Orderable Set Functions and Continuity ITI: Orderability and
Absolute Continuity |
with U. Rothblum

1. Introduction. This paper is one of a series of studies (cf. [1], [5], [6]) in
which orderability and various continuity notions for set functions are investi-
gated and related to each other. Throughout we assume familiarity with the
concepts summarized in § 2 of [6]. Our main result (§ 5) concerns the absolute
continuity of set functions (see[1, § 5] or § 2 of this paper). In[1, Prop. 12.8]itwas
shown that every absolutely continuous set function is orderable; here (§ 5) we
construct an example to show that the converse is false. The example is a function
of two nonatomic measures, and is in a sense ‘‘simplest possible”’: In § 4 we show
that for functions of a single nonatomic measure, orderability and absolute
‘continuity are equivalent.

2. Notations and definitions. We refer the reader to § 2 of [6] for a summary
of some notations and definitions from [1] and [5] that will be used in this paper.
Familiarity with the above section will be assumed throughout our discussions.

For x in the Euclidean space E", ||x|| will always mean the summing norm, i.e.,
Ixll=3X7, |x:]. If x, y € E", write x =y if x; =y, for all i. If u is a vector measure
(1, " * *» mn), then X u will denote Z;;, i

We next summarize some definitions and conventions from [1] which were
not used in [6] and will be needed in this paper. The norm on BV is the variation
norm, defined by

|lvl|= inf {u(I) + w(I)|u — w = v, where u and w are monotonic}.

A chain is a nondecreasing sequence of sets of the form J =S,= S, < - - - =§, =
I A link of this chain is a pair of successive elements. A subchain is aset of links. A
chain will be identified with the subchain consisting of all links. If v is a set function
and A is a subchain of a chain, then the variation of v over A is defined by
| VIa=Z|v(S;) — v(Si_,)|, where the sum ranges over {i|{S;_1, S;} € A}. For a fixed
A, || - |l is a pseudonorm on BV, i.e., it enjoys all the properties of a norm except
lv]la=0=>v=0. It is known (see [1, Prop. 4.1]) that for every ve BV, |jv||=
sup |lv||a, where the supremum is taken over all subchains A. It is also known that
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the linear subspaces M, NA, WC and ORD are closed subspaces of BV [5, Prop.
4.2 and 4.3].

A set function v is said to be absolutely continuous with respect to a set
function w (written v < w) [1, p. 35] if for every ¢ >0 thereisa 6 > 0 such that for
every chain Q and every subchain A of Q, [|w||x = 8 implies llv|la = &. Note that this
relation is transitive, and that if v and w are measures, it coincides with the usual
notion of absolute continuity. A set function is absolutely continuous if there is a
measure p € NA' such that v« u. The set of all absolutely continuous set
functions forms a closed linear subspace of BV [1, Prop. 5.2], denoted AC.
Finally, pNA denotes the closed subspace of BV spanned by all powers of
nonatomic measures.

3. Weak continuity and absolute continuity. A real-valued function on a
subset of E" is said to be monotonically absolutely continuous if for every & > 0
there is a 8 >0 such thatif x; =y, =x,= - - - =X, =Y, then

™=

Iy-xl=8= 5 1700~ fwl=e

1

If the domain of f is one-dimensional, then monotonic absolute continuity
coincides with the usual absolute continuity.

PROPOSITION 1. Let pu be an n-dimensional o-additive measure whose
components are in NA™ and are mutually singular. Let f be a real-valued function
on the range of u with f(0)=0. Let v=f° u. Then v < Y u ©f is monotonically
absolutely continuous. ’

Proof. The direction < is obvious. To prove the direction =, recall
Lyapunov’s theorem [4], according to which the range of a nonatomic o -additive
vector measure is convex and compact. From this and the mutual singularity it
follows thatif x, = y; =x> = - - - =x, = y,, thenthere existS;, Ty, <, S, T, In€
such that u(S;))=x;, u(T))=y,and S, =T, & - - < S, < T,, completing the proof
of Proposition 1.

PROPOSITION 2. Let v e BV andu, £ M. If v < &, then v 5 . if and only if
v<u.

Proof. Sufficiency of the condition is obvious. To see the necessity, let
£ = £°+ £ be the Lebesgue decomposition of £ with respect to , ie., & and &%
are nonnegative measures such that £°=p and £ Lu [3, Thm. C, p. 134]. Let
A € € be such that ¢ (A)=0and u(I\NA)=0.

We shall show that v « £%, and since £%°« p it will follow that v « . Let 6>0
correspond to a given ¢ in accordance with the absolute continuity v « §; i.e.,

(3.1 for any subchain A, lelh=6=>|vla=e.
We shall prove that v « £€“° by showing that
(3.2) for any subchain A, le“lIh=8Dlvlr=e.

If we intersect each set in each link of A with A then we get a subchain A* such that
I€llax = l€%|ls =8, and therefore by (3.1), [[v[lx«=e. But because v u and
w(INCA) =0, it follows that ||[v]|s = |[v|ls~ = &. This proves (3.2).




