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A Variational Problem Arising in Economics
with M. Perles

INTRODUCTION

Let u(x, t) be a real function of the two real variables x and ¢, where x > 0
and 0 << ¢ < 1. Suppose that u is continuous and monotone increasing in
x for each fixed ¢. Consider the following problem:

Find an integrable function x(¢) that maximizes f u(x(t), t) dt, subject to
the conditions x(¢) >> 0 for each ¢, and f x(t) dt = 1

Unfortunately, the maximum in this problem need not be attalned even
when the supremum of the integral is finite, and even when u is very “‘regu-
lar.” In fact, u(x, t) = xt provides a counterexample; we have _f tx(t)dt <1
for any feasible choice of x, but the supremum is 1.

Intuitively, the maximum is not attained in this problem because it is

“worthwhile” to concentrate all the area fo x(2) dt at our disposal on a
t-interval that is close to 1; i.e., to choose x(¢) large for ¢ close to 1, and 0
elsewhere. If we would assume u(x, t) = o(x) as x — oo, this might no longer
be worthwhile. This assumption, when made for each ¢ separately, is still not
sufficient to ensure that the maximum is attained; some kind of uniformity
condition is needed. Uniform convergence of u(x, t)/x to 0 is sufficient, but
not necessary; it turns out that the proper condition is that of integrable
convergence, which we shall now define.

DerFINITION 1. Let f(x,¢) be a real valued function for x >0 and
0 <t < 1. Then f(x, t) = o(x) as x — o0, tntegrably in t, if for each ¢ >0
there is an integrable function n(#), such that |f(x,t)| << ex whenever
x = n(2).

Integrable convergence reduces to uniform convergence when n() is a
constant, or equivalently, when it is bounded. The two concepts are not
equivalent; x1/2/¢1/4 = o(x) integrably, but not uniformly. The relation
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between uniform and integrable convergence is roughly similar to that
between a uniformly bounded and an integrably bounded sequence.

The main result of this paper holds when x may have values in an arbitrary
euclidean space E® (rather than E7). Let us recall that a vector x in E™ is
called nonnegative (x > 0) if all its coordinates are nonnegative,! and thata
real function g(x) defined for x > 0 is called nondecreasing (increasing) if it is
nondecreasing (increasing) in each variable separately. Also, g is called
upper-semicontinuous if g(x) = lim sup,_, g(y) for all x in the domain of
definition of g. The unit interval [0, 1] will be denoted by T.

MAIN THEOREM. Let u(x, t) be a Borel-measurable® nonnegative real-valued
function defined for x > 0 in E™ and t in T, which is nondecreasing and upper-
semicontinuous in x for each fixed t. Assume further that

(A) u(&, - & t) = o(§) as £ — oo, integrably in t.

Let a >0 be in E*, and let P(u, a) be the problem :

Maximize J} u(x(t), t) dt subject to x(t) = O for allt € T and -fr x(f) dt = a.

Then P(u, a) has a solution.

The asymptotic condition (A) may be replaced by a similar condition along
any positive ray. Because u is nondecreasing, any one of these conditions is
equivalent to the condition that u(x, ¢) = o(|| x [|) as ||x||— oo, integrably
in t, where || x || is any one of the usual norms on E™.

The condition that # be nondecreasing can be dispensed with, if the con-
dition f x(t) dt = a is replaced by _[ x(t) dt < a, and certain other slight
changes are made (cf. Section 6).

The proof will be in two stages. First we will prove (Section 2) that the
main theorem holds when u is concave. This proof depends on arguments

* involving weak compactness. For nonconcave », we define (Section 3) the

concavified function #* in a manner,_similar to that of Shapley and Shubik [1],

‘and show (Section 4) that the problems #(u, @) and P(u*, a) have the

same value and have solutions in common (where the value of Z(u, a) is the
supremum of f u(x(2), t) dt under the restrictions on x). In particular, we
construct a solution of P(u, a) from a solution of P(u*, a). In this part of
the proof we make use of the integral of a set-valued function, as studied in [2].

