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Irrationality in Game Theory

The history of game theory has been evolutionary rather than revolution-
ary. Over the years, the fundamental concepts of the theory have been used
in an ever-increasing circle of contexts; some of the most important
developments consisted of innovative ways of recasting the theory so as to
apply to problems that previously appeared not to fit in. A prime example
is Harsanyi’s historic work (1967—68) on games of incomplete information.
Before this work, it had been universally thought that for game theory
to be applicable, the payoff matrix of the game must be commonly known.
Harsanyi’s achievement consisted of formulating games of incomplete in-
formation so that they could be seen and analyzed as games of complete
information; by this achievement, he opened the door to the development
of the enormous fields of informational game theory and economics as
we know them today. Similarly, the theory was extended from perfect in-
formation (Zermelo) to imperfect information (Borel and von Neumann);
from strategic (normal) form to extensive; from two-person to n-person;
from zero-sum to non-zero-sum; and from TU (transferable utility) to
NTU (non-transferable utility).

The current frontier—the one discussed here—is that of rationality.
Briefly, it is suggested that game theory need not assume that the players
must be rational (i.e., utility maximizers).

This may sound paradoxical to the reader. After all, rationality is what
game theory is all about; game theory without rationality sounds like geol-
ogy without rocks or biology without life. Yet some of the most challeng-
ing problems facing the theory concern the interface between rationality
and irrationality; they are about situations that cannot be dealt with on a
purely rational basis, much like geological phenomena that depend on
living organisms (such as cracking of rocks by plants) or biological
phenomena that are the result of the nonliving environment.

1 Approach

The underlying game model from which we take off is that presented in
Aumann 1987. It starts by considering the set of all “states of the world,”
where the specification of a state includes all relevant factors, including the
(pure) strategy that each player uses in the given game, and what he knows
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when he decides to do so. It then asks, suppose that each player is rational
at each state of the world that occurs with positive probability; i.e., that the
strategy that that state specifies for each player happens to be one that
maximizes his utility given his information. Can we then say anything
about the distribution of strategy n-tuples? Does the assumption of ratio-
nality imply any specific form for this distribution?.

The point of view of this model is not normative; it is not meant to advise
the players what to do. The players do whatever they do; their strategies
are taken as given. Neither is it meant as a description of what human
beings actually do in interactive situations. The most appropriate term is.
perhaps “analytic”; it asks, what are the implications of rationality in inter-
active situations? Where does it lead? This question may be as important
as, or even more important than, more direct “tests” of the relevance of the
rationality hypothesis.

The answer given in Aumann 1987 was that it leads to correlated equi-
librium—not that the players consciously choose a correlated equilibrium
according to which they play, but that, to an outside observer with no
information, the distribution of action n-tuples appears as if they had.

What is proposed here is to take this framework, remove the rationality
hypothesis, and see where we are led. '

Needless to say, I do not simply drop the rationality hypothesis and
leave it at that. Rather, I propose to use the epistemic model of Aumann
1987—whose roots extend back to Radner (1968, 1972), to Harsanyi
(1967-68), to von Neumann and Morgenstern, to formal epistemologists
such as Kripke and Hintikka, and to probabilists such as Kolmogorov—
as a very general kind of framework for studying limited rationality; a
unified framework for considering rationality in environments that may
include irrationality, indeed where irrationality may be of the essence.

2 Formal Description of the Model

Formally, define an information system to consist of the following:

(i) astrategic (normal) form n-person game G;

(i) for each player i, a set whose members, s;, are called information states
of i;and
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(iii) a function that associates with each information state of each player i

(a) a pure strategy of iin G and
(b) a probability distribution on (n — 1)-tuples of information states of
the other players.

An information system is a simultaneous representation of all the
players’ uncertainties. Each player makes some definite choice of a pure
strategy, based on whatever he knows or believes about customs, history,
personalities of the other players, and so on—in brief, based on the state of
his information. He knows his own choice; that is what (iiia) says. But he
does not know what the others choose, though he has some belief about

‘this. Moreover, he does not know their information states—what informa-

tion is available to them when they make their choices, what they believe
about his choice, and so on.

