72 Orderable Set Functions and Continuity III: Orderability and Absolute Continuity with U. Rothblum

- 1. Introduction. This paper is one of a series of studies (cf. [1], [5], [6]) in which orderability and various continuity notions for set functions are investigated and related to each other. Throughout we assume familiarity with the concepts summarized in § 2 of [6]. Our main result (§ 5) concerns the absolute continuity of set functions (see [1, § 5] or § 2 of this paper). In [1, Prop. 12.8] it was shown that every absolutely continuous set function is orderable; here (§ 5) we construct an example to show that the converse is false. The example is a function of two nonatomic measures, and is in a sense "simplest possible": In § 4 we show that for functions of a single nonatomic measure, orderability and absolute continuity are equivalent.
- 2. Notations and definitions. We refer the reader to § 2 of [6] for a summary of some notations and definitions from [1] and [5] that will be used in this paper. Familiarity with the above section will be assumed throughout our discussions.

For x in the Euclidean space E^n , ||x|| will always mean the summing norm, i.e., $||x|| = \sum_{i=1}^{n} |x_i|$. If $x, y \in E^n$, write $x \le y$ if $x_i \le y_i$ for all i. If μ is a vector measure (μ_1, \dots, μ_n) , then $\sum \mu$ will denote $\sum_{i=1}^{n} \mu_i$.

We next summarize some definitions and conventions from [1] which were not used in [6] and will be needed in this paper. The norm on BV is the *variation norm*, defined by

 $||v|| = \inf \{u(I) + w(I) | u - w = v, \text{ where } u \text{ and } w \text{ are monotonic}\}.$

A chain is a nondecreasing sequence of sets of the form $\emptyset = S_0 \subset S_1 \subset \cdots \subset S_n = I$. A link of this chain is a pair of successive elements. A subchain is a set of links. A chain will be identified with the subchain consisting of all links. If v is a set function and Λ is a subchain of a chain, then the variation of v over Λ is defined by $\|V\|_{\Lambda} = \sum |v(S_i) - v(S_{i-1})|$, where the sum ranges over $\{i | \{S_{i-1}, S_i\} \in \Lambda\}$. For a fixed Λ , $\|\cdot\|_{\Lambda}$ is a pseudonorm on BV, i.e., it enjoys all the properties of a norm except $\|v\|_{\Lambda} = 0 \Rightarrow v = 0$. It is known (see [1, Prop. 4.1]) that for every $v \in BV$, $\|v\| = \sup \|v\|_{\Lambda}$, where the supremum is taken over all subchains Λ . It is also known that

Received by the editors August 14, 1975. This work was supported by the National Science Foundation under Grant GS-3269 at the Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, California.

This chapter originally appeared in SIAM Journal on Control and Optimization 15(1): 156–162. © 1977 by The Society for Industrial and Applied Mathematics. All rights reserved. Reprinted with permission.

the linear subspaces M, NA, WC and ORD are closed subspaces of BV [5, Prop. 4.2 and 4.3].

A set function v is said to be absolutely continuous with respect to a set function w (written $v \ll w$) [1, p. 35] if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every chain Ω and every subchain Λ of Ω , $||w||_{\Lambda} \leq \delta$ implies $||v||_{\Lambda} \leq \varepsilon$. Note that this relation is transitive, and that if v and w are measures, it coincides with the usual notion of absolute continuity. A set function is absolutely continuous if there is a measure $\mu \in NA^+$ such that $v \ll \mu$. The set of all absolutely continuous set functions forms a closed linear subspace of BV [1, Prop. 5.2], denoted AC. Finally, pNA denotes the closed subspace of BV spanned by all powers of nonatomic measures.

