoff
vectors to strong equilibrium points in its supergame.

This is the “technical advantage™ of the S-notion to which we pre-
viously referred.

We outline the proof of this theorem. For this purpose we should first
define the payoff in the supergame. But the precise definition is complicated
and not important at the moment; the general idea is that the payoff to a
superplay is some kind of average of the payoffs to the individual plays,
and this is all that we shall need.

First suppose that x is in the S-core of the game (because of Theorem 5
we do not have to specify which one of the f-cores). We will build a strong
equilibrium point whose payoff is x. Now it is possible to prove!® from the
definition of v, and with a little fussing that to say x € f-core is equivalent
to saying that each coalition can prevent its complement from getting more
than it (the complement) does at x.

This being the case, let us construct a strong equilibrium point as
follows: First find a correlated strategy n-tuple whose payoff is x; call this
c¥. Next, for each coalition S, let ¢® be a correlated strategy for S that
prevents the complement of S from obtaining more than it does at x. Now
each player adopts the following strategy in the supergame: He starts out
by proposing ¢ for the first play, and continues to propose this, play after
play, as long as the other players agree. If, however, there is a set of
players that disagree—let us call them “‘disloyal” players—then our player
will propose ¢5, where S is the set of loyal players. Once a player has
become disloyal, he will no longer be accepted in the set of loyal players.
The result is that if everybody plays along with this equilibrium point,
then x is the result, but if some set of players does not, then eventually

1* First proved in [1]. For a description that is more precise than the present one and
more readable than that of [1], see the end of [3]; but no proof is sketched there.
13 Cf. Lemma 9.1, p. 304 of [1].
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each of its members will be found in the disloyal set; from then on all the
loyal players S will be playing ¢’ against the disloyal players, and by the
definition of ¢® at least one disloyal player i will get no more than x*. This
shows (modulo some glossed-over difficulties) that the -core is a subset
of the strong equilibrium payofis.

Conversely, suppose that x is not in the S-core; then it is f-dominated.
This means that there is a coalition S and a y € ES such that N — S cannot
prevent S from getting y, and y > x°. Suppose there were a strong equili-
brium point fin the supergame whose payoff is x. Let f¥ =5 denote the part
that N — S has in f, i.e., an (N — S)-tuple of strategies in the supergame,
one for each member of N — S. On the first play /¥ ~% dictates a certain
set of strategies in N — S. For this set of strategies, there exists a strategy
for S which yields at least y (this is what is meant by saying that N — §
cannot prevent S from getting at least y). On the second play, f* % again
dictates a strategy set for N — S, based on the history of the previous play.
For this strategy, there again exists a strategy for S that yields at least y;
it may be different from the strategy of S on the first play. We can continue
in this way; no matter what f¥ =5 dictates, there exists a strategy for S that
yields at least y on every play. Since y > x5, this shows that by deviating
from f, S can gain, so f cannot be a strong equilibrium point.

This last part of the proof has a curious flavor, because of course S
cannot know which supergame strategy N — S is using. However, it does
definitely prove that f cannot be in equilibrium, which really involves
nobody wanting to deviate even if he knows what the others are playing.
Theorem 13 is related to Blackwell’s work on games with vector payoffs [6].

The Zermelo-von Neumann-Kuhn theorem about pure-strategy equili-
brium points in games of perfect information has the following analogue
for supergames of cooperative games with side payments.

THEOREM 14. If the supergame of a game of perfect information has -
any strong equilibrium points at all, then it also has strong equilibrium
points which involve only pure strategies.*

In §6, we discussed the close connection between no-side-payment
characteristic functions and Nash’s bargaining problem [21], and pointed
out that Shapley’s valuation generalizes Nash’s solution to the bargaining
problem. Nash followed up the work in [21] by a paper on 2-person games
in normal form [22], for which he proposed a ‘‘value” taking threat
possibilities into account. This work was generalized by Raiffa in [26],
but he too treated only 2-person games. The problem of defining a value
for n-person games (both with and without side payments) that will take
threats into account has been treated by several authors (cf. §6). Isbell [16]
has constructed a theory of games without side payments that parallels
the N-M solution theory but takes threat possibilities into account.

14 For the precise statement and proof see [2].
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11. HISTORICAL REMARKS

Shapley and Shubik [29] were the first to suggest that N-M solu-
tions could be defined even in the absence of a transferable utility.
Their definition of dominance is very similar to ours; but rather than
explicitly using a characteristic function, it depends directly on the a-

notion. Shapley and Shubik imply that they must have (nontransferable

utility) side payments to make their definition work, but actually it is
perfectly general. They proved no theorems, confining themselves to
general definitions.

Luce and Raiffa [19, p. 234] also gave a definition of dominance and
solution for cooperative games without side payments. Their definition
has some restrictive and complicating features, which in the light of later
work turn out to have been unnecessary. They, too, proved no theorems,
mentioning that “next to nothing is known about these definitions.”

Functions that are very similar in form to the characteristic functions of
§3 were first described by Isbell [16, 17]. He called them end-games, and
used them to characterize, for each given payoff vector, the redistributions
of utility that are made possible by means of nontransferable utility side
payments. This use is related to Jentzsch’s catalogues rather than to the
development of §3; the latter is due to Aumann and Peleg [5]. The form of
v in this survey differs slightly from that in [5]; the (S) of [5] would be
¥(S) X E¥~5 in the notation of this paper.

Other historical references may be found in the body of the paper.
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