For simplicity, we confine ourselves to information systems that are
finite, i.e., in which each player has finitely many information states.

Let us use the term surmise for a probability distribution maintained by
a player, theory for his surmise on the (n — 1)-tuple of information states of
the other players, and belief for his surmise on the (n — 1)-tuple of pure
strategies that the other players choose. Thus, (iiib) associates a theory
with each information state of each player i, from which we may derive i’s
belief. From i’s theory we may also derive a surmise on the theories of the
others, and hence about their beliefs. This is called a second-order belief; it
may be computed explicitly from the information system. Similarly, we
may define and compute beliefs of any order. Note that the resulting “belief
hierarchy” is derived from the information system, not given exogenously.

We call a player rational at a given information state if the pure strategy
he chooses at that state maximizes his expected payoff when calculated
according to his belief at that state. (See section 7 for a discussion of this
definition.) ‘

Let us use the term state of the world, or simply world, for an n-tuple of
information states; it is a complete specification of all relevant parameters.
A widely used regularity condition on information systems is that there
exists a single probability distribution p on the states w of the world, called
a “common prior,” such that the theory of each player i at each w is the
conditional of p given i’s information state at w (see Harsanyi 1967-68,
p. 493ff., and Aumann 1987, section 5). Intuitively, p represents the surmise
about the state of the world held by an outside observer with no informa-
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tion at all; it is assumed that if the observer had the same information as a
player he would make the same surmises. When it exists, a common prior
allows a particularly concise description of the information system.

For an illustration, let G be the game with the following matrix:

L R
T 1,1 0,0
B 0,0 22

(as usual, the first and second coordinates of each entry represent payoffs
to the row and column players—say, Alice and Bob—respectively). Con-
sider the information system depicted by

L L R
T 1,1* 1,1* 0,0
T 1,1* 1,1 0,0*
B 0,0 0,0% 2,2*

The first two rows represent two different information states of Alice, both
corresponding to her pure strategy T; the last row represents a third infor-
mation state, corresponding to her pure strategy B. Similarly, the columns
represent Bob’s information states. There are nine states of the world. Each
star represents a probability of 1/6; the other probabilities vanish. Alice’s
first information state differs from her second in her belief; in the first, she
knows that Bob plays his pure strategy L, whereas in the second, she at-
tributes half-half probabilities to Bob’s two pure strategies. Similarly for
Bob. :

Thus, in the world w represented by the top left corner of the 3 x 3
matrix, Alice plays T, and Bob knows this. But she does not know that he
knows it; indeed, she ascribes probability only 1/2 to this event. Similarly
for Bob. Finally, each player is rational in w, but neither knows that the
other is; indeed, each ascribes probability only 1/2 to the rationality of the
other.

(Throughout this paper, the term know is used to mean “believe with
probability 1.” In the current framework one cannot even formulate the
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strongcr meaning of know, which allows no exceptions at all, even with
probability 0.)

The above definition of an information system is analogous to Harsanyi’s
(1967-68) definition of a game of incomplete information. There each play-
er may be one of several “types,” where a type determines his utility func-
tion and a distribution over (n — 1)-tuples of types of the others. Here we ,
replace the utility functions by actions; the information states here play
the same role as the types there. :

Information systems are essentially equivalent to the standard partition
models of information in games (as in Aumann 1987). There the primitives
are the set of worlds, and n partitions of this set, one for each player. An
information state of i is then defined as an atom of i’s partition. Formally,
information systems are slightly more parsimonious than partition
models, and are better suited to our current purposes. _

The purpose of this essay is to consider information systems where some
players are irrational at some states of the world, and the implications
this has for behavior at other states of the world, where all players are
rational. In particular, we will see how such considerations can resolve
certain “paradoxes of rationality” arising from backward induction in
“centipede games.”

3 High-Order Mutual Knowledge

Recall that an event is called common knowledge if all players know it, all
know that all know it, and so on ad infinitum. Call an event mutual knowl-
edge if all players simply know it; second-order mutual knowledge if it is
mutual knowledge that it is mutual knowledge; and so on for any finite
order. Thus, common knowledge is the same as mutual knowledge for all
finite orders simultaneously.

