1. Representation of algebras

All algebras H we consider are C-algebras of countable or finite dimen-
sion. An H-module M is irreducible if it does not have proper H-submodules.

LEMMA 0.1 (Schur’s Lemma). If an algebra H has countable dimension
then Endy (M) = C for any irreducible M € M(H).

PRrROOF. Since M is irreducible, A := Endy M is a skew-field. Since
the algebra H is of countable dimension over C the space M is also of
countable dimension. Since M is irreducible the map A — M,a — amy is
an imbedding for any non-zero mp € M and therefore A is also of countable
dimension. So the Schur’s Lemma would follows from the following result.

Cram 0.2. If A is a skew-field of countable dimension over C, then
A=C.

PrROOF. We have to show that a € C for any a € A. Suppose that
a—A # 0 for all A € C. Since A has countable dimension, the elements {(a—
A)~"11 X\ € C are linearly dependent. Thus, there exist non-zero complex
numbers ¢;,1 < i < k so that

k
Zci(a — )\Z‘)fl = 0.
i=1
Multiplying through by Hle(a — \i), we see that there exists a non-zero
polynomial Q(z) € Clz| such that Q(a) = 0. Factoring this polynomial, we
see that there are p; € C so that

[Ita—mu)=o0.
J
Since A is a skew-field one of these factors must be equal to zero because.

Hence a € C. O
U
DEFINITION 0.3. (1) We denote by Z(#) the the center the algebra

H.

(2) By the Schur Lemma for an irreducible representation M of an alge-
bra H of countable dimensionand z € Z(#H) there exists xas(z) € C
such that z); = xar(2)Idas where z, is the action of z on M. We
say that the map xas : Z(H) — C is the central character of the
module M.

REMARK 0.4. The statement is false if we drop the condition that a
skew-field A has countable dimension. Really take A = M = C(x).

LEMMA 0.5. Let H be an algebra of countable dimension over C with

unit e. Then for any non-nilpotent element a € H there exists a simple
H-module M such that a|pr # 0.



PRrOOF. The proof is similar to that of Schur’s lemma. By adding the
unit we may assume that the algebra H is unital. First we establish the
following result.

CLAIM 0.6. There exists A € C\ 0 such that a — X is not invertible in H.

ProovF. If a € C, this is trivial. Otherwise, by countable-dimensionality
of H, the elements the (a — p)~! are linearly dependent. Thus there exists
c; € C,1 <i<ksothat

k
Zci(a — )\Z')_l =0.
=1

Multiplying through by Hle(a —\i), we get a non-zero polynomial over
C with a as a root. Thus, there are A; € C\ 0 and n; > 0 so that
a”lla—X)"=0
J
But this is not possible since (a — \;) are invertible and a is not nilpotent.
O

Choose A € C\0 such that a— X is not invertible in H. Then the quotient
H-module N := H/(a — A) is not trivial. Let € € N be the image of e and
Ny C N be a maximal submodule which does not contain €.

PROBLEM 0.7.
The quotient M := N/Njy satisfies the conditions of the Lemma.

0

DEFINITION 0.8. (1) For any C-algebra H we denote by H the
opposite algebra.

(2) For any H-module M we define the action of H? on MV :=
Hom¢ (M, C) by

hA(m) := A(mh),m € M, € MY, h € H
and define an action of H ® H? on Endc(M) by
h' @ h"(A) := h' AR
(3) We denote by aj [or simply « | the H ® H°P-morphism
M @ M"Y — Endc(M)
given by

alv @ \)(w) = MNw)v,v,w € M,\ € M"Y
(4) We say that a simple finite-dimensional H-module M is compact if
the action map aps : H — Endc(M) of H ® HP-modules splits.
That is there exists an imbedding pps : Ende (M) — H of HQ HP-
modules such that ap; o pups = Id.
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LEMMA 0.9. For any simple finite-dimensional compact H-module M we
have a direct sum algebra decomposition

H =M © Hag
where Hyr = Im(pr), Hap = Ker(an).

PROOF. Since we have direct sum algebra decomposition H = H y ©H7;
of H as a vector space and by the defintion H3; = Ker(apy) C H is a
subalgebra we have to check that

(a) the map pys is an algebra homomorphism and

(b) harhi; = 0 for all hyy € Har, hiy € Hay

Proof of (a). Choose any ;7" € End¢(M). Since the map puy is an
morphism of H ® H°P-modules the product pps (r")par(r”) is equal to pas(r)
for some r € Endc(M) and aps(r) = ap(r')ap (r"). Since apyopp = Id we
see that r = r'r”.

A proof of (b) is completely analogous. O

PROBLEM 0.10. (1) ajps is an imbedding.

(2) Let M be a simple finite-dimensional compact H-module. The
any H-module N admits unique decomposition N = Ny @ Ny such
that Ny is a multiple of M and N; does not have subquotients
isomorphic to M.

1.1. Idempotented Algebras.

DEFINITION 0.11. (1) An algebra H is idempotented if for every
finite collection {f;},i € I of elements of H there exists an idem-
potent e € ‘H such that ef; = f;e = f; for all ¢ in [I.

Let H be an idempotented algebra.

(2) For any H -module M we define M, = HM.

(3) A module M of an idempotented algebra H is called non-degenerate
if M = Mg,,.

(4) We denote by M(H) the abelian category of non-degenerate H-
modules. ~ :

(5) For any M € M(H) we define M € M(H?) by M := (M")s.

(6) Forany M € Ob(M(H)), N € Ob(M(HP)) we denote by < N, M >
the space of bilinear maps ¢ : N x M — C such that ¢(nh,m) =
o(n, hm).

(7) For any M € Ob(M(H)), N € Ob(M(HP)) we denote by

kary : Homy (M, N) =< N, M >
the map given by
km,N(A)(n,m) = A(m)(n),m € M,n € N, A € Homy (M, N)

and denote by rn s : Homyop (N, M) —< N, M > the map given
by

kn.(B)(n,m) := B(n)(m),m € M,n € N, B € Homy(N, M).



(8) A non-degenerate H -module M is admissible if dimc(eM) < oo
for any idempotent e € H.

LEMMA 0.12. The functor M — Mg, from the category of H-modules
to M(H) is exact.

PRrOOF. It is clear that for any imbedding M <— N of H-modules the
induced map Mg, — Ngp is an imbedding. So the functor M — My, is
left exact.

To show that this functor is right exact we have to check that for and
surjection p : M — N and any n € Ny, we can find m € My, such that
n = p(m).

Since n € Ny, there exists an idempotent e € H such that en = n. On
the other hand since the map p : M — N is surjective there exists m’ € M
such that n = p(m’). Take m := em’ € My,,. Then

p(m) = plem’) = ep(m’) = en = n
|

PrROBLEM 0.13. (1) Let M be the algebra of matricies (m; ;),1 <
1,7 < 0o such that m; ; = 0 for almost all pairs 4, j. Show that the
algebra M., is idempotented.

(2) For any totally disconected topological space X the algebra S(X)
of locall constant functions with compact support is idempotented.

(3) For any M € Ob(M(H)),N € Ob(M(HP)) the maps Ky n and
kN,M are bijections.

(4) For any M € Ob(M(H)), N € Ob(M(HP)) we have a canonical
isomorphism Homy, (M, N) — Hom$? (N, M).

(5) Show that the correspondence M — M defines an exact contravari-
ant functor from M(H) to M(H?).

(6) Construct a canonical morphism V < V and show that it is an

imbedding.

1.2. Projective and Injective modules. Recall that an object P of
an abelian category M is projective if the functor

M — Ab given by
X Homum(P,X)

is exact.
Analogously an object P is injective if the functor

M — Ab given by
X Homum(X,I)

is exact.

LEMMA 0.14. For any projective object P € Ob(M(H)) the object P €
M(HP) is injective.
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PROOF. We must show that the functor X — Hom(X, P) on M (H)
is exact. As follows from the previous Problem we have isomorphisms

Hom(X, P) = Hom(P, X)

Since P is projective and the functor X — X is exact we see that P is
injective. (]

THEOREM 0.15. For any idempotented algebra H the category M(H)
has enough projective and injective objects.

Proor. We start with the proof for the existence of a projective cover
P — M for an H-module M. For any idempotent ¢ € H the functor
X — Hom(P,, X) = eX is exact and therefore the H-module P, = He is
projective. Since direct sums of projective objects are projective direct sums
of any collection of the moduels of the form P, are also projective.

If X € ObM(H) and € € X, then it follows from non-degeneracy that
there exists an idempotent e so that e£ = £. Then £ is in the image of the
map P, — X given by he — h&. Taking the direct sum over all £ € X of
the associated P., we see that X is a quotient of a projective object.

Now we want to construct an imbedding M < I of an ‘H-module M into
an injective object. As we have enough projectives, there is an epimorphism
P — M. Now consider the composition

M — ]\Zf — P
where P is injective by Lemma 0.14. O

For any idempotented algebra # we define # := Endor (). Since H is
associative we have a natural imbedding H — H.

LEMMA 0.16. For any idempotented algebras H and a non-degenerate
H-module M the action of H on M extends uniquely to an action of H on
M.

PROOF. To construct a map a : H — Endc(M) we have to define
a(h)(m) for h € H,m e M.

We choose an idempotent e € H such that em = m [this is possible since
M is non-degenerate] and write a,(h)m) := h(e)m.

Let us show that ae(ﬁ)m does not depend on a choice of an idempotent
e € H such that em = m. Since for any two idempotents €', e’ € H there
exists an idempotent e € H such that ee’e = ¢/, ee”e = €” it is sufficient to
show that ae(h)(m) = ae(h)(m) for idempotents ¢/, e such that ee’ = ¢’
But in the case we have

ae (h)(m) = h(e')(m) = h(ee')(m) = h(e)e'm = h(e)m = ac(h)(m)

Since the element a.(h)m does not depend on a choice of an idempotent
e € H such that em = m we will write a(h)(m) instead of a(h)(m).
The uniquenes of an extension # — Endc(M) of the action map a :

H — Endc (M) follows immediately from the following result.



PROBLEM 0.17. For any h € H,h € H C H we have hh = Zh) eHCH.
([
PROBLEM 0.18. Describe the algebras M., and S(X).

LEMMA 0.19. Let M be an irreducible H-module M,e € H be an idem-
potent and He := eHe. Then

(1) Either eM = {0} or eM is an irreducible H.-module.
(2) Ewvery irreducible He-module has a form eM for some irreducible

M e M(H).

PROOF. (1) Assume that eM # {0}. To prove the irreducibility of the
He-module eM it is sufficient to show that for any w,v # 0 in eM there
exists h € H, such that v = hw. Since the H-module M is irreducible there
exists h € H such that v = hw. But now we can take h = ehe € H.,.

(2) Let M be an irreducible eHe-module. As follows from (1) it is
sufficient to show the existence of an irreducible H-module L such M is a
submodule of eL. Set N = H ®cye M. The imbedding H. C H induces
the inbeddings M <+ eN <+ N. Consider the partially ordered set X of
proper H-submodules N, C N where the ordering is by inclusion. Since
the He-module M is irreducible and N = HN we see that N, N M = {0}
for all x € X. Therefore the partially ordered set satisfies the conditions of
the Zorn’s lemma and there exists a maximal proper submodule Ny C N.
Let L := N/Ny. Since Ng N M = {0} the projection p : N — L defines an
imbedding M < eL of H.-modules.

I claim that the H-module L is irreducible. Really if L' C L is a non-
zero proper H-submodule of L the preimage p~'(L’) C N is a proper H-
submodule of N strictly bigger then Ny. But this is impossible since Ng is
a maximal proper submodule of V. [l

We introduce a notion of admissible and compact modules which will
be central for our analysis of representations of groups over local non-
archimedian fields.

DEerINITION 0.20. Let H be an idempotented algebra.

(1) A non-degenerate H-module M is admissible if for every idempotent
e € H the space eM is finite dimensional.

(2) An admissible H-module M is compact if for any idempotent e € H
the finite dimensional eHe-module eM is compact.

PROBLEM 0.21. (1) M is admissible iff the natural imbedding M —

M is an isomorphism.
(2) For any compact H-module M the direct sum decompositions (see
0.10)

He = Hu, © My,
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where e run through idempotents e € H define a direct sum algebra
decomposition

H=Hy ® Hiy
such that ”Hﬁ acts trivially on M and the restriction of the action
map H — End(M) on Hjs is an imbedding.

LEMMA 0.22. For any admissible H-module M the imbedding [see 0.10]

anr: M@ M — End(M)g, is an isomorphism where we consider End(M)
as H @ HP-module.

PROOF. The statement is clear in the case when dim (M) < oco. We use
the admissibility for a reduction to this case.

By 0.10 the map ajy is an imbedding. So it is sufficient to show that for
any idempotent e € H the map

o : eM ® eM — eEnd(M)e
is onto. As . is an imbedding it is sufficient to show that
dim(eEnd(M)e) < dim(eM) x dim(eM)

Since t the restriction e End(M )e — End(eM) is an imbedding this inequal-
ity follows from the equalities

dim(eM) = dim(eM), dim(End(eM)) = dim?(eM).
O

COROLLARY 0.23. For any irreducible admissible H-module M we have
dim(Homyygpor (H, M @ M)) =1

PROOF. Since we have a natural non-trivial map H — End(M)sm, we
see that B
dim(HOm’H@fHDP (H, M® M)) #0
So it is sufficient to show that dim(Homygper(H, M @ M)) < 1. For this
it is sufficient to show that dim(Homy gqer(H,eM ® eM)) < 1 for all
idempotents e € H. But follows immediately from Lemma 0.22. (]

1.3. Irreducible modules and the Jordan-Holder Content. Let
‘H be an idempotented algebra.

DEFINITION 0.24. (1) We denote by Irry be the set of equivalence
classes of irreducible representations of the algebra H.

(2) If M € M(G), then the Jordan-Holder content of M, JH(M), is

the subset of Irry consisting of all irreducible subquotients of M.

LEMMA 0.25. JH(M) # 0 for any non-zero H-module M.

Proor. Fix any non-zero m € M. By the Zorn’s lemma there exists a
maximal proper submodule N of the H-module My := Hm C M. By the
construction the quotient My /N is irreducible. So [My/N] € JH (M) where
[Mo/N] is the class of My/N. O



PROBLEM 0.26. (1) If N is a subquotient of M, then JH(N) C
JH(M).
(2) If M =X, M, then JH(M) = UqJH (M,).

1.4. Decomposing Categories.

DEFINITION 0.27. Let M be an abelian category such that the coprod-
ucts exists in M (i.e. M is cocomplete) and the coproduct of a family
of monomorphisms is a monomorphism. [for example a category of mod-
ules over an algebral. Given full subcategories Mj, Mas of M we write
M = M; & M, if for any object M € M, there exist unique subobjects
M; € M; so that M = My © M.

In such a case any irreducible object either belongs to M or to My and
we obtain a decomposition

IrrM = IrrM;y HITTMQ.

where [] is the ‘disjoint union’. Conversely, such a decomposition on the
level of sets uniquely determines the categorical decomposition if it exists.
To see this we define for any subset S C IrrM the full subcategory M (S)
of M consisting of objects M with JH(M) C S.

LEMMA 0.28. If subsets S, S’ C IrrM do not intersect, then the cate-
gories M(S) and M(S’) are orthogonal, i.e. M € M(S) and M' € M(S")
imply Hom(M, M") = 0.

PROOF. Suppose o € Hom(M,M’). Set N = a(M). So, JH(N) C
JH(M) C S and also JH(N) C JH(M') c S’. But SNS" =0 so N =0 by
0.25. 0

If SCIrrM, M € M, we will denote by M (.S) the union of all subob-

jects of M which lie in M(SS). By the lemma, this is the maximal submodule
with Jordan-Holder content lying in S.

DEFINITION 0.29. Let S C IrrM and S’ := IrrM \ S. We say that S
is a splitting subset if M = M(S) & M(S') [that is, if M = M(S) & M(S’)
for each M € M]. In this case we say that S splits M.

REMARK 0.30. A decomposition of categories M = M@ M, is equiva-
lent to a decomposition of sets IrrM = S]] S’ where S is a splitting subset.

PrROBLEM 0.31. Let H be an idempotented algebra and M an admissible
compact H-module. Then [M] splits M(H) where [M] € IrrM(H) is the
equivalence class of M.

2. [-Groups
2.1. Basic definitions.

DEFINITION 0.32. (1) An l-space is a topological space which is
Hausdorff, locally compact and 0-dimensional (i.e. totally discon-
nected: any point has a basis of open compact neighborhoods).
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(2) For any l-space we denote by S(X) the vector space of locally con-
stant compactly supported C-valued functions on X.

(3) An [-group is a Hausdorff topological group such that the identity
e has a basis of neighborhoods which are open compact groups.
We will always assume that G is countable at infinity [that is we
assume that for any open compact subgroup K of G the quotient
G/K is either countable or finite.

(4) For an l-group we denote by 7 : G — Aut(S(G)),l : G — Aut(S(G))
the right and left regular representations of G on S(G) given by

(r(@)f)(g) = f(g2), (=) f)(9) = f(z"g), f € S(G),z,9 € G.

Let F be a local non-archimedian field, @ C F' the ring of integers,
P =m0 C O the maximal ideal and k = O/P the residue field k = F,. We
denote by v : F* — Z the valuation such that v(7) = 1 and define the norm
by ||z|| = ¢~¥®). The topolgy on F induces a topolgy on F" and therefore
on X (F) for any algebraic F-variety.

PrOBLEM 0.33. Show that:

(1) For any F-variety X the topological space X = X (F') is an [-space.

(2) The space P"(F') is compact.

(3) For any n > 0 the group GL(n, F) is an l-group and GL(n, Q) is
an open compact subgroup of GL(n, F'). Moreover GL(n,O) is a
profinite group.

(4) For any F-group G the group G = G(F) is an [-group.

(5) For any regular tree T we define a topology on the group G of
automorphisms of 1" in such way that for any finite subset X of T'
the subgroup Gx C G of automorphisms of T fixing all points of X
is open and shifts of Gx give a basis of the open sets on G. Show
that G is an [-group.

(6) Any compact [-group is a profinite group.

LEMMA 0.34. Let G be an l-group. Then
(1) There exists a linear functional [ on S(G) such that [ r(g)f = [ f
for all f € §(G),g € G. Such functional is unique up to a multi-
plication by a scalar. Moreover we can choose a linear functional
fr to take positive values on non-zero non-negative functions.
(2) There exists a character A : G — Ry such that

Ji@r=a@ |1

forany x € G and any f € S(G). In particular [ x4 = A(z) [ xa
for any x € G and any compact open subset A of G where x4 is

the characteristic function of A.
(3) The functional f — [ A~Lf is left-invariant.
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PrRoOOF. To construct a linear functional fr we fix an open compact
subgroup Ky and define

1
[ 210

re K\G

where K C Ky is any open subgroup such that the function f is invariant
under left shifts by & € K. Tll leave for you to show that [ f does not
depend on a choice of a subgroup K C Ky and the map f — fT f defines a
right-invariant linear functional which is positive on non-zero non-negative
functions.

Let K C Ky be any open subgroup and xx, xr, C S(G) the charac-

teristic functions of K and Ko. Since xk, = > ,cx,/x 7(%)XK We see that

AMxk) = M)‘(XKO) for any right-invariant linear functional A on S(G).

This proves the uniqueness of fr.

Let us fix a right-invariant linear functional A on S(G) and for any
x € G consider the linear functional A\, given by A\;(f) := A({(z)(f)). By the
construction the functional \; on S(G) is also right-invariant and therefore
there exists constant A(z) such that A\;(f) = A(x)A(f) for all f € S(G).

Since we may assume that A is positive on non-zero non-negative func-
tions we see that A(z) € Ry. It is clear from the definition that the function
A : G — Ry is a character.

The left-invariantness of the functional f — [ A~lf is clear. O

PROBLEM 0.35. (1) Let G, = F be the additive group. Then there
exists a Haar measure dg, on G, such that fPT dg=q ", r €Z.
(2) Let G,,, = F* be the multiplicative group. Then dg,, := dg,/|||| is
a Haar measure on Gy,.
(3) Let H C GL(2, F) be the group of upper triangular 2 x 2 matrices

of the form
_ (a7
=5 3)

Then the right -invariant Haar measure on H measure is equal to

dgm () dgm(B)dga(y) /18]

@
a5 3) =l /sl

DEFINITION 0.36. (1) The function A is called the modular char-
acter.

(2) A group is unimodular if A = 1. In this case right -invariant mea-
sures are also left-invariant. We denote such a measure by dg and
call a Haar measure.

(3) Let U be a unimodular locally compact I-group du a Haar measure
on U and ¢ an automorphism of U. Then o,(du) is also a Haar mea-
sure on U and we define mody (o) € Ry by o4 (du) = mody, U (o)du.
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(4) If P = M x U we write mody(m) := mody(o,,) where o,,(u) :=
mum ™.
(5) If a group G is compact we normalize a Haar measure dg in such a

way that [, dg = 1.
Let G be a unimodular [-group with a Haar measure dg.

PROBLEM 0.37. (1) If P = M x U where both M and U are uni-

modulal then Ap(mu) = mody(m).

(2) Let K be a compact [-group, K', K" C K closed subgroups such
that K'K"” = K. Then for any f € H(K) we have

[ Fk)dk = [, f/(K')dk where f'(K') = [, f(k'K")dk".

(3) Find the modular character for the group of n x n-upper triangular
matrices with coefficients in Q,.

(4) Prove that the group GL(n, F') is unimodular and describe the Haar
measure dg on GL(n, F') such that fGL(n,O) dg = 1.

Let H be an [-group and A be a left-invariant linear functional on S(H).
Let X be a principle homogeneous H-space [that is H is acting on an -
space X, ((h,x) — hz simply transitively]. Then H acts on the space
S(X),(h, f) = fu, fu(x) := f(h~'z) and we denote by L the space of
coinvariants. So £ = S§(X)/So(X) where Syp(X) € S(X) is the span of
(- fhfeS(X)hel

LEMMA 0.38. (1) The space L is one-dimensional

(2) The space L is canonically isomorphic to the space La of functions
r on X such that r(hx) = A(h)r(z),h € Hyx € X.

PRrROOF. Any point x € X defines a bijection ¢, : H — X, h — hx which
induces an isomorphism ¢} : S(X) — S(H) and the first claim follows from
0.34.