CoROLLARY 1. Let = (uy, o, -, ) be an n-dimensional vector of
measures in NA". Let f be a real-valued function on the range of u, such that
v=foueBV. Thenve ACifand only if v <} u.

Proof. Sufficiency of the condition is obvious. To verify the necessity note that
fou <Z p and use Proposmon 2.

COROLLARY 2.' Let v =fou, where u € NA™; then v e pNA if and only if
veAC.

Proof. The fact that pNA < AC has been proved in [1, Cor. 5.3]. Now let
foueAC. Then by Corollary 1, fou « u, and hence by Proposition 1 and
Theorem Cin[1], fo u € pNA.

COROLLARY 3. The inclusions BV 2 WC 2 AC are strict.

Proof. The unanimity game v defined by

1, $=1,
v(S)={

0, otherwise,

shows that BV # WC. Next, let A be Lebesgue measure, and let g be the Cantor
function, which is not absolutely continuous; then g < A € WC, and by Propositions
1and 2,g°Ag AC.

4. Ordered absolute continuity. Let # be a measurable order. A chain
F=8o=S,< - <S,, =1is called an R-chain if all the S; are #-initial seg-
ments. Note that an #-chain is defined by a finite sequence of elements in I,
wZs, Z.. -gslgso=—oo, such that I(s;,, &)= S,

If v and w are in BV, then v is said to be ordered absolutely continuous with
respect to w (written v <w), if for every measurable order  and ¢ > 0 there exists
a 8 > 0 such that for every & -chain () and every subchain A of Q, ||w|[s =& implies
|lvlla = €. Note that the relation is transitive.

PROPOSITION 3. Let v € BV, u € M™*.? Then v is ordered absolutely continuous
with respect to p if and only if v € ORD and v< p.

Proof. First assume that v is ordered absolutely continuous. It is easily verified
that this 1mp11es v< u. Using the argument of the proof of Proposition 12.8 of [1]
we obtain that’ v € ORD. This completes the proof of one direction.

To prove the second direction, let us assume v < p and v € ORD. By [5, Thm.
3.2], we know that v < u implies that ¢ 20 < for all measurable orders . Recall
that weak continuity and absolute contmulty between members of M coincide [2,
§ I11. 4.3, p. 131]; hence ¢ ”v « u for all measurable orders &. But then it follows
that v <p.

A’set is said to be ordered absolutely continuous if there is a measure u € NA™
such that v is ordered absolutely continuous with respect to u. The set of all
ordered absolutely continuous functions in BV is denoted OAC.

' Cf.[1, Thm. C).
2 One may extend this theorem and require only x € M, and not x € M". This would slightly

complicate the proof.
? In Proposition 12.8 of [1] one assumes v < u and obtains in addition to v € ORD, also that
eTv<p uniformly in &. Here we assume only v « u, and can also obtain o%v« M, but not uniformly.
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CoOROLLARY 4. ORDNWC=0AC

COROLLARY 5. OAC is a closed linear subspace of BV.

Remark. One may conjecture that if v € ORD and every point in [ is v-null
then there exists a measure u € NA™ such that v < u. If this is true then clearly it
should yield that OAC equals the set of all set functions in ORD for which every
point is null.

PROPOSITION 4. Letv =f o u, where u € NA™; thenv < pif and only if v p.

Proof. If v < p, then trivially v<& . Assume now that v § . By Proposmon 3,
v € ORD and v<p, Let # be an arbltrary fixed measurable order, then by [5,
Thm. 3.2}, ¢ v< . Since weak continuity and absolute continuity between
totally finite measures coincide, it follows that ¢ v « u. For a given ¢, let & be
given in accordance with the absolute continuity ¢ ?v « u;i.e., for every subchain
A,

4.1) lelr=8=>lle™vla=e.
~ We shall show that v < u by showing that for every subchain A,

(4.2) lula=8=>vlase.

Let A be a subchain satisfying ||u||» =8 whose links are {S;, T;|1 =j =m}, where
geSicTheS:c---cSncT,cl Let

Si = N{I(s, R)lsel, (s, R)>u(Sp}

Ti= N{I(s, R)ls € I, u (s, R)) > pu(T))}.
By |1, Lem. 12.15] it follows that for 1 =j=m, S, T, are measurable and that
(4.3) n(S)=pn(S;) and wu(T)=p(T).

Note also that S and T are & -initial sets; hence, by [6, Lem. 2], it follows that for
1=j=m,

(4.4) (¢g’v)(7})=v(7_}) and (¢”0)(S)) = v(5)).

Let Q be the chain @c8icTicSc - cS,cT,<I and let A be a
subchain of ) whose links are {S; T} 1=j=m. Note that (4.3) implies that
lellzs=|lellx = 6. Hence, by (4.1), “(p leAEe and therefore (4.4) and (4.3) imply
that

e 2 lo™olc= lolc =  1£((T)~Fu(S))

= 3 AT~ FSl=lolh.
i=
We have established (4.2), thus completing the proof of Proposition 4.
COROLLARY 6. Let v =f o u where u e NA™; then
vVeACO v« u ©veOACO v« u S veORD & vepNA.

