Survey of Repeated Games

‘Work on repeated games may be broadly divided into two catego-
ries: repeated games with complete information, and repeated games
with incomplete information. While there are important interrela-
tionships between these two categories, each one represents a coher-
ent and more or less separate body of work with its own set of basic
ideas and problems. A closely related area, which is currently very ac-
tive, is that of stochastic games, but this will not be surveyed here.

1. Repeated Games of Complete Information

The theory of repeated games of complete information is con-
cerned with the evolution of fundamental patterns of interaction be-
tween people (or for that matter, animals; the problems it attacks are
similar to those of social biology). Its aim is to account for pheno-
mena such as ¢ooperation, altruism, revenge, threats (self-destructive
or otherwise), etc. — phenomena which may at first seem irrational -
in terms of the usual “selfish” utility-maximizing paradigm of game
theory and neoclassical economics.

Let G be an n-person game in strategic (i.e. “normal”) form. We
will denote by G* the “supergame” of G, i.e. the game each play of
which consists of an infinite sequence of plays of G. Unless we indi-
cate otherwise, we will assume that at the end of each “stage” (i.e. a
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particular play of G in the sequence), each player is informed of the
strategy chosen by all other players at that stage. Thus the informa-
tion available to a player when choosing his strategy for a particular
stage consists of the strategies used by all players at all previous
stages. The payoff in G* is some kind of average of the payoffs in the
various stages; more precisely, it may be defined as the Cesaro limit
of these averages (the limit, as k— oo, of the average of the payoffs
hy, ..., hy to the first k stages), or as the Abel limit (the limit, as the in-
terest rate r tends to 0, of the normalized current value of the payoff
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because the limits involved need not always exist; however, for the
purposes of this brief survey let us ignore these technical difficulties
and proceed with the statement of the theorems.

-). There are technical difficulties with these definitions,

Theorem 1: The payoff vectors to Nash equilibrium points in the su-
pergame G* are the feasible individually rational payoffs in the game
G.

Here a payoff vector 4 is called feasible in G, if it is a convex com-
bination of payoff vectors to pure strategy n-tuples in G; i.e. if it is a
possible payoff to a correlated strategy n-tuple in G. It is called indi-
vidually rational if for each player i,

h'zmin, max, H' (o, 7) ,

where H is the payoff function in G, o ranges over the strategies of i
in G, and 7 over the strategies of the players in N\ {i}. It should be
noted that the min max is not necessarily equal to the max min; in
general, it is greater. This is because the set of strategies available to
N\ {i} is not necessarily convex. For example, if the players are con-

fined to using mixed strategies, then we would not in general have .

min max = max min. The min max is the level of payoff below
which i cannot be forced by the remaining players, but he cannot nec-
essarily guarantee himself this payoff. If, however, the players in
N\ {i} can correlate their strategies independently of i — e.g., if they
can spin a roulette wheel that i cannot see — then the max min and the
min max are equal.

Theorem 1 has been generally known in the profession for at least
15 or 20 years, but has not been published; its authorship is obscure.
The proof, which rests on the idea of threats of punishment, is in
principal quite simple; it is outlined in Appendix 2. We shall call it
the “Folk Theorem”. More or less, it may be considered the starting
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point or touchstone for the further developments which will be de-
scribed below.

The significance of the Folk Theorem is that it relates cooperative
behavior in the game G to non-cooperative behavior in its supergame
G*. This is the fundamental message of the theory of repeated games
of complete information; that cooperation may be explained by the
fact that the “games people play” - i.e., the multiperson decision situ-
ations in which they are involved - are not one-time affairs, but are
repeated over and over. In game-theoretic terms, an outcome is coop-
erative if it requires an outside enforcement mechanism to make it
“stick”. Equilibrium points are self-enforcing; once an equilibrium
point is agreed upon, it is not worthwhile for any player to deviate
from it. Thus it does not require any outside enforcement mechanism,
and so represents non-cooperative behavior. On the other hand, the
general feasible outcome does require an enforcement mechanism,
and so represerits the cooperative approach. In a sense, the repetition
itself, with its possibilities for retaliation, becomes the enforcement
mechanism. :

Branching out from the Folk Theorem there are developments in
several directions, which we will take up in roughly historical order. -
The first arose from an attempt to refine somewhat the notion of “co-
operative outcome” on the cooperative side of the Folk Theorem.
Specifically, while the set of all feasible individually rational out-
comes does represent a solution notion of sorts for a cooperative
game, it is relatively vague and uninformative. One would like a -
characterization, in terms of the supergame G*, of more specific kinds
of cooperative behavior in the single-shot game G; e.g., of the core.
This is achieved by replacing the notion of equilibrium by strong
equilibrium, defined’' as an n-tuple of strategies for which no coalition
of players can simultaneously all do better for themselves by moving
to different strategies, while the players outside of the coalition main-
tain their original strategies. We then have

Theorem 2: The payoff vectors to strong equilibrium points in the su-
pergame G* are the elements of the B-core of the game G.

Here the B-core of G is the set of feasible payoff vectors x such that
each coalition S can be prevented by its complement from achieving
for each of its members i a payoff larger than x;. It may be contrasted
with the larger and somewhat more transparent a-core, defined as the
set of feasible payoff vectors x such that no coalition S can guarantee

' In an arbitrary game, not necessarily a supergame.
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to each of its members i a payoff larger than x;. Vis-a-vis the «a-core,
the B-core plays a role similar to that played by the min-max vis-a-vis
the max-min (compare the discussion of Theorem 1 above).

Theorem 2 was proved in 1959 by the writer of these lines (in Con-
tributions to the Theory of Games 1V, Princeton University Press, 287-
324). The original paper is poorly written and difficult to read. We
must, however, not be too harsh in our judgements; bitter experience
shows that while the basic ideas in this subject may be quite transpar-
ent, it is by no means easy to formulate the proofs in a manner that is
at once rigorous, elegant, and brief. A rigorous statement of Theorem
2 may be found on page 551 of the Transactions of the American
Mathematical Society Vol. 98 (1961). An intuitive outline of the proof
may be found on page 23 (Theorem 13) of the 1967 Morgenstern
Festschrift?. '

A sort of footnote to Theorem 2 was published in the Pacific Jour-
nal of Mathematics in 1961 (Vol. 98, 539-552). It asserts that in games
of perfect information, the strong equilibrium points of G* are
achievable in pure supergame strategies. In spite of the classical con-
nection between pure strategies and perfect information, this is not
quite obvious. Suppose x is in the B-core and S is a coalition. The
complement of S will certainly have a pure strategy 7 in G that pre-
vents S from achieving more than x; for each of its members i. That
is, for each strategy o of S, there will be a member i of S whose payoff
from the pair (o, 7) will be =x;. But it is conceivable that by jumping
around from one o to another, S could, against 7, get more on the av-
erage than x; for each of its members i.