3. Weak continuity and absolute continuity. A real-valued function on a subset of E^n is said to be monotonically absolutely continuous if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $x_1 \leq y_1 \leq x_2 \leq \cdots \leq x_n \leq y_n$, then

$$\sum_{i=1}^{n} \|y_i - x_i\| \leq \delta \Rightarrow \sum_{i=1}^{n} |f(y_i) - f(x_i)| \leq \varepsilon.$$

If the domain of f is one-dimensional, then monotonic absolute continuity coincides with the usual absolute continuity.

PROPOSITION 1. Let μ be an n-dimensional σ -additive measure whose components are in NA⁺ and are mutually singular. Let f be a real-valued function on the range of μ with f(0) = 0. Let $v = f \circ \mu$. Then $v \ll \sum \mu \Leftrightarrow f$ is monotonically absolutely continuous.

Proof. The direction \Leftarrow is obvious. To prove the direction \Rightarrow , recall Lyapunov's theorem [4], according to which the range of a nonatomic σ -additive vector measure is convex and compact. From this and the mutual singularity it follows that if $x_1 \leq y_1 \leq x_2 \leq \cdots \leq x_n \leq y_n$, then there exist $S_1, T_1, \cdots, S_n, T_n$ in $\mathscr E$ such that $\mu(S_i) = x_i$, $\mu(T_i) = y_i$, and $S_1 \subseteq T_1 \subseteq \cdots \subseteq S_n \subseteq T_n$, completing the proof of Proposition 1.

PROPOSITION 2. Let $v \in BV$ and μ , $\xi \in M^+$. If $v \ll \xi$, then $v \leqslant \mu$ if and only if $v \ll \mu$.

Proof. Sufficiency of the condition is obvious. To see the necessity, let $\xi = \xi^{ac} + \xi^{\perp}$ be the Lebesgue decomposition of ξ with respect to μ , i.e., ξ^{\perp} and ξ^{ac} are nonnegative measures such that $\xi^{ac} \leq \mu$ and $\xi^{\perp} \perp \mu$ [3, Thm. C, p. 134]. Let $A \in \mathscr{C}$ be such that $\xi^{\perp}(A) = 0$ and $\mu(I \setminus A) = 0$.

We shall show that $v \ll \xi^{ac}$, and since $\xi^{ac} \ll \mu$ it will follow that $v \ll \mu$. Let $\delta > 0$ correspond to a given ε in accordance with the absolute continuity $v \ll \xi$; i.e.,

(3.1) for any subchain
$$\Lambda$$
, $\|\xi\|_{\Lambda} \leq \delta \Rightarrow \|v\|_{\Lambda} \leq \varepsilon$.

We shall prove that $v \ll \xi^{ac}$ by showing that

(3.2) for any subchain
$$\Lambda$$
, $\|\xi^{ac}\|_{\Lambda} \leq \delta \Rightarrow \|v\|_{\Lambda} \leq \varepsilon$.

If we intersect each set in each link of Λ with A then we get a subchain Λ^* such that $\|\xi\|_{\Lambda^*} = \|\xi^{ac}\|_{\Lambda} \le \delta$, and therefore by (3.1), $\|v\|_{\Lambda^*} \le \varepsilon$. But because $v \le \mu$ and $\mu(I \setminus A) = 0$, it follows that $\|v\|_{\Lambda} = \|v\|_{\Lambda^*} \le \varepsilon$. This proves (3.2).

COROLLARY 1. Let $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ be an n-dimensional vector of measures in NA⁺. Let f be a real-valued function on the range of μ , such that $v = f \circ \mu \in BV$. Then $v \in AC$ if and only if $v \ll \sum \mu$.

Proof. Sufficiency of the condition is obvious. To verify the necessity note that $f \circ \mu \leq \sum \mu$ and use Proposition 2.

COROLLARY 2. Let $v = f \circ \mu$, where $\mu \in NA^+$; then $v \in pNA$ if and only if $v \in AC$.

Proof. The fact that pNA \subseteq AC has been proved in [1, Cor. 5.3]. Now let $f \circ \mu \in$ AC. Then by Corollary 1, $f \circ \mu \ll \mu$, and hence by Proposition 1 and Theorem C in [1], $f \circ \mu \in$ pNA.