Consider now the linear map « : S(X) — S(X) given by

r(f)(x) == A6z(f))
It is clear that & is trivial on the subspace So(X) C S(X) and it follows from

0.34 that the image of k lies in LA. Therefore k defines an isomorphism
L — ﬁA. O

REMARK 0.39. To give a more conceptual explanation of this result
consider the group Auty(X) of automorphisms of X which commute with
the action of H. It is clear that the right shifts define a canonical isomor-
phism of the group H with Auty(H). Therefore for any point € X the
isomorphism ¢, : H — X defines an isomorphism (Z)x : H — Autg(X)
and it is easy to see that for any two points z,y € X the isomorphisms
b, <;~5y : H — Autg(X) differ by the conjugation by zy~!. Since the charaqc-
ter A is invariant under the conjugation we can consider it as a character
of the group Auty(X). By the definition the group Auty(X) acts on the
space L of coinvariants. The second part of the lemma says that the action
is given by A : Autpy(X) — Ry.
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Assume that an l-group H acts freely on an [-space X and denote by
So(X) C S(X) be the span of {f — fr}, f € S(X),h € H and by S(X)p :=
S(X)/So(X) be the space of H-coinvaraints of S(X). Assume also that
a group G acts on S(X) and this action of G commutes with the natural
action of H on S(X).

COROLLARY 0.40. (1) The space S(X) g is canonically isomorphic
to the space M(H\X) of locally constant functions r on X such
that r(hx) = A(h)r(xz),h € H,xz € X and such supp(r) C HC for
some compact C' C X.

(2) For any H-invariant linear functional X on S(X) there exists unique
linear functional X on S(X)g such that

ML) =M. f e S(X)

where f is the image of f in S(X).

(3) The group G acts naturally on S(X).

(4) X is a G-invariant functional on S(X) then X is a G-invariant
functional on S(X)m.

DEFINITION 0.41. Let H be a closed subgroup of an unimodulr group
G and Agy be the modular character of H. Then the restriction of the
functional [ to the subspace So(X) C S(X) vanishes and therefore the
functional fr defines a G-invariant linear functional | on the the space
M(H\G)=8X)g.

LEMMA 0.42. Assume that K is an open compact subgroup of G such
that G = HK. Then any K-invariant linear functional on M(H\G) is
proportional to |.

PROOF. Since the linear functional [ on M(H\G) is K-invariant it is
sufficient to show that all K-invariant linear functionals on M(H\G) are
proportional.

Since G = HK the restriction map defines an isomorphism of K-vector
spaces M (H\G) and M (HNK\K) and the claim follows from the uniquness
of the Haar measure. g

PROBLEM 0.43. (1) Show that in the case when G = SL(2, F') and
H C G is the subgroup of upper triangular matricies. In this
case we can identify the space M (H\G) with the space V of locally
constant functions f on F?2—{0} such that f(cz,cy) = 1/|lc||f(x,y)
and that the functional | on V is given by

Jth=[ saemisay

where Z = {(z, y)| max([|z|, ly[}) = 1}.
(2) Explain why this result follows from Lemma 0.42 if we take K =
SL(2,0).
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DEFINITION 0.44. Let G be a unimodular [-group with a Haar measure
dg.
(1) We denote by C(G) the space of C-valued locally constant functions
¢ on G.
(2) For any f € S(G) we consider fdg as a linear functional on the
space C(G) given by

fdg(6) = /G fé.6 € C(G)

(3) We denote by H(G) the space of linear functionals h the space
C(G) on G of the form h = fdg, f € S(G). and say that elements
of H(G) are locally constant measures on G with compact support.

(4) Since G is a unimodular [-group the left and right regular repre-
sentations I, : G — Aut(S(G) define the left and right regular
representations G — Aut(H(G) which we also denote by [ and r.

(5) For any b/ = f'dg’ € H(G'),h" = f"dg" € H(G") we define

WO = f'(¢))f"(g")dg'dg" € H(G' x G)
(6) We denote by (h',h”) — h/ x b the convolution
h' % h" := m,(K'OR")
where m : G x G — G is the product map. In other words
W« B(¢) = W'OR"(m*(¢)), ¢ € C(G)

(7) The algebra H(G) is called the Hecke algebra of G.

(8) For any compact open subgroup K C G we denote by ex C H(G)
the idempotent given by the Haar measure of K and write Hx (G) =
exH(G)ex

(9) For any compact not necessarily open subgroup K of G we denote
by ex € K the endomorphism of H defined by

ex(h) = my(exh)

In other words if h = fdg then ex(h) = f'dg where f'(z) =
Jic £k

(10) For any x € G we denote by &, € K the endomorphism of #
defined by &,(h)(g) := l(z)(h),h € 7—[ G) and say that &, is the
delta function at .

(11) We denote by | the linear functional on H(G) given by [ h := h(1).

PROBLEM 0.45. (1) It = f'dg,h” = f"dg then b’ xh" = f'x f"dg
where
frxf'(g) = F(9)f"(d ™ 9)dg
g'eG
(2) H(G) is an idempotented algebra.
ff/*f” fflff/l
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(4) For any g € G and any compact open subgroup K C G there exists
unique a(g) € Hx(G) such that suppa(g) C KgK and [a(g) = 1.

(5) The element a(g) € Hg(G) depends only on the double coset
KgK € K\G/K and the set {a(g)},gK € K\G/K is a basis of
Hi(G).

(6) Forany n € Ng(K) and any g € G we have a(ng) = a(n)a(g), a(gn) =
a(g)a(n).

(7) Let K, K', K" C G be compact subgroups such that K'K" = K.
The EKIEKN = €K .

(8) For any x € G and any compact subgroup K C G we have e, fc,—1 =
Exngxx_l.

(9) H(G) has countable dimension.

2.2. Representations of [-groups.

DEFINITION 0.46. Let G be a unimodular [-group with a Haar measure
dg.
(1) A representation m : G — Aut(V') of the group G on a complex
vector space V' is smooth if for any vector v € V the stabilizer
St, C G of v in G is open.
(2) We denote by M(G) the category of smooth representations of G.

If (7, V) is a smooth representation of G, we can give V' the structure of
an H(G)-module as follows. Given £ € H(G) and v € V' we choose an open
compact subgroup K such that £ is right K-invariant and Kv = v. Since &
is right K-invariant and has compact support it is a finite sum of left shifts
of the xx

£ = ZcigiXK,Ci €Cyg edG.
i€l
E(v) = Z Cigiv.
i€l
In other words we constructed a functor M(G) — M(H(Q)).

PROPOSITION 0.47. Let G be an l-group. The functor M(G) — M(H(G))
defines an equivalence of categories

M(G) = M(H(Q))

between smooth representations of G and non-degenerate H(G)-modules.

Now we define

Proor. Let M be a smooth H-module and g € G. We want to define
a representation m : G — Autc(M). To define w(g),g € G consider the
automorphism &, of H(G) given by the left shit by g. The automorphism &,

commutes with the action of #%(G) and therefore belongs to #(G). Since
by Lemma 0.16 the algebra H(G) we can define m(g) := &,
PROBLEM 0.48. Show that
(1) The assignment g — m(g) defines a representation of G on M.
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(2) The functor M(G) — M(H(G)) defines an equivalence of cate-
gories.

O

We will identify categories M(G) and M(H(G)) and write Irr(G) :=
ITT‘H(G) .

DEFINITION 0.49. Let K be a compact subgroup of G.

(1) We denote by ex an element of Endyer(qy(H(G)) given by the left
convolution with the Haar measure on K.

(2) For any smooth G-module 7 : G — Aut(V') we denote by 7(ex) €
End(V') the endomorphism defined as in Lemma 0.16.

PrOBLEM 0.50. (1) For any smooth G-module V the associated
H(G)-module is non-degenerate.

(2) Let C;(G) be the space of C-valued functions on G and X (M) which

are left-sided invariant under some open compact subgroup of G.

Construct an isomorphism C;(G) = H(G) where we consider H(G)
as the left regular representation of G.

(3) Let Vi, V2 be smooth representations of G and <, >: Vj x V5 — C
be a G-invariant pairing. There exists unique G x G-equivariant
morphism k< > : V3 ® Vo — C(G) such that

ket (V1 @ua)(e) =< vy,v2 >

and the map <, >— Kk - : defines a bijection between G-invariant
pairings Vi x Vo — C and G x G-equivariant morphisms V; @ Vo —
C(@G).

(4) For any smooth representation (7, V') of G and any v € V' the map
h — w(h)v defines an element of the space ¢, € Homg(S(G), V).
Show that for admissible representations (7, V') of G the map 9y :
V — Homg(S(G),V),v — 1, is a bijection.

(5) Consider the case G = G4(F') where F is a local non-archimedian
field. Is the map s(g) a bijection?

The next lemma is a statement that our Hecke algebra resembles a
semisimple algebra in a crucial sense.

LEMMA 0.51. [Separation Lemmal. Suppose that G be an unimodular
l-group countable at infinity. Then for any non-zero h € H(G) there exists
an irreducible representation p of G such that p(h) # 0.

REMARK 0.52. The result is true for all locally compact groups and
follows immediately from the theorem of Gelfand-Milman but in the case
l-groups one can give a proof which does not use Functional Analysis.

PRrROOF. Since G is unimodular we choose a Haar measure dg and iden-
tify H(G) with S(G), f — fdg. Consider the map H(G) — H(G),h — h*
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given by f(g)dg — f(g~')dg where f(g) is the complex conjugation of f(g)
and define u = hx h™. Then u = 1¢dg where

br)y= [ fl9)f(r~ g)dy
geG
Setting r = e, it is obvious that ¢ (e) # 0.
We have shown is that h # 0 implies v # 0. So it is enough to find a
representation p so that p(u) = p(h)p(h™) # 0. Note that u™ = u. Thus

u? =wut = (hhT)(RhT)T #£0

and more generally that 4™ # 0. Choose an idempotent e of H such that
exu*xe = u. As follows from Lemma 0.19 it is sufficient to prove that
there exists an irreducible representation p of the unital algebra eHe such
that p(u) # 0. Since u is not nilpotent the Separation Lemma follows from
Lemma 0.5. (|

REMARK 0.53. The reduction to the case of a non-nilpotent element

h € H(G) is not purely algebraic since we use the notion of positivity specific
for R C C.

PROBLEM 0.54. Prove the Separation Lemma without the assumption
that G is unimodular.

DEFINITION 0.55. Let G be a unimodular [-group. A smooth represen-
tation 7 of G is compact if for any v € V and any open compact subgroup
K C G there exists a compact C of G such that m(ex)m(g)v =0 for g ¢ C.

PROPOSITION 0.56. If smooth irreducible representation  : G — Aut(V)
is compact then the corresponding representation w : H(G) — End(V') of the
Hecke algebra H(G) is also compact.

PRrROOF. We fix a Haar measure dg on G and will identify the algebra H
with the space S(G) of functions on G.

Assume that the representation m of G is compact and fix an idem-
potent e € H(G). We want to show that the representation m. : H. —
End(V.), H. = eHe, V. = €V is compact. It is easy to see that it is sufficient
to analyze the case when e = eg is a Haar measure of an open compact
subgroup K C G. In this case we can identify the algebra H, with the space
of functions on K\G/K with finite support.

We first check that the space V, is finite-dimensional. Fix v € V — 0.
Since the representation 7 is irreducible the space V' is spanned by 7(g)v.
Thus the space V, is spanned by vectors 7(ex)m(g)v. But by the definition
of compact representation, there exists a finite subset R of K\G such that
m(ex)m(g)v = 0for Kg € K\G—R. So the the space V, is finite-dimensional.

Since the representation m of G is compact the function k(v,\),v €
Ve, A € V.Y on G defined by (v, A)(g) := A(m(ex)m(g)(v)) has finite support.
So we can define a bilinear form x : V. x V. — He, (v, \) = (v, ). This
bilinear form defines a linear map & : Vo ® V.V — H. and, since the space
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V. is finite-dimensional, a linear map & : End(V,) — H,. It is clear that the
map x : End(V,) — H, is a morphism of H, @ He’-modules.

LEMMA 0.57. (1) The composition me o k : End(V,) — End(V;) is
not equal to 0.
(2) There exists a non-zero constant dr € C such that d-(meor) = Idy,.

PROOF. Let V, := I'm(k) and p : H, — End(W) be a irreducible rep-
resentation of H. which is not equivalent to m.. Then the composition
pok:End(V.) — End(W) is a morphism of irreducible H, ® He’-modules.
Since p is not equivalent to m, we see that pox = 0. We see that the
restriction of p on f/e vanishes for all irreducible representation of H. not
equivalent to m.. The Lemma follows now from 0.51.

Since the composition 7, o k : End(V.) — End(V;) is a non-zero endo-
morphism of an irreducible H.®@%Hec"-module there exists a non-zero constant

dr € C such that d,m. o kK = Idy,. [l
(]
PROBLEM 0.58. (1) Show that the constant d. does not depend on

a choice of an idempotent e € H(G) as long as it is defined [that is
when V. # {0}].

(2) Formulate and prove the converse of the Theorem.

DEFINITION 0.59. We say that d is the Formal Dimension of a compact
representation 7.

REMARK 0.60. The formal dimension depends on a choice of a Haar
measure dg.

PROBLEM 0.61. Assume that the group G is compact and the Haar
measure dg is such that fG dg = 1. Then for any irreducible representation
(m, V) of G we have dr = dim(V).

THEOREM 0.62. Let (m,V) be an irreducible compact representation,
K C G an open compact subgroup such that Ve, # {0} and

Ewic = der(Idy, ) C Hey
Then
(1) Ew,k € Hey is an idempotent.
(2) For any smooth representation (p, W) of G we have a direct sum

decomposition W = Wy ® W1 where Wy is a multiple of V' and W1
does not have subquotients isomorphic to V.

PRrROOF. The first part follows immediate from the definition of the for-
mal dimension. To construct a decomposition we define

Wo == Ur Im(p(Ew,x1)), W1 = Nk Ker(p(Ew, k7))
where K’ runs through the set of open coma-ct subgroups of G. As follows

from the complete reducibility of the restriction of 7 on K the subspaces
Wy, W1 are G-invariant and W = Wy @ Wj.
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As follows from Lemma 0.57 any subquotient of W isomorphic to (p, W)
is not not killed by &w k. Hence W; cannot have any such subquotients
isomorphic to V.

To show that Wy is a direct sum of copies of V' note that by the Lemma
0.57 , p(éw,x) = 0 for any irreducible not equivalent to p. Therefore, all
irreducible subquotients of Vj are isomorphic to (7, V') and the claim follows

from 0.10. [l
DEFINITION 0.63. (1) We denote by G C G the subgroup gener-
ated by {K} when K runs through the set of compact subgroups

of G.

(2) We write A(G) := G/GP.

(3) We denote the center of G by Z(G).

(4) A smooth representation (mw, V) of a group G is compact modulo
center if for any v € V and any open compact subgroup K C G

there exists a compact C' of G such that m(ex)n(g)v = 0 for g ¢
CZ(G).

PROBLEM 0.64. (1) Assume that Z(G)GP is a subgroup of finite
index in G. Then an irreducible representation 7 of GG is compact
modulo center iff the restriction of 7 to G is compact.

(2) Let G = GL(n). Show that
(a) G° = {g € G|detg € O*}.
(b) GY is an open, normal subgroup of G with A(G) = Z = F*/O*.
(c) Z(G)G" is an open subgroup of finite index in G.

REMARK 0.65. Analogous statements are true for an arbitrary reductive
group G. For example,A(G) = Z* for G = GL(n1) x --- x GL(ng).

ExaMpLE 1. If G is a compact group then every smooth G-module M
is completely reducible, that is M = @@ W, where the W, are irreducible.
Thus, the representation theory is entirely controlled by the the knowledge
of irreducible representations and in a simple way.

EXAMPLE 2. G = F* (This is “almost” compact.) Let 7 be a generator
for the maximal ideal in the ring of O C F. Then we have a decomposition

F*=Zr®O".
Here O* is compact and M(Z) = M(C[t,t71]), the category of sheaves on
C*. Thus,
Irr(G) = Irr(Z) x (0%)Y

where (O*)V is the discrete set of characters of the compact group O*.

The point here is that the structure of the representations is half discreet
and half continuous. Specifically, it is a discrete sum of the category of
sheaves on some space. We will see that this is a typical situation.
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3. The Induction and Jacquet Functors.

REMARK. The way to make an advance in representation theory is to find a
way to construct representations. Practically our only tool is the induction.

3.1. Induction.

DEFINITION 0.66. Let H be a closed subgroup of G.

(1) We denote by Res’ = Res’s : M(G) — M(H) the restriction
functor.

(2) For any smooth representation (p, V) of M we denote by Ind'(V)
the functions f : G — V such that

(a)
{f:G = VI[f(hg) = p(h)f(9)}

and
(b) There exists an open subgroup K of G such that f(gk) =
f(9),9€G keK.
(3) We define the representation Ind’(p) of G on Ind’ (V') by right shifts

Ind'(p)(9) f () = f(zg)
(4) We consider Ind’(V) as a functor from M(H) to M(G).
5) We denote by ind’ = ind’% (V) the subfunctor of Ind’$; given by
H H

ind’g(V) = {f € Ind’(V)|f has compact support modulo H}.

LEMMA 0.67. (1) The functor Ind' is the right adjoint of Res’ .
(2) If H 1is open then the functor ind'is the left adjoint of Res’.

PrOOF. (1) Given (p,V) and (m,W) € M(G) we define a map & :
Homg (W, Ind (V') — Homy, (Res' (W), V) by

K(9)(w) := d(w)(e), ¢ € Homg(W,Ind'(V)),w € W
Conversely we define a map
k' : Homps(Res' (W), V) — Homg (W, Ind'(V))
by
K (1) (w)(g) = ¥(n(g)(w)),v € Homps(Res' (W), V),w e W

(2) Consider a vector egr, € ind’ (V) given by en,(g) = p(g)v if g € H
and eg,(9) = 0if g € G — H and define a map

6 : Homg(ind (V), W) — Hom s (V, Res'(W))
by 0(¢)(v) := d(emw)-

PROBLEM 0.68. (1) Show that x and ' are the inverse maps.
(2) Show that 6 : Homg(ind'(V'), W) — Hom, (V, Res'(W)) is a bijec-
tion.

(]
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As we will see it is better to replace the usual induction by the unitary
induction. Assume that the group G is unimodular.

DEFINITION 0.69. Let H be a closed subgroup of G.

(1) We define the functor Ind§ : M(H) — M(G) of the unitary in-
duction by

Ind(p) := Ind' G (AY? @ p)
(2) We denote by ind% the subfunctor of Ind$ of functions compact
modulo H.

(3) We de define the functor ResZ : M(H) — M(G) of the unitary
restriction by

Resd(7) :== Res'g(ﬂ) ® AI_{l/z

PrOBLEM 0.70. (1) Show that the functor ResZ is the left adjoint
to Indg.

(2) Let (p, W) be smooth representation of the group H and <, > be an
H-invariant bilinear Hermitian form on W. Then for any f/, f” €
ind% (W) the function < f'(g), f"(g) > on G belongs to the space
M(H\QG) [see 0.40] and the the bilinear form

L = / < £(9).f"(9) >

defines a G-invariant bilinear Hermitian form on the space indg(W).

PROPOSITION 0.71. (1) Both functors Ind$, and ind$;are evact.
(2) If H\G is compact, Ind = ind.
(3) If H\G is compact, induction maps admissible representations to
admissible representations.

PrOOF. The parts (1) and (2) are obvious.

(3) Let V' be an admissible representation of H and fix K C G a com-
pact open subgroup. Let {Hg;K} be a system of coset representatives for
H\G/K. By our assumption, this is a finite set. It is clear that an element,
f, of L(V)X is determined by its values on the g;. Moreover, the image of g;
must lie in the subset of V fixed by H N g;Kg, ! which is finite dimensional
since we are assuming that V' is admissible. ([

3.2. Jacquet Functor.

DEFINITION 0.72. . For any smooth representation (p, V') of G we denote
by Vi the space of coinvariants V/V(G) where V (G) is the subspace spanned
by vectors m(g)v —v,v € V,g € G and denote by J : V' — Vi the natural
projection.

REMARK 0.73. When G is a finite group, it is often useful to consider
the functor of invariants VG := Homg(Cg, V). It turns out that for non-
compact [-groups this notion is not useful. However, the functor Jg of
coinvariants is useful since it is often exact.
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PROPOSITION 0.74. (1) The functor Jg from the category M(Q)
to the category of vector spaces is Tight exact.
(2) If G is compact then V(G) = Kereg and the functor Jg is exact.
(3) If G = U;U; is the union of an increasing family of compact groups
Gy, then the functor Jg is exact and
V(G)={veV] fgeGi p(g)vdg =0 for some i > 0}.

PRrOOF. (1) is obvious.
(2) We have an exact sequence

0—->V(G) =V —=Vg—0.

When G is compact, this implies that the composition V& — V — Vg is a
bijection. But the functor V — V¢ is left exact.

(3) If G = U;U; then Jg(V) = lim Jy, (V). But the direct image of exact
functors is exact and the first part of (3) follows from (2).

Since Jg (V') = lim Jy, (V') the second part of (3) follows from the equality

V(G;) = {veV] ngGi p(g)vdg = 0i > 0} which is an immediate con-
sequence of the complete reducibility of smooth representations of compact
groups. (]

DEerFINITION 0.75. Let P = M x U be an [-group such that both groups
M and U are unimodular and p : P — Aut(V') be a smooth representation.
Since M normalizes U we have a representation p : M — Aut(Vyy) such that

p(m)J(v) = J(p(m)v),v €V

where J : V — Vpy is the natural projection. If P is a subgroup of a
unimodular group G we define the Jacquet functor corresponding to P =
M x U C G as the composition rasp == Farr © Resh : M(G) — M(M).

4. Unitary Structure
Let G be an [-group and (p, V') a smooth representation of G.

DEFINITION 0.76. (1) A wunitary structure on a G-module (m,V)
is a positive definite, G-invariant Hermitian scalar product @ :
VeV —C.

(2) Let P = MU be a parabolic subgroup of G and (p, W, <,>) be a
unitary representation of M. We define the unitary structure @) on
(m, V) = (ina(p), ine (W) by

Q)= [ < i) fola) >
zeP\G
where the linear functional f is as in Definition 0.40.

REMARK 0.77. We do not assume that V is complete with respect to
this structure.

The essential uniqueness of an invariant scalar product for irreducible
representations follows from the following version of the Schur’s lemma.
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LEMMA 0.78. [Schur’s Lemma] Let G be a reductive F-group and V' be
an irreducible G-module. Then any two G-invariant unitary structures on
V' are proportional.

PROOF. Let VT be anti-linear dual of V, that is the space of anti-linear
functionals. A G-invariant Hermitian scalar product @) : V® V — C defines
a G-equivariant semi-linear map V — V. As V is smooth, we obtain a
semi-linear map £ : V. — (V7T)gy,. Since V is admissible we see that VI
is also admissible and irreducible. Therefore the G-equivariant linear map
k:V = (VT)gn is a bijection. It follows now from the Schur’s lemma
that any two non-zero G-equivariant semi-linear maps V. — (V1) are
proportional. O

REMARK 0.79. There are not many ways of constructing unitary repre-
sentations. The only general procedure is to find a space X with a G-action.
Then G acts on C*(X) and we can find V' C L?(X,du). However, it is not
clear how to find such X. The two natural choices are X =point which gives
the trivial representation, and X = G which is what we did above.