To put it differently, mixing really has two functions: secrecy and
convexification. It is fairly clear that the first of these two functions is
obviated by perfect information, but not so clear that the second one
is. ' '

The proof uses the convexity of vg (S) (the set of S-vectors that the
complement of S cannot prevent S from achieving); this in itself is
non-trivial — it depends on Kakutani’s fixed point theorem (see
Transactions of the American Mathematical Society 98 (1961), 549).
Since x is in the B-core, it is not in the interior of vg (S), and so can be
(weakly) separated from vg(S) by a hyperplane with non-negative
coefficients. These coefficients are used to combine the payoffs of S’s
members into a single number, which is taken as the payoff to a 2-
person zero-sum game of perfect information between S and its

2 Essays in Mathematical Economics in Honor of Oskar Morgenstern, edited by Martin
Shubik, Princeton University Press, Princeton, N.J., 1967.
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complement. In case S defects, the complement uses a pure optimal
strategy in this 2-person zero-sum game.

Soon after John Harsanyi’s landmark work in the mid-sixties on
the general theory of games of incomplete information®, attention in
the theory of repeated games shifted to the incomplete information
case. This extensive work will be surveyed separately in Section 2 be-
low.

In the mid-seventies interest in the complete information case
started reviving. We mention first the sociologically and biologically
oriented applications, such as the papers of Hammond* and Kurz® on
Altruism, and J. Maynard Smith’s® work on evolution. However, we
prefer to postpone discussing these provocative works until after we
have described the more recent theoretical developments.

The first of these centers on Reinhard Selten’s concept of perfect
equilibrium point’. Experience with Nash equilibrium points in games
played over time leads to the conclusion that they can embody ele-
ments not usually associated with a purely non-cooperative theory.
Specifically, a Nash equilibrium point may dictate a choice that is ir-
rational in a given situation, which makes sense only in terms of de-
terring the other players from making moves leading to that situation.
In other words, it permits empty threats, threats that could never ra-
tionally be carried out when the chips are down; and this even when
the other players know it to be so. A simple but revealing example is
the extensive game with the tree

1,2) (0,0) 1)

Player I’s move

Player 2’s move
3 As often happens in our business, the work became widely known several years before
it was published in 1967-68 (Management Science 14, 159-182, 320-334, 486-502).

4 “Charity: Altruism or cooperative egotism?” in E. Phelps, ed. (1975), Altruism, Morali-
ty, and Economic Theory, Russell Sage Foundation, New York.

3 “Altruistic Equilibrium”, in Economic Progress, Private Values, and Public Policy (The
Fellner Festschrift), North Holland, 1977; see also Footnote 11.

¢ “Evolution and the Theory of Games”, American Scientist 64 (1976), 41-45.

7 “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive
Games”, International Journal of Game Theory 4 (1975), 25-55.
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in which (L, L) is a Nash equilibrium point; Player 1 goes left because
of 2’s rather unconvincing threat spitefully to go left if 1 goes right.

To deal with this problem, Selten introduced his concept of perfect
equilibrium point. It is based on what might be called the “trembling
hand principle”. Assume that whenever a player makes a choice, the
outcome will be as he intended with a probability that is almost, but
not quite, one; each of the other possibilities — those that he did not
intend — will occur with an infinitesimal probability. This infinitesi-
mal probability, while it is not large enough to affect the payoff sig-
nificantly, does make every situation (i.e., every vertex in the game
tree) a possibility that must be reckoned with; it thus eliminates emp-
ty threats and thereby drastically reduces the set of equilibrium
points.

Two quick applications:
(i) A perfect equilibrium point cannot assign positive probability to

any “weakly dominated” strategy®. ’

(ii) In a game of perfect information, the perfect equilibrium points

are precisely those obtained by the usual “dynamic program-
ming” procedure, i.e., the one in Zermelo’s classic paper on
chess. (In non-zero sum games there are others — many others!)
In a sense, much of the theory of repeated games is an attempt to
cut down, in one way or another, the bewildering wealth of equili-
brium payoffs provided by Theorem 1. Thus Theorem 2 obtained a
drastic reduction by going to strong equilibria — a reduction that may
be too drastic, as the core is frequently empty. The proof of Theorem
1 (see Appendix 2) indicates that a reduction can also be expected by
going to perfect equilibria, since the proof depends heavily on “pu-
nishments” that may well be harmful to the punisher; they thus con-
stitute precisely the kind of irrational threat that is excluded by the
perfectness notion. Unfortunately, we have

Theorem 3: The payoff vectors to perfect equilibrium points in the su-
pergame G* are the same as the payoff vectors to the Nash equilibrium
points.

In other words, no reduction is achieved by going to perfect equili-
bria. But while the result itself is certainly disappointing, the proof is
actually quite revealing. The equilibrium is held together by an infin-
ite regress of threatened punishments, in which a player who does not

% o, weakly dominates o, if o, yields at least as much as o to the player using it no mat-

ter what the other players do, and more for at least one (7 — 1)-tuple of strategies of the
other players.
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punish a defector as he should is in turn punished by the defector for
not punishing him. Thus a motorist stopped by the highway patrol
may refrain from offering the patrolman a bribe for fear of being
turned in by him; and the patrolman would probably indeed turn him
in, for fear of being himself turned in by the motorist otherwise.
Much of whatever stability society may possess is perhaps traceable
to this kind of perfect equilibrium.

This theorem was demonstrated in 1976 by Rubinstein® and by
Aumann and Shapley'® independently, with relatively minor differ-
ences in formulation. It has not yet been published.

We come next to the subject of discounting. Research in undis-
counted supergames has a slightly disconcerting never-never quality.
What a person actually does at any particular stage doesn’t directly
affect his payoff at all. In certain evolutionary applications, where all
that seems to matter is long-term survival, such a model is perhaps just
what is called 'for. In the more usual applications, though, it seems
rather extreme. There literally is all the time in the world to do any-
thing you might want to do (in the nature of signalling, punishing, re-
penting and all the other activities that the denizens of this stylized
world engage in). Time, far from being money, is for all intents and -
purposes free.

One good example is the treatment of randomized punishments.
Punishing a defector may involve holding him to his min max or
close to it, and this in turn will in general involve the use of random-
ized strategies. This leads to no particular problems when done in
connection with Theorem 1. In Theorem 3, though, a punisher who
fails to punish must himself be punished, if necessary by the defector.
But if the punisher is using randomized strategies and the defector
can only observe the pure realizations, how can he tell whether the
punisher is doing what he should? In real time this certainly leadsto
statistical decision problems that are far from trivial. Here, though, it
doesn’t. Any deviation can be detected with an arbitrarily high prob-
ability if one can make as many observations as one likes; and in this
case we indeed can, and still have all the time in the world for any
subsequent (second-order) punishments that may be called for.