The proof is an existence proof, and does not yield a characterization of
the solution. A characterization is given in Section 5; it is relatively easily
obtained—much more easily than the existence. The problem is really an

_ infinite dimensional analogue of a nonlinear programming problem in the

sense of Kuhn and Tucker [3], and the characterization is derived from
reasoning similar to that leading to their characterizations.

1 Note that this differs from the standard usage, in which this relation is denoted =.
21n all variables simultaneously.
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Suppose that u is actually increasing. If we assume #(¢, -+, £, t) = o(€)
uniformly, then we may conclude that %(u, a) has a bounded solution.
Indeed, for any p with 1 < p < o0 we may define the notion f(¢, t) = o(§)
p-integrably by adding the condition n(t) € L? to Definition 1. Then if it is
assumed that u(&, -+, £, t) = o(€) p-integrably, it may be concluded (Sec-
tion 6) that #(u, a) has a solution in L?, and indeed all solutions are in L?.
This conclusion does not hold if # is merely nondecreasing (Section 6).
Various other counterexamples are presented in Section 6, and also the
generalization of the main theorem to z that are not even nondecreasing
that we discussed above.

In Section 1 we explain the notations, terminology, and conventions used
in the paper.

Throughout the paper, the unit interval T may be replaced by the real
line (— oo, ), the half line (0, ), or indeed any Borel set on the real line.
The proofs are not affected.

Following are indications of two of the economic applications. The pro-
blem treated here arose in connection with an investigation of markets with a
continuum of traders and transferable utilities, being conducted by L. S.
Shapley and one of the authors. There x and ¢ stand for a commodity bundle
and a trader respectively; _[T u(x(t), t) dt represents the aggregate utility of
the coalition 7' under the commodity-assignment x. If a is the aggregate
(initial) commodity bundle held by the coalition, then the value of Z(, a)—
if it is attained—is the maximum aggregate utility that the coalition T' can
assure itself by trading among its own members.

In other economic applications, ¢ stands for “time” rather than “trader.”
One of the interpretations possible in this direction is that x stands for a
vector of resources, u(x, t) is the (discounted) return from using the vector
x of resources at time ¢, and a represents the total amount of resources avail-
able. Then fT u(x(t), t) dt is the total value of a program x of resource use,
and the problem P(u, a) is that of finding a program that will maximize
this value.? '

1. PRELIMINARIES

The Borel-measurability of # will be assumed throughout the paper. This
is needed mainly to assure the Lebesgue-measurability of #(x(t), ¢) for each
Lebesgue-measurable x. Throughout Sections 1-5 it will be assumed that «
is nonnegative. '

3 In a recent publication [7], M. Yaari has treated such a problem for the case
in which x is one-dimensional and u(x, t) = «(z) g(x), where « is bounded and con-
tinuous and g is concave. Such problems have also been discussed by Arrow,
Chakravarty, Karlin, Koopmans, Strotz, and others.
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- A number of conventions: x -y is the scalar product of x and y. The symbol
0 denotes the origin of E” as well as the number zero.If y is a function on T, we
write [y for J' y(t) dt. Abusing our notation, we write %(x) for the function
on T whose value at t is u(x(2), t); in particular, therefore, [u(x) means
f u(x(t), t) dt. The nonnegative orthant {xe€ E™:x >0} is denoted P.
Superscnpts will be used exclusively to denote coordinates. x Z> y means
x* > y* fort all 7. We will use the phrase “all ¢ in T to mean the same
as “almost all ¢ in 7”’; the two phrases will be used interchangeably. The
closure of a set B is denoted cl (B). The vector (1, -+, 1) in E” will be denoted
e, and the vector (0, --+, 0, 1,0, ---, 0), where 1 is in the 7th place, will be
denoted ¢; . For x€ P, we will write 2 x instead of X;_; »°. When we say
that u is “increasing,” ‘“‘continuous,” etc., we mean “increasing in x for
each fixed ¢,” “continuous in x for each fixed ¢,” etc. The symbol \ denotes
set-theoretic subtraction, and p denotes Lebesgue measure on T. val Z(u, a)
denotes the value of Z(u, a).