It is somehow more difficult to classify unitary representations then gen-
eral ones.

LEMMA 0.80. Any smooth admissible unitary representation (7 : G Aut(V), Q)
of G is completely reducible. [That is, V- = @ V; where the V; are irreducible
unitary subrepresentations.]

REMARK 0.81. The assumption of the admissibility is important.

PrOOF. We want to show that for any G-invariant subspace W C V' we
can find a G-invariant complement. Consider the orthogonal complement,

Wt = {w € V|Q(w,w') = 0,Yw € W}.

Since the form @ is G-invariant the subspace W+ C V is also G-invariant.
Since Q is positive definite we have W N W+ = 0. It remains to check that
W + W+ = V. For this it is enough to check that for any compact open
subgroup K C G we have WX 4+ (W)X = VE_ Since [by the admissibility]
the space VX is finitely-dimensional we have VK = WK ¢ (W)L n VK,
So it is sufficient to show that (W)X N VE c W+, Since the group K
is compact we have W = WX & L where L := {l € V| [, n(k)ldk = 0}.
Then < I,v >=0 for all v € VK [ € L and we see that < w,v >= 0 for all
ve (WEYLnVE weW. O

COROLLARY 0.82. Let V' be an admissible unitary representation V of
G such that Endg(V) = C. Then V is irreducible.

This Corollary provides a method for establishing the irreducibility of
some representations.

DEFINITION 0.83. (1) For any v € V,\ € V we define the ma-
triz coefficient mg,(g) as a function on G given by mg,(g) =
o(m(g)v),veV,oeV.
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(2) Assume now that (7, V') is an irreducible representation of G such
that the restriction to the center Z(G) is equal to xIdy where
X : Z(G) — C* is a unitary character. We say that V is square
integrable modulo center if

| Imeeto)Pdg < .
G/Z ’

PRrROBLEM 0.84. Let (m, V') be an irreducible representation of G which
is essentially square integrable modulo center. Then

(1) (m,V) admits a unitary structure. )
(2) |mus(9)? € LYG/Z(G)) for allv € VA € V.

5. Geometry of general linear groups.

5.1. Flags. Let E be a field and V' a vector space over E of dimension
n,G := Aut(V).

DEFINITION 0.85. (1) A flag in V is a strictly increasing sequence
F={{0cVicWhcC..cVp,=V}

(2) A flag F is complete if k = n.

(3) Given two complete flags F = {{0} c Vi C Vo C ... C V,, =V}
and 7' = {{0} c V] c VJ C ... C V! =V} we define the relative
position w = w(F', F) as a function from [1,7n] to [1,n] such that

w(i) :=min{j|Vi C Vi1 +V/},1<j<n

(4) We denote by B the set of complete flags in V' and denote by
(9, F) — gF the natural action of the group G on B.

(5) For any flag F = {{0} C Vi C Vo C ... C V, = V} we denote
by Pr C G the stabilizer of F and by Ur C Pr the subgroup of
transformations acting trivially on quotients V; := V;/V;_1.

LEMMA 0.86. Let F,F’ be complete flags and w := w(F, F').

(1) The function w from [1,n] to [1,n] is a permutation. In other
(2) Let L; C V;,1 < i < n be one-dimensional subspaces not contained
in Vier +Vi_y,j = w(F,F)(i). Then for all i,1 <i<n we have

Vi = @1 Li, Vi = D1 Ly ().
(3) For any pair (F,F') € B%, g € G we have
w(gF, gF') = w(F, F')

(4) For any pair (F,F') € B? such that w(F,F') = w(F,F') there
exists g € G such that (gF,gF") = (F, F')

PROOF. (1) Assume that w(F',F)(a) = w(F', F)(b) = j for some pair
1 <a < b<n. By the defintion we can find v, € V, — Va—1,06 € Vo — Vo1
such that vg, vy € Vj’ - V}’fl. Let v, Up be images of vy, vy in V}’ = Vj’/Vj’fl.
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Since v, # 0 and dz’m(f/j/) = 1 there exists A € C such that v, = At,.
In other words vy — Av, € Vj/—l' But this contradicts the assumption that
w(F,F)(b) =j.

(2) We prove the equality V; = @}_, Ly be the induction in i. The claim
is obviously true for ¢ = 1. By inductive assumptions the sum &¢_, L is
contained in V;_1 + L; C V; and properly containes V;_;. Since dim(V;) =
dim(V;—1) + 1 we see that V; = @2:1[4«

The proof of the equality Vj’ = @ZZIL;I(I{) is completely analogous.

(3) Follows immediately from the definition.

(4) Follows from the existence of g € G such that gL; = L;,;1 <i <n
where L; are lines corresponding to the pair (.7:" F! ). O

PrOBLEM 0.87.
Show that Ng(P) = P for any parabolic subgroup P of G where Ng(P) is
the normalizer of P in G.

DEFINITION 0.88. (1) For any w € W we define
X(w) :={(F,F) € Bx Blw(F,F)=w}

2) A splitting of V' is a choice SP of a direct sum decomposition V =
( g
ok Wy
3) With any splitting SP of V,V = @F_, W}, we associate a flags
=1

.7-"(87?) = {{O} cVicVocCc...cV,= V}
and
f(SP) = {{O} C ‘71 C VQ C...C Vk = V}

where V; := @;lei and V; := @;?:k_i+1ﬂ/i.

(4) A subgroup P of G is a parabolic if it is equal to the stabilizer
Pr C G of a flag F.

(5) A subgroup B of G is a Borel if it is equal to the stabilizer of a
complete flag F.

(6) We say that U is the unipotent radical of Pr

(7) A subgroup M of G is Levi if it is a stabilizer of some splitting SP.

(8) Two parabolic subgroups P, Q of G are opposite if the intersection
PN Q@ is a Levi subgroup in both P and Q.

We choose a basis e, es,...,e, of V and identify the group G with
GL(n, FE) and denote by T' C G the subgroup of diagonal matrices.

DEFINITION 0.89. (1) We denote by Fo = {{0} € V; C V» C
. C V, = V} the complete flag in V such that V; is the span
of €1,€9,...,6;.
(2) We denote by F; = {{0} C L1 C Ly C ... C L,, = V'} the complete
flag in V such that L; is the span of e,, en—1, ..., €n—k+1-
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(3) We denote by B the stabilizer of the flag Fy and by B~ the stabilizer
of the flag F .

It is clear that B is the group of upper-triangular matrices and
B~ is the group of lower-triangular matrices.

(4) A partition of n is a decomposition of the interval [1,n] C Z in
a disjoint union of subsets 57,59, ..., S, some of which could be
empty.

(5) A partition [1,n] = S1 U S U...U S, is standard if S; = [n1 + ... +
ni—1+1,n +...+ng for some n; e N1 <i<rn=ny+..+n,.

(6) For a partition § = (S, Sa, ..., Sy) of n we denote by SPy the split-
ting of V = @fZIWk where W; is the span of e, j € S;.

(7) We denote by Fy the corresponding flag and by Py the stabilizer of
Fo.

(8) A standard parabolic subgroup of G is a subgroup of the form P
for some standard partition 8 of n.

(9) For any partition § = (S1,S,...,S,) of n we denote by My the
stabilizer of the splitting V = @lewk where W; is the span of
ej,j € Si. It is clear that is the group My = G1(6) x ... x G.(6)
where G;(0) is isomorphic to GL(n;, E),n; := |S;|.

(10) For any permutation w we denote by B,, C B the subspace of flags
F such that w(Fop, F) = w.

(11) A standard Levi subgroup of G is a subgroup of the form Mjy for a
standard partition 6 of n.

(12) We write M < G if M is a standard Levi subgroup of G.

(13) We denote by B C G the subgroup of upper-triangular matrices.

(14) We denote by 6 : B — E* the character which maps b € B into
the product ngi <j<n biibj_jl where b;;,1 < ¢ < n are the diagonal
entries of b.

(15) We say that a subgroup P of a product GL(m1, E) X ...x GL(my, E)
is parabolic if it has a form P = P; x... X P, where all the subgroups
P, c GL(m;, E),1 < i <t are parabolic.

(16) For any w € W we define U,, := U NwB~w! C U.

ProBLEM 0.90. (1) For any w € W the group U, acts simply tran-

sitively on the set By,.

(2) Any parabolic subgroup of G is conjugated to unique standard
parabolic subgroup.

(3) Any Levi subgroup of G is conjugated to a standard Levi subgroup
My < G but such 6 is not necessarily unique.

(4) Any subgroup of G containing B is a standard parabolic subgroup
of G.

(5) For any splitting SP V = @X_, W} we have

Prspy = Msp x Ur(sp)-
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(6) Let B, B’ be opposite Borel subgroups of GL(n,E). Then there
exists ¢ € GL(n,E) such that gBg~! is the subgroup of upper-
triangular matrices and gB’¢g~"! is the subgroup of lower-triangular
matrices.

(7)

(8) Let P = MU,Q = NV be parabolic subgroups of G such that
Q C Pand N C M. Then Qp := M N is a parabolic subgroup
of M and Qpr = N X Vyr, Var i =V N M.

DEFINITION 0.91. Let 6 = (S4,...S;),7 = (R1,...R:) be two partitions
of nand fix 4,1 <i <r.
(1) We denote by 7; the partition {S;NR;},1 < j <t of S; and denote
by by P, C G;(0) the corresponding parabolic subgroup.
(2) We write P(0) :=[];_, Pr, C My and write P(0) = M,(0)U,(6).
(3) Completely analogously we define partitions 6; of R; and a sub-
group Fy(7) = My(1)Up(7) C M-.

PROBLEM 0.92. Show that M (0) = My(r) = Myr, where 6 A T the
partition
{SiﬁRj},lgiST,lgjgt
of n.

REMARK 0.93. The claim make sense since Levi subgroups Mg, g, .5, C
G do not depend on the order of the subsets S, 53, ..., S,

5.2. Symmetric group.

DEFINITION 0.94. (1) Let W := S,, be the symmetric group on n
letters.

(2) We consider an imbedding w — w; ;j 1= d,(;),; of Sy into the sub-
group of permutation n x n-matrices and identify the symmetric
group W := S,, with it image in GL(n, E).

(3) for any diagonal matrix t € T,w € W we define t* := wtw 1.

(4) We denote by wy € S,, the permutation i > n —1i + 1.

(5) For any 7,1 < i < n we denote by s; € Sy, 1 < i < n the permuta-
tion ¢ <> ¢ + 1. We say that elements s; € W, 1 < ¢ < n are simple
reflections.

(6) For any w € W we define

Jw :={(4,5),1 <i < j <nlw(i)>w(j)}

and write {(w) := |Jy|.

(7) For any partition § = (51, ..., S,) of n we denote by Wy C S, the
stabilizer of the partition . It is clear that Wy = [];_, W;(0) where
Wi () is the group of permutations of the set .S;.

(8) We now define the Bruhat order on the symmetric group S,,. For
any permutations w : i — a;,w’ : i — al,1 <1i <n we say that w’
is a reduction of w if the sequence {a}} can be obtained from the
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sequence {a;} by interchanging a; <+ a; for some i,1 <i <n,j >
a; > aj. Define w’ < w if w’ can be obtained from w by a sequence
of reductions.

(9) For any w € W we define W<, := {w’ € W|uw' < w}.

ProOBLEM 0.95. (1) The group S, is generated by the set of simple
reflections {s;},1 <i < n.
(2) For any w € S,, and any decomposition w = s;,...s;
of simple reflections we have | > I(w).
(3) For any w € S, there exists a decomposition w = s;,...s; in a
product of simple reflections such that { = [(w). In this case we
say that w = s;,...s;, is a reduced decomposition of w.

, in a product

(4) Let w = s;,...s;; € W be a reduced decomposition and w’ is
obtained by omitting some factors in this decomposition. Then
w' < w.

(5) Conversely let w’,w € W be such that v’ < w and w = s;,...s;, be
a reduced decomposition. Then we can obtain w’ omitting some
factors in this decomposition.

(6) The generators {s;},1 < i < n satisfy the relations

s?=e
5185 = 885, [t — j| > 1,1 < 4,5 < n and
8i8i+18; = Si+18iSi+1,,1 <1 <n— L
(7) = The group S, is defined by this set of relations.
(8) For any t € T, w € W we have

sw/swy = ] aa;’

(1.)€Jw
where a; = t;;.
(9) If v’ < w then w'wy > wwy.
DEFINITION 0.96. (1) For any w € W we define

X(w) :={(F,F) € BxBlw(F,F)=w}
So X (e) = A where Ag C B x B is the diagonal and
{]:0} X By, = {.7:0} X BN Xy.

(2) For any i,1 <i < n we define X(s;) = X(s;) U X (e).
(3) For any wy,wa, ...,w, € W we define

Z(w1, wa, ..., wy) = {(F1, Fo, ooy Fry1 € B'|(F1, F2) € X(w1), (F2, F3) € X(w2), ..., (Fr, Fry1) € X(

(4) For any [ > 2 we denote by ¢ = q1 41 : Bt — B2 the projection
to the first and the last factors.

(5) For any simple reflection s; € W we define X (s;) := X (s;) U Ag.

(6) For any reduced decomposition w = s;,...s;, we define

Z(3i178i27"'78’il) - {(J_"laf2a "'7~/T'.l+1 S BT|(J—'-17‘/—-.2) S X(Sl), (~/—-'27f3) S X(S2)7"'7 (*F.lvf.l-‘rl) € X(ST:
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PrOBLEM 0.97. For any w € W and a simple reflection s; we

have
(1) Z(w,s;) = X(ws;) if l(ws;) > I(w).
(2) Z(w,s;) = X(ws;) U X (w) if l(ws;) < l(w).

(3) If l(ws;) > l(w) then Wxys, = Weyy U Weys;.

LEMMA 0.98. Show that for any reduced decomposition w = s;,...s;, the
restriction of q on Z(i1,...,4;) defines a bijection between Z(iy,...,1;) and
X(w).

PRrROOF. I'll explain the proof in the case when G = GL(3),w = wy € S
is the longest elements and wg = sises; a reduced decomposition. The
general case is quite similar.

In our case

X(wo) ={F* = (LY C LY),F' = (L} C Ly)|L1 & Ly, Ly & Lo}
and
Z(s1,80,81) = {F° = (LY c 1Y), F' = (L1 c L), F* = (L} C L3),F = (I} C L)
such that
LY = Li,Ly = L3, L7 = L}; L3 # Ly, Ly # LY, L3 # L.

It is easy to check that these conditions imply that Ly ¢ L, L} ¢ La. So
q(Z(s1,s2,51)) C X (wp).

Conversely for any (F° = (LY c LY),F = (I} C L})) € X(wp) we
can define F1 = (LY ¢ L} := LY & L) and F2 = (L3N L), L}). Then the
sequence (FY, F1, F2, F') belongs to Z(sy, s2,51) and it is easy to check the
uniqueness of such a sequence for any pair (F°, ') € X (wp). O

PROPOSITION 0.99. For any reduced decomposition w = s;,...s;, we have

Q(Z(Siu Sigy eeey Sil)) = wang(w')

PRrOOF. The proof is by the induction in I. For [ = 0 the claim is clear.
So assume that w = ws;, (w) =1 — 1 and that the result is known for the
reduced decomposition w = s;,...s;,_,. By the definition

Z(Si175i27~'-75iz) = {(Z/,./_") € Z(3i173i27 "‘7Sil—1) X B\(ql(z’),}") S X(Sl)}

As follows from the inductive assumption we have

q(Z(SilaSiQa . Sil)) = Uw/ngu—,/ U U’J)’SIDZHJ/
where
Yar = {2, F) € X (@) x Bl(a(x), ) € X(s1)}
and
Zw = {(&,F) € X(@') x Bla(z) = F}

Proposition follows now from the previous Problem.
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PrOBLEM 0.100. (1) For any standard partition 6 of n and any
w € S, there exists unique w € wWy such that w(i) < w(j) for any
pair (,7),i < j. Moreover [(w) < l(w") for all w' € wWy,w' # w.

(2) For any two standard partitions 0,6 of n and any w € S, there
exists unique w € Wy wWy such that w(i) < w(j) for any for any
pair (4,7),7 < j which belong to the same part of the partition 6
and

w~L(i) < wY(j) for any for any pair (4,5),7 < j which belong
to the same part of the partition §’. Moreover [(w) < I(w') for all
w' e W@/U)Wg,w/ 75 w.

(3) We denote by W?%? c W the set of shortest elements in two-sided
classes WyrwWy.

(4) For any standard Levi subgroup M < G we define Wy, = Ny (T)/T.

DEFINITION 0.101. Let M, M’ be a pair of standard Levi subgroups of
G corresponding to standard partitions 6,6’ of n. We define

(1) W(M,*) := {w € W]|such that w(M) is a standard Levi subgroup}.
It is clear that the subset W (M, %) of W is right Wjs-invariant.

(2) Ia(M) = (M, %)/ Wy].

(3) If M’ < G is another standard Levi subgroups we write W (M, M) :
{w e W|w(M) = M'} where w(M) := w™! Mw and say that stan-
dard Levi subgroups M, M’ are associated if W(M,M') # 0. In
this case we write M ~ M'.

(4) We write WMN .= wod" W,

EXAMPLE 0.102. Let G = GL(3, F).
(1) G has four standard parabolic subgroups B, P, and G where

* * *
P=|x % x%
0 0 %

* *x X
Q=10 % %
0  *

2) G has four standard Levi subgroups T, Mp, Mg, G where T is the
( group Q
subgroup of diagonal matricies,

* x 0
Mp:*
0 0 %

*
(=]

* 0 0
Mg =10
0 « %

*
*

(3) The Levi subgroups Mp and Mg are associated.
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(4) Wg = S3, Warp, = {e, 51}, W, = {e, s1} where S, is the symmet-
ric group on n letters and s; € S,,1 < i < n are the permutations
141+ 1.

(5) W(Mp, MQ) == WMp5251-

(6) W(Mo,*) = S3, W(Mp,*) = WMP @] WMPSQSl.

(7) la(Mp) =6,lg(Mp) =la(Mg) = 2.

PrOBLEM 0.103. (1) The imbedding W < GL(n, E) induces a bi-
jection W — B\GL(n, F)/B.

(2) For any pair 6,6’ of standard partitions of n the imbedding W <
GL(n, E) induces a bijection

ng\W/Wg — P@/\G/Pg.

(3) For any two standard parabolic subgroups P,Q of G s 6,0" of n
the set W% c W is equal to the set of elements w € W such
that w(My N B) C B and w™!(My N B) C B where as before
w(X) := w1 Xw for any subset X of G.

(4) Show that WMrMo = fe 5551} where we use notation from the
previous example.

Consider now the case when E is a local field. Then B is a compact
topological space.

DEFINITION 0.104. For any w € W = S,, we denote by X (w) the closure
of the X (w) in B x B.

PRrROBLEM 0.105. (1) The closure X(s;) of X(s;) in B? is equal to

the union X (s;) U X (e) for all 7,1 <i < n.

(2) Let q1,q2 : X(si) — B be the restriction of natural projections
p1,p2 : B x B — B. Then ¢, ¢y are fibrations with fibers P!,

(3) The set Z(i1,...,4;) is compact.

(4) For any w € W and any reduced decomposition w = s;,...s;, we
have X (w) = q(Z (i1, ..., 11)).

(5) X(w) = Uy X ().

5.3. Mackey theory. For a finite group G we denote by M(G) the
category of representations of G.

DEFINITION 0.106. Let GG be a finite group and P, ) subgroups of G.

(1) For any w € G we define w(P) := w~'Pw we denote by R, (P, Q)
[or simply R,,] the functor M(P) — M(Q) given by the composi-
tion

Indg(P)mQ o0 o Resimwil(Q)

where Ind is the functor of induction, Res is the functor of restric-
tion and o is the isomorphism M(w(P)N Q) — M(P Nw=(Q))
induced by the isomorphism Ad(w).
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(2) We denote by (P, Q) [or simply ay,] the functorial morphism

Ry, — resg o indg such that for any representation (p, V') of P and

f € Tw(V) we have

a(P,Q)(f)(pwq) = p(p) f(q)
where f € R, (V) = indIGD(V) is given by a function f: G — V,

such that f(pg) = p(p)f(9),9 € G,p € P.
LEMMA 0.107. [Mackey] Let w; € G,1 < i < r be representatives of
double cosets P\G/Q. Then the morphism

D0, : D Rw;, — resg o ind%

18 an isomorphism.

PROOF. By the definition the space of the representation resgoindg(‘/)
consists of functions f : G — V, such that f(pg) = p(p)f(9),9 € G,p € P.
and the group @ acts by right shifts. The decomposition G = U]_; Pw;Q
induces a direct sum decomposition

resg o indB(V) = @ RV (V)
of Q-submodules where
RY(V):={f € resg o ind%(V)|supp(f) € Pw;Q}

Now we observe that the map f — f, lA”L(q) := f(w;q) defines an equivalence
between Q-modules RV (V') and R,,, (V). O

We will need a variant

EXAMPLE 0.108. Let k = [, be a finite field, G = GL(n,k) and P =
@ = B and Uy C B be the subgroup of unipotent upper triangular matri-
ces. For any representation 7 of T we denote by InfZ(7) € Ob(M(B)) the
composition 7 o pr where pr : B — T is the projection B — B/Uy = T.
Since [see Problem 0.103] G = Uyes, BwB we have an isomorphism

B . .G indB
resg o indp(m) = Bwes,, lrldB’mw(B) T

where 7 (b) := m(wbw™!).
Let ¢k : M(B) — M(T) be the functor of Up-invariants.

PROBLEM 0.109. For any representation p of T" and any subgroup H of
B containing T' we have
ek oindB oInff (p) = p
We see that
T (. 1B
cp(indgq, gy (7)) =
and therefore
r& 0 ip(m) = Bwes, ™
where rp := c% o resg, i = inle; op.
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DEFINITION 0.110. Let 6 be a partition of n.

(1) We denote by iy the functor from the category M(Mpy) to M(G)
which associates with a representation V' of the group My the rep-
resentation ind]Gge(V) where we extend the action of the group Mjy
on V to the action of Py through the homomorphism Py — My.

(2) We denote by 7y the functor from the category M(G) to M (My)
which associates with a representation V' of the group G the action
of the group Mpy on the subspace VY of Ug-invariants.

Let 6 be another partition of n. As we know the partition 6’ A6
defines a parabolic subgroup Py () of the group M.

(3) We define the functors rg¢/(0) from the category M(Mpy) to M (6'A0)
and ig (6) from the category M(6' A 0) to M(My)

in the way we defined the functors 79 and rg.

(4) For any representation (m, V) of the group My we denote by ¥4 (V) C
ip(V') the subspace of functions f : G — V such that f € ip(V)
and supp(f) C PyPy.

(5) The group Py acts on the space ¥4 (V) by right translations and
we denote by ig/(V) the representation of the group My on the
subspace of Up-invariants in W9 (V). By the construction if (V) is
a subrepresentation of iyp(V).

