
1. Representation of algebras

All algebras H we consider are C-algebras of countable or finite dimen-
sion. AnH-moduleM is irreducible if it does not have properH-submodules.

Lemma 0.1 (Schur’s Lemma). If an algebra H has countable dimension
then EndH(M) = C for any irreducible M ∈ M(H).

Proof. Since M is irreducible, A := EndHM is a skew-field. Since
the algebra H is of countable dimension over C the space M is also of
countable dimension. Since M is irreducible the map A → M,a → am0 is
an imbedding for any non-zero m0 ∈M and therefore A is also of countable
dimension. So the Schur’s Lemma would follows from the following result.

Claim 0.2. If A is a skew-field of countable dimension over C, then
A = C.

Proof. We have to show that a ∈ C for any a ∈ A. Suppose that
a−λ ̸= 0 for all λ ∈ C. Since A has countable dimension, the elements {(a−
λ)−1}, λ ∈ C are linearly dependent. Thus, there exist non-zero complex
numbers ci, 1 ≤ i ≤ k so that

k∑
i=1

ci(a− λi)
−1 = 0.

Multiplying through by
∏k
i=1(a − λi), we see that there exists a non-zero

polynomial Q(x) ∈ C[x] such that Q(a) = 0. Factoring this polynomial, we
see that there are µj ∈ C so that∏

j

(a− µj) = 0.

Since A is a skew-field one of these factors must be equal to zero because.
Hence a ∈ C. �

�
Definition 0.3. (1) We denote by Z(H) the the center the algebra

H.
(2) By the Schur Lemma for an irreducible representationM of an alge-

bra H of countable dimensionand z ∈ Z(H) there exists χM (z) ∈ C
such that zM = χM (z)IdM where zm is the action of z on M . We
say that the map χM : Z(H) → C is the central character of the
module M .

Remark 0.4. The statement is false if we drop the condition that a
skew-field A has countable dimension. Really take A =M = C(x).

Lemma 0.5. Let H be an algebra of countable dimension over C with
unit e. Then for any non-nilpotent element a ∈ H there exists a simple
H-module M such that a|M ̸= 0.
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Proof. The proof is similar to that of Schur’s lemma. By adding the
unit we may assume that the algebra H is unital. First we establish the
following result.

Claim 0.6. There exists λ ∈ C\0 such that a−λ is not invertible in H.

Proof. If a ∈ C, this is trivial. Otherwise, by countable-dimensionality
of H, the elements the (a− µ)−1 are linearly dependent. Thus there exists
ci ∈ C, 1 ≤ i ≤ k so that

k∑
i=1

ci(a− λi)
−1 = 0.

Multiplying through by
∏k
i=1(a−λi), we get a non-zero polynomial over

C with a as a root. Thus, there are λj ∈ C \ 0 and nj ≥ 0 so that

an0
∏
j

(a− λj)
nj = 0

But this is not possible since (a− λj) are invertible and a is not nilpotent.
�

Choose λ ∈ C\0 such that a−λ is not invertible in H. Then the quotient
H-module N := H/(a − λ) is not trivial. Let ē ∈ N be the image of e and
N0 ⊂ N be a maximal submodule which does not contain ē.

Problem 0.7.
The quotient M := N/N0 satisfies the conditions of the Lemma.

�
Definition 0.8. (1) For any C-algebra H we denote by Hop the

opposite algebra.
(2) For any H-module M we define the action of Hop on M∨ :=

HomC(M,C) by
hλ(m) := λ(mh),m ∈M,λ ∈M∨, h ∈ H

and define an action of H⊗Hop on EndC(M) by

h′ ⊗ h′′(A) := h′Ah′′

(3) We denote by αM [or simply α ] the H⊗Hop-morphism

M ⊗M∨ → EndC(M)

given by

α(v ⊗ λ)(w) := λ(w)v, v, w ∈M,λ ∈M∨

(4) We say that a simple finite-dimensional H-module M is compact if
the action map aM : H → EndC(M) of H ⊗ Hop-modules splits.
That is there exists an imbedding µM : EndC(M) → H of H⊗Hop-
modules such that aM ◦ µM = Id.
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Lemma 0.9. For any simple finite-dimensional compact H-module M we
have a direct sum algebra decomposition

H = HM ⊕H⊥
M

where HM = Im(µM ),H⊥
M = Ker(aM ).

Proof. Since we have direct sum algebra decompositionH = HM⊕H⊥
M

of H as a vector space and by the defintion H⊥
M = Ker(aM ) ⊂ H is a

subalgebra we have to check that
(a) the map µM is an algebra homomorphism and
(b) hMh

⊥
M = 0 for all hM ∈ HM , h

⊥
M ∈ H⊥

M .
Proof of (a). Choose any r′, r′′ ∈ EndC(M). Since the map µM is an

morphism of H⊗Hop-modules the product µM (r′)µM (r′′) is equal to µM (r)
for some r ∈ EndC(M) and aM (r) = aM (r′)aM (r′′). Since aM ◦µM = Id we
see that r = r′r′′.

A proof of (b) is completely analogous. �
Problem 0.10. (1) αM is an imbedding.
(2) Let M be a simple finite-dimensional compact H-module. The

any H-module N admits unique decomposition N = N0 ⊕N1 such
that N0 is a multiple of M and N1 does not have subquotients
isomorphic to M .

1.1. Idempotented Algebras.

Definition 0.11. (1) An algebra H is idempotented if for every
finite collection {fi}, i ∈ I of elements of H there exists an idem-
potent e ∈ H such that efi = fie = fi for all i in I.

Let H be an idempotented algebra.
(2) For any H -module M we define Msm = HM .
(3) A moduleM of an idempotented algebraH is called non-degenerate

if M =Msm.
(4) We denote by M(H) the abelian category of non-degenerate H-

modules.
(5) For any M ∈ M(H) we define M̃ ∈ M(Hop) by M̃ := (M∨)sm.
(6) For anyM ∈ Ob(M(H)), N ∈ Ob(M(Hop)) we denote by< N,M >

the space of bilinear maps ϕ : N ×M → C such that ϕ(nh,m) ≡
ϕ(n, hm).

(7) For any M ∈ Ob(M(H)), N ∈ Ob(M(Hop)) we denote by

κM,N : HomH(M, Ñ) →< N,M >

the map given by

κM,N (A)(n,m) := A(m)(n),m ∈M,n ∈ N,A ∈ HomH(M, Ñ)

and denote by κN,M : HomHop(N, M̃) →< N,M > the map given
by

κN,M (B)(n,m) := B(n)(m),m ∈M,n ∈ N,B ∈ HomH(N, M̃).
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(8) A non-degenerate H -module M is admissible if dimC(eM) < ∞
for any idempotent e ∈ H.

Lemma 0.12. The functor M → Msm from the category of H-modules
to M(H) is exact.

Proof. It is clear that for any imbedding M ↪→ N of H-modules the
induced map Msm → Nsm is an imbedding. So the functor M → Msm is
left exact.

To show that this functor is right exact we have to check that for and
surjection p : M → N and any n ∈ Nsm we can find m ∈ Msm such that
n = p(m).

Since n ∈ Nsm there exists an idempotent e ∈ H such that en = n. On
the other hand since the map p : M → N is surjective there exists m′ ∈ M
such that n = p(m′). Take m := em′ ∈Msm. Then

p(m) = p(em′) = ep(m′) = en = n

�
Problem 0.13. (1) LetM∞ be the algebra of matricies (mi,j), 1 ≤

i, j <∞ such that mi,j = 0 for almost all pairs i, j. Show that the
algebra M∞ is idempotented.

(2) For any totally disconected topological space X the algebra S(X)
of locall constant functions with compact support is idempotented.

(3) For any M ∈ Ob(M(H)), N ∈ Ob(M(Hop)) the maps κM,N and
κN,M are bijections.

(4) For any M ∈ Ob(M(H)), N ∈ Ob(M(Hop)) we have a canonical

isomorphism HomH(M, Ñ) → Homop
H (N, M̃).

(5) Show that the correspondenceM → M̃ defines an exact contravari-
ant functor from M(H) to M(Hop).

(6) Construct a canonical morphism V ↪→ ˜̃V and show that it is an
imbedding.

1.2. Projective and Injective modules. Recall that an object P of
an abelian category M is projective if the functor

M → Ab given by

X 7→ HomM(P,X)

is exact.
Analogously an object P is injective if the functor

M → Ab given by

X 7→ HomM(X, I)

is exact.

Lemma 0.14. For any projective object P ∈ Ob(M(H)) the object P̃ ∈
M(Hop) is injective.
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Proof. We must show that the functor X 7→ Hom(X, P̃ ) on M(Hop)
is exact. As follows from the previous Problem we have isomorphisms

Hom(X, P̃ ) = Hom(P, X̃)

Since P is projective and the functor X → X̃ is exact we see that P̃ is
injective. �

Theorem 0.15. For any idempotented algebra H the category M(H)
has enough projective and injective objects.

Proof. We start with the proof for the existence of a projective cover
P → M for an H-module M . For any idempotent e ∈ H the functor
X → Hom(Pe, X) = eX is exact and therefore the H-module Pe = He is
projective. Since direct sums of projective objects are projective direct sums
of any collection of the moduels of the form Pe are also projective.

If X ∈ ObM(H) and ξ ∈ X, then it follows from non-degeneracy that
there exists an idempotent e so that eξ = ξ. Then ξ is in the image of the
map Pe → X given by he 7→ hξ. Taking the direct sum over all ξ ∈ X of
the associated Pe, we see that X is a quotient of a projective object.

Now we want to construct an imbeddingM ↪→ I of an H-moduleM into
an injective object. As we have enough projectives, there is an epimorphism
P → M̃ . Now consider the composition

M ↪→ ˜̃M ↪→ P̃

where P̃ is injective by Lemma 0.14. �
For any idempotented algebra H we define Ĥ := EndHop(H). Since H is

associative we have a natural imbedding H ↪→ Ĥ.

Lemma 0.16. For any idempotented algebras H and a non-degenerate
H-module M the action of H on M extends uniquely to an action of Ĥ on
M .

Proof. To construct a map α : Ĥ → EndC(M) we have to define

α(ĥ)(m) for ĥ ∈ Ĥ,m ∈M .
We choose an idempotent e ∈ H such that em = m [this is possible since

M is non-degenerate] and write αe(ĥ)m) := ĥ(e)m.