One way to make time “bite” is to substitute a large but finite num-

® Subsequently published as “Equilibrium in Supergames,” in N. Megiddo (ed.), Essays in
Game Theory in Honor of Michael Maschler, Springer-Verlag, 1994, 17-27.

10 Subsequently published as “Long-Term Competiton—A Game-Theoretic Analysis,”
ibid., 1-15 [Chapter 22).
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ber of stages for the infinite number we have been using up to now.
But the presence of a last stage which is recognized as such by all
players, aside from being unrealistic, creates unnatural terminal ef-
fects which propagate themselves backwards and grossly distort the
entire analysis. Besides, one cannot have a treatment that is in any
sense stationary when the number of stages is fixed and finite.

A more natural way to take account of the value of time is by dis-
counting. A discount factor may be viewed either as a stop probabili-
ty or a measure of impatience or a combination of the two. It turns
out that for small discount factors the set of equilibrium payoffs is
close (in the Hausdorff topology) to that in the zero discount case. As
the discount grows, though, the situation changes, and we get some
noteworthy effects.

Consider, for example, the prisoner’s dilemma

3,3(0,4
| 4,0 1,1

In any finite repetition the only equilibrium payoff is (1,1). This is
also an equilibrium payoff in every discounted version. As the dis-

count rate 6 = -1-—:?; grows from O to 1, the set of equilibrium payoffs

gradually changes, until only (1, 1) remains. However, it does not change
continuously. Certain payoff vectors which are close to (1,1)
- for at least one of the players are the first to disappear. As § grows

the set changes in a rather complicated manner, and then,
when 6= %, we get a set that includes the denumerable set

2
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Immediately after that, everything disappears except (1,1) (compare
Kurz’s second Altruism article!", in which there is a similar effect).

Also the set of perfect equilibrium payoffs is continuous near § = 0,
but for >0 it will in general be unequal to the set of equilibrium
payoffs. Lloyd Shapley and I have worked out an example; see Ap-
pendix 3. As might be expected, the equilibrium nature of a payoff
depends on the available punishments, The perfect equilibrium na-
ture of a payoff, however, is a more subtle matter; it depends not only
on the available punishments, but also on their costs to the punisher.
Thus there emerges something conceptually akin to the Nash varia-
ble threats bargaining model. '

The next item on our shopping list is a critical examination of The-
orem 2, which “predicts” an outcome in the core. To obtain such a re-
sult we had to go from Nash equilibrium points to strong equilibrium
points. Now in a sense this is begging the question; strong equili-
brium involves group action in its definition, and this already as-
Sumes a measure of cooperation. Somehow, one feels that in a suffi-
ciently detailed model, the joint action necessary to achieve a strong
equilibrium should follow from considerations of individual utility
maximization, rather than having to be assumed.

The problem already presents itself in the search for an individual-
istic justification for Pareto optimality (or efficiency) in terms of re-
peated games. For a specific example, let us return to the prisoner’s
dilemma discussed above. In the models we have discussed up to
now, whether they are limiting average or discounted with a moder-
ate discount rate, efficient outcomes have always been Dpossible as
equilibrium outcomes. But invariably, other outcomes — including the
highly inefficient (1,1) - have also been possible. Many of us feel
strongly that (1,1) is not a rational outcome of a repeated prisoner’s
dilemma. Can’t we somehow narrow down the definition of equili-~
brium so that it yields efficient outcomes only, while at the same time
involving only individualistic concepts?

One approach is that of Kurz’s second altruism paper, which con-
siders stationary equilibria'? in repeated games. In the prisoner’s di-
lemma presented above there are actually only two stationary equili-

brium outcomes (when 0=<§ =3), namely (1,1) and (4,4). However,

"' “Altruism as an Outcome of Social Interaction”, American Economic Review 68
(1978), 216-222.

2 Equilibria yielding a flow of payoffs not depending on the serial number of the peri-
od.



Strategic Games: Repeated

if we consider the variant in which the choice of mixed strategies at
each stage is observable, then the set of stationary equilibrium out-
comes is considerably larger. In fact, we get the shaded corner in the
following figure, plus the point (1,1). As 8 grows the corner shrinks;
finally (at §=2) we get only (3,3), plus, unfortunately, (1,1). Thus al-
though discounting appears to eliminate more and more inefficiency,
it fails to eliminate the ultimate, “mulish” inefficiency in which the
players just keep playing “double-cross” no matter what happens.

xl = ?6+1

(0.4

%2 =386+1

(4,0)

To try to get around this, let us examine more carefully the concept .
of stationarity. This is not captured adequately by simply demanding
a constant pay-off flow. What we want is stationary strategies, not
just staiionary payoffs. Now the simplistic definition of stationary
strategy in which the players choose the same stage-strategy (or ac-
tion) at each stage is obviously unsatisfactory, since it does not allow
for any response to what was done at previous stages. The proper def-
inition would seem to be that a player’s action at a given stage de-
pends only on the history, not on the serial number of the stage; but
this is also unsatisfactory, since the serial number of the stage can be
read off from the history (it is simply its length). To make it work, we
would need time stretching infinitely backwards, a concept that has
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been considered in a game context'?, but is associated with great dif-

ficulties. :
One way to handle this is to assume that each player has a finite

memory. More precisely, his mind has a finite number of “states”.

‘Before each stage, the player may change the state of his mind in a

way that depends only on the previous state and the previous action
of the other player; he must then play an action that depends only on
the (new) state.

It should be noted that this formulation does not mean that memo-
ry extends only a bounded time backwards. For example, the “grim”
strategies under which a player gets doublecrossed forever if he even
once doublecrossed his friend are certainly admissible. It does, how-
ever, put a bound to the complexity a strategy can have and enables
an analysis in the framework of finite games.

Mordecai Kurz, Jonathan Cave and I have analyzed one very spe-

cial case of this, which one may call “memory zero”; see Appendix 5.

In this case, the new state may not depend on the old one but only on
the previous action of the other player. Even then the analysis is not
trivial; we get eight pure strategies on each side (four possibilities for
the steady state multiplied by two for the initial move). It turns out
that in the undiscounted case, there are several equilibrium out-
comes; but successive'® weak domination eliminates all but one,
namely (3, 3). Unfortunately, in the discounted case this no longer
holds true. And though there is no clear connection between perfect
equilibrium and successive weak domination (such as the connection
with ordinary weak domination mentioned in (i) above), this result
does raise the possibility that in the general finite memory undis-
counted case, at least the worst “mulish” behavior will not appear as
a perfect equilibrium.

Finite memory has some conceptual ties to Radner’s bounded ra-
tionality'®. In addition we cite the very provocative recent paper of
Robert Rosenthal'®, which also uses a finite state space hypothesis.

13 Schwartz, G. (1974), “Randomizing when Time is Not Well-Ordered”, Israel Journal
of Mathematics 19, 241-245.

4 If one eliminates all weakly dominated strategies from a game, one obtains a new
game to which one can apply the process of weak domination; this can be iterated arbi-
trarily often. For a concrete example see Appendix 5.