PROBLEM 0.111. For any f € i (V) we denote by a(f) the restriction
of f to My C PyPy. Show that

(1) a(f)(gm') = 7(q)f(m/) for all m' € My ,q € My N Py = Py(#'). In
other words a is a morphism from the representation igl(V) of the
group My to ig/(0) o e (0) (V).

(2) The morphism a : ¥ (V) — ig/() o 7¢:(9)(V) is an isomorphism.

PROPOSITION 0.112. We denote by X = X (6,0") the set of double cosets
Wo\W/g and choose representatives wy € W for x € X. Then we have a
functorial isomorphism

r ©ig = Daexip (0°7) 0oz or, 1 (0)

where oy, is the isomorphism between categories M(M (0 NO") and M(M (6N
9””_1) defined by the conjugation by w € W.

PrOOF. The proof is completely analogous to the proof of the Mackey’s
lemma. [l

5.4. Mackey theory for local fields.

6. Representation of GL(n, F).

Let F' be a local non-archimedian field, @ C F the ring of integers,
P C O the maximal ideal, ¢t a generator of P and k = O/P the residue field
k = F,. We denote by v : F* — 7Z the valuation such that v(¢t) = 1 and
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define the norm by |z| = ¢~¥®). For any z € O we denote by Z the image
of x in k.

Let G be a reductive F-group and G = G(F'). Then G is an [-group.
Here is the main result.

THEOREM 0.113. For any compact open subgroup K C G the algebra
Hi (G) is finitely generated as a module over it center.

COROLLARY 0.114. All irreducible smooth representations of G are ad-
missible.

PROOF. Let m : G — Aut(V) be a smooth irreducible representation.
We want to show that for any compact open subgroup K C G the space VE
is finite-dimensional. As follows from Proposition 0.47 and Lemma 0.19 the
space VX is an irreducible Hx (G)-module. By the Schur’s lemma the center
Zk of Hi(G) acts by scalars. Since the algebra H g (G) is finitely generated
as a module over Zx we see that the space V¥ is finite-dimensional. U

We concentrate on the case when G = GL(n, F'). Although, arguments
in the general case are not much different from the case when G = GL(n, F)
they require a thorough knowledge of the structure theory of reductive
groups over local fields.

6.1. Lattices.

DEFINITION 0.115. (1) Let V be a F-vector space of dimension d <
0o. A lattice of V is an O-submodule L of V such that LQp F = V.
(2) A basis of a lattice L is a set of vectors [y, ...,lq € L such that the
map
0t L, (c1y.eycq) = crly + ... + caly
is a bijection.
PROBLEM 0.116. Let L C V be a lattice, L := L/PL. Then

(1) dimg(L) = d.

(2) Let Iy, ...,lq € L be elements such that the set I1,...,lg € L,;
l; +PL is a basis of the k-vector space L. Then the set Iy, ..., 14 is
a basis of L.

(3) Let M C L be an O-submodule and W C V be the F-subspace
generated by M. Then M is a lattice of W.

(4) For any | € L — PL there exists a subspace W of V' such that
l¢ W +PL.

(5) Let M be another lattice an m € M — PM. Then there exists
a subspace W of V of codimension 1 such that [ ¢ W 4+ PL and
m ¢ W +PM.

LEMMA 0.117. Let L C V be a lattice.

(1) For any l € L —PL and any subspace W of V' of codimension 1
such that | ¢ W + PL the map k : O LNW — L,(a,z) —
av+x,a € O,x € Ly is a bijection.
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(2) For any other lattice M of V there exists a basis li,...,lq of L and
non-zero elements ci,...,cq € F such that the set cilq,...,cqlg is a
basis of M.

PROOF. (1) Since | ¢ W the map « is an imbedding. To show the
surjectivity we observe that any x € L can be uniquely written in the form
r=y+al,a € F,ye W.Iclaim that a € O.

Assume that a ¢ O. Then a™! € P and we have | = a~'x — a~'y. But
such a decomposition contradicts the assumption that [ ¢ W + PL.

Since a € O we see that y =x —al € L. Soye LNW.

We prove (2) by the induction in d = dimp (V). Choose ¢; € F' such that
c1L contains PM but does not contain M. Choose now a vector [ € L such
that ¢l ¢ Pcy M. As was shown in the last problem there exists a subspace
W of V of codimension 1 such that ¢l ¢ W +PM and | ¢ W +PL. By the
inductive assumptions we can find a basis ls, ...,l; of L N W and elements
Ch, ..., €y € F such that the set chla,...,clq is a basis of M N W. But it
follows now from the part (1) that the set cil, ..., cqlq, ¢; = cl_lc;, 1<i<d
is a basis of M. O

PRrROBLEM 0.118. For any lattice L and a complete flag W1 C Wy C ... C
W4 =V of V there exists a basis l1, ..., [ of L such that [; € LNW;, 1 <i < d.

6.2. The Geometry of GL(n, F). Let G = GL(n, F).
To describe the geometry of G we introduce a number of definitions.
These definitions can [ be extended to the case of an arbitrary reductive

group.

DEFINITION 0.119. (1) let Ko := GL(n,0) C GL(n, F).

(2) We denote by T the diagonal group, by B C G the subgroup of
upper-triangular matrices, by U C By the subgroup of unipotent
matrices and by U C G the subgroup of lower-triangular matrices.
Then B =TU and Ty := T N Kj is the maximal compact subgroup

of T.
(3) We denote by A the quotient A := T'/Ty. The map from Z™ to A
which associates with (e1,...,e,) € Z" the class of the diagonal

matrix with elements a;; = t%,1 < ¢ < n provides an identification
of the group A with Z".
(4) We define

AT ={(e1,...,en)le1 > e2> - > e}

The subset AT C A is called the Weyl chamber.
(5) We define

AT ={(e1,...,en)le1 > 2> > e}
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(6) We fix an imbedding A — T by

mh

A=(l,... 1) =

7Tl"

(7) For any » > 0 we denote by K, C Ky the kernel of the natural
projection p, : GL(n,0) — GL(n,O/P"). We say that K,,r > 0
are congruence subgroups of G.

(8) For any congruence subgroup K of G we denote by Hy(Ky) C
Hx (G) the subset of measures supported on Kj.

(9) We fix a Haar measure dg on GL(n, F') such that [, dg=1.

REMARK 0.120. To simplify notations we denote the subgroup of upper-
triangular matrices by B and not by By as in the definition 0.86.

ProBLEM 0.121. Show that

(1) G = KoAT Kj. [The Cartan decomposition].

(2) G = KoB = BKj. [The Iwasawa decomposition)].

(3) For any congruence subgroup K C G and any k', k" € Ky,g € G
we have a(k')a(g)a(k") = a(k'gk”) where a(k) € Hk are as in 0.45.

(4) For any set {z1,...,z,} of representatives for K\ Ky = Ko/K Ho =
Hi (Ko) C Hi(G) is equal to the span of a(z;).

(5) The shifts of congruence subgroups form a basis for the topology
for G.

A hint. Use the Lemma 0.117 and the Problem 0.118 to prove (1) and
(2).
DEFINITION 0.122. Let A = (my, ..., m;,) where the sequence m; decreas-
ing but is not necessarily strictly decreasing
M1y = ... = My > My 41 = oo = My tin > oo > My tiotdp_1+1 = -0 = M.
(1) We denote by P\ C GL(n, F') the subgroup of block upper-triangular
matricies with blocks of the size n; := mi; —mi;_,1 < j<r.
(2) We denote by Py C GL(n, F') the subgroup of block lower-triangular
matricies with blocks of the size n;,1 < j <.
(3) We denote by P\ C GL(n, F') the subgroup of block diagonal ma-
tricies with blocks of the size nj,1 < j <.
(4) We denote by Uy the unipotent radical of Py and by U, the unipo-
tent radical of Pj.
(5) We denote by AJJ\F/IA the subset of p € AT such that M, = M,.
(6) For any congruence subgroup K we define

K =KnUy,, Ky, =KnUy,K5=KnM,.
PrROBLEM 0.123. Show that

(1) M, is a standard Levi subgroup of Py and of Py-: for any A € A™.
Moreover M) is the centralizer of X\ in G.
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(2) Any Levi subgroup is conjugated to a standard Levi subgroup M) <
G but such standard Levi subgroup is not necessirely unique.

(3) For each semisimple g € G the subgroups P, and P,-1 form a pair
of opposite parabolic subgroups.

(4) For any A € AT
(a) K = Kj\rKgK/\_, AMEKNP)A'Cc KNP and A‘lK/\_/\ C Ky.
(b) (Ad)\")|K;r — {e} as n — oo, and (Ad)\_”)|KA— — {e} as

n — oo.

(¢) Un AdA"")(K}) = Uy

REMARK 0.124. This problem has a natural extension to the case of an
arbitrary reductive group.

6.3. The structure of Hecke algebras. Let K C K\ be a congruence
subgroup. Since Ky normalizes K we have Kx = z K for all z € K.

Let C be the span of {a(\)|A € AT}. The next proposition is key for
our analysis of the structure of the algebra Hx (G).

PROPOSITION 0.125. (1) Hr(G) = HoCHy.
(2) C is a commutative, finitely generated algebra.

REMARK. This is saying that that Hx (G) is somehow of finite type but it
is neither generated over C' on the left nor on the right but rather “in the
middle”. It is a question whether one can use this property directly to show
that Hx (G) is of finite over the center.

PrOOF. (1). By the Cartan decomposition, G = Uyep+ KoAKjp.Since

Ky=U,_Kx; = U_,2; K we have
G — UXEA"",ISZ’,]’S'P KI‘Z)\:E]K

This implies that the a(x;Az;) form a basis for Hx(G). But we as we have
seen a(x;\x;) = a(z;)a(N)a(x;). This equality proves (1). O

To prove the part (2) of the Proposition we have to show that

a(Aa(v) = a(v)a(})

for all A, € A*. Of course it is sufficient to show that a(\)a(v) = a(A+v).
In other words it is sufficient to show that

(KAK)(KvK) = KA\vK

for all \,v € AT. This equality is not trivial since the elements of AT do
not normalize K. The idea is to decompose K into parts that can be moved
to the right and to the left.

We will use the following notation. For any congruence subgroup K we
define

Kt=KnNnUK =KnUand K'=KnNT.

LEMMA 0.126. (1) K=K"K'K~.
(2) K=K K'KT.
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(3) If N AT then \AKTA ' C KT and \"'K-AC K.
(4) For any A € A we have fKi)\Ki dg/ fKi dg = mody;*(\).

PRrOOF. (1) Since K; C Kj,j > i are normal subgroups and M; K; = {e}
it is sufficient to prove that for any i > 0,k € K; there exist k* € KZT", KV e
K k™ € K, such that £k € kTk%%~ K, 1. To prove the existence of such a

T = L where as

decomposition consider a map &; : K; — M, (k) given by = —
before y — ¥ is the projection O — O/P = k.

PROBLEM 0.127. Show that the map &; : K; — M, (k) defines a group
isomorphism k; : K;K;y1 — My (k).

To finish the proof of (1) it is sufficient now to observe that any matrix
in M, (k) is a sum of an upper nilpotent, a lower nilpotent and a diagonal
matricies.

The proof of (2) is completely analogous. The part (3) is immediate and
(4) follows immediately from (1). O

We can now finish the proof of the part (2) of the Proposition. We
have reduced the problem to showing KAKvK = KAvK. It is clear that
KMWK C KAKvK. On the other hand we have

KMKvK = KAKTK'K vK
= KAKTA MK K ) K
C KKTK°AwK™ K = K\vK
where the inclusions AKTA™ ¢ KT MK\t ¢ K and v 'K—v ¢ K~
follow from the previous Lemma. [J

REMARK. This decomposition is true only for congruence subgroups K,,r >
0 but not for the group Kjy.

6.4. Modules. We have shown that Hx = HoCHo with C commuta-
tive and that a(A\") = a(\)" for A € AT. We use this information to study
Hr-modules. In this subsection we fix a congruence subgroup K C G and
A€EAT.

Let (7, V) be a representation of G and mx be the associated represen-
tation of Hx on VE. I'll use notations and results of the Problem 0.45.

LEMMA 0.128. Kera(A)|yx = Kere, o+, |y
A

PROOF. By the definition a(\) = ex * &y *ex. Using the decomposition
K = Ky KVK, we see that ex, = Cx ¥ ERY * Cpe and therefore
a(\) = Ey * AL A ¥ EA 1RO * €)1 ACK

Since \T' K9\ = K% and A" K~ C K~ wesee that a(v) = %€, -1+, %€k
Since ef acts as the identity on VE and &,, which acts on V as 7(v), is
invertible we see that
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Kera(\)|yx = Ker ey,lK;A]VK

PROPOSITION 0.129. For any A € AT we have
UpnKera( X)) NVE = V(U NnVE
where as before V(Uy) C V is the span of vectors v — w(u)v,v € V,u € Uy.

PROOF. Let Uy, := A"™KA™. As we know [ see Problem 0.123] U; C
U,c..cU,C..and U =U,,U,,. So

Kerey, C Kerey, C ...

and as follows from the Problem 0.74 we have V(Uy) = U, Kereg,,. The
Proposition follows now from Lemma 0.128 applied to v = A™. O

Let (p,V) be a representation of G,A € AT, P = Py, = M)\U, and K
a congruence subgroup of G. To simplify notations we will write in the
formulation of the next problem M instead of My and U instead of Uy. As
before we denote by J : V' — Vi; is the projection onto coinvariants and by
pym : M — Aut(Vy) the representation as in 0.75. We fix u € A™T.

PROPOSITION 0.130. (1) J(play)(v) = AY2(@)rpr(p)J(v),v € Vig
(2) The image J(VE) C Viy is ras(p)(u)-invariant.
Assume now that the representation (p, V) of G is admissible.
Then
(3) The restriction of rar(p)(u) on J(VE) is invertible.
(4) J(VE) = rag (V).

PRrROOF. (1) follows from the defintion the representation rps(p).

(2) We have to show that ras(p)(u)(J(v)) € J(VE) for any v € VE. Let
w := p(p)(v). Then by (1) we have rar(p)(pn)(J(v)) = cJ(w),c € C. So it is
sufficient to show that J(w) € J(VE).

Let o := [, p(k)wdk. It is clear that & € V5. On the other hand as
follows from the Problem 0.123 zw = w for all z € K°K~ and therefore
0= [ier p(kT)wdk™. So

J(w) = J( /K X p(ENw)dk™ = J(v) € J(VE).

To prove (3) we observe that rs(p)(p) is an invertible transformation of
the space 73/(V). Therefore the restriction of 77(p) (1) to J(VE) C ras(V)
does not annihilate any non-zero vector. Since V' is admissible the space
J(VE) is finitely dimensional and therefore the restriction of ry/(p)(A) to
J(VE) is invertible.

The inclusion J(VE) c (rp(V))X’ follows from the defintion. So for a
proof of (4) it is sufficient to prove that (rp;(V))X" c J(VE). As follows
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from (3) it is sufficient to show that for any & € r3(V)X’ there exist p € AT
such that ry(p)(u)(€) € VE.

To find such p we fix a lift v € VE® of . Since V is smooth there exists
a congruence subgroup K’ such that v is K’-invariant. Then as follows from
0.123 the vector v' := p(AN)v is invariant with respect to AV K’ A=V as well
as respect to KY.

Since, [see 0.123]

UNAVKE AN =T

there exists N > 0 such that K~ C ANK'"A™N. Set w := [ p(k)v'. It
is clear that w € VX and that that w is K~ -invariant. On the other hand

since M\kg = koA for all kg € K° and and v is K -invariant we see that w is
KYK~-invariant. Therefore

wim [ o0 = [ ol

On the other hand we have
T(p(k')) = J(W), ks € K.
So J(w) = J(v') = rar(p)(AV)€ and we see that 7y (p)(AV)E € J(VE). O

REMARK 0.131. One can show that the condition of the admissibility of
p is not necessary for the validity of the parts (3) and (4) of the Proposition.

6.5. An Application. We start with a result on representations of the
group SL(n, F'). Define

Al :{(mlaamn)€A|m1++mn:0}

and A := AT N A;. As follows from the Cartan decomposition for G L,,(F)
we have an analogous decomposition

SL(n, F) = Uxea, SL(n, O)ASL(n,O)

DEFINITION 0.132. A representation (m, V') of a group GL(n, F') or SL(n, F)
is quasi-cuspidal if ra, 7 (V') = {0} for all parabolic subgroups P = MU # G.

REMARK 0.133. (1) As all unipotent subgroups of GL(n, F') lie in
SL(n, F) a representation of GL(n, F') is quasi-cuspidal iff the re-
striction onto SL(n, F') is quasi-cuspidal.

(2) Since any parabolic subgroup is conjugate to a standard one we can
restate the definition by saying that ry; (V) = {0} for unipotent
radicals of standard parabolic subgroups P # G.

LEMMA 0.134. Let (w, V') be a quasi-cuspidal representation of SL(n, F),v €
V and K be a congruence subgroup. Then p(a(\))(v) = 0 for almost all
A €EAT.
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PrOOF. For any i,1 < ¢ < n we define
vii=(n—i,n—i,.,n—1i—i,—i,..,—i) € AT

where n — ¢ appears ¢ times and —i appears n — ¢ times. Let AT(O) - Ai"
be the subsemigroup generated by v;,1 <@ < n.

PrOBLEM 0.135. (1) The set v, 1 <1 < n generates the semigroup
AT
(2) For any N > 0 there exists a finite subset S C A] such that
S+ NAf = AT

Since a(A)a(v) = a(v)a(\) for \,v € A] [see Proposition 0.125 ] for
a proof of the Lemma it is sufficient to show that a(v;)Nv = 0 for any
i,1<i<n-—1andany v € V if N >> 0. In other words we have to show
that U, Ker(a(vl')) = V.
Let P; = M;U; be the parabolic subgroup corresponding to v;. Since
(m, V') is quasi-cuspidal we have V = V(U;) and it follows from Proposition
0.130 that U, Ker(a(v]")) =V.
O

THEOREM 0.136. A representation (7w,V') of SL(n, F) is quasi-cuspidal
if and only if it is compact.

PROOF. a) Assume that a representation (m, V) of SL(n,F) is quasi-
cuspidal. To prove that (m, V) is compact we have to show that for any
congruence subgroup K and any v € V the function

SL(n,F)—V,g— m(ex)n(g)v

has compact support. By changing K we can assume that our vector v is
K-invariant. Then,

m(ex)m(g)v = m(ex)m(g)m(ex)v
As follows from the Cartan decomposition for SL,, (F) it is sufficient to show
that the function
A—li_ — V, A= F(@K)ﬂ'(ko)v
has finite support for any kg € K. By replacing v by m(ko)v we see that it
is sufficient to prove that the function

AT = VoA = 7(ex)v

on Af has finite support . But this is an immediate consequence of the
previous Lemma.

b) Conversely, suppose that the represention (7, V') on SL(n, F) is com-
pact. By reversing the reasoning given above, we see that the function
A+ m(a(A))v from Af to V has finite support for all v € V. Therefore for
any non-zero A € A{,v € V we have a(\")(v) = 0 for r >> 0. it follows
then from Proposition 0.130 (1) and Proposition 0.125 that V(Uy) = V
for any non-zero A € Af. Therefore 7y, 17, (V) = {0} for for any non-zero
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A€ Af,v € V. Tt follows from Problem 0.123 (1) that 7p(V) = {0} for
all proper parabolic subgroups P of G. O

6.6. Irreducibility implies Admissibility.

DEFINITION 0.137. A representation of G is cuspidal if it is both quasi-
cuspidal and finitely generated.

Let G = GL,(F) and G° := {g € G|det(g) € O*}. The same arguments
as in the proof of Theorem 0.136 prove the following result.

THEOREM 0.138. [Harish-Chandra] A representation (m,V) of G is
quasi-cuspidal if and only if it is compact.

COROLLARY 0.139. Any irreducible cuspidal representation of G is ad-
missible.

Proof of the Corollary. Let (p,W) be an irreducible cuspidal rep-
resentation of G. Then W is a finitely generated G°-module. Really since
[G : ZGY) is finite, W| 4o is a finitely generated module. On the other hand
since (p, W) is irreducible it follows from the Schur lemma that Z acts on W
by multiplication by scalars. Hence W is finitely generated as a G%-module.

By Harish-Chandra’s theorem, W|qo is compact. As follows from Propo-
sition 0.56 all finitely generated compact representations are admissible. So
W|go is admissible. As G contains all compact subgroups, the corollary
follows.[]

This corollary is the first step toward our goal of proving

THEOREM 0.140. Any smooth irreducible representation of G is admis-
sible.

PRrROOF. We start with a reminder on the normalized induction and of
the Jacquet Functors.

Since we want to apply the results of the previous section to the case
when G is a Levi component of some larger group we consider the case when
G can be a product of groups of the form GL(m, F).

DEFINITION 0.141. Let P = MU be a Parabolic subgroup of G.

(1) We denote by rar : M(G) — M(M) the Jacquet functor which
associates with a representation (m,V) of G the representation
ryu(m) of M on V/V(U) such that

raru (m) (M) (J(0)) = AR (m)J (p(m)v)

where J : V' — ry (V) is the natural projection. If M is a stan-
dard Levi subgroup of G' we often write 757 instead of 77

(2) We denote by iy : M(M) — M(G) the induction functor defined
as follows: given a representation p : M — Aut(V') extend it triv-
ially to a representation of P on V and define ips7(p) := ind%(p).
If M is a standard Levi subgroup of G we often write ijs instead
of iM,U-
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REMARK 0.142. The Iwasawa decomposition implies that ind% = Ind%.

Let P = MU,Q = NV be parabolic subgroups of G such that Q C P
and N C M and Qp := QN M. As we know Q) is a parabolic subgroup
of M and Qpr = N X Va, Vay i =V N M.

PROPOSITION 0.143. (1) raru is left adjoint to iny.

(2) If N is a Levi subgroup of M, then rnyv,, ocrmu = rN,v and iy o
IN,Vy; = IN,V-

(3) im,u maps admissible representations of M to admissible represen-
tations of G.

(4) imu and ryru are exact.

(5) ra,u maps finitely generated representations of G to finitely gener-
ated representations of M.

PrOOF. The proof of (1) is contained in Problem 0.70 which is a a
modification of Lemma 0.67. The part (2) is a simple verification and parts
(3) and (4) follow from the equality ind% = Ind$ since as we already know
the functor ind% is exact and takes admissible representations to admissible
ones.

To prove (5) consider a smooth finitely generated G-module (7, V) .
As follows from the Iwasawa decomposition V' is finitely generated as a P-
module. Since the action of P = MU on V descends to an action of P/U =
M on V/V(U) we see V/V(U) is finitely generated as a M-module. O

COROLLARY 0.144. (1) Let (7, W) be an irreducible representation
of G and M < G be a standard Levi subgroup, minimal subject to
the condition ras(mw) # 0. Then the representation ryr(m) of M is
cuspidal.