COROLLARY 3. The inclusions BV ⊇ WC ⊇ AC are strict.

Proof. The unanimity game v defined by

$$v(S) = \begin{cases} 1, & S = I, \\ 0, & \text{otherwise,} \end{cases}$$

shows that BV \neq WC. Next, let λ be Lebesgue measure, and let g be the Cantor function, which is not absolutely continuous; then $g \circ \lambda \in$ WC, and by Propositions 1 and 2, $g \circ \lambda \notin$ AC.

4. Ordered absolute continuity. Let \mathcal{R} be a measurable order. A chain $\emptyset = S_0 \subseteq S_1 \subseteq \cdots \subseteq S_m = I$ is called an \mathcal{R} -chain if all the S_i are \mathcal{R} -initial segments. Note that an \mathcal{R} -chain is defined by a finite sequence of elements in I, $\infty \stackrel{\mathcal{R}}{=} s_m \stackrel{\mathcal{R}}{=} \cdots \stackrel{\mathcal{R}}{=} s_0 = -\infty$, such that $I(s_i, \mathcal{R}) = S_i$.

If v and w are in BV, then v is said to be ordered absolutely continuous with respect to w (written $v \leqslant w$), if for every measurable order \mathcal{R} and $\varepsilon > 0$ there exists a $\delta > 0$ such that for every \mathcal{R} -chain Ω and every subchain Λ of Ω , $||w||_{\Lambda} \leq \delta$ implies $||v||_{\Lambda} \leq \varepsilon$. Note that the relation is transitive.

PROPOSITION 3. Let $v \in BV$, $\mu \in M^+$. Then v is ordered absolutely continuous with respect to μ if and only if $v \in ORD$ and $v \le \mu$.

Proof. First assume that v is ordered absolutely continuous. It is easily verified that this implies $v \le \mu$. Using the argument of the proof of Proposition 12.8 of [1] we obtain that $v \in ORD$. This completes the proof of one direction.

To prove the second direction, let us assume $v \le \mu$ and $v \in ORD$. By [5, Thm. 3.2], we know that $v \le \mu$ implies that $\varphi^{\mathcal{R}}v \le \mu$ for all measurable orders \mathcal{R} . Recall that weak continuity and absolute continuity between members of M coincide [2, § III. 4.3, p. 131]; hence $\varphi^{\mathcal{R}}v \ll \mu$ for all measurable orders \mathcal{R} . But then it follows that $v \ll \mu$.

A set is said to be *ordered absolutely continuous* if there is a measure $\mu \in NA^+$ such that v is ordered absolutely continuous with respect to μ . The set of all ordered absolutely continuous functions in BV is denoted OAC.

¹ Cf. [1, Thm. C].

² One may extend this theorem and require only $\mu \in M$, and not $\mu \in M^+$. This would slightly complicate the proof.

In Proposition 12.8 of [1] one assumes $v \ll \mu$ and obtains in addition to $v \in ORD$, also that $\varphi^{\mathcal{R}}v \ll \mu$ uniformly in \mathcal{R} . Here we assume only $v \ll \mu$, and can also obtain $\varphi^{\mathcal{R}}v \ll \mu$, but not uniformly.

COROLLARY 4. ORD∩WC = OAC

COROLLARY 5. OAC is a closed linear subspace of BV.

Remark. One may conjecture that if $v \in ORD$ and every point in I is v-null then there exists a measure $\mu \in NA^+$ such that $v \leq \mu$. If this is true then clearly it should yield that OAC equals the set of all set functions in ORD for which every point is null.

PROPOSITION 4. Let $v = f \circ \mu$, where $\mu \in NA^+$; then $v \ll \mu$ if and only if $v \ll \mu$.