Let us show that αe(ĥ)m does not depend on a choice of an idempotent
e ∈ H such that em = m. Since for any two idempotents e′, e′′ ∈ H there
exists an idempotent e ∈ H such that ee′e = e′, ee′′e = e′′ it is sufficient to
show that αe(ĥ)(m) = αe′(ĥ)(m) for idempotents e′, e such that ee′ = e′.
But in the case we have

αe′(ĥ)(m) = ĥ(e′)(m) = ĥ(ee′)(m) = ĥ(e)e′m = ĥ(e)m = αe(ĥ)(m)

Since the element αe(ĥ)m does not depend on a choice of an idempotent

e ∈ H such that em = m we will write α(ĥ)(m) instead of αe(ĥ)(m).

The uniquenes of an extension Ĥ → EndC(M) of the action map a :
H → EndC(M) follows immediately from the following result.
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Problem 0.17. For any ĥ ∈ Ĥ, h ∈ H ⊂ Ĥ we have ĥh = (̂h) ∈ H ⊂ Ĥ.

�

Problem 0.18. Describe the algebras M̂∞ and Ŝ(X).

Lemma 0.19. Let M be an irreducible H-module M, e ∈ H be an idem-
potent and He := eHe. Then

(1) Either eM = {0} or eM is an irreducible He-module.
(2) Every irreducible He-module has a form eM for some irreducible

M ∈ M(H).

Proof. (1) Assume that eM ̸= {0}. To prove the irreducibility of the
He-module eM it is sufficient to show that for any w, v ̸= 0 in eM there
exists h̄ ∈ He such that v = h̄w. Since the H-module M is irreducible there
exists h ∈ H such that v = hw. But now we can take h̄ = ehe ∈ He.

(2) Let M̄ be an irreducible eHe-module. As follows from (1) it is
sufficient to show the existence of an irreducible H-module L such M̄ is a
submodule of eL. Set N = H ⊗eHe M̄ . The imbedding He ⊂ H induces
the inbeddings M̄ ↪→ eN ↪→ N . Consider the partially ordered set X of
proper H-submodules Nx ⊂ N where the ordering is by inclusion. Since
the He-module M̄ is irreducible and N = HN̄ we see that Nx ∩ M̄ = {0}
for all x ∈ X. Therefore the partially ordered set satisfies the conditions of
the Zorn’s lemma and there exists a maximal proper submodule N0 ⊂ N .
Let L := N/N0. Since N0 ∩ M̄ = {0} the projection p : N → L defines an
imbedding M̄ ↪→ eL of He-modules.

I claim that the H-module L is irreducible. Really if L′ ⊂ L is a non-
zero proper H-submodule of L the preimage p−1(L′) ⊂ N is a proper H-
submodule of N strictly bigger then N0. But this is impossible since N0 is
a maximal proper submodule of N . �

We introduce a notion of admissible and compact modules which will
be central for our analysis of representations of groups over local non-
archimedian fields.

Definition 0.20. Let H be an idempotented algebra.

(1) A non-degenerateH-moduleM is admissible if for every idempotent
e ∈ H the space eM is finite dimensional.

(2) An admissible H-moduleM is compact if for any idempotent e ∈ H
the finite dimensional eHe-module eM is compact.

Problem 0.21. (1) M is admissible iff the natural imbeddingM →
˜̃M is an isomorphism.

(2) For any compact H-module M the direct sum decompositions (see
0.10)

He = HMe ⊕H⊥
Me
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where e run through idempotents e ∈ H define a direct sum algebra
decomposition

H = HM ⊕H⊥
M

such that H⊥
M acts trivially on M and the restriction of the action

map H → End(M) on HM is an imbedding.

Lemma 0.22. For any admissible H-module M the imbedding [see 0.10]

αM :M ⊗ M̃ → End(M)sm is an isomorphism where we consider End(M)
as H⊗Hop-module.

Proof. The statement is clear in the case when dim(M) <∞. We use
the admissibility for a reduction to this case.

By 0.10 the map αM is an imbedding. So it is sufficient to show that for
any idempotent e ∈ H the map

αe : eM ⊗ eM̃ → eEnd(M)e

is onto. As αe is an imbedding it is sufficient to show that

dim(eEnd(M)e) ≤ dim(eM)× dim(eM̃)

Since t the restriction eEnd(M)e→ End(eM) is an imbedding this inequal-
ity follows from the equalities

dim(eM̃) = dim(eM), dim(End(eM)) = dim2(eM̃).

�
Corollary 0.23. For any irreducible admissible H-module M we have

dim(HomH⊗Hop(H,M ⊗ M̃)) = 1

Proof. Since we have a natural non-trivial map H → End(M)sm we
see that

dim(HomH⊗Hop(H,M ⊗ M̃)) ̸= 0

So it is sufficient to show that dim(HomH⊗Hop(H,M ⊗ M̃)) ≤ 1. For this

it is sufficient to show that dim(HomHe⊗Hop
e
(H, eM ⊗ eM̃)) ≤ 1 for all

idempotents e ∈ H. But follows immediately from Lemma 0.22. �
1.3. Irreducible modules and the Jordan-Holder Content. Let

H be an idempotented algebra.

Definition 0.24. (1) We denote by IrrH be the set of equivalence
classes of irreducible representations of the algebra H.

(2) If M ∈ M(G), then the Jordan-Holder content of M , JH(M), is
the subset of IrrH consisting of all irreducible subquotients of M .

Lemma 0.25. JH(M) ̸= ∅ for any non-zero H-module M .

Proof. Fix any non-zero m ∈ M . By the Zorn’s lemma there exists a
maximal proper submodule N of the H-module M0 := Hm ⊂ M . By the
construction the quotient M0/N is irreducible. So [M0/N ] ∈ JH(M) where
[M0/N ] is the class of M0/N . �
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Problem 0.26. (1) If N is a subquotient of M , then JH(N) ⊂
JH(M).

(2) If M =
∑

αMα then JH(M) = ∪αJH(Mα).

1.4. Decomposing Categories.

Definition 0.27. Let M be an abelian category such that the coprod-
ucts exists in M (i.e. M is cocomplete) and the coproduct of a family
of monomorphisms is a monomorphism. [for example a category of mod-
ules over an algebra]. Given full subcategories M1,M2 of M we write
M = M1 ⊕ M2 if for any object M ∈ M, there exist unique subobjects
Mi ∈ Mi so that M =M1 ⊕M2.

In such a case any irreducible object either belongs to M1 or to M2 and
we obtain a decomposition

IrrM = IrrM1

⨿
IrrM2.

where
⨿

is the ‘disjoint union’. Conversely, such a decomposition on the
level of sets uniquely determines the categorical decomposition if it exists.
To see this we define for any subset S ⊂ IrrM the full subcategory M(S)
of M consisting of objects M with JH(M) ⊂ S.

Lemma 0.28. If subsets S, S′ ⊂ IrrM do not intersect, then the cate-
gories M(S) and M(S′) are orthogonal, i.e. M ∈ M(S) and M ′ ∈ M(S′)
imply Hom(M,M ′) = 0.

Proof. Suppose α ∈ Hom(M,M ′). Set N = α(M). So, JH(N) ⊂
JH(M) ⊂ S and also JH(N) ⊂ JH(M ′) ⊂ S′. But S ∩S′ = ∅ so N = 0 by
0.25. �

If S ⊂ IrrM, M ∈ M, we will denote by M(S) the union of all subob-
jects ofM which lie in M(S). By the lemma, this is the maximal submodule
with Jordan-Holder content lying in S.

Definition 0.29. Let S ⊂ IrrM and S′ := IrrM\ S. We say that S
is a splitting subset if M = M(S)⊕M(S′) [that is, if M =M(S)⊕M(S′)
for each M ∈ M]. In this case we say that S splits M.

Remark 0.30. A decomposition of categories M = M1⊕M2 is equiva-
lent to a decomposition of sets IrrM = S

⨿
S′ where S is a splitting subset.

Problem 0.31. Let H be an idempotented algebra andM an admissible
compact H-module. Then [M ] splits M(H) where [M ] ∈ IrrM(H) is the
equivalence class of M .

2. l-Groups

2.1. Basic definitions.

Definition 0.32. (1) An l-space is a topological space which is
Hausdorff, locally compact and 0-dimensional (i.e. totally discon-
nected: any point has a basis of open compact neighborhoods).
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(2) For any l-space we denote by S(X) the vector space of locally con-
stant compactly supported C-valued functions on X.

(3) An l-group is a Hausdorff topological group such that the identity
e has a basis of neighborhoods which are open compact groups.
We will always assume that G is countable at infinity [that is we
assume that for any open compact subgroup K of G the quotient
G/K is either countable or finite.

(4) For an l-group we denote by r : G→ Aut(S(G)), l : G→ Aut(S(G))
the right and left regular representations of G on S(G) given by
(r(x)f)(g) := f(gx), (l(x)f)(g) = f(x−1g), f ∈ S(G), x, g ∈ G.

Let F be a local non-archimedian field, O ⊂ F the ring of integers,
P = πO ⊂ O the maximal ideal and k = O/P the residue field k = Fq. We
denote by ν : F ⋆ → Z the valuation such that ν(π) = 1 and define the norm

by ∥x∥ = q−ν(x). The topolgy on F induces a topolgy on Fn and therefore
on X(F ) for any algebraic F -variety.

Problem 0.33. Show that:
(1) For any F -variety X the topological space X = X(F ) is an l-space.
(2) The space Pn(F ) is compact.
(3) For any n > 0 the group GL(n, F ) is an l-group and GL(n,O) is

an open compact subgroup of GL(n, F ). Moreover GL(n,O) is a
profinite group.

(4) For any F -group G the group G = G(F ) is an l-group.
(5) For any regular tree T we define a topology on the group G of

automorphisms of T in such way that for any finite subset X of T
the subgroup GX ⊂ G of automorphisms of T fixing all points of X
is open and shifts of GX give a basis of the open sets on G. Show
that G is an l-group.

(6) Any compact l-group is a profinite group.

Lemma 0.34. Let G be an l-group. Then
(1) There exists a linear functional

∫
r on S(G) such that

∫
r r(g)f =

∫
r f

for all f ∈ S(G), g ∈ G. Such functional is unique up to a multi-
plication by a scalar. Moreover we can choose a linear functional∫
r to take positive values on non-zero non-negative functions.

(2) There exists a character ∆ : G→ R+ such that∫
r
l(x)f = ∆(x)

∫
r
f

for any x ∈ G and any f ∈ S(G). In particular
∫
r χxA = ∆(x)

∫
χA

for any x ∈ G and any compact open subset A of G where χA is
the characteristic function of A.

(3) The functional f →
∫
r∆

−1f is left-invariant.
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Proof. To construct a linear functional
∫
r we fix an open compact

subgroup K0 and define ∫
r
f :=

1

|K0/K|
∑

r∈K\G

f(r)

where K ⊂ K0 is any open subgroup such that the function f is invariant
under left shifts by k ∈ K. I’ll leave for you to show that

∫
f does not

depend on a choice of a subgroup K ⊂ K0 and the map f →
∫
r f defines a

right-invariant linear functional which is positive on non-zero non-negative
functions.