In a conversation at Stanford during the summer of 1987, J ay Kadane of

- Carnegie-Mellon University suggested that it might be worthwhile to in-

vestigate the consequences of relaxing the assumption of common knowl-
edge of rationality that underlies Aumann 1987 (see section 1 above). At
the time, the framework for carrying out such an investigation was not
clear. I suggest that the framework of the previous section is appropriate
for this purpose.

Indeed, in such a framework it is quite easy formally to describe a situa-
tion in which there is iterated mutual knowledge of rationality up to any



1

Strategic Equilibrium and the Theory of Knowledge .

given order, but not common knowledge. Thus, consider a variant of the
example in the previous section, with the same game G as there, but with
the information system ’

L L L L R

L,1* 1,1* 1,1 1,1 00
,1* 1,1 1,1* 1,1 00
1,1 1,1* 1,1 1,1* 00
1,1 1,1 1,1* 1,1 0,0*
00 00 00 00* 22*

W - = -

where each star represents a probability of 1/10, and the other probabili-
ties vanish. Then in the state of the world represented by the top left
corner there is second-order—but not third-order—mutual knowledge of
rationality.

Common knowledge of rationality seems a very strong assumption.
Even mutual knowledge of rationality is quite strong. A player may be
rational himself, but how can he know for sure that another person is?
Even if he does, it seems highly unlikely that he will know for sure, without
the slightest doubt, that the other player knows that he is rational. Yet this
would only be second-order mutual knowledge of rationality; common
knowledge of rationality is far stronger.

The question therefore arises as to what happens when we relax this
requirement just a little, e.g. by allowing a small measure of doubt to enter
at a high level of mutual knowledge. Suppose, for example, that both play-
ers are rational, both know for sure that both are rational, and both impute
very high probability to this being so (i.e., to both knowing for sure that -
both are rational); but they do not know it for sure. Can this make a blg
difference in the outcome of a game?

We will see that it can make a very big difference indeed.

4 Paradoxes of Backward Induction

Among the most disturbing counterintuitive examples of rational interac-
tive decision theory are the paradoxes of “backward induction.” The best
known example is the finitely repeated prisoner’s dilemma, in which all

~=-

SNy
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Nash equilibria (and also all correlated equilibria) dictate playing “greedy”
(“defect”) at each stage, no matter how often play is repeated. Rosenthal
(1982) constructed a particularly simple class of backward-induction
paradoxes—the “centipede games”—a striking instance of which, due to
Megiddo (1986), is as follows: $10.50 is lying on a table. Alice has the
option of taking $10, leaving 50 cents for Bob. If she does, the game is over.
If not, the amount on the table is increased tenfold, to $105, and it is Bob’s
turn to play: he can take $100, leaving $5 to Alice. If he does, the game is
over. If not, the amount on the table is again increased tenfold. This con-
tinues for a total of at most three rounds, and then ends. If play has not

‘terminated before, then at the last stage Bob has the opportunity of taking

$1,000,000, leaving $50,000 for Alice; after that, play is over, whether or not
Bob takes the opportunity.

At all Nash equilibria of this game, Alice “goes out” immediately —i.e.,
she takes the $10 at her first move, leaving 50 cents for Bob. This is also so
for all correlated equilibria. :

Some readers may feel that, upon consideration, Megiddo’s example is
not so terribly counterintuitive; that although Alice may feel quite frus-
trated, a considered analysis will nevertheless lead her in the end to pick up -
the money at the first opportunity. After all, there is a difference between
frustration and paradoxicality; the players of a one-shot prisoner’s dilem-
ma will certainly feel frustrated, but the logic of that situation does inexora-
bly point to playing “greedy,” and the time has long passed since this was
considered paradoxical. One might even say that properly digesting
Megiddo’s example makes it easier to accept the equilibrium outcome of,
say, the 100-times-repeated prisoner’s dilemma.

But others will feel that if this is rationality they want none of it—or,
more to the point, that it represents an approach that is of little practical
interest, at least in this example.