(2) For any irreducible representation (w,W) of G there exists a para-
bolic P = MU and an irreducible cuspidal representation (1, R) of
M, such that W is a submodule of iy (R).

PROOF. Let p := M ().
(1) By part (2) of the Proposition and the choice of M we have

rvm(p) =rnmorma(m) =ryg(m) =0

for any proper parabolic Q = NV of M. So p is quasi-cuspidal.

Since W is irreducible it is finitely generated. Thus, by part (4) of the
Proposition, p is finitely generated. So it is cuspidal.

(2) Let p be as in (1) and 7 be an irreducible quotient of p. Then (7, R)
is an irreducible cuspidal representation of M such that

HOHIM(T]\LM(W), R) 75 {0}

So [by the Frobenious reciprocity] we get a non-zero map W — iy (R).
As W is irreducible it is an embedding. O
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REMARK 0.145. This use of the adjunction property is typical. It helps
to show that something is non-zero. but does not give more detailed infor-
mation.

Now we can prove Theorem 0.140.

Let (m,V) be an irreducible representation of G. By Corollary we can
find a parabolic P = MU and an irreducible cuspidal representation (7, R)
of M, such that there exists an embedding V' — iy y(L). By part (c) of
Proposition and Corollary 0.136 the representation iys(L) is admissible.
Since V' < ipr,y(L) the representation V' is also admissible. (]

COROLLARY 0.146. For any irreducible representation (p,V) of G, a
congruence subgroup K and a parabolic subgroup P = MU of G we have

J(VE) = (rar (V)R

DEFINITION 0.147. To simplify notations we write i,s instead of iy
and 77 instead of ras .
(1) We denote by rn @ Idaga) — imory and 7oy @ ry 0 iy —
Idyq(pry the morphisms of functors coming from the adjunction in
Proposition 0.231.

PROBLEM 0.148. The morphism &y (ipg(7) : ipng(w) — ipr 0 mag 0 ipr(70)
is a monomorphism for all 7 € Ob(M(M)).

6.7. Uniform Admissiblity. As follows from Theorem 0.140 and Lemma
0.19 for any open compact subgroup K of GG all irreducible representations
of the algebra H are finite dimensional. However we did not yet show the
existence of a bound ¢(K) on dimensions of irreducible representations of

Hi.

THEOREM 0.149. [Uniform Admissibility] For any open compact sub-
group K C G there exists an effectively computable constant, ¢ = ¢(G, K),
such that all irreducible representations of the algebra Hy (G) have dimen-
sion bounded by c¢(K).

REFORMULATION. For any irreducible representations V' of G we have
dim V& < ¢(K).

The proof is based on the following result from Linear Algebra.

PROPOSITION 0.150. Let V' be a complex vector space of dimension m <
oo and C C End(V) a commutative subalgebra generated by 1 elements.
Then
dim C < m2_6l,€l = F
PRrOOF. Since C' is commutative we can decompose V' into a direct sum
of C-invariant subspaces V; such that for any ¢ € C' the restriction ¢; of ¢ to
Vi has a form \;(c)Idy, + a where a € End(V;) is nilpotent.
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PrOBLEM 0.151. Show that it is sufficient to prove the Proposition in
the case when all ¢ € C' are nilpotent.

From now on we assume that all ¢ € C are nilpotent. For any r > 1
we denote by di(r),l € Zy,r > 1 the maximal dimension of commutative
subalgebras of M,j(C) generated by I nilpotent elements cy, ..., c; where [r]
is the integral part of r.

PrROBLEM 0.152. Show that the Proposition is implied by the following
inductive result.

CLAM 0.153. dy(r) < dy(r — 20y £ qp (7).

Proof of the Claim. We may assume that C C End V,V = C” where
n := [r| and that dim(C) = d;(r). Let I C End(V') be the ideal generated
by ¢;,1 <i <l and V¥ := I¥(C"). Then

V=v'ovis. . ovr={0}
Choose a subspace L C V? complementary to V! and define m := dim(L).

PROBLEM 0.154. Use the equality V¥ = I¥(L) + V**1 to show that
CL=V.

Since CL = V any ¢ € C is determined by it restriction to L. So
dim(C) = di(r) < nm and therefore m > d;(r)/n.

Let ¢’ C C be the subalgebra generated by ¢;,1 < i <!l and R := ¢;C.
Then C = C’ 4 R. Since ¢; maps V to V! the dimension of R is not greater
then the dimension of the restriction of C' on V. So

dim(R) < dj(n —m) < di(n —di(r)/n)
On the other hand dim(C") < d;_1(r). O
We now prove the theorem.

PrROOF. We know already that any irreducible representations of Hx (G)
is finite-dimensional. To prove the Theorem it is sufficient to show that

dim(V) < |Ko/K|*"

for any irreducible representations (p, V') of Hi (G). In other words we have
to show that any N-dimensional representations (p,V) of Hx(G) where
N > |Ko/K|*" is reducible.

Since Hx = HoCHo,dimc(Ho) = |Ko/K]| follows from Lemma 0.125
that

dim(p(Hic)) < Ko/ K *dime()
where C' := p(C) € End(V). On the other hand since C is a commutative

algebra with n generators it follows from the Propostion that dim(C) <
N2-1/2""% Gince NY/2"™" > | Ky /K|? we see that

dime(p(Hk) < dim(End(V)
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Now we appeal to the Burnside’s Theorem which says that p : Hix(G) —
EndV is surjective for any finite-dimensional irreducible representations
(p, V) of Hi(G) to see that the representation p is reducible.

O

Consider the subgroup G° C G as before, and fix a congruence subgroup
K C G°. We know that given any irreducible cuspidal representation (p, V)
of G%, and v € VK| the function g — p(ex)p(g)plex)v,g € GV has compact
support. We will now show how the uniform admissibility theorem can
strengthen this result.

PROPOSITION 0.155. Given K C G° C G as above, there exists an open
compact subset Q C G° such that

supp p(ex)p(g)pex)v C €
for all irreducible cuspidal representations (p, V') of G and allv € V.

Proor. It follows from the proof of Harish-Chandra’s theorem that
compact representations of G¥ are exactly those for which A — p(a()\))v
has finite support in Af. This is in turn equivalent to the statement
that for any non-zero v € Af,v € VE and any irreducible cuspidal rep-
resentation (p,V) of GO the operator p(a(v)) on VE is nilpotent. Since
dim(VE) < ¢(K) we see that p(a(v°))) = 0 for all non-zero v € A]. But
there exists a finite subset S of A] such that any A € Af — S has a form
A=y v e Af — {0}, € AT, So supp pler)p(g)p(ex)v € KoSKy for
any irreducible cuspidal representation (p, V') of G and any v € V. (]

COROLLARY 0.156. For any congruence subgroup K of G there are only
finitely many equivalence classes of irreducible cuspidal representations of

H i (GO).

PROOF. Since the support of the matrix coefficients of the irreducible
cuspidal representations must lie in Q(G, K), the corollary follows from the
following general result.

PROBLEM 0.157. The matrix coefficients of any set of pairwise non-
isomorphic irreducible representations are linearly independent functions.

O
6.8. Decomposing the Categories.

DEFINITION 0.158. (1) We denote by Irr.(G) C Irr(G) be the sub-
set of cuspidal irreducible representations.

(2) We denote by Irr;(G) C Irr(G) be the set equivaence classes of
irreducible representations of G which a subquotients of represen-
tations induced from proper parabolic subgroups of G.

(3) M(G)e:={V e M(G)|JH(V) C Irr.(G)}.

(4) M(G); ={V e M(G|JH(V) C Irri(G)}.
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LEMMA 0.159. Irr.(G) NIrr; (G) = 0.

PRrROOF. It is sufficient to show that [D] ¢ JH (ips(p) for any irreducible
cuspidal representation D of GG, any proper standard parabolic M < G and
any p € M(M). As follows from the Harish-Chandra theorem the restriction
Dy of D on G is compact. So it is sufficinet to show that [D°] & JH o (ias(p)
for any irreducible compact representation D° of G°, any proper standard
parabolic M < G and any p € M(M). Since every irreducible compact
representation of GO splits the category M (G?) we have a decomposition

int(p) = ine(p)po ® ine(p)ho

where ip7(p)po is a mulitple of Dy and [D°] ¢ JHgo(in(p)50. So it is

sufficient to see that Homeo (Do, in(p)) = {0}. Since MG® = G we have
Homgo (Do, i (p)) = Homgonas (rar(D°), p) = 0
since D is cuspidal. O
COROLLARY 0.160. Irr(G) is a disjoint union of Irr.(G) and Irr;(G).
THEOREM 0.161.
M(G) = M(G). & M(G);

PRrROOF. We start with the following result. Let V' be a representation
of Gand V = V. @V, a direct sum decomposition into G%-invariant sub-
spaces the set JHqgo(V.) consists only of compact representations and the
GO-representation V; has no compact subquotients.

PROBLEM 0.162. (1) The subspaces V¢, V; C V are G-invariant.
(2) Vi e M(G);.

It follows now from the Harish-Chandra theorem that it is sufficient to
prove that the subset Irr, G C Irr GO of irreducible compact representa-
tions, splits M(G?). Let V be a representation of G°. As we have seen for
any congruence subgroup K there are only a finite number of irreducible
cuspidal representations Di, ..., D, of G° with K-invariant vectors. Since
representations Dy, ..., D, are compact we have

V = VK,C D VvC’lK

where Vi . is a direct sum of compact irreducible representations of G which
have a non-zero K-invariant vector and VCJ-K does not have irreducible sub-
quotients of this form. 7

Consider a decreasing sequence of congruence subgroups, K1 D K2 D ...
such that N; K; = {e} and define

Ve =Ug Vek,, Vii= mKi Vc,LKl

Obviously, JH(V,) C Irr. G and JH(V;) N Trr. G = 0.
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It only remains to show that V = V. @& V;. Take v € V and choose a
congruence subgroup K which stabilizes v. The decomposition

V= Vc,K@VCJ’_K

shows that we have a decomposition v = v i + v/ where vo g € Vo g, v €
VC,LK. To finish the proof of the Theorem it is sufficient to show that v’ € V;.

Since v/ € V; it is sufficient to show that the G-submodule V' C V
generated by v’ does not contain any compact irreducible representation D
without a non-zero K-invariant vector. Since D splits the category we have
V' =V} ® V)" where V} is a multiple of D and D ¢ JH(V})"). Since v/
generates V' the projection of v’ to V}, generates V/,. On the other hand v
and therefore v are K-invariant while D does not have non-zero K-invariant
vectors. So V/, = {0}. O

DEFINITION 0.163. Let M < G be a standard levi subgroup.
(1) For any V' € M(M) we denote by V. the projection of V' on the
subcategory of quasi-cuspidal representations.
(2) We denote by kae(V) : V. — iy o rpr(Ve) the composition of
kar(Ve) [see 0.147] with the projection V' — V..

LEMMA 0.164. For any V € M(G) the map
Em<chmc(V) 1V = Sucgivormu(V)
is an imbedding.
PrOOF. Let V := Ny<gKerkpr (V). It follows from Problem 0.148
that 737 (Vp) = {0} for any standard proper parabolic subgroup M of G. So
the representation of G on Vj is quasi-cuspidal. Since (Vj). = {0} we see

that Vo = {0}.
(]

7. Examples of cuspidal representations.

Let G = GL(n,F),Z = F* be the center of G and ¢ : k — C* be a

non-trivial additive character.

DEFINITION 0.165. (1) To any matrix A € g = M, (k) we can as-
sociate a function

va: Ky — Cv(k) == ¢(Tr(A(k —1)).

It is clear that v4 is a character of K.

(2) A matrix A € g = M, (k) is anisotropic iff the characteristic poli-
nomial pa(z) := det(xld — A) € k[z] is irreducible.

(3) A character v4, A € M, (k) is anisotropic is A is anisotropic.

(4) We denote by by Zg(va) C ZKj the stabilizer of 74 in Z(G)K
[which make sense since K7 is a normal subgroup of Z(G)Kj|. Since
v4 is a character of Ky we have K1 C Zg(va).

PROBLEM 0.166. Show that
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(1) A matrix A € M,(k) is anisotropic iff it does not stabilize any
non-trivial flag F in k".

(2) A matrix A is anisotropic iff for any proper parabolic subgroup
P = MU of G the restriction of v4 on K1 NU is not equal to the
function 1.

(3) For any g € G — Z(G) K there exists a standard proper parabolic
P = MU of G and a subgroup H of Ky such that gHg™' C K
and K1 NU C gHg ' K>.

(4) For any congruence subgroup K, there exists a compact C,, C G
such that for any g € G — Z(G)C,, there exists a proper stan-
dard parabolic P = MU of G and a subgroup H of K, such that
gHg ' Cc Ky and K, NU C gHg ' K>.

(5) For any A € M, (k) there exists a character x : Zg(va) — C* with
the restriction on K7 is equal to v4.

(6) For any A € M, (k) and any unitary character x : Zg(rva)K; — C*
the induced represntation indgg(m) x has a natural G-invariant
unitary structure.

PROPOSITION 0.167. Let A € My (k) be an anisotropic matriz v = vy
and X : Zg(va) — C* be a character with the restriction on Ki equal to vy.
Then the induced representation (m,, V) := IndZG(VA)K1 X s cuspidal and
irreducible.

PRrOOF. We first prove that the representation (m,,,V’) is admissible
and equal to indgc () X- It is sufficient to prove that for any n > 0 there
exists a compact C,, such that supp(f) € Z(G)C,, for all f € VE». We take
C), to be the compact set as in Problem 0.166. We have to show that for any
g€ G—Z(G)C, we have f(g) =0 if f € VE». Choose subgroups P = MU
and H as in Problem 0.166. Then for any h € H we have

f(9) = f(gh) = f((ghg™)g) = v(ghg™") f(g).

Since v is anisotropic and K1 NU C gHg™ 'Ky there exists h € H such that
v(ghg™') # 1. Therefore f(g) =

Since the representation (7,,y, V') is unitary and admissible it is sufficient
to show that Homg(V, V) = C. [See Corollary 0.251]. As follows from the
Frobenuous reciprocity we have

Homg(V, V) = HOHlZG (va) (CX, V)

(
For a proof of the inequality dim(Hom;(C,,V)) < 1 it is sufficient to show
that ¢(1)(g) = 0 for any ¢ € Homy,(,,)(Cy,V) and g € G — Z.

Consider first the case when g € G — Z(G)Ky. As follows from the
part (3) of the previous problem there exists a proper parabolic subgroup
P = MU and a subgroup H of Ky such that gHg~! C K; and gHg ' K5 D
UnK;i.
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Since ¢ € Hom;(C,, V') we see that

00 = A L YEe)

ueu(k)

Since the functional v is anisotropic the restriction of ¥ o v on u is a non-
trivial character of the group u and we see that

Y W) =

ucu

So 6(1)(g) = 0. )

Consider now the case when g € Z(G)Ky — Z. Since g does not belong
to the stabilizer of 7 there exists k € K such that #(gkg~' # v(k). Now
the same arguments show that ¢(1)(g) = 0.

Now we prove the cuspidality of the representation 7 := m, ;. Let P =
MU be a proper parabolic subgroup of G and ¢ : V' — r3/(V') the canonical
projection. Consider v € V,v : G — C given by the function supported on
Z(G)Ky and such that v(e) = 1. Since the representation 7 is irreducible it
is sufficient to show that g(w(g)v) = 0 for all g € G. Since G = PK, and
the projection ¢ commutes with the action of P it is sufficient to show that
q(m(k)v) = 0 for all k € Ky. Since ¢(m(u)w) = g(w) for all w € V,u € U it
is sufficient to show that

/ () (k)vdu = 0.
uceUNK1

In other words it is sufficient to check that

/ m(u)vdu = 0.
uek—1UKNK1

Since supp 7 (u)v C Z(G)Ky for any u € k~1Uk N K it is sufficient to show

that
/ w(w)v(e) = 0.
uEk:*lUk:ﬂKl

Lk-wm m(u)v(e) = Y w((u))

ueu(k)

We have

Since the functional v is anisotropic the restriction of the charaqcter v9(u) on
UNKj is anon-trivial character of the group UNK7. S0 3, ) ¥ (9 (u)) =
0. O

8. Cuspidal components

8.1. Relations between representations of a group and of it
subgroups of finite index.
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CLAIM 0.168. Let G be a group, H C G a subgroup of finite index and
p: G — Aut(V) an irreducible representation. Then the restriction pg
is semisimple and of finite length. [That is pg is a finite direct sum of
irreducible representations].

Proor. Let L := ﬁgeg/HgHgfl. It is clear that L C G is a normal

subgroup of finite index. We show that the restriction py, is semisimple and
of finite length and will leave for the reader to prove that the restriction pgy
is also semisimple.

Since V is irreducible, V is a finitely generated C[G]-module and, since
L is of finite index, V is a finitely generated C[L]-module. Hence the Zorn’s
Lemma implies the existence of an L-irreducible quotient ¢ : V. — W.

Let K C V be the kernel of ¢q. Since L C G is a normal subgroup we
see that for every g € G the subspace p(g)(K) C V is L-invariant and the
quotient V/p(g)(K) is an irreducible representation of L. The kernel of the
natural map V' — @gcq/V/p(g9)(K) is G invariant, and hence [since V' is
irreducible] is equal to {0}. So we see that (pr, V) is a subrepresentation of
a finite direct sum of irreducible representations of L. Therefore (pr, V) is
a finite direct sum of irreducible representations of L. O

Let G be a group, H C G a normal subgroup of finite index, p :
G — Aut(V) an irreducible representation of G and (m, W) an irreducible
representation of H. Since the the restriction pgy is completely reducible
we can write V as a direct sum V = Vi @ VVJ[; where Vi is a multi-
ple of W and W does not appear as a subquotient of VML,. We define
® := Hompy (W, V) = Homg (W, Viy). It is clear that the map ¢ @ w — ¢(w)
defines an isomorphism ® @ W — V.

DEeFINITION 0.169. (1) For any g € G we denote by 79 : H —
Aut(V) the representation 79(h) := w(ghg™1).

(2) We denote by G, C G the subgroup of elements g € G such that
the representation 79 of H is equivalent to .

By the definition for any g € G there exists an automorphism A(g) €
Aut(W) such that 7(g~thg) = A(g)~'w(h)A(g),Vh € H. Since W is irre-
ducible an automorphism A(g) is defined uniquely up to a multiplication by
a scalar ¢ € C*.

PROBLEM 0.170. (1) There exist ¢y g € C*,¢',¢"” € G such that
A(g'q") = cg g7 A(g')A(g"). In other words the map g — A(g) is a
projective representation of the group G, on W.

(2) The subspace Vyyr of V' is Gr-invariant.

(3) There exist a projective representation v of the group G./H on ®
such that A(g) = v(g)u ® m(g) for all g € G.

(4) Let a : indgﬂ(VW) — V be the morphism corresponding to the
imbedding Vi < V under the Frobenious reciprocity

Homg(ind& (Viv),V) = Homg, (Viv, V).
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Then a is an imbedding.

(5) The representation 7 of G on Vyy is irreducible and p is equivalent
to I ndiT.

(6) The projective representation v of Gr/H on ® is irreducible.

(7) If G/H is cyclic then dim(¥) =1 and we can assume that 7 = 1.

DEFINITION 0.171. Let H be a normal subgroup of G such that the
quotient group G := G/H is commutative.

(1) We denote by ¥ the group Hom(G, C*) of characters of G.

(2) For any irreducible representation p of G we define ¥, C ¥ as
the subgroup of characters 1 such that the representation ¢ ® p is
equivalent to p.

(3) For any v € ¥, we choose an intertwining operator Iy € Autg (V)
which defines an equivalence between p and ¥ ® p.

LEMMA 0.172. Let H be a normal subgroup of G such that the quotient
group G/H is cyclic.
(1) The restriction py is a direct sum of distinct irreducible represen-
tations.
(2) The representation pg of H is irreducible iff ¥, = {1}.
(3) There exist constants cy g € C*, ', " € W, such that

Iw/w// = Cw/’wnlw/lwll.
(4) The the set {I, € Endg(V)}, v € ¥, is a basis of Endg (V).

PrOOF. We use notation of Problem 0.170.

(1) follows from the equality dim(¥) = 1.

(2) Follows from the Frobenious reciprocity.

(3) Follows from the Schur lemma and

(4) is true since charaters of any finite commutative group is a basis in
the space of functions on this group. O

PROBLEM 0.173. Generalize the statements of the Lemma to the case
when G =[], G;, H =[], Hi,i € I where G; is a finite family of groups and
H,; C G; a family of normal groups such that the quotients G;/H; is cyclic.

8.2. Relations between representations of a reductive group G
and the subgroup G° C G. Let now G be a connected reductive group.
As before we denote by G° C G the subgroup generated by all compact
subgroups of G. We assume that G = [[, Gsi € I where all the quotients
G;/GY are cyclic. Then the quotient A(G) := G /G is isomorphic to Z!,1 > 0
the natural map Z(G)/Z(G) N GY — A is an isomorphism on a subgroup
Az(G) € A(G) of finite index and the subgroup Z(G)G® C G is of finite

index.

PROBLEM 0.174. If G = GL(n, F) then G° = {g € GL(n, F)|det(g) €
O*,A(G) =Z and Az(G) = nZ.
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DEFINITION 0.175. An unramified character of G is a character ¢ : G —
C* which is trivial on G°. The set of unramified characters is denoted ¥ (G).

REMARK 0.176. Since A(G) := G/G° is isomorphic to Z!,1 > 0 we see
that ¥(G) = Hom(A(G),C*) = (C*).. In this way, we introduce (complex)
algebraic geometry into the study of G.

LEMMA 0.177. For any irreducible representations (p',V) and (p", V')
of G the space W := Homgo(p', p") is finite-dimensional.

Proor. Let x',x"” : Z(G) — C* be the central characters of repre-
sentations (p/, V') and (p”,V"). If the restrictions X/Z(G)OGO’X%(G)QGU :
Z(G NG — C* differ then W = {0}. So we can assume that X/Z(G)OG’O =
X%(G)mGO' In this case the ratio x’/x” is a character of the group Z(G)/Z(G)N

GP. As well known there exists a character x : G/G° = A — C* such that
the restriction of x on Z(G)/Z(G) N G is equal to x'/x”. Consider now
the representation 5’ := p” ® x. Since the restriction of y on G is equal
to 1 the restriction of 5" on G is equal to the restriction of p” on G° and
Homgo (0, p"") = Homgo (p/, p”) . On the other hand since the central char-
acters of representations (p’, V') and (p”, V") coinside we have

W = Homgo(p', 5") = Homy o (p', 7))
and it follows from Lemma 0.168 that dim (W) < oco. O

PROPOSITION 0.178. Let (p,V) and (p',V') be irreducible representa-
tions of G. The following conditions are equivalent

1) The representations o and p'|qo of the group GO are equivalent.
14 Pla Pl group q

(2) JH(plgo) N JH(p'|Go) # 0.
(3) p' =p for some unramified character 1) € V.