15 R. Radner (1986), “Can Bounded Rationality Resolve the Prisoners’ Dilemma’, in Mas-
Colell, A. and Hildenbrand, W. (editors) (1986), Essays in Honor of Gerard Debreu, Elsevier
Science Publishers B.V.: Amsterdam, pp. 387-400. '

16 «Sequences of Games with Varying Opponents”, Econometrica 47 (1979), 1353-
1366. :
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Rather oddly, Rosenthal’s results are quite different from ours; he al-
ways gets the double-double cross as an equilibrium, and the “friend-
ly” solution only in isolated instances.

We come now to the applicative side, and in particular to the
contributions of Hammond, Kurz, and Maynard Smith mentioned
above. Hammond and Kurz use the theory of repeated games to ac-
count for altruism, defined as the act of giving some good to another
player without necessarily receiving anything in return. Kurz’s “Al-
truistic Equilibrium”'” is essentially an equilibrium in a repeated
game in which the players keep giving each other goods, with the pu-
nishment strategy ready in the background if they should ever re-
fuse'®. -

Finally, we have Maynard Smith’s “Evolution and the Theory of
Games”. It is of course unfortunate that game theorists have commu-
nicated so poorly with the world at large that more than a score of
years after the focus of research shifted away from zero-sum games,
an eminent scientist can still write that anything that is not minimax
is not game theory. But this is a minor point; the paper is highly inter-
esting and well worth studying (again, I am indebted to Arrow for
sending me to this). Presumably Maynard Smith’s simple animal con-
tests could be put in the framework of small-memory models in the
sense we defined above; one could then get a more systematic search
- for evolutionarily stable strategies than appear in his paper. It is clear
that there is quite a bit of room for communication and interaction
between biologists and game theorists'®.

'” Balassa, B. and Nelson, R. (editors) (1977), Economic Progress, Private Values, and
Public Policy, North Holland, 177-200. "

"* Do unto me kindness and truth, please do not bury me in Egypt” (Genesis 47, 29); the _
Patriarch Jacob is speaking to his son Joseph. The eleventh century commentator Rashi
explains that “kindness to the dead is true altruism (Khessed shel emmet), as the doer
does not expect any quid pro quo”. Since then, the phrase “true altruism” has been tra-
ditionally used for services connected with burial. Perhaps this too can be accounted for
“rationally”, by an intergenerational equilibrium model; but it is certainly a more com-
plex matter. A similar problem, though in an entirely different context, was brought up
by Ken Arrow in a recent conversation. When Al Capone was released from jail after
serving close to ten years, he was physically and mentally a broken man. Nevertheless he
was well and respectfully cared for by the mob. More generally, of course, the whole
matter of care for the aged and the infirm comes under this heading.

'* Recently Reinhard Selten has taken up the evolutionary theme. See “A Note on Evo-
lutionarily Stable Strategies in Asymmetric Animal Conflicts”, Journal of Theoretical
Biology 84 (1980), 93-101. ‘
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2. Repeated Games of Incomplete Information

The stress here is on the strategic use of information — when and
how to reveal and when and how to conceal, when to believe revealed
information and when not, etc. _

The subject has broken itself up naturally into the zero-sum and
the non-zero-sum case. That is because problems of revelation and
concealment occur already in the zero-sum case, and can be studied
there “under laboratory conditions”, without the distractions and
complications of cooperation, punishments, incentives, etc. A mathe-
matical theory of considerable elegance, depth, and scope has grown
up in the last fifteen years, almost all of which is concerned with the
zero-sum case (Appendix 6 is a partial bibliography, to which we will
refer throughout this part). This theory still has some fascinating
open problems, to which I will allude in the sequel. For the purpose
of economic applications, though, the non-zero-sum theory is more

interesting and challenging; it is also far less complete, so that there is

more room for spadework.

One cannot understand the non-zero-sum theory without first re-
viewing the zero-sum theory, which we now proceed to do. One of
two 2-person zero-sum games, A and B, is being played repeatedly;
Player 1 knows which of the two it is, but Player 2 only knows the
probability p that it is A (this probability is common knowledge).
This can be viewed as a complete information game G* in which na-
ture chooses 4 or B with probabilities p and 1-p respectively, and in-
forms Player 1 but not Player 2 of the choice; the game is then played
repeatedly. _

The central fact of the theory is that the situation cannot be under-
stood unless p is allowed to vary. Denote by u(p) the value of
pPA+(1—p)B, i.e. the one-shot (or many-shot) game when Player 1
ignores his information. Denote by v(p) the value of G*. Let Cav u be
the least concave function that is =u for each p.

Theorem 4: v (p)=Cavu(p).

To prove this, one starts out with a very simple argument, based on
the fact that in a zero-sum situation information can’t hurt you,
which shows that v (p) must be concave. Next, note that since Player 1
can choose to ignore his information, we must have v(p)=u(p). Since
v(p) is concave, it follows that v(p)= Cavu(p).

The opposite inequality is slightly trickier. By the minimax the-
orem there is a mixed strategy that guarantees v(p) to Player 1; there-
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fore he may as well announce it (and use it). Given this strategy,
Player 2 can deduce a sequence of posterior probabilities @1,P2p3, --.)
for the contingency that nature originally chose 4. The P« are random
variables because they depend on which pure actions were chosen by
Player 1 in the various stages; we have Ep, = p for each k. Now it can
be shown that any infinite sequence of probabilities that are condi-
tioned on more and more information converges with probability 1;
that is, there is a random variable g such that p,—q with probability 1
as k— oo (¢ need not be 0 or 1, and need not be constant). What this
means is that after a while, Player 1 will have revealed just about all
the information he is ever going to reveal (which is perhaps obvious
anyway). From then on he must play the same (or almost the same)
whether A or B were chosen - otherwise he would be revealing more.
At this point Player 2 thinks that nature has chosen 4 with probabili-
ty close to ¢ and Player 1 is essentially ignoring his information.
Therefore, Player 1 cannot do better than u(g). On average, there-
~ fore, he cannot do better than Eu(g). But since Ep;=p and p,—q al-
most surely, we have Eg=p. Hence by Jensen’s inequality,

Eu(q)=ECavu(q)=Cavu(Eq)=Cavu(p),

and the “proof” is complete. '

The odd thing about the whole procedure is that it is all imaginary;
Player 2 cannot really assume that Player 1 is using any particular op-
timal strategy or for that matter an optimal strategy at all. He will not
be computing any posteriors and must guard his flanks by a com-
pletely different procedure, called the Blackwell strategy. We do,
however, get a guide as to how far Player 1 can go in revealing the
true game being played (i.e., in playing differently contingent on A4
and on B). In fact, what he must do is find two probabilities g1 and ¢,

such that there is an « -in [0,1] with p=aq;+(1—a)q, and

u()=au(q,)+(1— a)u(g,) (see Figure).
r
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Now let us be given two coins with different parameters r* and r”.
Suppose Player 1 tosses the coin with parameter r* if A was chosen
by nature, and the coin with parameter r® if B was chosen. If Player 2
could observe the outcome of the toss but not which coin was tossed,
he could deduce posterior probabilities for 4. It can be show that r4
and 72 can be chosen so that the probability that the coin comes out
heads is a, the posterior probability of 4 given heads is ¢, and the
posterior probability of 4 given tails is g,. An optimal strategy for
Player 1 is then to.toss such a coin once, and from then on play opti-
mally in g,4+(1—¢,)B or in ¢g,4 + (1 —g,) B according as the coin
came out heads or tails. Though he is not actually announcing the
outcome of the toss, the effect is the same.