Let K ⊂ K0 be any open subgroup and χK , χK0 ⊂ S(G) the charac-
teristic functions of K and K0. Since χK0 =

∑
x∈K0/K

r(x)χK we see that

λ(χK) = 1
|K0/K|λ(χK0) for any right-invariant linear functional λ on S(G).

This proves the uniqueness of
∫
r.

Let us fix a right-invariant linear functional λ on S(G) and for any
x ∈ G consider the linear functional λx given by λx(f) := λ(l(x)(f)). By the
construction the functional λx on S(G) is also right-invariant and therefore
there exists constant ∆(x) such that λx(f) = ∆(x)λ(f) for all f ∈ S(G).

Since we may assume that λ is positive on non-zero non-negative func-
tions we see that ∆(x) ∈ R+. It is clear from the definition that the function
∆ : G→ R+ is a character.

The left-invariantness of the functional f →
∫
r∆

−1f is clear. �

Problem 0.35. (1) Let Ga = F be the additive group. Then there
exists a Haar measure dga on Ga such that

∫
Pr dg = q−r, r ∈ Z.

(2) Let Gm = F ⋆ be the multiplicative group. Then dgm := dga/∥∥ is
a Haar measure on Gm.

(3) Let H ⊂ GL(2, F ) be the group of upper triangular 2× 2 matrices
of the form

h =

(
α γ
0 β

)
Then the right -invariant Haar measure on H measure is equal to
dgm(α)dgm(β)dga(γ)/∥β∥

(4)

∆(

(
α γ
0 β

)
) = ∥α∥/∥β∥

Definition 0.36. (1) The function ∆ is called the modular char-
acter.

(2) A group is unimodular if ∆ ≡ 1. In this case right -invariant mea-
sures are also left-invariant. We denote such a measure by dg and
call a Haar measure.

(3) Let U be a unimodular locally compact l-group du a Haar measure
on U and σ an automorphism of U . Then σ⋆(du) is also a Haar mea-
sure on U and we definemodU (σ) ∈ R+ by σ⋆(du) = mod−1

U U(σ)du.
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(4) If P = M n U we write modU (m) := modU (σm) where σm(u) :=
mum−1.

(5) If a group G is compact we normalize a Haar measure dg in such a
way that

∫
G dg = 1.

Let G be a unimodular l-group with a Haar measure dg.

Problem 0.37. (1) If P = M n U where both M and U are uni-
modulal then ∆P (mu) = modU (m).

(2) Let K be a compact l-group, K ′,K ′′ ⊂ K closed subgroups such
that K ′K ′′ = K. Then for any f ∈ H(K) we have∫

K f(k)dk =
∫
K′ f

′(k′)dk′ where f ′(k′) =
∫
K′′ f(k

′k′′)dk′′.
(3) Find the modular character for the group of n×n-upper triangular

matrices with coefficients in Qp.
(4) Prove that the groupGL(n, F ) is unimodular and describe the Haar

measure dg on GL(n, F ) such that
∫
GL(n,O) dg = 1.

Let H be an l-group and λ be a left-invariant linear functional on S(H).
Let X be a principle homogeneous H-space [that is H is acting on an l-
space X, ((h, x) → hx simply transitively]. Then H acts on the space
S(X), (h, f) → fh, fh(x) := f(h−1x) and we denote by L the space of
coinvariants. So L = S(X)/S0(X) where S0(X) ⊂ S(X) is the span of
{f − fh}, f ∈ S(X), h ∈ H.

Lemma 0.38. (1) The space L is one-dimensional
(2) The space L is canonically isomorphic to the space L∆ of functions

r on X such that r(hx) ≡ ∆(h)r(x), h ∈ H,x ∈ X.

Proof. Any point x ∈ X defines a bijection ϕx : H → X,h→ hx which
induces an isomorphism ϕ⋆x : S(X) → S(H) and the first claim follows from
0.34.

Consider now the linear map κ : S(X) → S(X) given by

κ(f)(x) := λ(ϕ⋆x(f))

It is clear that κ is trivial on the subspace S0(X) ⊂ S(X) and it follows from
0.34 that the image of κ lies in L∆. Therefore κ defines an isomorphism
L → L∆. �

Remark 0.39. To give a more conceptual explanation of this result
consider the group AutH(X) of automorphisms of X which commute with
the action of H. It is clear that the right shifts define a canonical isomor-
phism of the group H with AutH(H). Therefore for any point x ∈ X the

isomorphism ϕx : H → X defines an isomorphism ϕ̃x : H → AutH(X)
and it is easy to see that for any two points x, y ∈ X the isomorphisms
ϕ̃x, ϕ̃y : H → AutH(X) differ by the conjugation by xy−1. Since the charaqc-
ter ∆ is invariant under the conjugation we can consider it as a character
of the group AutH(X). By the definition the group AutH(X) acts on the
space L of coinvariants. The second part of the lemma says that the action
is given by ∆ : AutH(X) → R+.
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Assume that an l-group H acts freely on an l-space X and denote by
S0(X) ⊂ S(X) be the span of {f − fh}, f ∈ S(X), h ∈ H and by S(X)H :=
S(X)/S0(X) be the space of H-coinvaraints of S(X). Assume also that
a group G acts on S(X) and this action of G commutes with the natural
action of H on S(X).

Corollary 0.40. (1) The space S(X)H is canonically isomorphic
to the space M(H\X) of locally constant functions r on X such
that r(hx) ≡ ∆(h)r(x), h ∈ H,x ∈ X and such supp(r) ⊂ HC for
some compact C ⊂ X.

(2) For any H-invariant linear functional λ on S(X) there exists unique
linear functional λ̄ on S(X)H such that

λ̄(f̄) ≡ λ(f), f ∈ S(X)

where f̄ is the image of f in S̄(X).
(3) The group G acts naturally on S̄(X).
(4) λ is a G-invariant functional on S(X) then λ̄ is a G-invariant

functional on S(X)H .

Definition 0.41. Let H be a closed subgroup of an unimodulr group
G and ∆H be the modular character of H. Then the restriction of the
functional

∫
r to the subspace S0(X) ⊂ S(X) vanishes and therefore the

functional
∫
r defines a G-invariant linear functional

∫
on the the space

M(H\G) = S(X)H .

Lemma 0.42. Assume that K is an open compact subgroup of G such
that G = HK. Then any K-invariant linear functional on M(H\G) is
proportional to

∫
.

Proof. Since the linear functional
∫

on M(H\G) is K-invariant it is
sufficient to show that all K-invariant linear functionals on M(H\G) are
proportional.

Since G = HK the restriction map defines an isomorphism of K-vector
spacesM(H\G) andM(H∩K\K) and the claim follows from the uniquness
of the Haar measure. �

Problem 0.43. (1) Show that in the case when G = SL(2, F ) and
H ⊂ G is the subgroup of upper triangular matricies. In this
case we can identify the spaceM(H\G) with the space V of locally
constant functions f on F 2−{0} such that f(cx, cy) = 1/∥c∥f(x, y)
and that the functional

∫
on V is given by∫

(f) =

∫
Z
f(x, y)dxdy

where Z = {(x, y)|max(∥x∥, ∥y∥) = 1}.
(2) Explain why this result follows from Lemma 0.42 if we take K =

SL(2,O).
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Definition 0.44. Let G be a unimodular l-group with a Haar measure
dg.

(1) We denote by C(G) the space of C-valued locally constant functions
ϕ on G.

(2) For any f ∈ S(G) we consider fdg as a linear functional on the
space C(G) given by

fdg(ϕ) :=

∫
G
fϕ, ϕ ∈ C(G)

(3) We denote by H(G) the space of linear functionals h the space
C(G) on G of the form h = fdg, f ∈ S(G). and say that elements
of H(G) are locally constant measures on G with compact support.

(4) Since G is a unimodular l-group the left and right regular repre-
sentations l, r : G → Aut(S(G) define the left and right regular
representations G→ Aut(H(G) which we also denote by l and r.

(5) For any h′ = f ′dg′ ∈ H(G′), h′′ = f ′′dg′′ ∈ H(G′′) we define

h′�h′′ := f ′(g′)f ′′(g′′)dg′dg′′ ∈ H(G′ ×G′′)

(6) We denote by (h′, h′′) → h′ ⋆ h′′ the convolution

h′ ⋆ h′′ := m⋆(h
′�h′′)

where m : G×G→ G is the product map. In other words

h′ ⋆ h′′(ϕ) := h′�h′′(m⋆(ϕ)), ϕ ∈ C(G)

(7) The algebra H(G) is called the Hecke algebra of G.
(8) For any compact open subgroup K ⊂ G we denote by eK ⊂ H(G)

the idempotent given by the Haar measure ofK and writeHK(G) =
eKH(G)eK .

(9) For any compact not necessarily open subgroup K of G we denote

by eK ∈ K̂ the endomorphism of H defined by

eK(h) = m⋆(eK�h)
In other words if h = fdg then eK(h) = f ′dg where f ′(x) =∫
K f(kx).

(10) For any x ∈ G we denote by Ex ∈ K̂ the endomorphism of H
defined by Ex(h)(g) := l(x)(h), h ∈ H(G) and say that Ex is the
delta function at x.

(11) We denote by
∫
the linear functional on H(G) given by

∫
h := h(1).

Problem 0.45. (1) If h′ = f ′dg, h′′ = f ′′dg then h′ ⋆h′′ = f ′ ⋆f ′′dg
where

f ′ ⋆ f ′′(g) :=

∫
g′∈G

f ′(g′)f ′′(g′
−1
g)dg

(2) H(G) is an idempotented algebra.
(3)

∫
f ′ ⋆ f ′′ =

∫
f ′

∫
f ′′.
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(4) For any g ∈ G and any compact open subgroup K ⊂ G there exists
unique a(g) ∈ HK(G) such that supp a(g) ⊂ KgK and

∫
a(g) = 1.

(5) The element a(g) ∈ HK(G) depends only on the double coset
KgK ∈ K\G/K and the set {a(g)}, gK ∈ K\G/K is a basis of
HK(G).

(6) For any n ∈ NG(K) and any g ∈ G we have a(ng) = a(n)a(g), a(gn) =
a(g)a(n).

(7) Let K,K ′,K ′′ ⊂ G be compact subgroups such that K ′K ′′ = K.
The eK′eK′′ = eK .

(8) For any x ∈ G and any compact subgroupK ⊂ G we have exKx−1 =
ExeKExx−1.

(9) H(G) has countable dimension.