It is convenient to view the space of all integrable functions from T to E™
as a Banach space, with norm [ 2| x |. If we write x%(t) = x(t; 7), then we
see that this space is precisely LY(T X {1, ---,n}). All references to weak
convergence, strong convergence, etc. will refer to this space.

A real function f on P will be called concave if

f0x + (1 —6)y) = 6f(x) + (1 — 6) f(y)

for all x, y in P and 6 in [0, 1]. A concave function must be continuous in the
interior of P, but may have jumps on the boundary. If it is upper-semicon-
tinuous, then it is a fortiori continuous everywhere.

2. THE CoNCAVE CASE

LemMA 2.1. Let a be given, and suppose that u is continuous and non-
decreasing, and satisfies the asymptotic condition (A). Let X, y;, ¥,, - be
integrable functions from T to P such that [y; < a and y; —x almost every-
where (a.e.). Then

[ utys)— [ u().

Proor. Without loss of generality (w.l.o.g.) let Za = 1. Since y;, —x
a.e., it follows that u(y,) converges a.e. to u(x). Let ¢ > 0 be given, and
choose an integrable n such that x(t) << n(t)e for all ¢, and u(fe, 2) < e§
whenever ¢ > n(f). Let U = U, = {t: yx(?) < n(f)e}. Since convergence

4 Note that this differs from the standard usage, in which this relation is denoted =.
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a.e. implies convergence in measure, it follows that u(T\ U;) —0 as
k— co. Let x; denote the characteristic function of U. Then

[luw) —w =] +[
<[xoluty) —u@) |+ [ u@) + [ uly).

The integrand in the first term of the last line is bounded by u(ne), which
in turn is < en; so we may apply Lebesgue’s dominated convergence theo-
rem and deduce that the first term tends to 0. The second term tends to 0
because u(T \ U)— 0 as & — co. The third term is

gef \ m?xykigeJ‘ZykgeEa=e.
T\U

Hence

limsup [ | u(ys) — u(x) | <,
and hence it vanishes. This proves the lemma.

ProposiTION 2.2. Sup'pose that u is continuous, concave and nondecreasing,
and satisfies the asymptotic condition (A). Then val P(u, a) is attained.

Proor. Assume w.l.o.g. that #(0, ) = 0 for all ¢, and that Za = 1. Let
a = val P(u, a). Clearly val Z(u, y) is a nondecreasing function of y; let
D={yeP:y<a and val P(u,y) =a}. Let A =inf{Zy:yec D}, {by}
a sequence of points in D such that X b, — A, and let {¢,} be a convergent
subsequence of {b,}; set ¢ = lim, ¢, . For each k, we have val Z(u, ¢,) = «;
let {x,} be a sequence of integrable functions such that [x, = c, for all &,
and [u(x,) is a nondecreasing sequence that approaches « as k& — c0. We
wish to show that {x,} has a weakly convergent subsequence.

To show this, it is sufficient to show that for each 7 and each decreasing
sequence {S,,} of subsets of T with void intersection, we have

f Xt —>0 as m-— oo, uniformlyink (2.3)

m

® In case T has infinite Lebesgue measure, we may use the measure W(S) = ) , u(x)
rather than Lebesgue measure p. Since X is integrable we always have W(T) < o,
and can therefore deduce that convergence a.e. implies convergence in the measure v,
which is what is needed below.
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(Dunford-Schwartz [4], p. 292, Theorem IV.8.9). Fix 7. If ¢¢ =0, (2.3) fol-
lows easily from [x;? = ¢’ — ¢! = 0. Assume therefore that ¢ > 0. Let
¢ >0 be given, and assume w.lLo.g. that Fe <c'. Let

b=c—}ee —|—j=21min (4671 ¢ faf) e, and B =valP(ub).