Proof. The above follows from Proposition 2, Corollary 2, Proposition 3 and
Proposition 4.
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Remark. 1t clearly follows from Corollary 6 that if we wish to construct an
example of the form v =f¢pu that is in ORD\AC, then p has to be at least
two-dimensional.

5. ORD includes AC strictly. It was proved in [1, Prop. 12.8] that ORD 2
AC. We are now going to construct an example of a set functionin ORD that is not
in AC.? The example that we are going to describe appears, in a different context,
at the beginning of § 9in[1]. Foreach k =2 let A, < [0, 1] be the parallelogram
whose vertices are: (275, 0), 2 +47% 0), VR +47% 1) and (27%*, 1) (see Fig.
1). Define a nondecreasing continuous function f on the square such that for
x €Ay,

f(x) =f(x1a x2) = 2kx1 +2_k+1 —_ 1;
for x between A, and A;_,

- L (i—2-479)
L S (x4 .

for x to the right of A, let f be defined by the same formula that defines f on A,
i.e., f(x)=4x,—1/2; and finally for x,=0 let f(x)=x,. Let pn be any 2-
dimensional vector measure on (I, €), whose range if [0, 1]2. We shall show that
v=fouecORD\AC. |

0, 1) \ \

(1,0

To show that v& AC, let
(2““, O) S x’f gxlz‘ =... éx"i — (2—k+1, 1)

be a ‘“staircase’” sequence of points in A, i.e., each point differs from the
preceding one in one coordinate only (see Fig. 1). On the vertical segments of this
sequence, f does not change; all the change is concentrated on the horizontal
segments. But the total length of the horizontal segments goes to 0, whereas the
total change in f is 1. Therefore f is not monotonically absolutely continuous,

* One can easily see that by “smoothing’” our example one can get a set function in MIX [1,813]
that is not in AC.



650 Mathematical Methods

therefore f o u is not absolutely continuous with respect to Zu (Proposmon 1),
and therefore fo ug AC (Corollary 1).

Let us now prove that v € ORD. Set u = u,; +u>. We shall show that v is
ordered absolutely continuous with respect to u, and then use Proposition 3. Let
AR be a fixed measurable order. For a given £ >0 we may choose a 1 > 6, >0 such
that

(5.1) Ix =yl = 8: 2> |f(x)—f(y)|=¢€/2.

This is possible because of the uniform continuity of f in [0, 1.

Let J, denote the intersection of all & -initial segments of u,-measure > 0.
By[1, Lem. 12.15] it follows that J, is measurable and u,(J;) = 0. Let J denote the
intersection of all #-initial segments of u-measure>u(J,)+8,. By the same
lemma’ we mentioned before, it follows that J .is measurable and u(J)=
w(J,)+8,, therefore J =J,. Finally, observe that |[u(J)—ux(J,)||=8,; hence by
(5.1) it follows that [v(J)—v(J})| = &/2.

Now let p be an integer =2 such that 2°7'=1/u,(J). Note that p depends
only on & and &. One can easily verify that f fulfills a Lipschitz condition on
{x €[0, 17%|x, = u1(J)} with constant 27, i.e., [|f(y) —f(x)|=2°]lx — y||; this implies
thatif S, Te € and J= S < T, then ||[o(T) — v(S)| =27 {u(T) — u(S)}. Define 6 =
min {&,, (2 + 1) 'e/2} and note that § depends only on # and e.

Let A be a subchain of an & -chain ), with links {S;, T;} (1 =i =n), where
S, cT,cS,c --- <8, T, =l By definition of R-chain, S; and T; are
R -initial segments (1 =i =n). We shall show that ||u||x = 8 implies [[v]|s = &, which
implies that v is ordered absolutely continuous with respect to u, and hence by
Proposition 4 that v € ORD. ,

Let |ulla=5, ie., [lulla =2 -, {u(T;) —u(S;)} = 8. Without loss of generality
we may assume that if 7; 2J, then S; = J; otherwise split {S;, 7;} into two links
{S;, J} and {J, T;}. Similarly we may assume that if S; = J,, then T; = J;. Note that
since . and v are monotonic, ||u||s and |Jv|x remain unchanged. Let

L={1=i=n|T,cJ,},
Iz={1§l§n|J§S,},

I,, I, and I; are disjoint, and by our previous assumption I,UL,UI;=
{1,2,- -, n}. Now

lolla = Z lo(T) —v(S)|= Z Y {v(Ti)—v(S)}

I=1iel

= Y ApoAT) —p2(SH}+ X {2P(M(T.-)*;L(S.-)}+v(f)—v(Jl)

ielh ielz

=86+2F -6+

= =E.

£
+—
2

N ™
N,

> The lemma must be modified to apply to measures p in NA™ for which u(I) # 1. Note that
nUJ)+8 <ul).
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This completes the proof that v e ORD\ AC. Hence we have shown
(5.2) ORD includes AC strictly.
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