2.2. Representations of l-groups.

Definition 0.46. Let G be a unimodular l-group with a Haar measure
dg.

(1) A representation π : G → Aut(V ) of the group G on a complex
vector space V is smooth if for any vector v ∈ V the stabilizer
Stv ⊂ G of v in G is open.

(2) We denote by M(G) the category of smooth representations of G.

If (π, V ) is a smooth representation of G, we can give V the structure of
an H(G)-module as follows. Given E ∈ H(G) and v ∈ V we choose an open
compact subgroup K such that E is right K-invariant and Kv = v. Since E
is right K-invariant and has compact support it is a finite sum of left shifts
of the χK

E =
∑
i∈I

cigiχK , ci ∈ C, gi ∈ G.

Now we define
E(v) :=

∑
i∈I

cigiv.

In other words we constructed a functor M(G) → M(H(G)).

Proposition 0.47. Let G be an l-group. The functor M(G) → M(H(G))
defines an equivalence of categories

M(G) ≡ M(H(G))

between smooth representations of G and non-degenerate H(G)-modules.

Proof. Let M be a smooth H-module and g ∈ G. We want to define
a representation π : G → AutC(M). To define π(g), g ∈ G consider the
automorphism Eg of H(G) given by the left shit by g. The automorphism Eg
commutes with the action of Hop(G) and therefore belongs to Ĥ(G). Since

by Lemma 0.16 the algebra Ĥ(G) we can define π(g) := EgM .

Problem 0.48. Show that

(1) The assignment g → π(g) defines a representation of G on M .
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(2) The functor M(G) → M(H(G)) defines an equivalence of cate-
gories.

�

We will identify categories M(G) and M(H(G)) and write Irr(G) :=
IrrH(G) .

Definition 0.49. Let K be a compact subgroup of G.

(1) We denote by eK an element of EndHop(G)(H(G)) given by the left
convolution with the Haar measure on K.

(2) For any smooth G-module π : G → Aut(V ) we denote by π(eK) ∈
End(V ) the endomorphism defined as in Lemma 0.16.

Problem 0.50. (1) For any smooth G-module V the associated
H(G)-module is non-degenerate.

(2) Let Cl(G) be the space of C-valued functions on G andX(M) which
are left-sided invariant under some open compact subgroup of G.

Construct an isomorphism Cl(G) = H̃(G) where we consider H(G)
as the left regular representation of G.

(3) Let V1, V2 be smooth representations of G and <,>: V1 × V2 → C
be a G-invariant pairing. There exists unique G × G-equivariant
morphism κ<,> : V1 ⊗ V2 → C(G) such that

κ<,> : (v1 ⊗ v2)(e) =< v1, v2 >

and the map <,>→ κ<,> : defines a bijection between G-invariant
pairings V1×V2 → C and G×G-equivariant morphisms V1⊗V2 →
C(G).

(4) For any smooth representation (π, V ) of G and any v ∈ V the map
h → π(h)v defines an element of the space ψv ∈ HomG(S(G), V ).
Show that for admissible representations (π, V ) of G the map ψV :
V → HomG(S(G), V ), v → ψv is a bijection.

(5) Consider the case G = Ga(F ) where F is a local non-archimedian
field. Is the map ψS(G) a bijection?

The next lemma is a statement that our Hecke algebra resembles a
semisimple algebra in a crucial sense.

Lemma 0.51. [Separation Lemma]. Suppose that G be an unimodular
l-group countable at infinity. Then for any non-zero h ∈ H(G) there exists
an irreducible representation ρ of G such that ρ(h) ̸= 0.

Remark 0.52. The result is true for all locally compact groups and
follows immediately from the theorem of Gelfand-Milman but in the case
l-groups one can give a proof which does not use Functional Analysis.

Proof. Since G is unimodular we choose a Haar measure dg and iden-
tify H(G) with S(G), f → fdg. Consider the map H(G) → H(G), h → h+
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given by f(g)dg → f̄(g−1)dg where f̄(g) is the complex conjugation of f(g)
and define u = h ⋆ h+. Then u = ψdg where

ψ(r) =

∫
g∈G

f(g)f̄(r−1g)dg

Setting r = e, it is obvious that ψ(e) ̸= 0.
We have shown is that h ̸= 0 implies u ̸= 0. So it is enough to find a

representation ρ so that ρ(u) = ρ(h)ρ(h+) ̸= 0. Note that u+ = u. Thus

u2 = uu+ = (hh+)(hh+)+ ̸= 0

and more generally that un ̸= 0. Choose an idempotent e of H such that
e ⋆ u ⋆ e = u. As follows from Lemma 0.19 it is sufficient to prove that
there exists an irreducible representation ρ of the unital algebra eHe such
that ρ(u) ̸= 0. Since u is not nilpotent the Separation Lemma follows from
Lemma 0.5. �

Remark 0.53. The reduction to the case of a non-nilpotent element
h ∈ H(G) is not purely algebraic since we use the notion of positivity specific
for R ⊂ C.

Problem 0.54. Prove the Separation Lemma without the assumption
that G is unimodular.

Definition 0.55. Let G be a unimodular l-group. A smooth represen-
tation π of G is compact if for any v ∈ V and any open compact subgroup
K ⊂ G there exists a compact C of G such that π(eK)π(g)v = 0 for g /∈ C.

Proposition 0.56. If smooth irreducible representation π : G→ Aut(V )
is compact then the corresponding representation π : H(G) → End(V ) of the
Hecke algebra H(G) is also compact.

Proof. We fix a Haar measure dg on G and will identify the algebra H
with the space S(G) of functions on G.

Assume that the representation π of G is compact and fix an idem-
potent e ∈ H(G). We want to show that the representation πe : He →
End(Ve),He = eHe, Ve = eV is compact. It is easy to see that it is sufficient
to analyze the case when e = eK is a Haar measure of an open compact
subgroup K ⊂ G. In this case we can identify the algebra He with the space
of functions on K\G/K with finite support.

We first check that the space Ve is finite-dimensional. Fix v ∈ V − 0.
Since the representation π is irreducible the space V is spanned by π(g)v.
Thus the space Ve is spanned by vectors π(eK)π(g)v. But by the definition
of compact representation, there exists a finite subset R of K\G such that
π(eK)π(g)v = 0 forKg ∈ K\G−R. So the the space Ve is finite-dimensional.

Since the representation π of G is compact the function κ(v, λ), v ∈
Ve, λ ∈ V ∨

e on G defined by κ(v, λ)(g) := λ(π(eK)π(g)(v)) has finite support.
So we can define a bilinear form κ : Ve × V ∨

e → He, (v, λ) → κ(v, λ). This
bilinear form defines a linear map κ : Ve ⊗ V ∨

e → He and, since the space



2. l-GROUPS 17

Ve is finite-dimensional, a linear map κ : End(Ve) → He. It is clear that the
map κ : End(Ve) → He is a morphism of He ⊗Hop

e -modules.

Lemma 0.57. (1) The composition πe ◦ κ : End(Ve) → End(Ve) is
not equal to 0.

(2) There exists a non-zero constant dπ ∈ C such that dπ(πe◦κ) = IdVe.

Proof. Let Ṽe := Im(κ) and ρ : He → End(W ) be a irreducible rep-
resentation of He which is not equivalent to πe. Then the composition
ρ ◦ κ : End(Ve) → End(W ) is a morphism of irreducible He ⊗Hop

e -modules.
Since ρ is not equivalent to πe we see that ρ ◦ κ = 0. We see that the
restriction of ρ on Ṽe vanishes for all irreducible representation of He not
equivalent to πe. The Lemma follows now from 0.51.

Since the composition πe ◦ κ : End(Ve) → End(Ve) is a non-zero endo-
morphism of an irreducibleHe⊗Hop

e -module there exists a non-zero constant
dπ ∈ C such that dππe ◦ κ = IdVe . �

�
Problem 0.58. (1) Show that the constant dπ does not depend on

a choice of an idempotent e ∈ H(G) as long as it is defined [that is
when Ve ̸= {0}].

(2) Formulate and prove the converse of the Theorem.

Definition 0.59. We say that dπ is the Formal Dimension of a compact
representation π.

Remark 0.60. The formal dimension depends on a choice of a Haar
measure dg.

Problem 0.61. Assume that the group G is compact and the Haar
measure dg is such that

∫
G dg = 1. Then for any irreducible representation

(π, V ) of G we have dπ = dim(V ).

Theorem 0.62. Let (π, V ) be an irreducible compact representation,
K ⊂ G an open compact subgroup such that VeK ̸= {0} and

EW,K = dπκ(IdVeK ) ⊂ HeK

Then

(1) EW,K ∈ HeK is an idempotent.
(2) For any smooth representation (ρ,W ) of G we have a direct sum

decomposition W =W0 ⊕W1 where W0 is a multiple of V and W1

does not have subquotients isomorphic to V .

Proof. The first part follows immediate from the definition of the for-
mal dimension. To construct a decomposition we define

W0 := ∪K′Im(ρ(EW,K′)),W1 := ∩K′ Ker(ρ(EW,K′))

where K ′ runs through the set of open coma-ct subgroups of G. As follows
from the complete reducibility of the restriction of η on K the subspaces
W0,W1 are G-invariant and W =W0 ⊕W1.
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As follows from Lemma 0.57 any subquotient ofW isomorphic to (ρ,W )
is not not killed by EW,K . Hence W1 cannot have any such subquotients
isomorphic to V .

To show that W0 is a direct sum of copies of V note that by the Lemma
0.57 , ρ(EW,K) = 0 for any irreducible not equivalent to ρ. Therefore, all
irreducible subquotients of V0 are isomorphic to (π, V ) and the claim follows
from 0.10. �

Definition 0.63. (1) We denote by G0 ⊂ G the subgroup gener-
ated by {K} when K runs through the set of compact subgroups
of G.

(2) We write Λ(G) := G/G0.
(3) We denote the center of G by Z(G).
(4) A smooth representation (π, V ) of a group G is compact modulo

center if for any v ∈ V and any open compact subgroup K ⊂ G
there exists a compact C of G such that π(eK)π(g)v = 0 for g /∈
CZ(G).

Problem 0.64. (1) Assume that Z(G)G0 is a subgroup of finite
index in G. Then an irreducible representation π of G is compact
modulo center iff the restriction of π to G0 is compact.

(2) Let G = GL(n). Show that
(a) G0 = {g ∈ G| det g ∈ O∗}.
(b) G0 is an open, normal subgroup of G with Λ(G) = Z = F ∗/O∗.
(c) Z(G)G0 is an open subgroup of finite index in G.

Remark 0.65. Analogous statements are true for an arbitrary reductive
group G. For example,Λ(G) = Zk for G = GL(n1)× · · · ×GL(nk).