Since Tb < A, it follows that b ¢ D, and hence B < a. Let y = §(« — B).

Since [u(x,) — o, it follows that fu(x;) > B + y for k > ky = kole). Choose
an integrable n so that u(fe, t) < y¢ whenever ¢ > n(t); a fortiori,
u(x, t) <y X x whenever x¢ > n(t). For each k, let

U= U, = {t: x,/(t) < n(t)}-

Choose &, so that k; > ky and ¢,/ < min (&, ¢/ + (/4n)) = biforallk >k
and all j. Then

[ xmé<te for k> (24
U .
Indeed, if [ x> % ¢, then
%) <ol — e < b, and | xJ <cf Kb forall j#i;
U 2 - v J

then [ X < b, and hence _[U u(x,) < B. Hence

fu(xk)—_—fu—l—fr\v <B+IT\U yzxk

By [m=B+yXa<p+yXa=F+r

This contradicts the definitions of %, and &, and so proves (2.4).

Since y and x4 , ***, X, are integrable, we may choose m, so that whenever
m>m, we have [¢ m<3e and [g x,} <e for all #<k,. Then if
m>myand k <k, then [s x,} <eif k> ky, then by (2.4), we again
have

f xk‘=f —I—j <f 'q-l—-f xki<—%e+%e=e.
Sy J SunU Sp\U Sm T\U

This proves (2.3).

We conclude that {x;} has a subsequence converging weakly to some x.
Then there is a sequence of functions converging strongly (i.e., in norm)
to x, each one of which is a (finite) convex combination of X, , Xz, ** [4,
p. 422, corollary V.3.14]. Now every strongly convergent sequence in L! has
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a subsequence that converges a.e. to the same limit; so there is a sequence
{y;} of convex combinations of x, , X,, *-- that converges a.e. to x.

From the concavity of u and the fact that the sequence [ u(x,) is increasing,
it follows that [u(y;) > [u(x,); combining this with Lemma 2.1, we deduce
that [u(x) > [u(x,). But for each &, the sequence {x;, , Xy , ="} converges
weakly to x, so we may conclude in the same way that [u(x) > [u(x;) for
each k. Hence f %(x) > o But {z: fz < a} is weakly closed, so fx <a.
Let d = [x; then [[x +a —d]=a. So

<fu(x) <fu(x 4+ a—d) < val H(u, a) = o
Hence equality holds throughout, and the proposition is proved.

3. CONCAVIFICATION

Let f be a nonnegative real-valued function on P and let
F={yx)eErtl:x>0,0 <v <f(x)}
Let F* be the convex hull of F. If there is a function f* on P such that
F* ={@y,x)e Ertl:x > 0,0 <v < fXx)},

then f* is called the concabification of f. The definite article is justified by the
fact that there can be at most one concavification. There may be none, as
has been shown by Shapley and Shubik [1].

When it exists, the concavification is always concave; this follows from the
definition. If f is concave, then f* exists and equals f.

ProrosiTION 3.1. If f is nondecreasing and upper-semicontinuous, and
f(ée) = o(€) as ¢ — oo, then f has a nondecreasing and continuous concavifica-
tion.

Proor. A slightly weaker form of this lemma has been proved by Shapley
and Shubik® [1, Theorem 3]. We first show that F* is closed.