(It should be noted that this gives an alternative proof for
v(p)=Cavu(p).)

The zero-sum theory has been developed in much more general sit-
uations. Before we describe some of these developments, though, it is
necessary to clarify the definition of G*. Two approaches suggest
themselves: limit of value means that we consider the value of an n-
stage game, divide by n, and then let n— co; value of limit means that
we define the payoff by some kind of limiting average of the payoffs
and consider the value of the infinite-stage supergame.

Under either approach one could also use the present value of
payoff and let discount tend to zero, but in the context of repeated
games this has not been studied much?.

Intuitively, limit of value is appropriate when we have a large
number of stages, and we know how many. Optimal strategies devel-
oped under this approach often depend critically on the serial num-
ber of the stage. Value of limit is appropriate when there is a large
number of stages and we have no clear idea of how many there are.
Optimal strategies here are in some sense more stationary than in.the
limit of value case. _

For Theorem 4, all approaches are equivalent. The theorem (and
the equivalence between all approaches) still holds when the two
games are replaced by any fixed finite number k, but one player still
is told exactly which game is being played.

A more significant generalization is to the case when the players

20 Though in the context of stochastic games it has been; see Bewley and Kohlberg in
Mathematics of Operations Research 1 (1976), 197-208 and 321-336. Also repeated
games with fixed non-zero discount have been studied; more on this below. Some of the
limiting average results go.through without too much difficulty for the limiting discount
case; see, for example, Mertens and Zamir (1971-72).
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are not told, at the end of each stage, exactly what one-stage strategy
was used by the opponent (cf. Appendix 1, Problem 2). A typical ex-
ample of this is when the individual stages consist of extensive games,
in which case one would know at most the moves made by the oppo-
nent, and perhaps not even that; but certainly not the (one-stage)
strategy. The information the players receive at the end of a stage
may depend only on the game being played and on the strategies
chosen by nature; i.e. in addition to the payoff matrix there is an “in-
formation matrix” associated with each game. The central concept
here is that of a “non-revealing strategy”, defined as a one-stage
mixed strategy which, when used by the informed player, leads to the
same distribution of information for the uninformed player no matter
which game is actually being played (though the informed player
may make use of his information). It can be shown (Aumann and
Maschler (1968)) that G* still has a value in this case; in fact, if u(p) is
taken to be the value of the one-stage game in which Player 1 is re-
stricted to using non-revealing strategies, then Theorem 4 applies.
The equivalence between all approaches still holds here.

When we abandon the assumption of full information for one
player, things get more complicated. First let us consider the value of
limit approach. The first, archetypical case (independent types and
full revelation of stage strategies) was considered by Stearns (1967),
who derived a formula for the sup inf and inf sup payoffs of these
games; from this formula it follows that the value will in general deci-
sively fail to exist (i.e. inf sup>sup inf)! Later Mertens and Zamir
(1980) greatly generalized Stearns’s result by removing the assumption
of independent types and, with some restrictions, that of stage-strate-
gy revelation.

The limit of value approach to these games was developed by
Mertens and Zamir (1971-72) and Mertens (1971-72), (1973), who .
showed that in general the limit of the value does exist, and gave ways
by which it may be calculated. Kohlberg, Mertens and Zamir have
relaxed the informational conditions and explored the subject thor-
oughly in various directions (see Appendix 6) that I will not specify
further here. :

This recital of results may sound somewhat dry; perhaps the reader
is deluded into thinking that what we are discussing here are fairly
straightforward extensions and variations of two or three basic ideas.
Nothing could be further from the truth. Many of the works in this
area coming after the ACDA (Arms Control and Disarmament
Agency) period of 1966-68, far from simply using and embellishing
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the earlier ideas, were in fact tremendous tours de force of ingenuity,
beauty, and depth. The problems attacked were often open for many
years in spite of concerted attempts to solve them; the mathematical
ideas employed are among the most surprising and original in the
theory of games. '

Having gotten this off our chest, let us continue with the survey. In
our “proof”’ of Theorem 4 we described an optimal strategy for the
informed player but indicated that the construction of an optimal
strategy for the uninformed player was a more complex matter. The
construction of such a strategy (called a Blackwell strategy because of
its reliance on a paper of Blackwell?' that is fundamental in much of
repeated game theory) in a very rudimentary case was done in Au-
mann and Maschler (1966), and was subsequently extended to much
more general situations in Stearns (1967) and in Kohlberg (1975a).

The case of a fixed non-zero discount was considered by Mayberry
(1967); his results are rather startling, in that he found that even in
the simplest cases, v(p) will be a concave function of p that is not dif-
ferentiable at any rational value of p (though it must be differentiable
a.e. because of its concavity).

The results of Ponssard (1975a), (1975b), (1976), Ponssard and -
Zamir (1973), Ponssard and Sorin (1980) have mainly concerned fin-
ite games or games repeated a fixed finite number of stages; some of
these results can be considered as complementmg the theory surveyed
here, which concerns mainly the case of “many” stages.

I would like to end this survey of the zero-sum situation by propos-
ing two problems. The first has to do with the speed of convergence
(in the “limit of value” approach). Returning to the situation of The-
orem 4, it can be proved that the speed of convergence is always
O (1/ }/n); it is often much smaller. Zamir (1971-72) found an exam-
ple in which the order of magnitude 1/ |/n.is actually attained. This
order of magnitude is also suggested by the following intuitive con-
siderations: Suppose we have u (p) = Cavu(p), so that aside from “fine
tuning”, the informed player must ignore his information. This
means that he will play the same mixed stage-strategy at each stage.
Now there will always be a natural random variation in the average
payoff. The central limit theorem indicates that this variation will be
of the order of 1/ |/n. One can think of Zamir’s example as one in
which the informed player can take advantage of the natural varia-

2! “An Analog of the Minimax Theorem for Vector Payoffs”, Pacific Journal of Mathe-
matics 6 (1956), 1-8.
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tion, i.e. play a strategy that masquerades as a constant mixed stage-
strategy, but actually varies slightly from it. The purposeful variation
is of exactly the order that the uninformed player might expect as
random, but is actually used to the hilt to the advantage of the in-
formed player.