Example 1. If G is a compact group then every smooth G-module M
is completely reducible, that is M =

⊕
Wα where the Wα are irreducible.

Thus, the representation theory is entirely controlled by the the knowledge
of irreducible representations and in a simple way.

Example 2. G = F ∗ (This is “almost” compact.) Let π be a generator
for the maximal ideal in the ring of O ⊂ F . Then we have a decomposition

F ∗ = Zπ ⊕O∗.

Here O∗ is compact and M(Z) = M(C[t, t−1]), the category of sheaves on
C∗. Thus,

Irr(G) = Irr(Z)× (O∗)∨

where (O∗)∨ is the discrete set of characters of the compact group O∗.
The point here is that the structure of the representations is half discreet

and half continuous. Specifically, it is a discrete sum of the category of
sheaves on some space. We will see that this is a typical situation.
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3. The Induction and Jacquet Functors.

Remark. The way to make an advance in representation theory is to find a
way to construct representations. Practically our only tool is the induction.

3.1. Induction.

Definition 0.66. Let H be a closed subgroup of G.

(1) We denote by Res′ = Res′HG : M(G) → M(H) the restriction
functor.

(2) For any smooth representation (ρ, V ) of M we denote by Ind′(V )
the functions f : G→ V such that
(a)

{f : G→ V |f(hg) = ρ(h)f(g)}
and

(b) There exists an open subgroup K of G such that f(gk) ≡
f(g), g ∈ G, k ∈ K.

(3) We define the representation Ind′(ρ) of G on Ind′(V ) by right shifts

Ind′(ρ)(g)f(x) = f(xg)

(4) We consider Ind′(V ) as a functor from M(H) to M(G).

(5) We denote by ind′ = ind′
G
H(V ) the subfunctor of Ind′

G
H given by

ind′
G
H(V ) = {f ∈ Ind′(V )|f has compact support modulo H}.

Lemma 0.67. (1) The functor Ind′ is the right adjoint of Res′ .
(2) If H is open then the functor ind′is the left adjoint of Res′.

Proof. (1) Given (ρ, V ) and (π,W ) ∈ M(G) we define a map κ :
HomG(W, Ind

′(V )) → HomM (Res′(W ), V ) by

κ(ϕ)(w) := ϕ(w)(e), ϕ ∈ HomG(W, Ind
′(V )), w ∈W

Conversely we define a map

κ′ : HomM (Res′(W ), V ) → HomG(W, Ind
′(V ))

by

κ′(ψ)(w)(g) := ψ(π(g)(w)), ψ ∈ HomM (Res′(W ), V ), w ∈W

(2) Consider a vector eH,v ∈ ind′(V ) given by eH,v(g) = ρ(g)v if g ∈ H
and eH,v(g) = 0 if g ∈ G−H and define a map

θ : HomG(ind
′(V ),W ) → HomM (V,Res′(W ))

by θ(ϕ)(v) := ϕ(eH,v).

Problem 0.68. (1) Show that κ and κ′ are the inverse maps.
(2) Show that θ : HomG(ind

′(V ),W ) → HomM (V,Res′(W )) is a bijec-
tion.

�
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As we will see it is better to replace the usual induction by the unitary
induction. Assume that the group G is unimodular.

Definition 0.69. Let H be a closed subgroup of G.

(1) We define the functor IndGH : M(H) → M(G) of the unitary in-
duction by

Ind(ρ) := Ind′
G
H(∆

1/2
H ⊗ ρ)

(2) We denote by indGH the subfunctor of IndGH of functions compact
modulo H.

(3) We de define the functor ResHG : M(H) → M(G) of the unitary
restriction by

ResHG (π) := Res′
H
G (π)⊗∆

−1/2
H

Problem 0.70. (1) Show that the functor ResHG is the left adjoint
to IndGH .

(2) Let (ρ,W ) be smooth representation of the groupH and <,> be an
H-invariant bilinear Hermitian form on W . Then for any f ′, f ′′ ∈
indGH(W ) the function < f ′(g), f ′′(g) > on G belongs to the space
M(H\G) [see 0.40] and the the bilinear form

[f ′, f ′′] :=

∫
< f ′(g), f ′′(g) >

defines aG-invariant bilinear Hermitian form on the space indGH(W ).

Proposition 0.71. (1) Both functors IndGH and indGHare exact.
(2) If H\G is compact, Ind = ind.
(3) If H\G is compact, induction maps admissible representations to

admissible representations.

Proof. The parts (1) and (2) are obvious.
(3) Let V be an admissible representation of H and fix K ⊂ G a com-

pact open subgroup. Let {HgiK} be a system of coset representatives for
H\G/K. By our assumption, this is a finite set. It is clear that an element,
f , of L(V )K is determined by its values on the gi. Moreover, the image of gi
must lie in the subset of V fixed by H ∩ giKg−1

i which is finite dimensional
since we are assuming that V is admissible. �

3.2. Jacquet Functor.

Definition 0.72. . For any smooth representation (ρ, V ) of G we denote
by VG the space of coinvariants V/V (G) where V (G) is the subspace spanned
by vectors π(g)v − v, v ∈ V, g ∈ G and denote by J : V → VG the natural
projection.

Remark 0.73. When G is a finite group, it is often useful to consider
the functor of invariants V G := HomG(CG, V ). It turns out that for non-
compact l-groups this notion is not useful. However, the functor JG of
coinvariants is useful since it is often exact.
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Proposition 0.74. (1) The functor JG from the category M(G)
to the category of vector spaces is right exact.

(2) If G is compact then V (G) = Ker eG and the functor JG is exact.
(3) If G = ∪iUi is the union of an increasing family of compact groups

Gi, then the functor JG is exact and
V (G) = {v ∈ V |

∫
g∈Gi

ρ(g)vdg = 0 for some i > 0}.

Proof. (1) is obvious.
(2) We have an exact sequence

0 → V (G) → V → VG → 0.

When G is compact, this implies that the composition V G → V → VG is a
bijection. But the functor V → V G is left exact.

(3) If G = ∪iUi then JG(V ) = lim JUi(V ). But the direct image of exact
functors is exact and the first part of (3) follows from (2).

Since JG(V ) = lim JUi(V ) the second part of (3) follows from the equality
V (Gi) = {v ∈ V |

∫
g∈Gi

ρ(g)vdg = 0i > 0} which is an immediate con-

sequence of the complete reducibility of smooth representations of compact
groups. �

Definition 0.75. Let P =M nU be an l-group such that both groups
M and U are unimodular and ρ : P → Aut(V ) be a smooth representation.
SinceM normalizes U we have a representation ρ̃ :M → Aut(VU ) such that

ρ̃(m)J(v) = J(ρ(m)v), v ∈ V

where J : V → VU is the natural projection. If P is a subgroup of a
unimodular group G we define the Jacquet functor corresponding to P =
M n U ⊂ G as the composition rM,U := r̃M,U ◦ResPG : M(G) → M(M).

4. Unitary Structure

Let G be an l-group and (ρ, V ) a smooth representation of G.

Definition 0.76. (1) A unitary structure on a G-module (π, V )
is a positive definite, G-invariant Hermitian scalar product Q :
V ⊗ V → C.

(2) Let P = MU be a parabolic subgroup of G and (ρ,W,<,>) be a
unitary representation of M . We define the unitary structure Q on
(π, V ) = (iM (ρ), iM (W )) by

Q(f1, f2) =

∫
x∈P\G

< f1(x), f2(x) >

where the linear functional
∫

is as in Definition 0.40.

Remark 0.77. We do not assume that V is complete with respect to
this structure.

The essential uniqueness of an invariant scalar product for irreducible
representations follows from the following version of the Schur’s lemma.
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Lemma 0.78. [Schur’s Lemma] Let G be a reductive F -group and V be
an irreducible G-module. Then any two G-invariant unitary structures on
V are proportional.

Proof. Let V + be anti-linear dual of V , that is the space of anti-linear
functionals. A G-invariant Hermitian scalar product Q : V ⊗V → C defines
a G-equivariant semi-linear map V → V +. As V is smooth, we obtain a
semi-linear map κ : V → (V +)sm. Since V is admissible we see that V +

sm

is also admissible and irreducible. Therefore the G-equivariant linear map
κ : V → (V +)sm is a bijection. It follows now from the Schur’s lemma
that any two non-zero G-equivariant semi-linear maps V → (V +)sm are
proportional. �

Remark 0.79. There are not many ways of constructing unitary repre-
sentations. The only general procedure is to find a space X with a G-action.
Then G acts on C∞(X) and we can find V ⊂ L2(X, dµ). However, it is not
clear how to find such X. The two natural choices are X =point which gives
the trivial representation, and X = G which is what we did above.

It is somehow more difficult to classify unitary representations then gen-
eral ones.

Lemma 0.80. Any smooth admissible unitary representation (π : GAut(V ), Q)
of G is completely reducible. [That is, V =

⊕
Vi where the Vi are irreducible

unitary subrepresentations.]

Remark 0.81. The assumption of the admissibility is important.

Proof. We want to show that for any G-invariant subspace W ⊂ V we
can find a G-invariant complement. Consider the orthogonal complement,

W⊥ := {w⊥ ∈ V |Q(w,w⊥) = 0,∀w ∈W}.
Since the form Q is G-invariant the subspace W⊥ ⊂ V is also G-invariant.
Since Q is positive definite we have W ∩W⊥ = 0. It remains to check that
W +W⊥ = V . For this it is enough to check that for any compact open
subgroup K ⊂ G we have WK +(W⊥)K = V K . Since [by the admissibility]
the space V K is finitely-dimensional we have V K = WK ⊕ (WK)⊥ ∩ V K .
So it is sufficient to show that (WK)⊥ ∩ V K ⊂ W⊥. Since the group K
is compact we have W = WK ⊕ L where L := {l ∈ V |

∫
K π(k)ldk = 0}.

Then < l, v >= 0 for all v ∈ V K , l ∈ L and we see that < w, v >= 0 for all
v ∈ (WK)⊥ ∩ V K , w ∈W. �

Corollary 0.82. Let V be an admissible unitary representation V of
G such that EndG(V ) = C. Then V is irreducible.

This Corollary provides a method for establishing the irreducibility of
some representations.

Definition 0.83. (1) For any v ∈ V, λ ∈ Ṽ we define the ma-
trix coefficient mṽ,v(g) as a function on G given by mṽ,v(g) =

ṽ(π(g)v), v ∈ V, ṽ ∈ Ṽ .