Let (v, x) € cl (F*). Then there is a sequence {(v;, x;)} of members of
F* that tends to (v, x). Now recall Caratheodory’s theorem, which states that
if F and F* are subsets of E**! such that F* is the convex hull of F, then
every point of F* is a convex combination of z 4- 2 points of F [5, p. 34 ff.].
Hence we have

n+2

(vk ) xk) = 2 akJ(AkJ 4 kJ)

i=1

8 Their theorem contains a monotonicity assumption that is slightly stronger than
ours.
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where o >0, 2::'12 o = 1, and (A4 ,¥x;) €F. The sequence of points

(%1, ***, %,nyp) in E™+2 has a limit point, which we call (o, ", ctpyp);

w.l.o.g. assume it is the limit. We have «; > 0 and >™2 &, = 1. Some of the
g 1™

J
a; may vanish, but not all of them can vanish; for convenience, assume that o;
vanishes for j < m, and does not vanish for j > m.
Let B = min (epyy, *** Opyg) > 0. For sufficiently large %, we have

ag; > B2 for all j > m, and (v, %) < (v, %) + (1, €). Hence

n+2

(v %)+ (1,) > (e, %) = 2 i Ak » Yrs) = g (Aws s Yrs)

j=m+1

for k sufficiently large and all j > m. It follows that the sequences {(A; , ¥2;)}
are bounded when j > m. They therefore have limit points (2;, y;) and we
may assume w.l.o.g. that (Ay; , ¥;) = (A; , ¥;) as & — co. Hence

. n+2 ' m
(v, %) = 2 a(A;, ¥5) + }gg 2 %(Aes > Vrs)- (3-2)
j=m+1 ij=1

We conclude from this that the limit on the right-hand side of (3.2) exists;
denote it by (A, ¥).
Define real numbers { and {; by { = Zy, {i; = X i, - Then

oilas < Zaijki <{+1

j=1

for sufficiently large % and all j < m. For given € >0, let n be such that
f(¢e) < €€ for all £ > . Then because f is nondecreasing and (Ax; » yij) EF,
we have

el if  ly=n
Ny SJOw) <TG <0 020

In any case

Ag; < max (ezk:i » f(me))-
Hence

s < X (o » ot fne)) < max (<€ + 1), a5 £(7)

for k sufficiently large and all j < m. Since oy; — 0 as k— 00 and f(ze) is
fixed, it follows that

lim Supy akjhkj < E(C ‘+' 1)-

But since e was chosen arbitrarily, it follows that the lim sup vanishes and
so the limit exists and vanishes. Hence A = 0.



631

A Variational Problem Arising in Economics

Now (};, y;) is the limit of (A; , ¥4;) for j > m; because f is upper-semi-
continuous, F is closed, so from (A, yi;) €F it follows that (4;, y;) € F.
Now this means that A; < f(y;). Because f is nondecreasing and y > 0, it
follows that A; <f(y; + y); hence (};,y; +y)€F. But since o; =0 for

j < m, it follows that ::'"2, .1 o; = 1. Hence from (3.2) and A = 0 we conclude

n+2 n+2
(v, %) = 2 o, y;) + 0,9) = 2 ai(A;, ¥; + ¥)-
j=m+1 j=m+1

Since (A;,y; < ) €F, it follows that (v, x) € F*, and we have proved that
F* is closed.
If 5 is chosen so that f(ée) < ¢ whenever ¢ = 7, then for all x,

f@) < £ (e %) < max (32 f(ne)) < % + flne).
It follows that

FCl,9):0<x0<v < D x+f(ne)

The right side of this inclusion is convex, so F* is also included in it. Hence if
(v, x) € F*, then » < X x + f(ne). Hence for each x, the set {v : (v, x) € F*} '
is bounded, and because #* is closed, it is compact. Hence the maximum of
this set is attained, and this maximum is precisely f*(x). The monotonicity of
f* follows from that of f. To show that f* is continuous, suppose that x is a
point of discontinuity. Let x,— x and f*(x;) — ¢ # f*(x). Since F* is
closed, f* is upper-semicontinuous, so i > f*(x) is impossible. Hence
P < f*(x); let § = f*(x) — ¢ > 0. For z > 0 sufficiently small, it follows
from the upper-semicontinuity of f* that f*(x + 2) < f*(x) + % 6. Now for &
sufficiently large, x — x, < 2, and hence % x, + % (x + 2) > x. Hence