The interesting thing is that the error term is not always of the or-
der 1/|/n, even when u(p)=Cavu(p). So this kind of “masquerad-
ing” is not always possible.

In a startling piece, Mertens and Zamir (1976) have shown that in
the particular original example of Zamir, there is even a much closer
connection to the Central Limit Theorem than that outlined above.
The normal distribution actually makes an explicit appearance. Ob-
viously there is something behind this that is much more general than
this particular example. But what is it?

It’s worth stating that Mertens and Zamir’s proof has absolutely
nothing to do with the above intuitive reasoning. Somehow, inexplica-
bly, the normal distribution springs forth from some differential
equation. It is all very mysterious and begs for an explanation (in
terms of a general theorem).

The second problem is also based on a recent paper of Mertens and
Zamir. Almost all of the work on this subject uses reasoning that is in
some way related to that used in our above “proof” of Theorem 4; i.e.
there hovers in the background some imaginary posterior probability
of the uninformed player which takes the place, at each stage, of the
original exogenously given p. But there is a class of games, called
games without a recursive structure, in which this reasoning somehow
doesn’t get off the ground. They are very difficult, but Mertens and
Zamir (1976) managed to solve one such game. The door to this class
of problems has opened a crack, but it doesn’t seem to budge any

more. Opening it wide would involve the development of a radically

new technique completely unrelated to what we know now.

We come finally to the non-zero-sum incomplete information case.
In the first instance one simply seeks a characterization of equili-
brium payoffs, in the spirit of the Folk theorem for the complete in-
formation case (Theorem 1). Obviously the incentive-compatibility of
revelations is a central issue here, and one could perhaps have hoped
for a solution related to the IIC set of Roger Myerson?2. Unfortunate-
ly the issue seems much more complex.

Let us confine ourselves to the 2-person case in which there is com-

?2 “Incentive Compatibility and the Bargaining Problem”, Econometrica 47 (1979), 61-73.

i
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plete information on one side and the stage strategies become known
after each stage. This was attacked in Aumann, Maschler and Stearns

. (1968), but even in this very simple case only with partial success.

Specifically, a sufficient characterization was found, but it was shown
not to be necessary. There were even cases in which there are no
equilibrium points satisfying the sufficient condition, though there
were some equilibrium points. To this day it is not known whether
even the simplest such games (k=2, i.e. there are only two possibili-
ties for the true game) necessarily possess any. equilibrium points.

The basic, inescapable complication in this business is that revela-
tion and signalling get all mixed up and interfere with each other. By
revelation we mean what happens when the informed player makes
use of his information, enabling the uninformed player, at least in
principle, to make deductions about the true state of nature. By sig-
nalling we mean what the informed player actually wants to tell the
uninformed player. The desire to signal does not imply an ability to
reveal; the signal would have to be incentive compatible, and it will
not always be. Though this is well known, a simple example is

4,4 10,0 Prob=0.4

5,014,4| Prob=0.6.

Player 1 has no strategic choice, but he knows which game is being
played; he can try to signal it to Player 2, who must choose a column.
A priori Player 1 would like to signal the truth, and Player 2 would
like to believe him; but obviously he can’t, even if in fact Player 1 is
telling the truth.

Appendix1 -
Problems Regarding the Complete Information Case

1. Discounting, Perfect Equilibrium, and the Cost of a Threat

I would give first priority to the complete information case with a
(fixed) positive discount. For reasons explained in the body of this
paper, the positive discount case is in many ways conceptually more
attractive than the zero discount case. It is also mathematically more
tractable; we have an unambiguously defined payoff function, and
the strategy pairs form a compact space on which the payoff function
is continuous. The preliminary results (see Appendix 3) indicate that
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in this case the perfect equilibrium points involve a close relationship
between the effectiveness of a punishment (or threat) and its costs to

the threatener. This relationship is certainly worth exploring to the
hilt. '

2. Imperfect Information at the End of a Stage

I don’t mean incomplete information in the sense that we don’t
know the payoff, but imperfect information at the end of each stage,
in the sense that each player gets only partial information about the
strategies used by the other players. Consider, for example, an altruis-
tic equilibrium in Kurz’s sense? involving three or more people. Sup-
pose that the donor never becomes known; the recipient only gets to
know that he received a gift, not from whom. (Maimonides lists eight
levels of charity, of which the anonymous donor who lends the reci-
pient money in order to enable him to make his own livelihood is the
highest. Aware of human frailties, he admits the lesser levels as well.)
It is not difficult to see that the Altruistic Equilibrium survives this
change. It’s somewhat less clear whether the Altruistic Perfect Equili-
brium survives it, and it seems perfectly clear?* that the Altruistic
Strong Equilibrium will not survive it. In more general games, even
the ordinary equilibrium will not survive: if you do not know who is
defecting, whom will you punish? Can one get general characteriza-
tions in this case?

3. Intergenerational Equilibrium

The need for intergenerational models was described in Footnote
20 (Jacob & Joseph, etc.). Offhand, I see no reason why it should not
be possible to carry this out, but it would certainly be worthwhile to
do it explicitly.

4. Extreme Altruism

A more difficult problem is that posed by Kurz’s example of the
child in the fire (“Altruistic Equilibrium”, p. 182). Kurz assumes that
the probability is 90% that both the rescuer and the child will die, but
this seems extreme; it is unlikely that a model based on rationality at
any level could account for a rescue in such a situation. But even if
the probability of death is 40% (for rescuer and child), it does not
seem easy to account for a rescue on a purely individualistic basis, as-

23 See footnote 17.

24 Famous last words.
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suming that the rescuer does not think it likely that he will ever have
to be similarly rescued.

‘We may be too hung up on the importance of the individual hu-
man being. In fact, groups may be more important. Biologists stress
the survival of individual genes; even if we do not wish to assume a
biological gene for altruism, there might be a sort of socio-education-
al “gene” for it — an idea that is transmitted from generation to gener-
ation and survives because the groups who practice and propagate it
survive.

5. Finite Memory Models

These were described in the body of the text and certainly bear fur-
ther investigation. In addition to its intrinsic interest, a finite memory
model might make many of the other problems easier to handle.

A particular case of a finite memory model is one in which only ac-
tions that are at; most a fixed finite number of steps back can be con-

~ sidered (“let bygones be bygones™). This would rule out “grim” stra-

tegies. The zero-memory model is of course of this kind. If the gener-
al finite-memory models turn out intractable, perhaps these would be
less so.