5. GEOMETRY OF GENERAL LINEAR GROUPS. 23

(2) Assume now that (π, V ) is an irreducible representation of G such
that the restriction to the center Z(G) is equal to χIdV where
χ : Z(G) → C⋆ is a unitary character. We say that V is square
integrable modulo center if∫

G/Z
|mξ,ξ̃(g)|

2dg <∞.

Problem 0.84. Let (π, V ) be an irreducible representation of G which
is essentially square integrable modulo center. Then

(1) (π, V ) admits a unitary structure.

(2) |mv,ṽ(g)|2 ∈ L1(G/Z(G)) for all v ∈ V, λ ∈ Ṽ .

5. Geometry of general linear groups.

5.1. Flags. Let E be a field and V a vector space over E of dimension
n,G := Aut(V ).

Definition 0.85. (1) A flag in V is a strictly increasing sequence

F = {{0} ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vk = V }.
(2) A flag F is complete if k = n.
(3) Given two complete flags F = {{0} ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vn = V }

and F ′ = {{0} ⊂ V ′
1 ⊂ V ′

2 ⊂ ... ⊂ V ′
n = V } we define the relative

position w = w(F ′,F) as a function from [1, n] to [1, n] such that

w(i) := min{j|Vi ⊂ Vi−1 + V ′
j }, 1 ≤ j ≤ n

(4) We denote by B the set of complete flags in V and denote by
(g,F) → gF the natural action of the group G on B.

(5) For any flag F = {{0} ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vk = V } we denote
by PF ⊂ G the stabilizer of F and by UF ⊂ PF the subgroup of
transformations acting trivially on quotients V̄i := Vi/Vi−1.

Lemma 0.86. Let F ,F ′ be complete flags and w := w(F ,F ′).

(1) The function w from [1, n] to [1, n] is a permutation. In other
(2) Let Li ⊂ Vi, 1 ≤ i ≤ n be one-dimensional subspaces not contained

in Vi−1 + V ′
j−1, j := w(F ,F ′)(i). Then for all i, 1 ≤ i ≤ n we have

Vi = ⊕i
k=1Lk, V

′
j = ⊕i

k=1L
−1
w (k).

(3) For any pair (F ,F ′) ∈ B2, g ∈ G we have

w(gF , gF ′) = w(F ,F ′)

(4) For any pair (F̃ , F̃ ′) ∈ B2 such that w(F ,F ′) = w(F̃ , F̃ ′) there

exists g ∈ G such that (gF , gF ′) = (F̃ , F̃ ′)

Proof. (1) Assume that w(F ′,F)(a) = w(F ′,F)(b) = j for some pair
1 ≤ a < b ≤ n. By the defintion we can find va ∈ Va − Va−1, vb ∈ Vb − Vb−1

such that va, vb ∈ V ′
j −V ′

j−1. Let v̄a, v̄b be images of va, vb in V̄
′
j := V ′

j /V
′
j−1.



24

Since v̄a ̸= 0 and dim(V̄ ′
j ) = 1 there exists λ ∈ C such that v̄b = λv̄a.

In other words vb − λva ∈ V ′
j−1. But this contradicts the assumption that

w(F ,F ′)(b) = j.
(2) We prove the equality Vi = ⊕i

k=1Lk be the induction in i. The claim
is obviously true for i = 1. By inductive assumptions the sum ⊕i

k=1Lk is
contained in Vi−1 + Li ⊂ Vi and properly containes Vi−1. Since dim(Vi) =
dim(Vi−1) + 1 we see that Vi = ⊕i

k=1Lk.
The proof of the equality V ′

j = ⊕i
k=1L

−1
w (k) is completely analogous.

(3) Follows immediately from the definition.

(4) Follows from the existence of g ∈ G such that gLi = L̃i, 1 ≤ i ≤ n

where L̃i are lines corresponding to the pair (F̃ , F̃ ′). �

Problem 0.87.
Show that NG(P ) = P for any parabolic subgroup P of G where NG(P ) is
the normalizer of P in G.

Definition 0.88. (1) For any w ∈W we define

X(w) := {(F ,F ′) ∈ B × B|w(F ,F ′) = w}.

(2) A splitting of V is a choice SP of a direct sum decomposition V =
⊕k
i=1Wk.

(3) With any splitting SP of V, V = ⊕k
i=1Wk we associate a flags

F(SP) := {{0} ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vk = V }

and

F̄(SP) := {{0} ⊂ V̄1 ⊂ V̄2 ⊂ ... ⊂ V̄k = V }

where Vi := ⊕i
j=1Wi and V̄i := ⊕k

j=k−i+1Wi.

(4) A subgroup P of G is a parabolic if it is equal to the stabilizer
PF ⊂ G of a flag F .

(5) A subgroup B of G is a Borel if it is equal to the stabilizer of a
complete flag F .

(6) We say that UF is the unipotent radical of PF
(7) A subgroup M of G is Levi if it is a stabilizer of some splitting SP.
(8) Two parabolic subgroups P,Q of G are opposite if the intersection

P ∩Q is a Levi subgroup in both P and Q.

We choose a basis e1, e2, ..., en of V and identify the group G with
GL(n,E) and denote by T ⊂ G the subgroup of diagonal matrices.

Definition 0.89. (1) We denote by F0 = {{0} ⊂ V1 ⊂ V2 ⊂
... ⊂ Vn = V } the complete flag in V such that Vi is the span
of e1, e2, ..., ei.

(2) We denote by F−
0 = {{0} ⊂ L1 ⊂ L2 ⊂ ... ⊂ Ln = V } the complete

flag in V such that Li is the span of en, en−1, ..., en−k+1.



5. GEOMETRY OF GENERAL LINEAR GROUPS. 25

(3) We denote byB the stabilizer of the flag F0 and byB− the stabilizer
of the flag F−

0 .
It is clear that B is the group of upper-triangular matrices and

B− is the group of lower-triangular matrices.
(4) A partition of n is a decomposition of the interval [1, n] ⊂ Z in

a disjoint union of subsets S1, S2, ..., Sr some of which could be
empty.

(5) A partition [1, n] = S1 ∪ S2 ∪ ... ∪ Sr is standard if Si = [n1 + ...+
ni−1 + 1, n1 + ...+ ni] for some ni ∈ N, 1 ≤ i ≤ r, n = n1 + ...+ nr.

(6) For a partition θ = (S1, S2, ..., Sr) of n we denote by SPθ the split-
ting of V = ⊕k

i=1Wk where Wi is the span of ej , j ∈ Si.
(7) We denote by Fθ the corresponding flag and by Pθ the stabilizer of

Fθ.
(8) A standard parabolic subgroup of G is a subgroup of the form Pθ

for some standard partition θ of n.
(9) For any partition θ = (S1, S2, ..., Sr) of n we denote by Mθ the

stabilizer of the splitting V = ⊕k
i=1Wk where Wi is the span of

ej , j ∈ Si. It is clear that is the group Mθ = G1(θ) × ... × Gr(θ)
where Gi(θ) is isomorphic to GL(ni, E), ni := |Si|.

(10) For any permutation w we denote by Bw ⊂ B the subspace of flags
F such that w(F0,F) = w.

(11) A standard Levi subgroup of G is a subgroup of the form Mθ for a
standard partition θ of n.

(12) We write M < G if M is a standard Levi subgroup of G.
(13) We denote by B ⊂ G the subgroup of upper-triangular matrices.
(14) We denote by δ : B → E⋆ the character which maps b ∈ B into

the product
∏

1≤i<j≤n biib
−1
jj where bii, 1 ≤ i ≤ n are the diagonal

entries of b.
(15) We say that a subgroup P of a product GL(m1, E)×...×GL(mt, E)

is parabolic if it has a form P = P1×...×Pt where all the subgroups
Pi ⊂ GL(mi, E), 1 ≤ i ≤ t are parabolic.

(16) For any w ∈W we define Uw := U ∩ wB−w1 ⊂ U .

Problem 0.90. (1) For any w ∈W the group Uw acts simply tran-
sitively on the set Bw.

(2) Any parabolic subgroup of G is conjugated to unique standard
parabolic subgroup.

(3) Any Levi subgroup of G is conjugated to a standard Levi subgroup
Mθ < G but such θ is not necessarily unique.

(4) Any subgroup of G containing B is a standard parabolic subgroup
of G.

(5) For any splitting SP V = ⊕k
i=1Wk we have

PF(SP) =MSP n UF(SP).
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(6) Let B,B′ be opposite Borel subgroups of GL(n,E). Then there
exists g ∈ GL(n,E) such that gBg−1 is the subgroup of upper-
triangular matrices and gB′g−1 is the subgroup of lower-triangular
matrices.

(7)
(8) Let P = MU,Q = NV be parabolic subgroups of G such that

Q ⊂ P and N ⊂ M . Then QM := M ∩Q is a parabolic subgroup
of M and QM = N n VM , VM := V ∩M .

Definition 0.91. Let θ = (S1, ...Sr), τ = (R1, ...Rt) be two partitions
of n and fix i, 1 ≤ i ≤ r.

(1) We denote by τi the partition {Si∩Rj}, 1 ≤ j ≤ t of Si and denote
by by Pτi ⊂ Gi(θ) the corresponding parabolic subgroup.

(2) We write Pτ (θ) :=
∏r
i=1 Pτi ⊂Mθ and write Pτ (θ) =Mτ (θ)Uτ (θ).

(3) Completely analogously we define partitions θj of Rj and a sub-
group Pθ(τ) =Mθ(τ)Uθ(τ) ⊂Mτ .

Problem 0.92. Show that Mτ (θ) = Mθ(τ) = Mθ∧τ where θ ∧ τ the
partition

{Si ∩Rj}, 1 ≤ i ≤ r, 1 ≤ j ≤ t

of n.

Remark 0.93. The claim make sense since Levi subgroupsMS1,S2,...,Sr ⊂
G do not depend on the order of the subsets S1, S2, ..., Sr.

5.2. Symmetric group.

Definition 0.94. (1) Let W := Sn be the symmetric group on n
letters.

(2) We consider an imbedding w → wi,j := δw(i),j of Sn into the sub-
group of permutation n × n-matrices and identify the symmetric
group W := Sn with it image in GL(n,E).

(3) for any diagonal matrix t ∈ T,w ∈W we define tw := wtw−1.
(4) We denote by w0 ∈ Sn the permutation i↔ n− i+ 1.
(5) For any i, 1 ≤ i < n we denote by si ∈ Sn, 1 ≤ i < n the permuta-

tion i ↔ i+ 1. We say that elements si ∈ W, 1 ≤ i < n are simple
reflections.

(6) For any w ∈W we define

Jw := {(i, j), 1 ≤ i < j ≤ n|w(i) > w(j)}
and write l(w) := |Jw|.