@) <fGa+ 3 +2) <) + 34+ 2)
< 3f*e) + B + 1.
Letting £ — oo, we deduce
) <3P+ 10 <F( +0) =5,
a contradiction. This completes the proof of the proposition.
LEMMA 3.3. Suppose u is upper-semicontinuous and nondecreasing, and

satisfies the asymptotic condition (A ). For fixed t, let u*(x, t) be the concavifica-
tion of u(x,t). Then u* also satisfies the asymptotic condition (A).
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Proor. Let e > 0 be given. Set
Fit) ={»x):0 <x0<v <u(x,t)} (3.9

Choose 7 in accordance with Definition 1 to correspond to €¢/(z 4 1). Let
. € . \
H(t) ={(h%):0<x0<v <mzx + u(n(2)e, t); .

Then F(t) C H(t), and since H(¢) is convex it follows that also F*(z) C H(t).
Hence for each ¢ and ¢,

u*(te, 1) < e HLI ¢ + u(n(t) e, ).

Hence if £ > (n + 1) u(n(t) e, t)/e, then u*(ée, t) < €. From condition (A)
and the integrability of 7 it follows that u(n(t)e, ¢) is integrable. This proves
the lemma.

LemMA 3.5. Under the conditions of Lemma 3.3, the Borel-measurability
of u* follows from that of u.

Proor. From the definition of u*, it follows that

k
u*(x, t) = max (2 au(x,2):E>0,>0 and

=1

% >0fori=1, k,ija,. =1, i gty = x) . (3.6)

=1 t=1

We claim that #*(x, t) < y if and only if there is a positive integer m such
that if k is a positive integer, 8, , ‘-, B, are nonnegative rational numbers
summing to 1, and y, , -+, ¥, are rational points in P such that

2 e
Eﬂiyi<x+‘"7)

=1

then ,
> bulye, ) <y —o- (37)

i=1

Indeed, the “only if”’ part of the previous sentence follows from the mono-
tonicity of #* and the fact that for sufficiently large m,

u*(x-{;—;;,t)<y—-:7
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(because of the continuity of #*). To demonstrate the “if” part, assume that
u*(x, t) > vy, and let the max in (3.6) be assumed at &, oy, ***, oy, Xy, =, Xy, .
Choose nonnegative rational numbers 8, , -+, 8; summing to 1 and rational

_points y; such that y; > x; for all 7, with the B; sufficiently close to the «; and

the y; sufficiently close to the x; so that

2, Bauls , 1) > 2 (g 1) — % = u*(x, 1) — % >y — % (3-8)

d=1 i=1
and
EB,y¢<2a,x,+——=x+— (3.9)
=1 i=1

Then from (3.8) and y; > x; we deduce

2 Bau(y;, ) =

=1

‘and from (3.9) and (3.7) we deduce

> Balye, ) <y — .

=1
‘

This contradiction establishes our claim, and the lemma follows without
difficulty.

4. ProOOF oF THE MAIN THEOREM

ProrosITION 4.1. Suppose that for each fixed t, u has a Borel-measurable’
concavification u*. Then P(u, a) and P(u*, a) have the same value, and P(u, a)
ts solvable if and only if P(u*, a) is solvable. Furthermore, every solution of
P(u, a) solves P(u*, a).

ProoF. We make use of the theory of integrals of set-valued functions [2].
Let F be a function defined on T, whose values are subsets of E*+l, Then
| F(#) dt, or [F for short, is defined to be the set of all vectors of the form

. f f, where f is a point-valued function such that f(z) € F(¢) for all z. The

function F is said to be Borel-measurable if {(x, t) : x € F(t)} is a Borel subset
of En+1 X T. The fact that we need in the proof of our main theorem is that

- if F*(¢) denotes the convex hull of F(t), and F is Borel-measurable and takes

only values that are subsets of P, then [F* = [F [2, Theorem 3].