6. Learning and Efficiency®

Kurz’s speeder (“Altruistic Equilibrium”, p. 184) is signalling other
motorists to speed as well; he is teaching them that the true equili-
brium in which the world finds itself involves more speeding than
they thought. Conversely, his voter is teaching people in general to
vote (presumably Pareto superior to not voting). There is a theorem
here which Kurz and I have been pursuing for years without success.
The “theorem” says that if an equilibrium point (in the undiscounted
game) has several possible payoffs with positive probability each,
then no one can Pareto dominate another; each equilibrium is effi-
cient among those that can actually occur. The idea of the “proof” is
to look at an equilibrium point not as a conscious choice of strategies
by n people, but as a sort of probability estimate of what the world re-
ally looks like (see Appendix 4). In a repeated game, the players will
revise this estimate as time progresses. If two outcomes 4 and B with
A Pareto dominating B were possible, then in a state of the world
leading to B, each player would try to “teach” the others that the true

25 In this connection see also Kurz’s “Altruism as an Outcome of Social Interaction”,
and Tomioka’s “On the Bayesian Selection of Nash Equilibrium”, (Chapter V of his
thesis). '
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state leads to A (even though they may think that this is highly un-
likely). Such teaching would be learned with alacrity by the other
players.

To make this work one would have to make some kind of assump-
tion under which each of the two equilibrium outcomes in question
always retains a positive probability no matter what the players do at
each stage.

Can this “theorem” be made into a theorem?

Appendix 2
~ Qutline of Proof of the Folk Theorem?®

It is easy to prove that the payoff vectors to Nash e.p.’s in the su-
pergame G* are feasible and individually rational in G; the more sig-
nificant part is the converse. Assume for simplicity that n=2 (there
are just two players). Suppose h is a feasible individually rational

k

payoff vector. Here we may write h= > a;h;, where the o; are non-

i=1
negative weights that sum to 1, and all the A, are payoff vectors corre-
sponding to pure strategy pairs in G. Suppose first that the o; are ra-

tional, and express them in the form a,-=&, where p; are positive in-
q

tegers and g is their sum. The payoff vector & can then be achieved as
a limiting average in G* by having the players play, for p, consecutive
periods, an n-tuple that achieves h,, then for p, consecutive periods
an n-tuple that achieves h,, and so on; after g periods, we start again
from the beginning.

If the o; are irrational, the same effect can be attained approximat-
ing to them by rational numbers and playing once through each ap-
proximation in turn, to yield the desired limiting average.

This procedure, however, does not yet describe a Nash equilibrium
point in G*, and in fact does not even describe a pair of supergame
strategies. A supergame strategy must describe each player’s re-
sponses to the other player’s actions not only when he “plays along”,
but also when he “defects” from a prescribed course of play, such as
the one described above. This is where the requirement that # be indi-
vidually rational comes in.

26 Adapted from a manuscript by R. Aumann and L. Shapley [See Chapter 22].
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Since A is individually rational, the payoff A’ of each player i is at
least equal to his min max value (see the discussion following the
statement of Theorem 1 in the text). Let ~ be a mixed strategy for the
other player j that holds i down to his min max value; a fortiori, Jj can,
by playing 7, guarantee that / will not receive more than A'.

We may now describe an e.p. in G* as follows: the players start by
playing to obtain an average payoff of A, as outlined above. If at any
stage a player i “defects” - i.e., does not play the prescribed choice in
G for that round - then starting from the next round, the other player
J plays the mixed strategy +. This will hold i down to at most K, so
that he will have gained nothing by his defection. Thus, 4 is indeed
an e.p.

In this demonstration one can see clearly the role that “threats”
play in enforcing a prescribed “cooperative” outcome. Repetition of
G enables “endogenous enforcement” of agreements, and thus the ba-
sically noncooperative notion of Nash equilibrium points becomes
cooperative in the supergame.

Appendix 3

Discounted Payoffs in Repeated Games:
Discussion of an Example

by R. J. Aumann and L. S. Shapley

Please see Section 5 of Chapter 22 (pp. 403-408) of this volume.

Appendix 4
A Bayesian View of Equilibrium

Let n be a positive integer. Define an n-person information structure
to consist of

(1) A measurable space (2, B) (the states of the world), and

(1)) An n-tuple I=(1,, ..., I,,) of sub-o-fields of B (Z; is i’s informa-

tion o-field).

Let G be a game with n players, a finite set S; of pure strategies for
each player i, and a payoff function H: S, x ... x S,—R". Given an
information structure (£2, B, I), a strategy of player i is an I;-measura-

3 Game Theory
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ble function from 2 to S;. An equilibrium point in G is defined to con-
sist of an information structure ({2, B, I), a probability measure p on
({2, B), and an n-tuple s=(sy, ..., 5,) of strategies, such that for each j
and each strategy ¢; of j, we have

™ EH;(s_,t)=EH(s),

where E is the expectation operator w.r.t. the measure p, and (s_ ;)
stands for (s, ..., s;— l,t,,sﬁ,, cees Sp)

In this definition it is possible to replace the smgle ‘objective”
probability measure p by n different “subjective” probability meas-
ures p’. In that case j’s expectation operator E would have to be re-
placed by E, but otherwise the definition would not be affected. We
refrain from using the more general set-up only for notational sim-
plicity.

There are several ways of viewing an equilibrium point. One isas a
self-enforcing agreement. The players agree to use a randomizing de-
vice described by ({2, B, p), to be informed of the outcome in accor-
dance with the I;, and to act in accordance with the s; once having
agreed to this, it will be to the advantage of no players to renege. This
is the point of view taken in [1] (see especially Section 9b).

Another point of view is that of “rational expectations”. Each point
w in {2 is thought of as constituting a complete objective description
of a state of the real world. Such a description would of course in-
clude the choice s;(w) of each player j in the game G, as well as j’s
state of information (i.e. the set of all states of the world that j cannot
distinguish from w). Thus both the information structure and the
equilibrium strategies s; are in a sense tautologically defined. What is
not tautological is the probability measure p, which describes how
each player views the world, probability-wise. In assuming that this is
the same for all players, we are putting ourselves in Harsanyi’s “con-
sistent case” [2]; however, as noted above, this is not an important as-
sumption for us.

This formulation does away with the dichotomy usually perceived
between the “Bayesian” and the “game-theoretic” view of the world.
From the Bayesian viewpoint, subjective probabilities should be as-
signable to everything, including the prospect of a player choosing a
certain strategy in a certain game. The so called “game-tlieoretic”
viewpoint holds that subjective probabilities can only be assigned to
events not governed by rational decision makers; for the latter, one
must substitute an equilibrium (or other game-theoretic) notion. The
above formulation synthesizes the two viewpoints: Equilibrium is
viewed as the result of Bayesian rationality, condition (*) appearing
as a simple maximization of utility, given player j’s subjective proba-
bility distribution over the states of the world.
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This definition of Equilibrium Point encompasses the notion of a
Nash Equilibrium Point (i.e. one in mixed strategies) as a special
case. But it also encompasses significantly more; cf. [1].

References for Appendix 4

[1] R. Aumann (1974). “Subjectivity and Correlation in Randomized Strategies”, Journal
of Mathematical Economics 1, 67-95 [Chapter 31].