(7) For any partition θ = (S1, ..., Sr) of n we denote by Wθ ⊂ Sn the
stabilizer of the partition θ. It is clear thatWθ =

∏r
i=1Wi(θ) where

Wi(θ) is the group of permutations of the set Si.
(8) We now define the Bruhat order on the symmetric group Sn. For

any permutations w : i → ai, w
′ : i → a′i, 1 ≤ i ≤ n we say that w′

is a reduction of w if the sequence {a′i} can be obtained from the
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sequence {ai} by interchanging ai ↔ aj for some i, 1 ≤ i < n, j > i
ai > aj . Define w′ < w if w′ can be obtained from w by a sequence
of reductions.

(9) For any w ∈W we define W≤w := {w′ ∈W |w′ ≤ w}.

Problem 0.95. (1) The group Sn is generated by the set of simple
reflections {si}, 1 ≤ i < n.

(2) For any w ∈ Sn and any decomposition w = si1 ...sil in a product
of simple reflections we have l ≥ l(w).

(3) For any w ∈ Sn there exists a decomposition w = si1 ...sil in a
product of simple reflections such that l = l(w). In this case we
say that w = si1 ...sil is a reduced decomposition of w.

(4) Let w = si1 ...sil ∈ W be a reduced decomposition and w′ is
obtained by omitting some factors in this decomposition. Then
w′ < w.

(5) Conversely let w′, w ∈W be such that w′ < w and w = si1 ...sil be
a reduced decomposition. Then we can obtain w′ omitting some
factors in this decomposition.

(6) The generators {si}, 1 ≤ i < n satisfy the relations
s2i = e
sisj = sjsi, |i− j| > 1, 1 ≤ i, j < n and
sisi+1si = si+1sisi+1, , 1 ≤ i < n− 1.

(7) ⋆ The group Sn is defined by this set of relations.
(8) For any t ∈ T,w ∈W we have

δ(t)/δ(tw) =
∏

(i,j)∈Jw

aia
−1
j

where ai = tii.
(9) If w′ < w then w′w0 > ww0.

Definition 0.96. (1) For any w ∈W we define

X(w) := {(F ,F ′) ∈ B × B|w(F ,F ′) = w}.

So X(e) = ∆B where ∆B ⊂ B × B is the diagonal and

{F0} × Bw = {F0} × B ∩Xw.

(2) For any i, 1 ≤ i < n we define X̄(si) = X(si) ∪X(e).
(3) For any w1, w2, ..., wr ∈W we define

Z(w1, w2, ..., wr) = {(F1,F2, ...,Fr+1 ∈ Br|(F1,F2) ∈ X(w1), (F2,F3) ∈ X(w2), ..., (Fr,Fr+1) ∈ X(wr)

(4) For any l ≥ 2 we denote by q = q1,l+1 : Bl+1 → B2 the projection
to the first and the last factors.

(5) For any simple reflection si ∈W we define X̄(si) := X(si) ∪∆B.
(6) For any reduced decomposition w = si1 ...sil we define

Z̄(si1 , si2 , ..., sil) = {(F1,F2, ...,Fl+1 ∈ Br|(F1,F2) ∈ X̄(s1), (F2,F3) ∈ X̄(s2), ..., (Fl,Fl+1) ∈ X̄(sr)
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Problem 0.97. For any w ∈ W and a simple reflection si we
have

(1) Z(w, si) = X(wsi) if l(wsi) > l(w).
(2) Z(w, si) = X(wsi) ∪X(w) if l(wsi) < l(w).
(3) If l(wsi) > l(w) then W≤wsi =W≤w ∪W≤wsi.

Lemma 0.98. Show that for any reduced decomposition w = si1 ...sil the
restriction of q on Z(i1, ..., il) defines a bijection between Z(i1, ..., il) and
X(w).

Proof. I’ll explain the proof in the case when G = GL(3), w = w0 ∈ S3
is the longest elements and w0 = s1s2s1 a reduced decomposition. The
general case is quite similar.

In our case

X(w0) = {F0 = (L0
1 ⊂ L0

2),F ′ = (L′
1 ⊂ L′

2)|L1 ̸⊂ L′
2, L

′
1 ̸⊂ L2}

and

Z(s1, s2, s1) = {F0 = (L0
1 ⊂ L0

2),F1 = (L1
1 ⊂ L1

2),F2 = (L2
1 ⊂ L2

2),F ′ = (L′
1 ⊂ L′

2)

such that

L0
1 = L1

1, L
1
2 = L2

2, L
2
1 = L′

1;L
0
2 ̸= L1

2, L
1
1 ̸= L2

1, L
2
2 ̸= L′

2.

It is easy to check that these conditions imply that L1 ̸⊂ L′
2, L

′
1 ̸⊂ L2. So

q(Z(s1, s2, s1)) ⊂ X(w0).
Conversely for any (F0 = (L0

1 ⊂ L0
2),F ′ = (L′

1 ⊂ L′
2)) ∈ X(w0) we

can define F1 = (L0
1 ⊂ L1

2 := L0
1 ⊕ L′

1 and F2 = (L1
2 ∩ L′

2, L
′
2). Then the

sequence (F0,F1,F2,F ′) belongs to Z(s1, s2, s1) and it is easy to check the
uniqueness of such a sequence for any pair (F0,F ′) ∈ X(w0). �

Proposition 0.99. For any reduced decomposition w = si1 ...sil we have

q(Z̄(si1 , si2 , ..., sil)) = ∪w′≤wX(w′)

Proof. The proof is by the induction in l. For l = 0 the claim is clear.
So assume that w = w̄sl, l(w̄) = l − 1 and that the result is known for the
reduced decomposition w̄ = si1 ...sil−1

. By the definition

Z̄(si1 , si2 , ..., sil) = {(z′,F) ∈ Z̄(si1 , si2 , ..., sil−1
)× B|(ql(z′),F) ∈ X̄(sl)}

As follows from the inductive assumption we have

q(Z̄(si1 , si2 , ..., sil)) = ∪w̄′≤w̄Yw̄′ ∪ ∪w̄′≤w̄Zw̄′

where

Yw̄′ = {(x,F) ⊂ X(w̄′)× B|(ql(x),F) ∈ X(sl)}
and

Zw̄′ = {(x,F) ⊂ X(w̄′)× B|ql(x) = F}
Proposition follows now from the previous Problem.

�



5. GEOMETRY OF GENERAL LINEAR GROUPS. 29

Problem 0.100. (1) For any standard partition θ of n and any
w ∈ Sn there exists unique w̃ ∈ wWθ such that w̃(i) < w̃(j) for any
pair (i, j), i < j. Moreover l(w̃) < l(w′) for all w′ ∈ wWθ, w

′ ̸= w̃.
(2) For any two standard partitions θ, θ′ of n and any w ∈ Sn there

exists unique w̃ ∈ Wθ′wWθ such that w̃(i) < w̃(j) for any for any
pair (i, j), i < j which belong to the same part of the partition θ
and

w̃−1(i) < w̃−1(j) for any for any pair (i, j), i < j which belong
to the same part of the partition θ′. Moreover l(w̃) < l(w′) for all
w′ ∈Wθ′wWθ, w

′ ̸= w̃.
(3) We denote by W θ,θ′ ⊂W the set of shortest elements in two-sided

classes Wθ′wWθ.
(4) For any standard Levi subgroupM < G we defineWM = NM (T )/T .

Definition 0.101. Let M,M ′ be a pair of standard Levi subgroups of
G corresponding to standard partitions θ, θ′ of n. We define

(1) W (M,⋆) := {w ∈W | such that w(M) is a standard Levi subgroup}.
It is clear that the subset W (M,⋆) of W is right WM -invariant.

(2) lG(M) := |(M,⋆)/WM |.
(3) IfM ′ < G is another standard Levi subgroups we writeW (M,M ′) :=

{w ∈W |w(M) =M ′} where w(M) := w−1Mw and say that stan-
dard Levi subgroups M,M ′ are associated if W (M,M ′) ̸= ∅. In
this case we write M ∼M ′.

(4) We write WM,N :=W θ,θ′ ⊂W .

Example 0.102. Let G = GL(3, F ).

(1) G has four standard parabolic subgroups B,P,Q and G where

P =

∣∣∣∣∣∣
⋆ ⋆ ⋆
⋆ ⋆ ⋆
0 0 ⋆

∣∣∣∣∣∣
Q =

∣∣∣∣∣∣
⋆ ⋆ x
0 ⋆ ⋆
0 ⋆ ⋆

∣∣∣∣∣∣
(2) G has four standard Levi subgroups T,MP ,MQ, G where T is the

subgroup of diagonal matricies,

MP =

∣∣∣∣∣∣
⋆ ⋆ 0
⋆ ⋆ 0
0 0 ⋆

∣∣∣∣∣∣
MQ =

∣∣∣∣∣∣
⋆ 0 0
0 ⋆ ⋆
0 ⋆ ⋆

∣∣∣∣∣∣
(3) The Levi subgroups MP and MQ are associated.
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(4) WG = S3,WMP
= {e, s1},WMQ

= {e, s1} where Sn is the symmet-
ric group on n letters and si ∈ Sn, 1 ≤ i < n are the permutations
i↔ i+ 1.

(5) W (MP ,MQ) =WMP
s2s1.

(6) W (M0, ⋆) = S3,W (MP , ⋆) =WMP
∪WMP

s2s1.
(7) lG(M0) = 6, lG(MP ) = lG(MQ) = 2.

Problem 0.103. (1) The imbedding W ↪→ GL(n,E) induces a bi-
jection W → B\GL(n, F )/B.

(2) For any pair θ, θ′ of standard partitions of n the imbedding W ↪→
GL(n,E) induces a bijection

Wθ′\W/Wθ → Pθ′\G/Pθ.

(3) For any two standard parabolic subgroups P,Q of G s θ, θ′ of n

the set W θ,θ′ ⊂ W is equal to the set of elements w ∈ W such
that w(Mθ ∩ B) ⊂ B and w−1(Mθ′ ∩ B) ⊂ B where as before
w(X) := w−1Xw for any subset X of G.

(4) Show that WMP ,MQ = {e, s2s1} where we use notation from the
previous example.

Consider now the case when E is a local field. Then B is a compact
topological space.

Definition 0.104. For any w ∈W = Sn we denote by X̄(w) the closure
of the X(w) in B × B.

Problem 0.105. (1) The closure X̄(si) of X(si) in B2 is equal to
the union X(si) ∪X(e) for all i, 1 ≤ i < n.

(2) Let q1, q2 : X̄(si) → B be the restriction of natural projections
p1, p2 : B × B → B. Then q1, q2 are fibrations with fibers P1.