Proof. If $v \ll \mu$, then trivially $v \ll \mu$. Assume now that $v \ll \mu$. By Proposition 3, $v \in \text{ORD}$ and $v \ll \mu$. Let \mathcal{R} be an arbitrary fixed measurable order, then by [5, Thm. 3.2], $\varphi^{\mathcal{R}}v \ll \mu$. Since weak continuity and absolute continuity between totally finite measures coincide, it follows that $\varphi^{\mathcal{R}}v \ll \mu$. For a given ε , let δ be given in accordance with the absolute continuity $\varphi^{\mathcal{R}}v \ll \mu$; i.e., for every subchain Λ ,

$$\|\mu\|_{\Lambda} \leq \delta \Rightarrow \|\varphi^{\mathcal{R}}v\|_{\Lambda} \leq \varepsilon.$$

We shall show that $v \ll \mu$ by showing that for every subchain Λ ,

Let Λ be a subchain satisfying $\|\mu\|_{\Lambda} \leq \delta$ whose links are $\{S_j, T_j | 1 \leq j \leq m\}$, where $\emptyset \subseteq S_1 \subseteq T_1 \subseteq S_2 \subseteq \cdots \subseteq S_m \subseteq T_m \subseteq I$. Let

$$\bar{S}_j = \bigcap \{ I(s, \mathcal{R}) | s \in I, \, \mu(I(s, \mathcal{R})) > \mu(S_j) \},$$

$$\bar{T}_j = \bigcap \{ I(s, \mathcal{R}) | s \in I, \, \mu(I(s, \mathcal{R})) > \mu(T_j) \}.$$

By [1, Lem. 12.15] it follows that for $1 \le j \le m$, \bar{S}_j , \bar{T}_j are measurable and that

(4.3)
$$\mu(\bar{S}_j) = \mu(S_j) \quad \text{and} \quad \mu(\bar{T}_j) = \mu(T_j).$$

Note also that \bar{S}_j and \bar{T}_j are \mathcal{R} -initial sets; hence, by [6, Lem. 2], it follows that for $1 \le j \le m$,

$$(4.4) (\varphi^{\mathcal{R}}v)(\bar{T}_i) = v(\bar{T}_i) \text{and} (\varphi^{\mathcal{R}}v)(\bar{S}_i) = v(\bar{S}_i).$$

Let $\bar{\Omega}$ be the chain $\emptyset \subseteq \bar{S}_1 \subseteq \bar{T}_1 \subseteq \bar{S}_2 \subseteq \cdots \subseteq \bar{S}_m \subseteq \bar{T}_m \subseteq I$ and let $\bar{\Lambda}$ be a subchain of $\bar{\Omega}$ whose links are $\{\bar{S}_j, \bar{T}_j\}$, $1 \le j \le m$. Note that (4.3) implies that $\|\mu\|_{\bar{\Lambda}} = \|\mu\|_{\Lambda} \le \delta$. Hence, by (4.1), $\|\varphi^{\mathcal{R}}v\|_{\bar{\Lambda}} \le \varepsilon$, and therefore (4.4) and (4.3) imply that

$$\varepsilon \ge \|\varphi^{\mathcal{R}}v\|_{\bar{\Lambda}} = \|v\|_{\bar{\Lambda}} = \sum_{j=1}^{m} |f(\mu(\bar{T}_{j})) - f(\mu(\bar{S}_{j}))|$$
$$= \sum_{j=1}^{m} |f(\mu(T_{j})) - f(\mu(S_{j}))| = \|v\|_{\Lambda}.$$

We have established (4.2), thus completing the proof of Proposition 4. COROLLARY 6. Let $v = f \circ \mu$ where $\mu \in NA^+$; then

$$v \in AC \Leftrightarrow v \ll \mu \Leftrightarrow v \in OAC \Leftrightarrow v \ll \mu \Leftrightarrow v \in ORD \Leftrightarrow v \in pNA.$$

Proof. The above follows from Proposition 2, Corollary 2, Proposition 3 and Proposition 4.