T The Borel-measurability of #* is needed only to assure that the problem Z(u*, a)
is well defined (cf. Section 1).
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For a given u, define F(¢) by (3.4). Since u is Borel-measurable, so is F.
Then it may be verified that

(4.2) P(u, a) has a solution x, if and only if V ={v:(v,a)e [F} has a
maximum, and then the value of P(u, a) is max V.

Now let F*(¢) be the convex hull of F(z), and let V* = {v: (v, a) € [F*}.
Since F is Borel-measurable and takes only values that are subsets of P, it
follows that [F = [F*, and therefore I = V*. Proposition 4.1 now follows
from (4.2).

The main theorem follows from Propositions 2.2, 3.1, and 4.1, and Lem-
mas 3.3 and 3.5. '

5. A CHARACTERIZATION OF THE SOLUTION

TueOREM 5.1. Let u be nondecreasing, and let a > 0. Then a necessary
and sufficient condition for a nonnegative x to solve P(u, a) is that [x =a
and there is a c in P such that

u(x, t) — u(x(), t) <c-(x —x(2) (5.2)

for all t in T and x € P. If u is increasing then ¢ > O may be replaced by ¢ > 0
In the case in which u is differentiable in #, (5.2) implies

[0u/0% ) oz (1) < €°

for all ¢ and 7, with equality holding whenever x%(z) > 0. That is, the partial
derivatives, when evaluated at x(¢), are constant for x¥(#) >0, and are at
most equal to this constant for xi(t) = 0.

During the course of the proof we shall make use of Proposition 2.1 of [2]
which states that for each Borel-measurable set valued function F(¢), there
is a point-valued Lebesgue-measurable function f(t) such that f(z) € F(t)
for each .

The proof of Theorem 5.1 is similar to the proof in Kiinzi and Krelle [6]
of the Kuhn-Tucker theorem; we merely sketch it. Sufficiency is trivial. To
prove necessity, we first show that there is a ¢ in P such that

[ uy) — w1 <e- [y —x] (53)
for all nonnegative and integrable y. Define K, , K, C E**1 by

= g( 49, y) € En+1 : there is a nonnegative integrable y such that
»° fu(y)andy a—fy;

K, = g(yo:y) e Ertl: iyt > fu(x) and y > 0} )
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Then K, is convex; for, we may define
K,(t) ={(»°y) € E**! : thereisa z € Psuch that y° < u(z, t)and y < a — z},

and then by using Proposition 2.1 of [2] it may be established that K, = [K, .
Since every integral of a set-valued function is convex (Theorem 1 of [2]), it
follows that K, is convex. K, is clearly convex and is disjoint from K , so
there is a hyperplane separating K, and cl (K,), i.e., there are 4° and
d =(d*, ---, d") such that

%’ +d-y, <d% +4d-y,

whenever (¥, y,) € K; and (y,% y,) €cl(K,). Then d°>0 and d >0,
and we obtain

@[ fuly) — ] <d- [ Iy — ]

dividing by d° we obtain (5.3). If u is increasing, it is easily established that
c>0.

To deduce (5.2) from (5.3), suppose that for all ¢ in a set .S of positive
measure, there is an x € P such that

u(x, 1) — u(x(t), 1) > ¢ - (x — x(2)).

Define y(t) to be such an x when it exists, and y(t) = x(t) otherwise. Inte-
grating, we obtain a contradiction to (5.3). The possibility of choosing an
appropriate y that is measurable follows from proposition 2.1 of [2].

6. COUNTEREXAMPLES AND (GENERALIZATIONS

If u(x, t) is not upper-semicontinuous for each fixed ¢, then it need not
satisfy the main theorem, even if it is concave. Let » = 1, and let

when x <2

N (%
u(x, 1) = ;2 when x>2

when 0 < ¢ < 4, and
N — 0 when: x=0
U, )_32 when x>0

when 3 < ¢ < 1. Then the value of Z(x, 1) is 2, but it is not achieved. It is
possible to adjust this example so that # is increasing in x for each fixed .
It is also possible to construct an example of a u that satisfies all the conditions
of the main theorem except that it may fail to be upper-semicontinuous at a
point in the interior of P, and that does not satisfy the main theorem.
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In the main theorem, the assumption that % is nonnegative may be replaced
by the assumption that (0, ¢) is integrable.