PRrROOF. (1)The implications =(2) and (3)=-(1) are obvious. Thus, it is
enough to show that (2)=(3).

Let W := Homgo(V, V'). As follows from the previous Lemma the space
W is finite-dimensional and the condition (2) implies that W # {0}. We
define a representation 7 of G on W by

T(9)f =0(9)fp(9) "9 €G, feW.

By the definition of W, the restriction 7|go is the identity. Thus, we may
think of 7 as a representation of the group A(G) on W. Since the group
A is commutative and the space W is finite-dimensional there exists an
eigenvector h € W, h # 0. In other words 7(g)h = ¥ (g)h for all g € G for

some character 1 of G.
Consider h as a linear map from V to V’. Then h intertwines the (1p, V)
with (p/,V’).  As both representations are irreducible, we see that p/ =
O

¥p.
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DEFINITION 0.179. (1) We define an action of the complex the al-
gebraic group ¥(G) on the set Irr G by
(Y,p) v ®p

(2) For any p € Irr G we define
U, :={¢ € [¥(G)|p ® 1 is equivalent to p}.

LeEMMA 0.180. The subgroup ¥V, is finite for all p € Irr G.

PROOF. It is clear that for any ¢ € ¥, the restriction of 1) on the center

Z is trivial. So ¥, is a subgroup of characters of the finite quotient group
A/Ay. O

LEMMA 0.181. Let (p, V) be a cuspidal representation of G and (w, W) €
JH(p). Then there exists a G-equivariant surjection V.— W and a G-
equivariant injection W — V.

Proor. We will only prove the existence of a G-equivariant injection
W — V. The proof of the existence of a surjection is completely analogous.

Let @ := Homgo (W, V). As we know @ is a finite-dimensional C-vector
space and the commutative group A = G/G" acts on ® by

9(9)(w) := p~H(g)$(m(g)(w))
Since m € JH(p) there exists a A-invariant subspaces ® C ®” of ® such
that A acts trivially on ®”/®’. Since the space ® is a finite-dimensional
there exists a non-zero A-invariant vector ¢ € ® = Homgo (W, V). Since the
map ¢ is A-invariant we see that ¢ € Homg (W, V). O

DEFINITION 0.182. (1) A cuspidal component of M(G) is an orbit
of ¥(G) in the set Irr. G of cuspidal irreducible representations of
G.
(2) We denote by X.(G) the set of cuspidal components of M(G).

REMARK 0.183. It is easy to see that vp is cuspidal whenever p is.

Each cuspidal component D has the form where by Lemma 0.180 the
subgroup ¥, C ¥(G) is finite. Therefore, D has the structure of a connected
complex algebraic variety and the action of ¥(G) on D is algebraic.

THEOREM 0.184. Let D C Irr G be a cuspidal component. Then D splits
the category M(QG).

PROOF. We have to show that every V€ M(G) can be written V =
Vp @ Vg where JH(Vp) € D and JH(Vp) N D = (. By Proposition
0.178 the restrictions of irreducible objects of M(D) on G° all coincide
and are finite direct sums of irreducible representations p;,1 < i < r
of GY. These irreducible representations are cuspidal and therefore com-
pact (Harish-Chandra). Since compact representations split the category
M(G) there exists a decomposition V = Vp @ V5 of GP-modules, where
JH(Vp|go) C p1,--,pr and JH(Vi|go) N {p1,...,pr} = 0.



54

It only remains to observe that this decomposition is preserved by the
action of G. But this follows from the fact that G permutes the p;. O

Using arguments analogous to ones used in the proof of Theorem 0.161
we obtain a proof of the following result.

THEOREM 0.185. The subset of irreducible cuspidal representations, Irr. G C
Irr G, splits M(G). In other words, any V € M(G), can be uniquely decom-
posed in the direct sum V =V, @ V; where JH(V,) consists only of cuspidal
representations and V; has no cuspidal subquotients.

DEFINITION 0.186. For any p € Ob(M(G)) we denote by peusp the pro-
jection to the cuspidal summand of M(G).

8.3. A result from the category theory.

DEFINITION 0.187. Let M be an abelian category with arbitrary direct
sums.

(1) A functor F from M to the category Ab of abelian groups is faithful
if F(f) # 0 for any non-zero morphism f € Hom((X,Y).

(2) An object X of M is compact if the functor Hom (X, ) from M to
Sets commutes with direct limits.

(3) A projective object IT in M is a generator if the functor

Fr: X — Hom(II, X)
from M to the category Ab is faithful.

PROBLEM 0.188. (1) Let II be a projective object in M such that
Fri(X) # 0 for all non-zero objects X of M. Then II is a generator.
(2) If P is a generator of M then any X € Ob(M) can be presented as
a cokernel of a morphism f : PS — PT where S, T are sets where

PS .= @,cgP.

LEMMA 0.189. Let M be an abelian category , Il € M a compact, pro-
jective generator and A := Endaq II. Then the functor

a:M—C(A),X - Homm (P, X)

from M to the category M(A) of right A-modules is an equivalence of cat-
egories.

PRrooF. It is sufficient for a proof of the Lemma to construct a functor
B : M(A) — M and functorial morphisms a : foa — Idy and b :
ao 3 — Idpga) such that the morphisms a(M) : o (M) — M and
b(X) : X — ao f(X) are isomorphisms for any A-module M and any
X € Ob(M).

We start with a construction of a functor g : M(A) — M. For any A-
module M we define AM := @,,emrM A and denote by my : AM — M the
A-morphism given by mas(am) := D, cpr amm € M. Let N := Ker(myy)i :
N — AM be the imbedding and ¢y ;=i oy : AN — AM. Such a map is
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given by a matrix gy = (¢mn),m € M,n € N,gm € A and for any n € N
we have ¢, , = 0 for almost all m € M.

We define ITM € Ob(M) as the direct sum @,,carI1 which exists since
M is an abelian category with arbitrary direct sums. The matrix ¢ defines
a morphism Gy : IV — IT™ and we define S(M) as the cokernel of §y;.

PrROBLEM 0.190. (1) The functor § is right exact.
(2) The functor 5 commutes with direct sums.
(3) B(A) = P.

Now we define a functorial morphism a : 5o o — Id.

For any X € Ob(M) we have o(X) = Homp(II, X) and therefore /3 o
a(X) is the quotient of Syeriom ,,(m,x)II by the image of Grom ,,(m,x). We
define a : @(ﬁGHomM(H,X)H — X by

a Y. pe) = Y. by eX

¢peHom p (11, X) ¢peHom (11, X)
PROBLEM 0.191. a(X) © Grom (11, x) = 0 for all X € Ob(M).

We see that a(X) defines a morphism a(X): foa(X) — X.

Let’s now prove that the morphism a(X) : foa — X is an isomorphism.
Consider first the case X = P. We have o(P) = A, oa(P) = P and T'll
leave for you to check that the morphism a(P) : P — P is the identity.

Consider now the case X = P® for some set S. Since P is compact
we have a(X) = @sesA and, since f commutes with direct sums, we have
Boa(X) = X and I'll leave for you to check that the morphism a(P) : P — P
is the identity.

Now let X be an arbitrary object of M. Then we can present X as a
cokernel of a morphism f : P° — PT. Since the functor « is exact and the
functor S is right exact the composition Soa is also right exact . Now the five
homomorphisms lemma implies that a(X) : S oa — X is an isomorphism.

PROBLEM 0.192. Show that

(1) Construct a functorial morphisms b : Idpqa) — a0 .
(2) Show that the morphism b(M) are isomorphisms for any A-module
M.

O

8.4. A description of cuspidal components. In this secion we in-
vestigate categories M(D) of representations corresponding to a cuspidal
component

D ={yp,v € V(G)}
where p is a cuspidal irreducible representation.

Let R be the algebra of regular functions on the algebraic variety ¥ (G).
R is naturally a G/G%module and therefore is also a G-module.

EXAMPLE 0.193. If G = GL(n, F) then A = Z and R = C[t,t™!].
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PROBLEM 0.194. (1) Construct a G-equivariant isomorphism
R = C[A(G)] = ind%, C.

(2) Construct a G-equivariant isomorphisms R ® p = indgo C)@p=
indgo (plgo)-
PROPOSITION 0.195. Let II(D) := R® p. Then
(1) II(D) € M(D).
(2) II(D) is a projective object in M(D).
(3) II(D) is a compact object.
(4) II(D) is a generator of the category M(D)

PRrROOF. For (1), just observe that JH(IL(D)|z0) C JH(p|go).

To prove (2), we must show that the functor X — Homg(II(D), X) from
M(D) to the category of sets is exact. Since II(D) = indgo (p|go) it follows
from the Frobenious adjunction [see Problem 0.67 | that

Homg (I(D), X') = Homgo (p|go, X|go).

Since p|qo is a direct sum of compact representation (see Proposition 0.168
and Theorem 0.138) it follows from Problem 0.21 that the functor X —
Homg (II(D), X) is exact.

(3) Follows from the Frobenious adjunction and the finiteness of the
decomposition pgo to a direct sum of irreducible representations.

(4) Follows from the Frobenious adjunction. O

This proposition is a powerful tool for elucidating the structure of M(D)
when combined with the previous lemma which implies that M(D) = C(End(II(D)).
Our next goal is to describe the ring End(II(D)) explicitly.

For any ¢ € ¥, we fix an intertwining operator I, € Aut(V) as in
Problem 0.168 and define vy, := Id ® I, € Autc(II(D)).

PROBLEM 0.196. a) vy, € A(D) := Endg(II(D)).
b) For any 9 € ¥,, f € R we have

fvg = vy fy
where fy, is the shift of f by .

LEMMA 0.197. Let D be a cuspidal component. Then

(1) A(D) is a free R-module whith generators vy, € ¥,
(2) As an algebra A(D) is defined by the following relations

(a)
Jvpy =vyfy, fERYEY,
where fy, is the translation of f by 1.

(b) vy = cypipg, ¥, d € Ty
(3) The algebra A(D) is Noetherian.
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PRrROOF. It is clearly sufficient to prove the part (a).

A(D) = Homg(II(D),TI(D)) = Homg(indGo (peo), TL(D)) = Homeo(p, p@ R)

where the second and the third equalities follow from Problem 0.194. So
A(D) = Endgo(p) ® R. The result now follows from Lemma 0.170 and
Problem 0.173. we have O

COROLLARY 0.198. (1) ba # 0 for any b € B—{0},a € A—{0}.
(2) A(D) =R if ¥, = {e}.

8.4.1. General Remarks. It is important to keep in mind that there may
be more than one projective generator so that we get different realizations
of the category. As an example, we took Il = indgo (p|go) as our projective
generator for M(D). We could also have taken II' = indgo 7 for some
T C p‘GO.

9. Basic geometric Lemma

In this section we will prove a very important result which allows a
reduction of number of representation-theoretical problems to the cuspidal
case. We start with a reminder of the Mackey theory for finite groups.

9.1. More on l-spaces.

PROBLEM 0.199. (1) A locally closed subset (i.e. the intersection
of an open and a closed subset) of an [-space is an [-space.
(2) If K C X is compact and K C U,U, is an open covering, then
there exists disjoint open compact V; C X, ¢ = 1...k such that
V; c U, for some o and UV; D K.
(3) Let G be a countable at infinity l-group acting on an [-space X
with a finite number of orbits. Then G has an open orbit Xy C X.

DEFINITION 0.200. For any l-space X we denote by S(X) the algebra
of locally constant, compactly supported, complex-valued functions on X.
S(X) will serve as the “test functions” for our analysis on X. Thus, the set
S*(X) of linear functionals on S(X) are called distributions. Note that as
S(X) has no topology, there is obviously no continuity assumed.

LeEmMMA 0.201 (Exact Sequence of an Open Subset). Let U C X be open
and Z =X \U. Then

0->8SU)—=>SX)—8Z)—0
18 exact.

PROOF. For the injection at S(U) just extend functions on U by zero
to all of X. For the surjection at S(Z) we must explain how to extend
functions from a closed subset. Since f € S(Z) is locally constant and
compactly supported, we may assume that Z is compact and has a covering
by a finite number of open sets U, with f|y, = ¢, constant. Let V; be as in
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0.199 (2). Then we can extend f by defining f(x) = ¢, if x € V; C U, and
zero otherwise. O

DEFINITION 0.202. Let G be a countable at infinity I-group acting on
an [-space X with a finite set I of orbits.
(1) We say that i < j,4,7 € I if €; is in the closure Q; of the orbit ;.
In this way we define a partial order on I.
(2) For any i € I we define S; = {f € S(X)|fq, = 0}. It is clear that
SiDSj ifi<j,i,j5€el. -
(3) For any i € I we define S; = (3, S;)/Si-

PROBLEM 0.203. Define a canonical isomorphism between the space S;
and the space S(€;).

9.2. The formulation and the proof of the Basic geometric
Lemma.

DEFINITION 0.204. (1) For any semidirect product P = M x U
such that M and U are unimodular [-groups and a smooth rep-
resentation p : P — Aut(R) we denote by Ry the space of U-
coinvariants and by ¢y : R — Ry the natural surjection. Since M
normalizes U the restriction of p on M induced a representation
(m,7) = mr,m € M,7 € Ry of M on Ry.

(2) We denote by c% the functor M(P) — M(M), (p, R) — (% (p), Rv)
where we define the action of M on Ry by

& (p)(m)(F) = mody, " (mym

where the function mod is defined in 0.36.

(3) Let G be an [-group, P, Q closed subgroups of G, P = M x U,Q =
N x V. As before we say that the semidirect products decomposi-
tions of subgroups P, Q) are compatible if

PNQ=(MNQ)UNQ)=(NnP)VNP)

In this case we define L= M NN,V =MNV and U' = NNU.
Let P=M x U, = N x V be a compatible pair of subgroups
of G.
(4) We define functors iy : M(M) - M(G),rnyv : M(G) — M(N)
by
MU = Ind% o Inff), TNV = cg o Resg
As before we often write iy, 7y of ip7, 7y instead of iy, and ry v .
(5) Since the pair (P, Q) is compatible we can also define functors iy :
M(L) - M(N) and ryr : M(M) — M(L).

Assume now that G is a reductive F-group and P, @ are parabolic sub-
groups. We consider the action of P x Q on G given by (p x ¢; 9) — pgq~'.
As we know the set I of P x Q-orbits is finite moreover can be identify with
the set WMV As follows from 0.202 the set WV is partially ordered and
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we have a filtration ¥,, on the functor ¥ :=ry v oy : M(M) — M(N).
In particular for any w € WM we can define the functor

lilw = ( Z \ij’)/q/w

Since pairs (w(P), Q) are compatible for all w € WY we can define func-
tors

Vo = i Nrw(M),Nrw(©) © Ad(W) o Tarrw—1(3), Mow-1(V)

PROPOSITION 0.205. For any w € WM the functors ¥, and U, are
1somorphic.

PROOF. We start with the simplest case when G = SL(2,F),P = Q =
B=TU.

LEMMA 0.206. Let G = SL(2,F),P = Q = B = TU. Then for any
character x of T we have an exact sequence

{0} = Cyw = rru(V(x) = Cy — {0}
ProOOF. Let V(x) := i7,v(Cy). Then

V0O = (f: G - Clfitug) = xomod 05 @) i = (1) 7). e

and G acts on V(x) by right shifts. We have U\G = F? — {(0,0)} where
the map G — F? — (0,0) is given by

a
(3 5) 6o
So we have

V(x) = {f(z.y), (z.y) # (0,0)| f(tz, ty) = [t|~"x(t) f(z,y)},t € F* and
there exists © > 0 such that i, (k)(f) = k,k € K, }

)
where G acts by iy (9)(f)(z,y) = f(azx + vy, Bx + dy) for
_(a B
- <V 5)
We write W = {e, s}, Y := {(0,y) C F? — (0,0)} and define
V(x)s :={f € VIOlfjy =0}
By the construction we have an exact sequence

{0} = V(x)s = V) = V()/V(0)s = {0}

where the subspace V(x)s C V(x) is B-invariant. Since the functor of U-
coinvariants is exact we obtain an exact sequence

{0} = rru(V(X)s) = rro (V) = rro (V) /V(X)s) = {0}
By the definition we have

\Ijs((cx) = TT,U(V(X)5)7 \Ije((cx) = TT,U(V(X)/V(X)S)
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So for the proof of the Lemma we have to check that r7 ¢ (V(x)e) = Cy and
TT,U(V(X)S) = (CX“"

The restriction to Y defines an isomorphism of the B-representation
U, (x) with the one-dimensional space on which fu € @ acts by multiplica-
tion by [t|71x(2). So W(x) = Cy.

Let C(F') be the space of functions on F and consider the operator
v : V(x)s = C(F) of the restriction v(f)(y) := f(1,y) of f to the line

L={Ly}yeF.
CLAIM 0.207. The operator v defines an isomorphismv : V(x)s — S(F).

PROOF. Let us fix f € V(x)s. Since the representation V(x)s is smooth
there exists a congruence subgroup K, C G such that i, (k)(f) = k for
k € K,. By the definition fjy- = 0. Therefore f|x,y = 0. But it is easy to see
that the complement | — 1N K.Y coincides with the set {(1,y), ||yl < |lbll¢"}
which is compact. So we see that v(f) € S(F'). On the other hand for any
¢ € S(F) we can consider the function f, : F? — {(0,0)} — C given by

fo(z,y) = x(@) ||z~ ¢(y/). O

By the construction the group B acts on the space V(x)s and therefore
the isomorphism v defines a representation 7 : B — Aut(C(F)).
Let us describe 7(£)(¢), ¢ € C(F). Since 7(£)(¢) := v(iy(£)(fs) we have

A

T(0)(9)(y) = ix (D) (fo)(L,y) = fo(t™ ty) = x(Hltllo(t%y)

ProOBLEM 0.208.
(y §)@w =o+0

As we know that space S(F)y = C and the map ¢ : S(F) —» S(F)y =C
is given by ¢ — [, ¢(y)dy. So we see that dim(rpy(V(x)) = 1. Let us
describe the action 6 of T on the space r7¢(V (x).

By the definition we have

0(H)a(9) = |ltlla(r(t)(¢))
for any ¢ € S(F'). But

PN

A7 (D)) = /F (D)(0)(y)dy = /F E D El6(Ey) = x(t ) el /F (6)(v)dy

So O(t)q(¢) = x(t71)q(¢) and we see that O(f) = y(t71). -

Now we consider the case when G = GL(n,F),P =Q = B =TU. since
the proof is completely parallel to the proof of the previous Lemma I will
omit details. in the proof we will use notations and results from Section 5.2.
In particular we know that B is the union of B-orbits B,, C B,w € W and
B, is in the closure B, if and only if w’ < w in the partial order on W
defined in in section 5.2. Let r : U\G — B\G = B be the natural projection
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and X, := r~1(By). It is clear that X, is in the closure X,, if and only if
w < w.

Let x be a character of T,V (x) := ir(x). Then V(x) is the space of
functions f on U\G such that f(tz) = AY2(t)x(t)f(z),z € U\G,t € T
for which there exists » > 0 such that f(zk) = f(z) for all k£ € K,. The
representation of the group G = GL(n, F') on the space V(x) comes from
the action of G on U\G.

For any w € W we denote by V,,(x) C V(x) of functions f such that
fix, = 0. Tt is clear that Vi, (x) = {0} and V,v(x) C Vi(x) if and only if
w’ > w. We define

Vw(X) 1= Nt < Ve (X)s Vi (X) 1= Vw(X)/Vw(X)
ProBLEM 0.209. (1) The restriction to wU, C X, defines an iso-
morphism v : Vi, (x) = S(Uy).

Using the isomorphism v we define can use the action of ir(x)
of B on ¥, (x) to define a representation 7, : B — Aut(S(Uy)) by

7(0)(9) = v(ir(chi) (b)r~ " (¢)
g2§ Tw(UO)(¢)(u) = (ZS(UU()), ¢ € S(Uw)7u>u0 € Uy-
3
Tw(8) (@) (u) = AV2(E)x(t) (@) (™t u(t 1))
LeEMMA 0.210. The space rr(ir(x)) has a filtration W, (x),w € W by T-

invariant subspaces such that the quotient spaces W, (x) 1= Wu(X)/ 2w cw Yur (X)
are one-dimensional and t € T acts on W,,(x) by the multiplication by x(t).

PROOF. As in the proof of the previous Lemma we can define a filtration
of the space rroir(x) has a filtration rroir(x) by T-invariant subspaces such
that the quotient spaces W, (x) equal to ry(7,). Since the group U, C U
acts transitively on the space U, we see that the spaces W, (x) as one-
dimensional. The lemma follows now from Problem 0.90. U

We start the proof of the general case with the following observation.

CrLAM 0.211. Let G, P,Q,w be as in the Proposition. We de-
note by wa,wyr, wy the longest elements of Wea, Wy, Wiy
(1) There exists a character (M, N,w) : MNw™*(N) — Ry such that
the functor W, is isomorphic to the functor
iNrw(M),Nnw(U) © Ad(w) 0 @Kk(M, N, w) 0 Ty iru-1(N), MAw-1(V)
where we consider @k(M, N,w) as an automorphism of the category
M(M Nw=1(N))
(2) There exists an algebraic homomorphism

O(M,N,w): MNw Y(N) = G,
such that k(M,N,w) = |(M, N,w)|*/2.
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(3) For any L < M, K < N,w € WM~ we have
O(M,N,w) = 0(L, K, w'ww"),w := wgwyr,w" := wyweg

I will not give a proof but only observe that (1) is completely analogous to
the problem ?7, (2) follows from (1) since the only reasons for the appearance
of k are either our twisting by mod/? or the characters which come as
determinants of changes of variables. The part (3) is a tautology.

The Proposition is equivalent to the equality (M, N,w) = 1. Since the
claim is purely algebraic we can assume that G is split. Using the part (3)
of the Claim we reduce the statement to the case P=Q = B.

It is easy to check that that for any w',w” € W such that [(w'w”) =
l(w")+1(w") we have 6(B, B,w) = 6(B, B w) '(0(B, B,w")). So the proof
reduced to the case G = S L(2) which was analyzed in the previous example.

O

COROLLARY 0.212. [Basic geometric Lemma] For any standard parabolic
subgroups P = M x U,Q = N x V of a reductive F-groups G the functor
ryoiy i M(M) = M(N) has a filitration by subfunctors W,,,w € WMN
such that for any w € WMN the quotient U, are isomorphic to the functor

iNAw(M),NAw(U) © Ad(W) © Ty rrw-1(N), MAw—1(V) -

We say that the functor ryoiy : M(M) — M(N) is glued from functors
iNAw(M),Nnw(U) © Ad(W) © Tarrw-1(N), MAw-1(V)-

COROLLARY 0.213. For any M, N < G and a quasicuspidal representa-
tion p of M we have

(1) If N does not have standard subgroups associated with M then ry o
int(p) = {0}.