Remark. It clearly follows from Corollary 6 that if we wish to construct an example of the form $v = f \circ \mu$ that is in ORD\AC, then μ has to be at least two-dimensional.

5. ORD includes AC strictly. It was proved in [1, Prop. 12.8] that ORD \supseteq AC. We are now going to construct an example of a set function in ORD that is not in AC.⁴ The example that we are going to describe appears, in a different context, at the beginning of § 9 in [1]. For each $k \ge 2$ let $A_k \subset [0, 1]^2$ be the parallelogram whose vertices are: $(2^{-k}, 0), (2^{-k} + 4^{-k}, 0), (2^{-k+1} + 4^{-k}, 1)$ and $(2^{-k+1}, 1)$ (see Fig. 1). Define a nondecreasing continuous function f on the square such that for $x \in A_k$,

$$f(x) = f(x_1, x_2) = 2^k x_1 + 2^{-k+1} - 1;$$

for x between A_k and A_{k-1} ,

$$f(x) = 2^{-k+1} + x_2 + \frac{(x_1 - 2 \cdot 4^{-k})}{(1 - 2^{-k} + x_2)};$$

for x to the right of A_2 let f be defined by the same formula that defines f on A_2 , i.e., $f(x) = 4x_1 - 1/2$; and finally for $x_1 = 0$ let $f(x) = x_2$. Let μ be any 2-dimensional vector measure on (I, \mathcal{C}) , whose range if $[0, 1]^2$. We shall show that $v = f \circ \mu \in ORD \setminus AC$.

To show that $v \notin AC$, let

$$(2^{-k}, 0) = x_1^k \le x_2^k \le \cdots \le x_n^k = (2^{-k+1}, 1)$$

be a "staircase" sequence of points in A_n , i.e., each point differs from the preceding one in one coordinate only (see Fig. 1). On the vertical segments of this sequence, f does not change; all the change is concentrated on the horizontal segments. But the total length of the horizontal segments goes to 0, whereas the total change in f is 1. Therefore f is not monotonically absolutely continuous,

⁴ One can easily see that by "smoothing" our example one can get a set function in MIX [1, § 13] that is not in AC.

therefore $f \circ \mu$ is not absolutely continuous with respect to $\Sigma \mu$ (Proposition 1), and therefore $f \circ \mu \notin AC$ (Corollary 1).

Let us now prove that $v \in ORD$. Set $\mu = \mu_1 + \mu_2$. We shall show that v is ordered absolutely continuous with respect to μ , and then use Proposition 3. Let \mathcal{R} be a fixed measurable order. For a given $\varepsilon > 0$ we may choose a $1 > \delta_1 > 0$ such that

$$(5.1) ||x - y|| \le \delta_1 \Rightarrow |f(x) - f(y)| \le \varepsilon/2.$$

This is possible because of the uniform continuity of f in $[0, 1]^2$.

Let J_1 denote the intersection of all \mathcal{R} -initial segments of μ_1 -measure >0. By [1, Lem. 12.15] it follows that J_1 is measurable and $\mu_1(J_1) = 0$. Let J denote the intersection of all \mathcal{R} -initial segments of μ -measure $> \mu(J_1) + \delta_1$. By the same lemma⁵ we mentioned before, it follows that J is measurable and $\mu(J) = \mu(J_1) + \delta_1$, therefore $J \supseteq J_1$. Finally, observe that $\|\mu(J) - \mu(J_1)\| = \delta_1$; hence by (5.1) it follows that $|v(J) - v(J_1)| \le \varepsilon/2$.