The assumption that u(x, t) is nondecreasing for each fixed ¢ cannot be
removed, as may be seen from the example n =1, u(x,t) =e%, a =1,
in which the sup is 1 but is not attained. However, if we change the condition
[x = atoread [x < g, then the monotonicity assumption can be replaced
by a far weaker assumption, which, roughly speaking, says that u is bounded
on-compact subsets of P. For x € E™, let®

|| % || = max (| & |, -+, [ 2" ).

THeoREM 6.1. Let a > 0. Suppose that w is continuous,® that

u(x, t) = o(|| x [|)

as || x || — oo, integrably in t, and that for every integrable real function n

 there is an integrable real function ¥ such that || x| < n(t) implies

| u(x, ) | < &(t) for all x and t. Let 2 be the problem :
Maximize f u(x) subject to x(t) >0 for all t and f x <a.

Then 2 has a solution.

Remark. All noridecreasing u satisfying the asymptotic condition (A) for
which #(0, t) is integrable satisfy the boundedness condition of this theorem.

Proor. We define a “nondecreasification” u’ of u as follows:
 w(x 1) = max{u(y, ) :0 <y <}

The max is attained because % is continuous. Clearly #' is nondecreasing.
It may be verified that u' is Borel-measurable in both variables, continuous
in x, and satisfies the asymptotic condition (A). Hence #(«/, @) has a solution
x, . Then for each ¢, there is a y € P such that y < x,(t) and ' (Xq(t), t) =u(y1).
The function #'(x,(t), £) is a Borel-measurable function of z. Hence

{0, 2) 10 < y < xoft) and w/(x,(t), 1) = u(y, 1)}

is Borel-measurable. According to Propositidn 2.1 of [2], there is a nonnegative
measurable function y, such that [y, < [ %, = a and u(y,(?), t) = u'(x,(t), t)

8 The L® norm we use here may be replaced by any of the usual norms on E™,
without affecting Theorem 6.1.

9 The theorem can also be proved when u is only assumed to be upper-semicon-
tinuous. However, the notion of analytic set must then be used instead of Borel set,
and we do not wish to get involved in those complications here.
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for all t. Hence ‘
[ w0 < [wm) < [ wx) < [ ulys)

for all nonnegative integrable x such that [x < &, and so y, solves 2. The
proof of the theorem is complete.
Our final result deals with an extension of the main theorem to L?.

THEOREM 6.2. Let 1 <p << 0 and a > 0. Suppose u is nonnegative,
increasing, and upper-semicontinuous,® and that

(A,) u(ée, t) = o(€) as £ — oo, p-integrably in t.
Then P(u, a) has a solution in L?, and indeed all solutions are in L?.

Proor. Assume without loss of generality that a > 0.
By the main theorem, there is a solution x in L. By Theorem 5.1, every solu-
tion x satisfies (5.2) with ¢ > 0. Let € = min (¢!, -*-, ¢"), and let n in L?
be such that u(fe, t) < e whenever ¢ > n(¢). For each ¢, let

§(t) = max (x(2), -+, x™(2)).
By setting x = 0 in (5.2), we obtain '
u(E(t)e, t) = u(x(t), 1) > ¢ - x(t) > €&(2).

Hence (#) < n(t), and the theorem follows.

Theorem 6.2 cannot be extended to nondecreasing » when p > 1. For
example, let » = 1, and
xp1/2 for x L 112

U, t) = 1 for x > t1/2

Then u satisfies (A4,) for all p, and Z(u, 2) has the solution #-1/2, but no solu-
tion in L2
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