(2) If N is not associated with M then rx oip(p) does not have any
non-zero quasicuspidal subquotients.

(3) If N ~ M then the representation ry o iy(p) is glued from repre-
sentations w(p),w € W (M, N)/Why.

(4) There exists a proper Zariski closed subset X of Wy such that
Endg(ip(p @) =C forp € Uy — X.

PRrOOF. The parts (1),(2) and (3) are immediate consequences of the
Basic geometric Lemma.

Let D = {p® ¢}, ¢ € ¥ s be the cuspidal component containing p and
W(M,D) ={w e W(M,M)/Wy|D* = D}. For any w € W(M,M)/W
we fix Ky € W)y such that p¥ = p ® Ky and define

wz—{ﬂ)e\I}MW} ®1/1 E/{w p-

Since the subgroup ¥, is finite [see Lemma 0.180] Y,, is a proper Zariski
closed subset of W for all w # {e}. Consider X := Uycp (amr,n) /Wiy —{e} Yo C
Wys. As follows from (3) the representation rys o ip(p ® ) is glued from
representations w(p @), w € W(M, N)/Wys. By the construction the rep-
resentation w(p ® 1) is not equivalent to the representation p ® 1 for all
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w € W(M,N)/Wy — {e}. Therefore
dim(Homs (rar o in(p @ 1), p @ ) < dim(Homp (p @ 9, p® 1)) = 1.

But then it follows from the Frobenious reciprocity that
dim(Endg(im(p ® 1)) < 1.

9.3. Some applications.

DEFINITION 0.214. Let M, M’ < G be standard Levi subgroups.

(1) W(M,M") = {w € W|w(M) = M'},where w(M) := wMw~'. We
write M" ~ M if W(M, M) # 0.

(2) Given representations p € M(M),p’ € M(M'). We define

Wi(p,p') = {w € Wlw(p) = p'}, where w(p) € M(M’') is

defined by w(p)(m') = p(w™tm/w),m’ € M'. We write p' ~ p if
Wp,p') # 0.

(3) W(M,*) :=Upp oW (M, M,).

(4) (M) i s the cardinality of the set W (M, *)/Way.

(5) We denote by I’ = I, the function on M(G) given by

'(r)= ) Ure(r))

L~M
where [(p) is the length of the representation p.

PROBLEM 0.215. (1) (M) = 2 iff M is a maximal Levi subgroup
of G.
(2) For any associated pair M, M’ of standard Levi subgroups and w €
W (M, M") there exists chains M = My, My, ..., M, = M’ Ly, Lo, ..., L,
of standard Levi subgroups of G and a decomposition w = w;....w1
such that
(a) M;_1, M; are maximal Levi subgroups of L;,1 < <.
(b) w; € WLi-
(C) wi(Mi_l) = MZ', 1 S ) S T.

CrAamm 0.216. Let M be a standard Levi subgroup of G,p € Irre(M), 7 =
irni(p) and mo an irreducible subquotient of w. Then l'(mg) > 0.

Proor. As follows from Lemma 0.231 there exists a standard Levi sub-

group M’ < G such that 7,/ (m) is a non-zero quasi-cuspidal representation
of M'. As follows from Corollary 0.213 we have M’ ~ M. O

LEMMA 0.217. Let M, M’ be standard Levi subgroups of G, p € Irr.(M),p" €
Irro(M') and m =iy (p), 7 =ipp(p'). Then
(1)
dim(Homg(m, 7)) < [W(p, p")/ W]
(2) The length l(m) of the representation 7 is finite and moreover l(m) <
I(M).
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PRrROOF. (1) By the Frobenious reciprocity we have

Homg (7, 7)) = Hompp (rap o ing(p), p)

As follows from 0.213 the representation 7y oips(p) has a filtration parame-
terized by w € W (M, M") /Wy, with subquotients equal to w(p). Therefore

dim(Homg(m, 7)) < > dim(Homp (w(p), p'))
WEW (M, M") /W
Since dim(Homyp (w(p), p') = 0for w ¢ W(p, p’) and dim(Homp (w(p), p’) =
1 for w € W(p, p') we see that dim(Homg(m, ') < [W(p,p")/Whrl.
(2) As follows from the exactness of the functor 3, we have
V) =1(") + (/)

for any subrepresentation 7’ of 7. By the previous Claim !’(7y) > 0 for any
non-zero subquotient my of 7. So I(7) < I'(w). But it follows from 0.213
that I'(7) = |W (M, *)/Wy| = 1(M). O

LEMMA 0.218. Let M < G be a standard Levi subgroup such that [(M) =
2 and p € Irr.(M) a representation such that dim(Homg (ins(p),in(p))) >
1. Then

(1) W (M, M) £ War.
(2) w(M) =M and w(p) = p for any w € W(M, M) — Wyy.

PRrOOF. (1) By the Frobenious reciprocity we have
Home (irr(p), in(p)) = Homay (ras o ine(p), p)
If W(M, M) = Wy then (see 0.213 ) rpr oipr(p) = p and
Homyy (ras o ine(p),p) = C

So W (M, M) — Wy # 0.
Since [(M) = 2 we have W (M, M)—Wy; = wWyy for any w € W (M, M )—
Why. As follows from 0.213 we have an exact sequence

{0} = w(p) = raroim(p) = p — {0}

So
dim(Homg (inr(p), in1(p))) < dim(Homa (p, p)) + dim(Homp (w(p), p))
By the assumption dim Homg(ip(p),in(p)) > 1. So w(p) = p. O

THEOREM 0.219. Let M, M’ be standard Levi subgroups of G, p € Irr.(M),p €
Irre(M'),m =in(p), 7 =ipp(p'). The following conditions are equivalent.
(1) M~ M and p~p.
(2) Homg(m, ') # {0}.
(3) JH(m) = JH(').
(4) JH(m)NJH(7") # 0.
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PROOF. It is clear that (2) = (4) and (3) = (4). We start with a
proof of the implication (4) = (1). Since JH (7)) N JH(7") # () we can find
7€ JH(m)NJH(7"). Let N < G be a standard Levi subgroup standard
Levi subgroup such that ry(7) is a non-zero quasi-cuspidal representation
of N. As follows immediately from Corollary 0.213 we have

ry(7) Cry(m) ={w(p)},w € W(M,N)
and also
rn(7) Crn(a') = {w'(p)} v € W(M',N)
But this implies that p ~ p/.
We now show that (1) = (2). Since p ~ p’ it follows from Corollary 0.213

that p' € JH (rpp oip(p)). Now Lemma 0.181 implies that rp oipr(p) has
a quotient isomorphic to p/. In other words

Homyy (ry o ine(p), o) # {0}

and therefore it follows from the Frobenious reciprocity that

Homg (m, @) = Homas (rap 0 ii(p), p) # {0}

It is clear that for a proof of Theorem it is sufficient now to prove the
implication (1) = (3). We start a proof with the case when [(M) = 2.

LEMMA 0.220. If I(M) = 2 then (1) = (3) .

ProOF. If M = M’, p = p/ then there is nothing to prove. So we assume
that p # p’ and therefore I'(7) = I'(7’) = 2. Since we know already that
(1) = (2) we can choose non-zero G-equivariant morphisms a : 7 — 7’ and
a': 7" — w Since I(m) < I(M) = 2 we see that either 7 is irreducible or
[(r) = 2. If the morphism a is an isomorphism then there is nothing to
prove. So we assume that a is not an isomorphism.

If 7 is irreducible then a is an imbedding and
(7' a(r)) =1 (x") =1'(m) =0

and it follows from Claim 0.216 that a is onto. So a is an isomorphism and
JH(7) = JH(7'). The same arguments work if 7’ is irreducible. So

From now on we assume that both 7 and 7’ are reducible. Then I(7) =
(") = 2 and we have exact sequences

{0} = m — 7 — m — {0}
{0} =7 = 7" — b — {0}
where 71, 7], mo, 75 are irreducible representations of G' such that (7)) =
V(my) =1(mp) =1'(my) = 1.
Cramm 0.221. (1) If dimHomg(m,7) > 1 then M = M’ and p =

/

0.
(2) If dimHomg(w, ) =1 then Im(a’) is the only irreducible submod-
ule of .
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Proor. (1) If dim Homg(m, ) > 1 then it follows from Corollary 0.218
that there exists w € W(M, M) — W)y such that w(p) = p. On the other
hand since Since [(M) = 2 and W(M, M) — Wy # 0 we see that M’ = M
and p’ = p.

(2) Since I'(Ker(a’)) > 0 and I(7") = 2 we have I'(Im(a’)) = 1 and there-
fore {(Im(a’)) = 1. So Im(a’) is an irreducible submodule of 7. Suppose
that there exists another irreducible submodule 7 of 7. Since I(7) = 2 we
have m = Im(a’) & 7. But then dim Homg(7,7) > 1. O

From now on we assume that dim Homg (7, 7) = 1.

By the Frobenious reciprocity we have Hom(rps(71), p) = Hom(my, ) #
{0}. As follows from the definition of the function !’ the equality I'(m1) =1
implies that rjs(m1) = p and rpp(m1) = {0}. Therefore [by the Frobenious
reciprocity] we have

Hom (71, ") = Hom(rpp (m1), p') = {0}.

So a(m1) = {0} and [by the Claim] a defines an isomorphism a : /7 — 7.
Analogous arguments show the existence of an isomorphism a’ : 7/7) — 7.
So JH(m) = JH (7). O

Now we prove the implication (1) = (3) in the general case. Choose w €
W (M, M’) such that w(p) = p’. As follows from Problem 0.215 there exists
chains M = My, My, ..., M, = M’', Ly, Lo, ..., L, of standard Levi subgroups
of G and a decomposition w = w,...w1 such that

(1) M;_1, M; are maximal Levi subgroups of L;,1 <i <.
(2) w; € Wp,.
(3) wi(Mi,l) == MZ', 1 S ) S T.

Let pi = wg.. wi(p) € M(My),1 < k <r. It is sufficient to show that
JH(ZMk (p)) = JH(iMkfl (Pk—1))
for all k,1 < k < r. Since

ing, = Ur, © UMy UMy T UL, O,
the equality
JH (ing, (p)) = JH (ingy,_, (pr-1))
would follow from the equality

TH(igh (p) = JH(iys_ (pr—1)), 1 <k <.

Since My_1, My,1 < k < r are standard maximal Levi subgroups of Lj the
equality

JH(iyt (p) = JH(iy}  (pr-1))
follows from 0.220.
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9.4. Cuspidal datas.

DEFINITION 0.222. (1) A cuspidal data of G is a pair (M, p) where
M < G is a standard Levi subgroup and p € Irr.(M).

(2) Two cuspidal datas (M, p) and (M’, p’) are associated if there exists
w € W such that w(M) = M’ and [w(p)] = [p/]. In this case we
write (M, p) ~ (M’, p').

(3) We denote by X (G) the set of cuspidal datas up to associate

(4) A component of M(G) is an equivalence class of pairs (M, D) where
M < G is a standard Levi subgroup and D € X (M) is cuspidal
component of M(M) where two pairs (M, D), (M', D') are equiva-
lent if there exists w € W such that w(M) = M’ and w(D) = D'.

(5) We denote by X (G) the set of components of M(G).

(6) For any component Q € X (G) we denote by Xq C X(G) the set of
cuspidal datas in ).

REMARK 0.223. By the definition for any 2 € X(G) the set Xg is equal
to the quotient D /Wy py of some cuspidal component D € X.(M), M < G.
Therefore the structure of an C-algebraic variety on D induces a structure
of an C-algebraic variety on Xq.

LEMMA 0.224. Let m be an irreducible representation of G.

(1) There exists a cuspidal data (M, p) of G such that p € JH (rp(m)).

(2) Let (M, p) be a cuspidal data of G. Then p € JH(ry (7)) iff m €
JH (ipp(p)) for any cuspidal data (M, p") associated with (M, p).

(3) Let (M, p), (M’ p') be cuspidal datas of G such that p € JH (rp (7))
and p' € JH(ryp(m)) for some m € Irr(G). Then (M,p) and
(M, p") are associated.

PROOF. (1) Choose M to be a minimal standard Levi subgroup such
that rp(m) # {0}. Then rp/(7) is a non-zero cuspidal representation of M
and any p € JH(rp(m)) satisfies the condition of (1).

(2) Assume that p € JH(rp(7)). As follows from Lemma 0.181 we have
Hom s (rar(m), p) # {0}. Then [by the Frobenious duality] Hom s (7, ias(p)) #
{0} and therefore m € JH(ip(p)). If (M',p') is cuspidal data associated
with (M, p) then by Theorem 0.219 we have JH (irs(p)) = JH (ipr(p')).

Conversely assume that m € JH (ipr(p)). Then as, follows from Corollary
0.213, all the irreducible subquotients of rj;(7) are of the form w(p),w €
W (M, M).

(3) Assume now that (M, p), (M’,p’) are cuspidal datas such that p €
JH(ry(m)) and p' € JH(rpye(m)). As follows from (2) we have p/ €
JH(rpr oin(p)). Now the result follows from Corollary 0.213 c).

(]

DEFINITION 0.225. (1) For any 7 € Irr(G) we denote by pr(m) €
X (G) the associated class of cuspidal datas (M, p) such that p €
JH(rp(m)). As follows from the last Lemma the map pr : Irr(G) —
X (G) is well defined.
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(2) For any component 2 € X(G) of M(G) we denote by Irrg the
preimage pr—'(Xq) C Irr(G) and denote by M () the full sub-
category of M(G) of objects V such that JH(V') C Irrq.

(3) For and cuspidal date (M, p) we define

X(p) := {p € V] the representation my is not irreducible}.

COROLLARY 0.226. The map pr : Irr(G) — X(G) is finite-to -one and
surjective.

ProOF. The surjectivity follows immediately from the definition of the
map pr and the finiteness of fibers pr—!(m) follows from Lemma 0.217 (2).
O

THEOREM 0.227. [Decomposition Theorem]. For any Q € X(G) the set
Irrq splits the category M(G).

PrOOF. We start with the following definition.

DEFINITION 0.228. (1) Let V be a G-module. For any Q € X(G)
we define V' (2) as the maximal submodule of V' such that JH(V(£2)) C
Irrg.

(2) We say that V' is split if V' = @gc g V()
LEMMA 0.229. Any submodule of a split module is split.

PROOF. Let V! C V be a submodule of a split module. We want to
show that V' = @ge () V'(€2). As follows from Lemma 0.25 it is sufficient
to show that JH(WW) = () for

w=V'/ P V(.
QeX(Q)
Fix y € X(G) and consider
pay V= P V(Q)
Q£Q0
Since V' is split, Kerpo, = V(). Consequently, Ker(pq,,,) = V'(0).
Since V'(2) = V(Q) NV’ for all Q € X(G) we have
JH(W) C UQE)_((G)—{Q()} II‘I‘Q .
So
JH(W) (@ mQEX(G) II‘I‘Q - @
Since Irr(G) is a disjoint union of Irrg, Q2 € X(G) we see that JH(W) =
0. O

Now we remind some results on the the decomposition of the cuspidal
part.

DEFINITION 0.230. (1) We define M(cusp) := [[;cq M(M)cysp-
(2) We define the functor I : M(cusp) — M(G) by I({(M,prp)}) :=
Sym<cin(pm)-
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(3) We define the functor R : M(G) — M (cusp) by R(w) := {ry (7).}, M <

G where V, is the cuspidal part of V' as in Definition 0.163.

LEMMA 0.231. (1) Let (w, W) be an irreducible representation of G
and

(2) For any smooth irreducible representation (w,W) of G there ex-
ists a standard parabolic P = MU and an irreducible cuspidal
representation (7,W) of M, such that there exists an embedding

(3) R is the left adjoint to I.

(4) Functors R and I are ezact.

(5) Functors R and I are faithful.

(6) The adjoint map k() : ™ — IR(m) is a monomorphism.

PRrROOF. The parts (1) and (2) are familiar. It is also clear that the
functor I is faithful. Let us first of all show that functor R(6) # {0} for any
non-zero maps non-zero § € M(G). Choose m € JH(#). Since the functor R
is exact it is sufficient to show that R(w) # {0}. Let M be a Levi subgroup,
minimal subject to the condition 7y (m) # 0. Then ry () is cuspidal.
So R(m) # {0}.

Let us now show that x(m) # 0 for any non-zero # € M(G). By the
adjunction we have a bijection

a : Hom () (m, TR(7)) — Hom pq(cysp) (R(7), R(7))

such that a(x) = Idg(y). Since R(m) # {0} we see that x(m) # 0.

Let us now prove the injectivity of the map « : 7 — [R(w), 7 € M(G).
Let 7 := Kerk. We want to show that 7 = {0}. Assume that 7 # {0}.
Since the functors R and I are exact the map RI(k) : RI(1) — RI(w) is
a monomorphism and therefore the composition 7 — IR(7) — IR(7) does
not vanish. But it is zero by the definition of 7. So 7 = {0}.

Since the adjoint map () : 7 — I R(m) is a monomorphism we see that
R is faithful. TR(w) = {0}. Since the functors R and I are faithful we see
that 7 = {0}. O

We are now ready to prove the theorem. As we have shown it is sufficient
to prove that any M € M(G) is a submodule of a split module. But
as follows from Lemma 0.231 any smooth G-module V' is a submodule of
IR(V) = @Dr<qyim(Ta) where 7y is a cuspidal representation of M.
Thus, to prove the theorem, it is enough to prove that the G-modules i 57 (7ar)
are split for cuspidal M-modules 75;. Since 73 is cuspidal, it follows from
Theorem 0.149 that we may write 737 = @, 7(D) where the D run through
the cuspidal components of M. This reduces our problem further; we must
prove that iy7(7as) splits when 73y € Mp(M) for some cuspidal component
D. But it follows from Corollary 0.213 that JH (ipr(7ar)) C X where Xg
is the component of M(G) corresponding to the pair (M, D). So ir(7ar) =
ini(Tar) (). O
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LEMMA 0.232. Let (M, (p,V')) be a cuspidal data, K C G be a congru-
ence subgroup such that VEOM £ {0} and Q € X(G) be the corresponding
component. Then L # {0} for any irreducible (m, L) € Irrq.

PRrROOF. As follows from Corollary 0.213 737 (L) # {0} the representation
rar(m) of M has a subquotient isomorphic p ® ¢ for some character 1) :
M /My — C*. Therefore (rp(L))5X™™ = {0}. But then it follows from
Lemma 0.125 that L # {0}. O

COROLLARY 0.233. Let K C G be a congruence subgroup.
(1) The set

Irrg (G) := {(m, V) € Irr(G)|[VE # {0}}

splits the category M(G).
(2) If a representation (p, V) of G is generated by the subspace VE then
the same is true for any subquotient of V.

PrOOF. (1) As follows from the decomposition theorem it is sufficient
to show that the set Irrg(G) N Irrg splits the category M(2). But by the
Lemma 0.232 either Irrg(G) N Irrg = Irrg or Irrg(G) N Irrg = 0.

(2) Let V = Vi @ V3 be the decomposition such that JH (V1) C Irr g (GQ)
and JH (V1) NIrrg (G) = (). Since V is generated by the subspace VX we see
that V4 is generated by the subspace V5. By the definition of V5 we have
V& = {0}. So V = V1 and therefore JH (L) C Ik (G) for every irreducible
subquotient L of V.

Assume now that the claim (2) is false and V' € V" C V be submodules
such that (V”/V")X = {0}. Since JH(V"/V")subsetJH (V) C Irrk(G) and
(V" VK = {0} we see that V" /V' = {0}. O

REMARK 0.234. (1) The Corollary is true for all open subgroups

K of G such that K = (K NU)(KNM)(KNU) for any M < G.
For example you can take K to be the Iwahori subgroup.

(2) The result is not true when K = Kj. Consider the case when
G = SL(2,F) and V the space of smooth measures on P! = B\G.
The integration defines an exact sequence

{0} = Vo=V —=-C— {0}

which [see ??] does not admit a splitting. On the other hand Vj
does not have Ky-invariant vectors.

9.5. Noetherian properties.

DEFINITION 0.235. We say that an object V' of an abelian category C is
Noetherian if any increasing chain Vi C Vo C ... C V,, C ... of subobjects of
V stabilizes.

REMARK 0.236. Let A be a Noetherian ring and V' an A-module. Then
V' is Noetherian as an object of the category of A-modules iff V' is finitely
generated.
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LEMMA 0.237. Let V' be a smooth G-module. The following conditions
are equivalent

(1) V is Noetherian.

(2) V is finitely generated.

(3) There exists a congruence subgroup K such that GV =V and the
H i -module VE is finitely generated.

PRrROOF. It is clear that (1) = (2).

(2) = (3). Assume that V is finitely generated, V = G(W),dim(W) <
00. Then there exists a congruence subgroup K such that W c VX. Then
HK(W) = eKG(W) = 6K<V) = VK.

(3) = (1). Let V € M(G) be such that there exists a congruence sub-
group K such that GVE =V and the Hg-module VX is finitely generated.

CLAIM 0.238. The module R(V') [see Lemma 0.231] is Noetherian.

PROOF. By the definitions R(V') = [I;r/<¢,p,,ex. () B(Dum)(V) where
for any M < G and a cuspidal component Dy, € X.(M) we denote by
R(Dps)(V) the projection of ra;(V) on the factor M(Dys) of M(M). As
follows from the previous Corollary and the Uniform Admissibility Theorem
0.149 R(Dys)(V) = {0} for almost all pairs (M, Dys). So it is sufficient to
show that the representations R(Djs)(V) € M(Dy) are Noetherian. As
follows from Corollary 0.233 the M-module R(Dy;)(V) is generated by the
subspace RK N M(Dys)(V) = J(VE) [see Proposition 0.130] is finite di-
mensional. So the M-module R(Dj)(V) is finitely generated. On the other
hand it follows from Lemma 0.197 that the category M(Dys) is equiva-
lent to the category of right modules over a Noetherean ring A(Djys). So
R(Dp)(V) € M(Dyy) are Noetherian objects. O

To prove that V is Noetherian consider an increasing chain V; C Vo C
... C 'V, C ... of subobjects of V. Since the object R(V') is Noetherian the
chain R(Vy) € R(Va) C ... C R(V,,) C ... stabilizes. Since the functor R is
faithful this implies the stabilization of the chain Vi € Vo, C ... C V,, C ...
also stabilizes. O

COROLLARY 0.239. (1) The functors ry; map Noetherian objects
into Noetherian objects.
(2) The functors ipy map Noetherian objects into Noetherian objects.

PrOOF. (1) Let V € M(G) be a Noetherian object. Then by 0.237 V' is
finitely generated, V = G(W),dim(W) < co and we may assume that W is
Ky-invariant. Choose a congruence subgroup K such that W C V. Since
KoW = W the decomposition G = MUK implies that Mq(W) = rp (V)
where ¢ : V' — rp(V) is the natural projection. So the module 7y (V) is
finitely generated and therefore it is Noetherian.