5 A Resolution of the Backward-Induction Paradoxes

What is proposed here is to apply the new kind of bounded rationality
suggested in section 3, in which all agents are in fact perfectly rational but
there is some breakdown in the commonality of the knowledge that they
are. Typically, we will be interested in situations where there is iterated
knowledge (“Alice knows that Bob knows that Alice knows...”) of ratio-
nality up to a specified level, but no further. We will find that an extremely



628

{

Strategic Equilibrium and the Theory of Knowledge

small breakdown in the commonality of the knowledge of rationality is
enough to justify the kind of behavior that most of us would consider
intuitively “reasonable.”

The Megiddo example appears in matrix form as follows:

_ Bob

a b [ d

A 10 10 10 10
.50 .50 .50 .50
B S5v 1,000 w 1,000 1,000
. 100 50 50 50
Alice

C 5 500 x 100,000 y 100,000
100 10,000 5,000 5,000
D 5 500 50,000 z 0
100 10,000 1,000,000 0

The rows and columns represent pure strategies of Alice and Bob, respec-
tively. They are arranged in the order in which they prescribe “going out;”
thus, Alice’s third row represents the strategy in which she takes the
money—*“goes out”—when (and if) it is offered to her for the third time,
but not before. In each entry, the upper number represents Alice’s payoff,
the lower one Bob’s.

Consider now the information system depicted in the above matrix.
Each player has just one information state for each of his pure strategies.
There is a common prior, with non-negative probabilities v, w, x, y, and
z; all other probabilities vanish. Note that with probability 1 Alice “stays
in” on her first move.

(When one is discussing an example, as here, common priors are a dcs1d-'
eratum, not a restriction. In theorems one strives for generality; in exam-
ples, for “regularity,” for an absence of pathology. The point is that the
backward-induction paradoxes can be resolved even if we restrict our-

- selves to common priors; a fortiori if we don’t.)

For simplicity, consider first the case where x = 0.99447, y = 0.0055,
z = 0.00003, and u = v =w = 0. Note that Bob is rational at all three
states of the world that occur with positive probability; as for Alice, she is
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rational at x and at y, but not at z. Thus, Bob is rational with probability 1,
and Alice with a probability very close to 1; the probability that she is
irrational is only 3 in 100,000. o

Suppose now that the true state of the world happens to be the one that
has the overwhelming probability, namely x. Then both Alice and Bob are
rational; moreover, each of them knows that both are rational. Indeed, it is
common knowledge that Bob is rational. And he still gets $10,000, which is
surely the most he could reasonably hope for.

One can ring the changes on this in many ways. The underlying point is
that for Bob to be rational everywhere, and Alice everywhere except at z,
it suffices that, of the ratios v/w, w/x, x/y, and y/z that are not 0/0, none
exceeds 198. The probability is then 1 that Bob is rational and gets at
least $50; and at the state of the world corresponding to v, both players
are rational, both know this (with certainty), both know that they know
this, and both know that they know that they know this, and yet Bob
collects $100. And though Alice is irrational with positive probability, that
probability may be tiny: when all the above ratios are 198, the proba-
bility z that Alice is irrational (as estimated by an outside observer) is
0.000000000648—TIess than one in a billion. Multiplying this probability .
by the size of Alice’s “loss” (or rather forgone profit) at z, namely $50,000,
we get an “expected irrationality” of less than 1/300 of a cent, an utterly
insignificant sum.

Similar considerations hold for the finitely repeated prisoner’s dilemma.
With extremely small—practically speaking, negligible—overall proba-
bilities of irrationality, one can, in the 100-fold repetition, justify “co-
operating” until at least the 85th or the 90th stage, and even beyond. This
kind of result jibes well with observed experimental behavior, in which
subjects start “defecting” more and more as the game approaches its
end. , '

This attractive resolution for these paradoxes gives a rigorous justifica-
tion to the elusive idea that, whereas one should certainly play rationally at
the end, it seems somehow foolish to act from the very beginning in the
most pathologically pessimistic, “play it safe” way. The above analysis
shows that, contrary to what had been thought, one may act in a way
that is rational—even with a high degree of mutual knowledge of ratio-
nality—and yet is quite profitable. And it reflects the fact that in real inter-
active situations there is a great deal of uncertainty about what others will
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do, to what extent they are rational, what they think about what you think
and about your rationality, and so on.