Now let p be an integer ≥ 2 such that $2^{p-1} \geq 1/\mu_1(J)$. Note that p depends only on \mathcal{R} and ε . One can easily verify that f fulfills a Lipschitz condition on $\{x \in [0, 1]^2 | x_1 \geq \mu_1(J) \}$ with constant 2^p , i.e., $\|f(y) - f(x)\| \leq 2^p \|x - y\|$; this implies that if S, $T \in \mathcal{E}$ and $J \subseteq S \subseteq T$, then $\|v(T) - v(S)\| \leq 2^p \{\mu(T) - \mu(S) \}$. Define $\delta = \min \{\delta_1, (2^p + 1)^{-1} \varepsilon/2\}$ and note that δ depends only on \mathcal{R} and ε .

Let Λ be a subchain of an \mathcal{R} -chain Ω , with links $\{S_i, T_i\}$ $(1 \le i \le n)$, where $\emptyset \subseteq S_1 \subseteq T_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq T_n \subseteq I$. By definition of \mathcal{R} -chain, S_i and T_i are \mathcal{R} -initial segments $(1 \le i \le n)$. We shall show that $\|\mu\|_{\Lambda} \le \delta$ implies $\|v\|_{\Lambda} \le \varepsilon$, which implies that v is ordered absolutely continuous with respect to μ , and hence by Proposition 4 that $v \in ORD$.

Let $\|\mu\|_{\Lambda} \leq \delta$, i.e., $\|\mu\|_{\Lambda} = \sum_{i=1}^{n} \{\mu(T_i) - \mu(S_i)\} \leq \delta$. Without loss of generality we may assume that if $T_i \supseteq J$, then $S_i \supseteq J$; otherwise split $\{S_i, T_i\}$ into two links $\{S_i, J\}$ and $\{J, T_i\}$. Similarly we may assume that if $S_i \subseteq J_1$, then $T_i \subseteq J_i$. Note that since μ and v are monotonic, $\|\mu\|_{\Lambda}$ and $\|v\|_{\Lambda}$ remain unchanged. Let

$$I_1 = \{1 \le i \le n \mid T_i \subseteq J_1\},$$

$$I_2 = \{1 \le i \le n \mid J \subseteq S_i\},$$

$$I_3 = \{1 \le i \le n \mid J_1 \subseteq S_i \subseteq T_i \subseteq J\}.$$

 I_1 , I_2 and I_3 are disjoint, and by our previous assumption $I_1 \cup I_2 \cup I_3 = \{1, 2, \dots, n\}$. Now

$$||v||_{\Lambda} = \sum_{i=1}^{n} |v(T_{i}) - v(S_{i})| = \sum_{l=1}^{3} \sum_{i \in I_{l}} \{v(T_{i}) - v(S_{i})\}$$

$$\leq \sum_{i \in I_{1}} \{\mu_{2}(T_{i}) - \mu_{2}(S_{i})\} + \sum_{i \in I_{2}} \{2^{p}(\mu(T_{i}) - \mu(S_{i})\} + v(J) - v(J_{1})\}$$

$$\leq \delta + 2^{p} \cdot \delta + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

The lemma must be modified to apply to measures μ in NA⁺ for which $u(I) \neq 1$. Note that $\mu(J_1) + \delta_1 < \mu(I)$.

This completes the proof that $v \in ORD \setminus AC$. Hence we have shown

(5.2)

ORD includes AC strictly.

REFERENCES

- [1] R. J. AUMANN AND L. S. SHAPLEY, Values of Non-Atomic Games, Princeton University Press, Princeton, NJ, 1974.
- [2] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958.
- [3] P. R HALMOS, Measure Theory, Van Nostrand, Princeton, 1950.
- [4] A. LYAPUNOV, Sur les fonctions-vecteurs complèment additives, Bull. Acad. Sci. U.S.S.R. Ser. Math., 4 (1940), pp. 465-478.
- [5] U. G. ROTHBLUM, On orderable set functions and continuity. I, Israel J. Math., 16 (1973), pp. 375-397.
- [6] —, Orderable set functions and continuity. II: Set functions with infinitely many null points, SIAM J. Control and Optimization, 15 (1977), pp. 144–155.