(2) Let W be a Noetherian object of M(M). We want to show that
any chain increasing V) C Vo C ... C V,, C ... of subobjects of V := iy (W)
stabilizes. Since the functor R is faithful it is sufficient to show that the
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chain R(V;) C R(V2) C ... C R(V,,) C ... stabilizes. In other words we have
to show that for any standard subgroup N the chain rx (V7). C rn(V2), C
. C rn(Vi)e C ... stabilizes. But now the stabilization of these chains
follow from (1), the inductive assumptions and the Basic Geometric Lemma
0.212 which says that objects rn (V7). are glued from a finite number of

Noetherian objects.
O

10. Irreducibility of induced representations

DEFINITION 0.240. Let M < G be a standard Levi subgroup and (p, V') €
(1) We write (m, W) :=ip(p, V) and for any character ¢ €€ W), write
(T, Wy) =i (p @, V).
(2) We use the Iwasawa decomposition G = PKy, P = MU to identify
the restriction of the representation 7, on Ky with the representa-
tion

. K . +KoNP
deng(m KSQM(ReSKoﬂM(P)))-

(3) Using this isomorphism we identify spaces Wy, 1) €€ Wy, with the
fixed space W in such a way that the restriction of my, on Ky does
not depend on 1.

As we know the representation iy/(p) is admissible and therefore the
space WX is finite-dimensional for any congruence subgroup K.

LEMMA 0.241. For any h € Hg the operator h(v) := my(h) is a regular
function on Uy, with values in End WK,

PROOF. Since the support of h is compact there exists a congruence
subgroup K’ C K such that x7'k’2z € K for all z € supp(h). Then
Ty (@) (WK € WK for all = € supp(h). It is sufficient to show that for
any x € supp(h) the operator my(z) : WE" — WK is a regular function on
W) with values in Hom(WX', WX). But for any f € Wy, = indgng(V) we
have 7, (2) (/) (k) = ¥(Oar (k) (@) () (k). 0

LEMMA 0.242. Let X(p, K) := {4y € V| the representation my, : Hx —
End(WX) is not irreducible}.
Then X (p, K) C W is a Zariski closed subset.

ProoOF. We start with the following general result.

PrROBLEM 0.243. Let k be an algebraically closed field, L be a finite-
dimensional k-vector space, Y an algebraic k-manifold, f;,i € I a family of
L-valued regular function on Y = Y (k) and Z C Y the set of z € Y such
that {fi(2)},i € I do not generate L. Then there exists a Zariski closed
subset Z C Y such that Z = Z(k).
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The proof of the Lemma is based on the Bernside’s theorem which says
that there is no proper subalgebras of the algebra End(W ) which act irre-
ducibly on W¥. Therefore

X(p, K) := {¢ € Uy the span of h(1)), h € H is equal to End(WX)}.

We now apply Problem to the case when

k=C,Y =Wy, L=Endc(WH), I =0, f,(¢) := my(exger).
0

COROLLARY 0.244. For any cuspidal data (M, p) the subset X (p) [see
0.225] is Zariski closed.

PRroOOF. Follows from Corollary 0.233. O

The main goal of this section is to prove that X (p) # ¥js. The proof is
based on the analysis of of the unitary structure.

10.1. The Unitary Structure. Let (p, V) be a smooth representation
of G.

DEFINITION 0.245. For any v € V,A\ € V we define the ma-
triz coefficient mg,(g) as a function on G given by mg,(g9) =
o(r(g)v),v eV, 5 V.

(1) Assume now that (7, V') is an irreducible representation of G such
that the restriction to the center Z(G) is equal to xIdy where
X : Z(G) — C* is a unitary character. We say that V' is square
integrable modulo center if

| Imeelo)Pdg < .
Gz

(2) A wunitary structure on a G-module (7,V') is a positive definite,
G-invariant Hermitian scalar product @ : V ® V — C.

(3) Let P = MU be a parabolic subgroup of G and (p, W, <,>) be a
unitary representation of M. We define the unitary structure ¢ on

(m, V) = (ine(p),ine (W)) by
Q)= [ < fi@).fola) >
zeP\G
where the linear functional f is as in Definition 77.

REMARK 0.246. We do not assume that V' is complete with respect to
this structure.

PROBLEM 0.247. Let (7, V') be an irreducible representation of G which
is essentially square integrable modulo center. Then
(1) (m, V) admits a unitary structure.
(2) |mvs(g)]? € LNG/Z(G)) for allv € V, A € V.

The essential uniqueness of an invariant scalar product for irreducible
representations follows from the following version of the Schur’s lemma.
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LEMMA 0.248 (Schur’s Lemma). Let V' be an irreducible G-module.
Then any two G-invariant unitary structures on V' are proportional.

PRrROOF. Let V' be anti-linear dual of V, that is the space of anti-
linear functionals. An invariant scalar product Q : V ® V. — C defines
a G-equivariant semi-linear map V — V. As V is smooth, we obtain a
semi-linear map V' — (V1)g,,. Since V is admissible we see that V.| is
also admissible and irreducible. Therefore any non-zero G-equivariant semi-
linear map V' — (V1)g, is a bijection. It follows now from the Schur’s
lemma that any two non-zero G-equivariant semi-linear maps V' — (V)4
are proportional. O

10.2. Applications of the unitarity.

LEMMA 0.249. Any smooth admissible unitary representation (m,V') of
G is completely reducible. [That is, V = @ V; where the V; are irreducible
unitary subrepresentations.]

REMARK 0.250. The assumption of the admissibility is important.

PRrOOF. Suppose W C V is a submodule. Then the orthogonal comple-
ment, W+ C V is also a submodule and W N W+ = 0. It remains to check
that W +W" = V. For this it is enough to check that for any compact open
subgroup K C G we have WX 4+ (W)X = VK. Since [by the admissibility]
the space V& is finitely-dimensional we have VE = WK g(WK)LnVE, Soit
is sufficient to show that (W)L NVE c W+, Since the group K is compact
we have W = WX @ L where Jx m(k)ldk =0 forl € L. Then < I,v >= 0 for
all v € VE and we see that < w,v >=0forallv € WK)-nVE weWw. O

COROLLARY 0.251. Let V' be an admissible unitary representation V' of
G such that Endg(V) = C. Then V is irreducible.

This Corollary provides a method for establishing the irreducibility of
some representations. Here is an important example.

Let p be an irreducible cuspidal representation of a Levi subgroup M <
G. We denote by X (p) C W, the set characters ¢ such that the represen-
tation 7y, :=ip(p ® 1)) of G is reducible.

THEOREM 0.252. X (p) is a proper Zariski closed subset of W py.

PROOF. Since p is irreducible there exists a character x : Z(M) — C*
such that p(z) = x(2)Id for z € Z(M). Since the subgroup Z(G) N M° C
Z(G) is compact there exists ¢ € Wj; such that |y(z)¥(z)] = 1 for all
z € Z(M). Therefore [see Problem 0.84] the representation p ® 1 admits a
unitary structure. By replacing p by p ® ¢ we may assume that p admits a
unitary structure.

As follows from Corollary ?? the subset X (p) C W), is Zariski closed.
So we only have to show that X (p) # ¥,.

As follows from Corollary 0.213 there exists a proper Zariski closed sub-
set Y of Wy such that Endg(ip(p ® ¢0)) = C for p € Uy — Y. Since
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the subset W%, C W) of unitary characters is Zariski dense in Wj; the set
U, — U4, NY is not empty. But for any ¢ € ¥}, — ¥4, NY the representa-
tion 7y, is unitary and Endg(ip(p®1)) = C. It follows now from Corollary
0.251 that my is irreducible. O

11. The second adjointness.

11.1. The comparison of orbits of P and P. We start this section
with some results on the structure of of P orbits on G/@Q for parabolic
subgroups P, Q of G.

DEFINITION 0.253. For a pair M, N of standard Levi subgroups we define
WMN .= fw e Wlw(M N B) c Bw *(NnNB)C B}

PROBLEM 0.254. Let P,(Q be standard parabolic subgroups of G.

(1) For any w € W the intersection WywWy N WM consists of
one element. In other words any double coset WyywW iy contains
unique representative in W and we can identify the sets WM
and Wy,oW/Wy.

(2) For any standard parabolic subgroups P, of G the imbedding
W — G induces the bijection Wy, \W/Wx — P\G/Q.

(3) So the set W~ parametrizes the both double cosets P\G/Q and
double cosets P\G/Q and we defined a bijection x : P\G/Q —
P\G/Q. B

(4) k reverses the order on partially ordered sets P\G/Q and P\G/Q.

(5) The map w — w~lwg defines bijection &' : P\G/Q — Q\G/P
which reverses the order on partially ordered sets.

(6) There exists unique wg € Wg such that w < wg for all w € Wg
and the map w — wwg reverses the partial order on We.

(7) Assume that P = MU is a maximal parabolic subgroup of G. Then

(a) W(M,*) =Wy UwgWyy.

(b) If W(M, M) = Wy, then the parabolic subgroups P and P of
G are not conjugate and N := wg(M) < G is a standard Levi
subgroup of G associated with M. Moreover any standard
Levi subgroup of G associated with M is either equal to M or
is equal to N. In particular l(M) = 2.

(c) If W(M, M) # Wy then the parabolic subgroups P and P
are conjugate, |W (M, M)/Wy| = 2 and any standard Levi
subgroup of G associated with M is equal to M. So in this
case we also have (M) = 2.

REMARK 0.255. In the case when G = GL(n, F), P = Q = B any double
coset BgB has a form BwB where w € W = S, where the symmetric group
Sp C GL(n, F) is realized as the subgroup of permutation matrices. In
this case standard parabolic subgroups P correspond to partitions op of n
and we denote by Wp C W the subgroup of permutations preserving this
partition.
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PROBLEM 0.256. a) Show that one can identify the sets PoG/Q and
WpoeW/Wg.

b) Prove all the statements of the last Claim in the case G = GL(n).

¢) Show that any parabolic subgroup of G is is conjugate to a standard
parabolic by an element of Ky and that G/P is compact.

Let P = MU be a parabolic subgroup of G and P = MU be the opposite
parabolic. For any parabolic Q = NV of G the set WMV parametrizes the
both double cosets P\G/Q and double cosets P\G/Q. So we defined a
bijection x : P\G/Q — P\G/Q.

DEFINITION 0.257. (1) For any parabolic subgroups P, Q of G we
define a partial order on the finite set P\G/@ in such a way that
i <j,i,j € P\G/Q if Q; is in the closure Q; of Q; where Q;,Q; C G
are P x Q-orbits corresponding to i,j € P\G/Q.
(2) We define a partial order on W using the bijection W — Py\G/P.
(3) For any standard parabolic subgroup P = MU we denote by P =
MU be the opposite parabolic.

CramM 0.258. (1) For any standard parabolic subgroups P,Q of G
the imbedding N (My) — G induces the bijection Wy \W/Wy —
P\G/Q. So the set WMN parametrizes the both double cosets
P\G/Q and double cosets P\G/Q and we defined a bijection r :
P\G/Q - P\G/Q. )

(2) K reverses the order on partially ordered sets P\G/Q and P\G/Q.

(3) The map w — wlwg defines bijection v’ : P\G/Q — Q\G/P
which reverses the order on partially ordered sets.

(4) There exists unique wg € Wg such that w < wg for all w € Wg
and the map w — wwg reverses the partial order on Wg.

(5) Assume that P = MU is a maximal parabolic subgroup of G. Then

(a) W(M,*) =Wy UwgWyy.

(b) If W(M, M) = Wy then the parabolic subgroups P and P of
G are not conjugate and N := wg(M) < G is a standard Levi
subgroup of G associated with M. Moreover any standard Levi
subgroup of G associated with M is either equal to M or is
equal to N. In particular lg(M) = 2.

(c) If W(M,M) # Wy then the parabolic subgroups P and P
are conjugate, |W (M, M)/Wp| = 2 and any standard Levi
subgroup of G associated with M is equal to M. So in this
case we also have lg(M) = 2.

REMARK 0.259. In the case when G = GL(n, F), P = Q = B any double
coset BgB has a form BwB where w € W = S, where the symmetric group
Sp C GL(n, F) is realized as the subgroup of permutation matrices. In
this case standard parabolic subgroups P correspond to partitions op of n
and we denote by Wp C W the subgroup of permutations preserving this
partition.
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PrROBLEM 0.260. a) Show that one can identify the sets PoG/Q and
WpoeW/Wg.

b) Prove all the statements of the last Claim in the case G = GL(n).

¢) Show that any parabolic subgroup of G is is conjugate to a standard
parabolic by an element of Ky and that G/P is compact.

11.2. The construction of second adjointness. Let P = MU be a
parabolic subgroup of G. We know that 7y ;7 is the left adjoint to ips,7. This
implies that for any representation w of M we have a canonical isomorphism

HomM(TM,U e} iM7U(7T), 7[') = Homg(’iM’U(Tr),iM,U(ﬂ')).

In particular we have a canonical morphism 7y 0 inru — Idpqar) of
functors. In fact, the existence of such a morphism is implies by the existence
of the filtration of the functor rys 7 o ipr,y described in the Basic Geometric
Lemma. Really subquotients in this filtration correspond to orbits of P
acting on X = P\G. There is a distinguished orbit of the action of P on
P\G, namely point P which is the only closed orbit. Since P is closed it
corresponds to the quotient of rys yoiy 7. It is easy to see that this quotient
is equal to Idaqps). We see that the adjointness property is related to the
existence of the distinguished orbit.

Let P = MU be the parabolic opposite to P.

As follows from Problem 0.258 there is unique open orbit of the action
of P on G/P and the functor associated with this orbit is equal to Id M(M)-

Set, T;y = 7y p- We have shown that for any representation 7 €
M(M) there is a canonical imbedding 7 — 7js o ip(7). Now for any
¢ € Homg(ipry(7),m). we define a morphism S(¢) € Homp (7, Tar(m))
as the composition

B(p) i 7 — g oing (1) ") g ()
In other words, we defined a map
Bam (T, m) : Homeg(ip (1), m) — Hompy (7, 7pr (7))
We will often write 3(r, ) or simply /3 instead of Sg (7, 7).

THEOREM 0.261. 5 is an isomorphism. In other words, Ty is the right
adjoint functor to ip;.

ProoFr. We assume that the result is known for all proper Levi sub-
groups of G.

LEMMA 0.262. (1) Let
" =7 =7 — {0}

be an exact sequence in M(M) such that the morphisms B(t", )
and B(7',7) are isomorphisms. Then [B(r,m) is also an isomor-
phism.
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(2) Let
{0} 57— 7" — 7"

be an exact sequence in M(G) such that the morphisms B(r, ") and
B(r, ') are isomorphisms. Then B(7,7) is also an isomorphism.

PRrROOF. The result follows from the exactness of functors ry; and ip
and the five-homomorphisms lemma. O

COROLLARY 0.263. It is sufficient to check the validity of the Theorem
in the case when T is a projective object of M(M) and 7 is an injective

object of M(G).

PROPOSITION 0.264. S(7,m) is an isomorphism if T is projective and m
is equal to in(p) where N < G is a proper Levi subgroup of G and p is an
injective object of M(N).

PrOOF. As follows from the Frobenious reciprocity we have equalities

Homg (ip (1), m) = Home (i (1), in (p)) = Hompy (rn (inr (7)), p)

By the Basic Geometric Lemma the functor Homy (x5 (ia/(7)) admits a de-
creasing filtration parametrized by double cosets P\G/Q and the subquo-
tients are isomorphic to W, (1), w € WM where

iNAw(M),NAw(U) © Ad(W) © Ty rrw—1(N), MAw-1(V)

Since the object p is injective we see that the space Homy (rn(in (7)), p)
admits an increasing filtration parametrized by double cosets P\G/(Q) and
the subquotients are isomorphic to

Hom y (i N (ar), Now () © Ad(w) © Tarmw—1(3), Mow—1(v) (T); p), w € WwALN

On the other hand the functor 7j; o iy admits a decreasing filtration
parametrized by double cosets Q\G/P. By Problem 0.258 this set coincides
with the set {w™lwg},w € WM and we can consider this filtration as an
increasing filtration parametrized by the set P\G/Q and the corresponding
subquotients are isomorphic to \ilﬁu (1), w € WM where

U1 (7) = irw— (V)Mo= (v) © Ad(W ™) © P xewan) Nrw (@)

Since T is a projective object of M(M) we see that the space Hompy (7, 7ps 0
in(p)) admits an increasing filtration parametrized by double cosets P\G/Q
and the subquotients are isomorphic to

Hom (T, EMAw=1(N),MNw=1(V) © Ad(w_l) O T NAw(M),Nnw(D) (p),w e WwMLN

PROBLEM 0.265. (1) The functor B(7,in,v(p)) is compatible with
the increasing filtrations on Homg (ips(7), 7) and Hom s (7,737 (7)), w €
WAMN-
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(2) For all w € WM the induced map from

HomN(ian(M),wa(U) o Ad(w) o Tmefl(N),mefl(v)(T% P)

to
Hom (7, i prewe—1(8), M= (v) © Ad(W ™) © P vewiary Now(@) (P))
is given by Bn Nrw(an)Ad(W) © Tarnw-1 (V) MAw-1 (V) (T), P)-
Now Proposition follows from the inductive assumptions. O

COROLLARY 0.266. (1) B(r,m) is an isomorphism if w is equal to
in(p) where N < G is a proper Levi subgroup of G,p € M(M).
(2) B(r, ) is an isomorphism if 1 € Ob(ME(G)).

PrOOF. The part (1) follows arguments used in the proof of Lemma
0.262.
Since 7 € MX(G) the map

®m<amzrayim(m) 2V = Sy mzayiv o ()
is an imbedding. Applying this argument once more we find an exact se-
quence
{0y =7 —>n" =7
such that 7/ and 7" are direct sums of representations of the form ix v (p)

where Q = NV is a proper parabolic subgroup of G,p € M(M). Now the
Claim follows from Lemma 0.262. O

Now we can finish the proof of the Theorem. As follows from the last
Corollary and the decomposition theorem saying that M(G) = M (G) &
MZE(G) it is sufficient to prove the theorem in the case when 7 is quasi-
cuspidal. But it is clear that in this case both sides are equal to {0}. |

COROLLARY 0.267. The functor iy : M(G) — M(M) maps projective
objects into projective.

11.3. The Bernstein’s morphism. Let P = MU C G be a standard
parabolic, P = MU be the opposite parabolic , H C P x P be the preimage
of the diagonal under the projection P x P — P/U x P/U = M x M and
Xy = H\G x G. We use the second adjointness to construct a G x G-
equivariant morphism By : S(X ) — S(G) introduced by J.Bernstein.

For any V € M(G x G) we write

T X (V) =1y oxu (V) € M(M x M).
Let Y := PP C G. Then Y is an open P x P subset of G.

PROBLEM 0.268. We can identify the M x M representation 7p; X
rar(S(Y)) with of the regular representations of M x M on S(M).

We denote by jas the composition jps @ S(M) — 7y X rayr(S(Y)) —
Tpm X T‘M(S(G))
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DEFINITION 0.269. (1) By the construction
S(Xy) = ind§*9 C = ind§*G S(M)

where the action of P x P on S(M) is the composition of the
regular representations of M x M on S(M) and the projection
P x P — M x M. As follows from Theorem 0.261 we have an
isomorphism

Homgwq(S(Xn),S(G)) = Hompsxpr (S(M), 7ar X rar(S(G))).
Therefore the canonical imbedding js defines a a G x G-equivariant
morphism By : S(Xur) — S(G).

(2) Let C(G),C(Xar) be the space of C-valued functions on G and
XM ) which are two-sided invariant under some open compact sub-
group of G. Then C(G) = S/(\Cj), C(Xn) = S(Xn) and we denote
by By : C(G) — C(Xjs) the morphism dual to Bjy.

(3) Let C(G),C(Xnr) be the space of C-valued functions on G and
X (M) which are two-sided invariant under some open compact sub-

group of G. Then C(G) = gS/(Z?/), C(Xm) = S/(}E) and we denote
by By : C(G) — C(X)y) the morphism dual to Bjy.

(4) For any pair Wi, Wy of smooth representations of M denote by
P(W1,Ws) the space of M-invariant C-valued bilinear forms on
W1 X Wg.

(5) We denote by & : Homgxg (Vi @ Vo, C(Xar)) — P(rar(Vi), rar(V2))
given by

k() (J(v1), I (v2)) := p(v1 @ v2)(e)
where J : Vi — rar(V1),J : Vo — 73s(Va) are the canonical projec-
tions.

PrROBLEM 0.270. (1) Show that the bilinear form x(¢) (w1, ws2), w1 €
rar(Vh),wa € 7ar(Va) is well defined. [That is the number ¢(v; ®
vz)(e) does not depend on a choice v; € Vi,ve € Vo such that
wy = J(v1),we = J(v2).]

(2) The map

Homgxa(Vi ® Va, C(Xar)) — Plrar(Vi), ra(V2)), ¢ — k(9)
is a bijection.

DEFINITION 0.271. Let Vi, Vo be smooth representations of G and <, >:
Vi x Vo — C be a G-invariant pairing. We denote by <, >nps: rp(V1) X
7 (Vo) — C the M-invariant bilinear form as in the last Problem.

Let M < G be a standarq Levi subgroup, (o,V) be a smooth repre-
sentation of G and <,>: V x V — C be the canonical G-invariant pairing.
We denote by J : V — ry(V),J : V. — 73 (V) the canonical projections.
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As follows from the Corollary the canonical pairing <,>: V x V — C in-

duces a pairing <, >y: mar(V) x 7a7(V) — C and therefore a morphism

KM,V : fM(V) — TM(V)

LEMMA 0.272. The kpryv s an isomorphism.

PROOF. Consider the morphism a : r3;(V) — 7as(V) which is the image
of the identity Id,, () under the composition

Homar (ras(V), 7ar (V) — Homa(V, inroras(V)) — Homg(iag o rar(V), V) =

—_—~—

= Homg(iM(rM(V)), V) — HOHlM(TM(V),FM(V))
where the first map comes from the Frobenious reciprocity, the second is
the duality, the third comes from the inverse of the natural morphism

ire(rar(V)) — ipgorar(V) and the last map is equal to B(ra(V), V). It
is easy to check that a is the inverse of kpsy . ([

PROPOSITION 0.273. For any admissible representation (o,V') of G the
M -invariant pairings <, >y and <, >, [see Lemma ??] between ry (V) and
v (V) coincide.

—_—

PRrOOF. Let b(V) : rar(V) — 7ar(V) be the isomorphism coming from
the pairing <, >,; and 8 : Homg(ias(rar(V), V) — Homps (rar(V), 7ar(V)
be the map defined as the composition of the isomorphism Hom(i(7),5) =

Hom(7,7(c)) and the morphism b(V). Tt is sufficient to show that Sg s =
Ba,m- By the definition 0