[2] J. Harsanyi (1967-68). “Games of Incomplete Information Played by Bayesian
Players”, Parts I-111, Management Science 14, 159-182; 320-334; 486-502.

Appendix 5
Repeated Prisoner’s Dilemma with Memory Zero
’ s
Strategies F and D stand for “Friendly” and “Doublecross” respec-

tively. The letter outside the brace indicates the initial move. Inside
the brace the two letters indicate the steady-state response to the op-

ponent’s playing F and D respectively on the previous move. Each

pair of strategies generates a payoff stream that is periodic in the stea-
dy state, and whose average appears in the matrix. For the matrix of
the one-shot game and other explanatory material, see the body of
the article.

11
r O

FF FD DF DD FF FD DF DD
FF 13,3/33/04/|0,43,3|33)04|04
FD [3,3(3,3(2,2(1,1(3,3(2,22,2(1,1

& DF |1 4,0(2,2|22]04(40|22|0,4|04
DD | 4,0|1,1|4,0]1,14,0|1,1]4,0|1,1
FF (3,3/3,3|0,4({0,4|3,3(3,3/0,4|0,4

D) FD (3,312,22,2|1,133|1,1]22]1,1 |

DF 14,0|2,2|40)0,44,022)22)04
DD 14,011,140 1,140)1,1|40]|1,1
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For each player, all strategies except FFD are successively eliminated
as follows: First FDF (by DDF) and DFD; then FFF and DFF; then
DDF; then DDD; and finally FDD. Five stages are needed in all. Ex-
cept that of FDF in the first stage, all eliminations are by FFD.
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A Partial Bibliography of Repeated Games of Incomplete Informa-
tion (up to 1979)

Aumann, R. and Maschler, M. (1966). “Game Theoretic Aspects of Gradual Disarma-
ment”, Report of the U.S. Arms Control and Disarmament Agency/ST-80, Chapter V,
Washington, D.C.

Aumann, R. and Maschler, M. (1967).“Repeated Games with Incomplete Information:
A Survey of Recent Results”, Report of the U.S. Arms Control and Disarmament Agen-
cy/ST-116, Chapter I11, 287, Washington, D.C.

Aumann, R. and Maschler M. (1968). “Repeated Games of Incomplete Information:
The Zero-Sum Extensive Case”, Report of the U.S. Arms Control and Disarmament
‘Agency/ST-143, Chapter III, 37, Washington, D.C.

Aumann, R., Maschler, M. and Stearns, R. E. (1968). “Repeated Games of Incomplete
Information: An Approach to the Non-Zero-Sum Case”, Report of the U.S. Arms Con-
trol and Disarmament Agency/ST-143, Chapter 1V, 117, Washington, D.C.

'Kohlberg,_ E. (1974). “Repeated Games with Absorbing States”, Annals of Statistics 2,

724.

Kohlberg, E. (1975a). “Optimal Strategies in Repeated Games of Incomplete Informa-
tion”, International Journal of Game Theory 4, 1.

Kohlberg, E. (1975b). “The Information Revealed in Infinitely-Repeated Games of In-
complete Information”, International Journal of Game Theory 4, 57.

Kohlberg, E. and Zamir, S. (1974). “Repeated Games of Incomplete Information: The
Symmetric Case”, Annals of Statistics 2, 1040.

Mayberry, J. (1967).“Discounted Repeated Games with Incomplete Information”, Re-
port of the U.S. Arms Control and Disarmament Agency/ST-116, Chapter V, 435,
Washington, D.C.

Mertens, J. F. (1971-72). “The Value of Two-Person Zero-Sum Repeated Games — The
Extensive Case”, International Journal of Game Theory 1, 217.

Mertens, J. F. (1973). “A Note on ‘The Value of Two-Person Zero-Sum Repeated
Games - The Extensive Case’”, International Journal of Game Theory 2, 231.

‘Mertens, J. F. and Zamir, S. (1971-72). “The Value of Two-Person Zero-Sum Repeated

Games with Lack of Information on Both Sides”, International Journal of Game The-
ory 1, 39.

Mertens, J. F. and Zamlr S. (1975). “The Maximal Variation of a Bounded Martin-
gale”, Israel Journal of Mathematics 27, 252.

Mertens, J. F. and Zamir, S. (1976a). “On a Repeated Game Without a Recursxve Struc-
ture”, International Journal of Game Theory 5, 1973.

Mertens, J. F. and Zamir, S. (1976b). “The Normal Distribution and Repeated Games”,
International Journal of Game Theory 5, 187.

Mertens, J. F. and Zamir, S. (1980). “Minmax and Maxmin of Repeated Games with in-
complete Information”, International Journal of Game Theory 9, 201.

Ponssard, J. P. (1975a). “Zero-Sum Games with Almost Perfect Information”, Manage-
ment Science 21, 794.




S G R s R

437

Survey of Repeated Games

Ponssard, J. P. (1975b). “A Note on the LP Formulation of Zero-Sum Sequential
Games”, International Journal of Game Theory 4, 1.

Ponssard, J. P. (1976). “On the Subject of Nonoptimal Play in Zero-Sum Extensive
Games: The Trap Phenomenon”, International Journal of Game Theory 5, 107.

Ponssard, J. P. and Sorin, S. (1980). “The LP Formulation of Finite Zero-Sum Games with
Incomplete Information”, International Journal of Game Theory 9, 99.

Ponssard, J. P. and Zamir, S. (1973). “Zero-Sum Sequential Games with Incomplete In-
formation”, International Journal of Game Theory 2, 99. .

Sorin, S. (1979). “A Note on the Value of Zero-Sum Sequential Repeated Games with
Incomplete Information”, International Journal of Game Theory 8, 217.

Stearns, R. E. (1967). “A Formal Information Concept for Games with Incomplete In-
formation”, Report of the U.S. Arms Control and Disarmament Agency/ST-116, Chap-
ter IV, 405, Washington, D.C.

Zamir, S. (1971-72). “On the Relation Between Finitely and Infimtely-Repeated Games
with Incomplete Information”, International Journal of Game Theory 1, 179.

Zamir, S. (1973a). “On Repeated Games with General Information Function”, Interna-
tional Journal of Game Theory 2, 215.

Zamir, S. (1973b). “On the Notion of Value for Games with Infinitely Many Stages”,

Annals of Statistics 1, 791.

Notes:

1. Stochastic Games are not included in this bibliography, although they have important
applications to repeated games with incomplete information.

2. The help of Jonathan Cave and Sylvain Sorin in researching this bibliography is
gratefully acknowledged. '

Note added in proof A fuller account of the incomplete information case was published as
Repeated Games with Incomplete Information, by R. J. Aumann and M. B. Maschler, Cam-
bridge: MIT Press, 1995. This book also contains a fairly complete bibliography of the sub-

ject up to 1995.



