An Elementary Proof that Integration Preserves
Uppersemicontinuity ‘

The purpose of this ‘classroom note’ is to prove, using comparatively ele-
mentary tools, that under appropriate boundedness conditions, the upper-
semicontinuity of a relation' F,(¢) in a parameter p is preserved by integration
over ¢t. Most of the previous proofs of this result [Aumann (1964), Schmeidler
(1970), Hildenbrand (1974)] are far deeper, and all are more involved. In addition
to the elementary facts of Lebesgue integration — such as Fatou’s lemma and
the Dominated Convergence Theorem — we will use only the Convexity Theorem
of Lyapunov (1940), and a measurable selection theorem for measurable com-
pact-valued correspondences.? It should be noted that Lyapunov’s theorem
has been proved in an entirely elementary fashion by Halmos (1948). As for the
selection theorem, this depends on the measurability of analytic sets, and so is
perhaps our most advanced tool. Nevertheless, it too can be proved from
‘scratch’ in a couple of pages, and certainly it is significantly simpler than the
general selection theorem of von Neumann (1949).

The result proved here is the deepest of the lemmas needed for the existence
of competitive equilibria in markets with a non-atomic continuum of traders
[see e.g. Schmeidler (1969) or Hildenbrand (1974)]. Thus the Existence Theorem
is brought within the reach of relatively unsophisticated audiences.

Let (T, %, p) be a complete non-atomic measure space, and let P be a metric
space. The integral [x(#)u(dt) of a function x on T will be denoted [x. A selection
from a correspondence F on T’ is'a function x on T such that x(¢) € F(¢) for all ¢.
The integral of such a correspondence F is the set of all integrals of its selections;
it is denoted [F. A relation F on T to a Euclidean space E" is bounded by a
non-negative real-valued function 4 if ||x| < A(t) whenever x € F(¢). A function
x on T is bounded by h if |x(r)|| < h(t) for all ¢. A relation on P to E™ is upper-
semicontinuous if its graph is closed.

1We use the term ‘relation’ to mean ‘set-valued function’. ‘
2Relations with non-empty values.
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For each p in P and ¢ in T, let F,(t) < E". We wish to prove that if all the
relations F, are bounded by the same integrable function 4, and if for each fixed

F,(2) is uppersemicontinuous in p, then also [F, is uppersemicontinuous in p.
This may be restated as follows:

Lemma. Let F be a correspondence from T to E". Let {xk} be a sequence of
measurable functions from T to E", all of which are bounded by the same integrable
Junction h. Assume that for each t, each limit point of {xk(t)} belongs to F(1).
Then each limit point of (x, belongs to (F.

Before proving the lemma, we quote the selection theorem that we shall need.
A relation on T to E" is measurable if its graph is measurable in the product o-
field ¥ x #, where #Z denotes the Borel sets of E".

Compact-valued selection theorem. Every compact-valued measurable corre-
spondence on T to E" has a measurable selection. '

This can be proved in a few lines from the ‘projection theorem’, which in
turn is essentially equivalent to the absolute measurability of analytic sets.>
. The proof of the lemma is by induction on n. For n = 0 there is nothing to
prove. Suppose the lemma has been proved up to (and including) n—1; we will
prove it for n. Let x be a limit point of [x,; we must show x € [F. W.lo.g.
(without loss of generality) we may assume x = lim j xy; otherwise we can
restrict attention to a subsequence of the originally given sequence. Let D(t)
be the set of all limit points of x,(¢). Then D(t) < F(t), and so it is sufficient
to prove that x € [D. Contrariwise, suppose x ¢ [D. A well-known theorem of
Richter (1963) states that the integral of a correspondence on a non-atomic
measure space is convex,* and hence j' D is convex. Since x ¢ jD, there is a hyper-
plane through x that supports [D. W.l.0.g. we may assume that the vector (1, 0,
., 0) is orthogonal to this hyperplane; i.e., that ’

x! < inf {y':y e [D}. , )

Define 8(¢) = lim inf x}(z); then & is measurable. Since the x, are bounded by
h, so is D; in particular D(z) is compact, and hence for each ¢ there is an x(¢) in
D(t) with x(¢t) = 8(¢). Hence if we define

B(t) = D() n {ye E":y* = (1)}, _ )
then B(t) is compact and non-empty, and B is measurable. Hence from the

3See Hildenbrand (1974, Prop. 3 of D.IL.3, p. 60; and D.1.11, p. 40).
4This theorem can be proved in a few lines from Lyapunov’s Convexity Theorem [see Hilden-
brand (1974, p. 62)].
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Compact-Valued Selection Theorem it follows that there is a measurable
function y such that for all ¢, y'(z) = 8(¢) and y() € D(¢). Hence [y € [D, and
so from (1) it follows that

xt £ [6. 3
Hence from Fatou’s lemma and the definition of é we deduce
0 < lim sup f|xf — 8| = lim sup [[(x} — &) +2 | max (0, 6—x1)]
< lim sup [(x; —6)+2 lim sup | max ©, 6—x3)
< [lim x; — [ 8+ 2 max(0,8 — lim inf x;) = x' — [§ £ 0.

Hence [|x; — 8| — 0 as k — oo, and hence there is a subsequence of {x;} that
tends a.e. to 4. W.l.0.g. we may assume that it is the entire sequence; that is,

xi(t) = &) ae. (C))

Hence it follows thata.e. D(f) < {yeE"y' = 8()}. Nowset H = {ye E*:y* =
0}, and define

D*(t) = D(1)—(8(), 0, .. ., 0),

Xk () = 51— (%), 0, ...,0).
Then D*(¢) = H and x;(¢) € H. From (4) it follows that every limit point of
{x;(?)} belongs to D*(¢). Hence from the induction hypothesis it follows that

every limit point of [x§ belongs to [D*. Hence from Lebesgue’s Dominated
Convergence Theorem, and from (4), we obtain

x = lim [x, = lim [x}+ [(lim x},0,...,0)
= lim [x#+((5,0,...,0) € [D*+[(5,0,...,0) = [D.

This completes the proof of the lemma.
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