6 Measuring Irrationality

In this section we confine our attention to information systems with a
common prior, to which the term probability will refer.

The methodology of section 5 lends itself well to the task of measuring
irrationality. We have already used one such measure: “expected irratio-
nality.” Formally, this is defined for each player i separately, as follows: At
each of i’s information states, one multiplies the probability of that state by
the difference between i’s expected payoff there and the maximum expected
payoff that he could have gotten by changing his strategy; then one sums
over all of i’s information states. This measure of irrationality should be
useful in comparing various approaches to approximate rationality, in-
cluding the e-rationality of Radner (1980, 1986), the “perturbations” of
Kreps, Milgrom, Roberts, and Wilson (1982), and the approach of this
paper. What is being suggested is that, in evaluating a specified solution in
a specified context, one should take into account both the amount of irra-
tionality (as does Radner) and its probability (as do Kreps et al.). There is
an obvious tradeoff between the two that is not captured by either one
separately: a player may be willing to tolerate a higher probability of an
irrationality that results in the loss of $1 than one costing $1 million.

The information systems of section 5 involve “correlated” strategies:
each player’s choice of a pure strategy depends on his belief, with different
beliefs corresponding to different choices. Effects that are similar insofar as
expected irrationality is concerned can be obtained in the independent
case—with “mixed” strategies, so to speak. Thus, suppose that at each
of his information states Bob has the same belief about Alice’s choice,
represented by the probabilities A4, B, ... (see the matrix in section 5). Simi-
larly, let a, b, ... represent Alice’s belief at each of her information states.
LetB/C = C/D=a/b=>b/c = 198,andlet4 = d = 0. Then, as in the sec-
ond example in section 5, Bob’s expected irrationality is 0, and Alice’s
is less than 1/300 of a cent. (Alice is irrational only when choosing row
D.) The probability of irrationality is greater than in section 5; it is D =
0.0000253, rather than z = 0.000000000648. But the size of the irrationality
(the loss in expected payoff from making that choice rather than maxi-
mizing) is smaller; not $50,000, but $50,000 x c¢. Hence, the expected ir-
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rationality is $50,000 x cD. Since ¢ = D, this works out to $0.0000320, as
compared with $0.0000324 in the second example of section 5.

Thus, there is no appreciable difference in expected irrationality between
the two systems; it is negligibly small in both (in fact, slightly smaller in the
independent case). What makes the example of section 5 more attractive is
that at v, say, it displays a much higher level of mutual knowledge of
rationality. By contrast, in the independent case there is no mutual knowl-
edge of rationality at all; at v (indeed, at all states), Bob ascribes positive
probability to Alice’s being irrational. '

We may define the degree of irrationality of a player i at state w of the
world as minus the maximum level of mutual knowledge of i’s rationality
at w. This is to be distinguished from expected irrationality as defined
above, which measures the “amount” of irrationality in the system. Thus,
whereas the example of section 5 has a slightly higher “amount” of irratio-
nality than the “independent” example, it has a far lower degree.

Expected irrationality is a global measure; it applies to the information
system as a whole. Degree of irrationality is a local measure; it applies to a
specific state of the world. It would be desirable also to develop a local
measure of expected irrationality, conditional on a specific state of the
world and on the information of the players at that state. This would
enable us to refer to the “amount of irrationality” that is needed in the
system to justify the choice of a certain strategy pair by the players (like x
in Megiddo’s game), even though under the circumstances both players’
choices are completely rational.

7 A Difficulty with the Definition of Irrationality

The framework of section 2 requires each player, at each state of the world,
to have well-defined probabilities for the other players’ information states,
pure strategies, and so on. Yet it permits him sometimes to be irrational,
ie., to fail to maximize expected utility. This raises a difficulty, since per-
sonal probabilities are usually defined via utility maximization (Savage
1954); nonmaximizers of utility don’t have probabilities. *

Consider first the case when there is a common prior, as in sections 5 and
6. The underlying idea of common priors is that reasonable probability

- assessments are or should be based on information, so that people with

exactly the same information “should” have the same probabilities. Thus,
one can think of a common prior as representing the assessment of a ratio-
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nal outside observer who has no personal interest in the outcome of the
game and no private information. If he then gets the same private informa-
tion as a player who is rational, he will entertain the same probabilities as
that player; and if the player is not rational, it is natural to think of the
observer’s probabilities as the “right” ones.

In the general case, when there need not be a common prior, the diffi-
culty may be resolved by revising the definition of an information system
(section 2). Item iiib of the definition specifies a “theory” (a complete sys-
tem of probability assessments) for each player at each of his information
states. The revised definition specifies whether or not that player is rational
at that information state, and specifies a theory for him only when he is
rational. This enables us to formulate and prove general theorems, and to
define the degree of irrationality (see section 6); its disadvantage is that
it does not enable us to measure the expected amount of irrationality, as in
sections 5 and 6. ”

8 Relations with “Crazy Perturbations”

In the “crazy perturbation” literature (e.g., Kreps et al. 1982; Kreps and
Wilson 1982; Milgrom and Roberts 1982; Fudenberg and Maskin 1986;
Aumann and Sorin 1989; Fudenberg and Levine 1989), one looks for Nash
equilibria of a repeated game in which there is a small exogenous probabil-
ity that a player plays irrationally but in such a way as to motivate the
other player to play in some specific way—e.g., a mutually beneficial way.
Most of the results say that, in one sense or another, the rational types tend
to mimic those irrational types that are in some sense “best” for the player
who does the mimicking. Intuitively, one might say that the rational types
“disguise” themselves as irrational; they make believe they are crazy, thus .
“forcing” the other player to play accordingly (i.e., to maximize against the
selected irrational type). _ v

In general, this kind of theorem gives rather sharp results; it says that all
Nash equilibria of the perturbed game have payoffs in a sharply defined
class. They thus go in the opposite direction from many of the theorems on
repeated games, in which results akin to the folk theorem lead to very
diffuse sets of equilibrium payoffs. _

Consider now a situation in which there is mutual knowledge of some
given order that all players are rational, but not common knowledge; and
that if the players are not rational, then they play some specified strategy,
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or a strategy in some specified set (such as bounded recall strategies, as in
Aumann and Sorin 1989). Can theorems of the above type still be proved in
this more general context? The model outlined in section 2 provides an
appropriate general framework in which to investigate this question.

For the finitely repeated prisoner’s dilemma, this question was treated
by Kreps et al. (1982). Suppose that it is first-order mutual knowledge that
the players are rational: each player is rational and knows that the other
is, but does not know that the other knows that he is. In particular, he
thinks that the other may think that, with some fixed small probability, he
is a tit-for-tat (TFT) automaton. In this situation, it would appear that
each player will still be motivated to pretend that he is TFT, since he
doesn’t know that the other knows that he isn’t. Once he plays TFT, the
other is motivated to go along, to the mutual benefit of both.

Now what happens when mutual knowledge of rationality is taken one
step further—i.e., when not only does each player know that the other is
rational, but each also knows that the other knows that he is? Then the
reasoning appears to break down; each player might feel that there is no
sense in pretending to be crazy, since he knows that the other knows that
he is rational.

- But further analysis indicates that the reasoning survives this step as
well. A player playing TFT indeed knows that the other knows that he is
pretending; but she (the other) needn’t know this. He therefore figures that
she may well 2o along, in order to make him think that she believes that he
is indeed crazy, and so encourage him to continue with the mutually bene-
ficial TFT. So he tries, and she indeed goes along, for precisely that reason.

Indeed, it appears that one can carry mutual knowledge of rationality to -
any finite level short of common knowledge, and still get the same effect:
that the players will be motivated to play mutually beneficial but seemingly
irrational strategies.

Most of us have experienced situations where some harmful fact is
perfectly well known but is studiously overlooked by everybody. In this
case, the harmful fact is the players’ rationality (!). More precisely, the fact
itself need not be harmful, but common knowledge of it would be. The
above approach enables us to understand this phenomenon within the
context of the theory. | .

This reasoning presupposes the kind of setting where the perturbation is
mutually beneficial. In other settings where the “crazy perturbation” meth-

-odology has been applied, such as the chain-store paradox, we do not

know whether the results extend.
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Lovingly dedicated to Frank Hahn, who has always had a penchant for the
irrational.
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