(3) The set Z(i1, ..., il) is compact.
(4) For any w ∈ W and any reduced decomposition w = si1 ...sil we

have X̄(w) = q(Z(i1, ..., il)).
(5) X̄(w) = ∪w′≤wX(w′).

5.3. Mackey theory. For a finite group G we denote by M(G) the
category of representations of G.

Definition 0.106. Let G be a finite group and P,Q subgroups of G.

(1) For any w ∈ G we define w(P ) := w−1Pw we denote by Rw(P,Q)
[or simply Rw] the functor M(P ) → M(Q) given by the composi-
tion

IndQw(P )∩Q ◦σ ◦ ResP∩w−1(Q)
P

where Ind is the functor of induction, Res is the functor of restric-
tion and σ is the isomorphism M(w(P ) ∩ Q) → M(P ∩ w−1(Q))
induced by the isomorphism Ad(w).
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(2) We denote by αw(P,Q) [or simply αw] the functorial morphism

Rw → resQG ◦ indGP such that for any representation (ρ, V ) of P and
f ∈ Tw(V ) we have

αw(P,Q)(f)(g) = 0 if g /∈ PwQ and
α(P,Q)(f)(pwq) = ρ(p)f(q)
where f ∈ Rw(V ) = indGP (V ) is given by a function f : G→ V,

such that f(pg) ≡ ρ(p)f(g), g ∈ G, p ∈ P.

Lemma 0.107. [Mackey] Let wi ∈ G, 1 ≤ i ≤ r be representatives of
double cosets P\G/Q. Then the morphism

⊕r
i=1αwi : ⊕r

i=1Rwi → resQG ◦ indGP
is an isomorphism.

Proof. By the definition the space of the representation resQG◦indGP (V )
consists of functions f : G → V, such that f(pg) ≡ ρ(p)f(g), g ∈ G, p ∈ P.
and the group Q acts by right shifts. The decomposition G = ∪ri=1PwiQ
induces a direct sum decomposition

resQG ◦ indGP (V ) = ⊕r
i=1R

wi(V )

of Q-submodules where

Rwi(V ) := {f ∈ resQG ◦ indGP (V )|supp(f) ⊂ PwiQ}

Now we observe that the map f → f̂ , ĥ(q) := f(wiq) defines an equivalence
between Q-modules Rwi(V ) and Rwi(V ). �

We will need a variant

Example 0.108. Let k = Fq be a finite field, G = GL(n, k) and P =
Q = B and U0 ⊂ B be the subgroup of unipotent upper triangular matri-
ces. For any representation π of T we denote by InfBT (π) ∈ Ob(M(B)) the
composition π ◦ pT where pT : B → T is the projection B → B/U0 = T .
Since [see Problem 0.103] G = ∪w∈SnBwB we have an isomorphism

resBG ◦ indGB(π) = ⊕w∈Sn ind
B
B∩w(B) π

w

where πw(b) := π(wbw−1).
Let cTB : M(B) → M(T ) be the functor of U0-invariants.

Problem 0.109. For any representation ρ of T and any subgroup H of
B containing T we have

cTB ◦ indBH ◦ InfHT (ρ) = ρ

We see that
cTB(ind

B
B∩w(B)(π

w)) = πw

and therefore
rTG ◦ iT (π) = ⊕w∈Snπ

w

where rT := cTB ◦ resBG, iT := indGB ◦p.
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Definition 0.110. Let θ be a partition of n.

(1) We denote by iθ the functor from the category M(Mθ) to M(G)
which associates with a representation V of the group Mθ the rep-
resentation indGPθ

(V ) where we extend the action of the group Mθ

on V to the action of Pθ through the homomorphism Pθ →Mθ.
(2) We denote by rθ the functor from the category M(G) to M(Mθ)

which associates with a representation V of the group G the action
of the group Mθ on the subspace V Uθ of Uθ-invariants.

Let θ′ be another partition of n. As we know the partition θ′∧θ
defines a parabolic subgroup Pθ′(θ) of the group Mθ.

(3) We define the functors rθ′(θ) from the categoryM(Mθ) toM(θ′∧θ)
and iθ′(θ) from the category M(θ′ ∧ θ) to M(M ′

θ)
in the way we defined the functors iθ and rθ.

(4) For any representation (π, V ) of the groupMθ we denote by Ψ
θ′
θ (V ) ⊂

iθ(V ) the subspace of functions f : G → V such that f ∈ iθ(V )
and supp(f) ⊂ PθPθ′ .

(5) The group Pθ′ acts on the space Ψθ′
θ (V ) by right translations and

we denote by iθ
′
θ (V ) the representation of the group Mθ on the

subspace of Uθ′-invariants in Ψ̃θ′
θ (V ). By the construction iθ

′
θ (V ) is

a subrepresentation of iθ(V ).

Problem 0.111. For any f ∈ iθ
′
θ (V ) we denote by a(f) the restriction

of f to Mθ′ ⊂ PθPθ′ . Show that

(1) a(f)(qm′) = π(q)f(m′) for all m′ ∈ Mθ′ , q ∈ Mθ′ ∩ Pθ = Pθ(θ
′). In

other words a is a morphism from the representation iθ
′
θ (V ) of the

group Mθ′ to iθ′(θ) ◦ rθ′(θ)(V ).

(2) The morphism a : Ψθ′
θ (V ) → iθ′(θ) ◦ rθ′(θ)(V ) is an isomorphism.

Proposition 0.112. We denote by X = X(θ, θ′) the set of double cosets
Wθ\W/θ′ and choose representatives wx ∈ W for x ∈ X. Then we have a
functorial isomorphism

rθ′ ◦ iθ = ⊕x∈Xiθ′(θ
wx) ◦ σx ◦ r

θ′w
−1
x

(θ)

where σw is the isomorphism between categories M(M(θw∧θ′) and M(M(θ∧
θ′w

−1

) defined by the conjugation by w ∈W .

Proof. The proof is completely analogous to the proof of the Mackey’s
lemma. �

5.4. Mackey theory for local fields.

6. Representation of GL(n, F ).

Let F be a local non-archimedian field, O ⊂ F the ring of integers,
P ⊂ O the maximal ideal, t a generator of P and k = O/P the residue field
k = Fq. We denote by ν : F ⋆ → Z the valuation such that ν(t) = 1 and
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define the norm by |x| = q−ν(x). For any x ∈ O we denote by x̄ the image
of x in k.

Let G be a reductive F -group and G = G(F ). Then G is an l-group.
Here is the main result.

Theorem 0.113. For any compact open subgroup K ⊂ G the algebra
HK(G) is finitely generated as a module over it center.

Corollary 0.114. All irreducible smooth representations of G are ad-
missible.

Proof. Let π : G → Aut(V ) be a smooth irreducible representation.
We want to show that for any compact open subgroup K ⊂ G the space V K

is finite-dimensional. As follows from Proposition 0.47 and Lemma 0.19 the
space V K is an irreducible HK(G)-module. By the Schur’s lemma the center
ZK of HK(G) acts by scalars. Since the algebra HK(G) is finitely generated
as a module over ZK we see that the space V K is finite-dimensional. �

We concentrate on the case when G = GL(n, F ). Although, arguments
in the general case are not much different from the case when G = GL(n, F )
they require a thorough knowledge of the structure theory of reductive
groups over local fields.

6.1. Lattices.

Definition 0.115. (1) Let V be a F -vector space of dimension d <
∞. A lattice of V is an O-submodule L of V such that L⊗OF = V .

(2) A basis of a lattice L is a set of vectors l1, ..., ld ∈ L such that the
map

Od → L, (c1, ..., cd) → c1l1 + ...+ cdld
is a bijection.

Problem 0.116. Let L ⊂ V be a lattice, L̄ := L/PL. Then
(1) dimk(L̄) = d.
(2) Let l1, ..., ld ∈ L be elements such that the set l̄1, ..., l̄d ∈ L̄, l̄i :=

li + PL is a basis of the k-vector space L̄. Then the set l1, ..., ld is
a basis of L.

(3) Let M ⊂ L be an O-submodule and W ⊂ V be the F -subspace
generated by M . Then M is a lattice of W .

(4) For any l ∈ L − PL there exists a subspace W of V such that
l /∈W + PL.

(5) Let M be another lattice an m ∈ M − PM . Then there exists
a subspace W of V of codimension 1 such that l /∈ W + PL and
m /∈W + PM .

Lemma 0.117. Let L ⊂ V be a lattice.

(1) For any l ∈ L − PL and any subspace W of V of codimension 1
such that l /∈ W + PL the map κ : O ⊕ L ∩ W → L, (a, x) →
av + x, a ∈ O, x ∈ LW is a bijection.
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(2) For any other lattice M of V there exists a basis l1, ..., ld of L and
non-zero elements c1, ..., cd ∈ F such that the set c1l1, ..., cdld is a
basis of M .

Proof. (1) Since l /∈ W the map κ is an imbedding. To show the
surjectivity we observe that any x ∈ L can be uniquely written in the form
x = y + al, a ∈ F, y ∈W . I claim that a ∈ O.

Assume that a /∈ O. Then a−1 ∈ P and we have l = a−1x− a−1y. But
such a decomposition contradicts the assumption that l /∈W + PL.

Since a ∈ O we see that y = x− al ∈ L. So y ∈ L ∩W .
We prove (2) by the induction in d = dimF (V ). Choose c1 ∈ F such that

c1L contains PM but does not contain M . Choose now a vector l ∈ L such
that c1l /∈ Pc1M . As was shown in the last problem there exists a subspace
W of V of codimension 1 such that c1l /∈W +PM and l /∈W +PL. By the
inductive assumptions we can find a basis l2, ..., ld of L ∩W and elements
c′2, ..., c

′
d ∈ F such that the set c′2l2, ..., c

′
dld is a basis of M ∩ W . But it

follows now from the part (1) that the set c1l1, ..., cdld, ci = c−1
1 c′i, 1 < i ≤ d

is a basis of M . �

Problem 0.118. For any lattice L and a complete flagW1 ⊂W2 ⊂ ... ⊂
Wd = V of V there exists a basis l1, ..., ld of L such that li ∈ L∩Wi, 1 ≤ i ≤ d.

6.2. The Geometry of GL(n, F ). Let G = GL(n, F ).
To describe the geometry of G we introduce a number of definitions.

These definitions can [ be extended to the case of an arbitrary reductive
group.

Definition 0.119. (1) let K0 := GL(n,O) ⊂ GL(n, F ).
(2) We denote by T the diagonal group, by B ⊂ G the subgroup of

upper-triangular matrices, by U ⊂ B0 the subgroup of unipotent
matrices and by Ū ⊂ G the subgroup of lower-triangular matrices.
Then B = TU and T0 := T ∩K0 is the maximal compact subgroup
of T .

(3) We denote by Λ the quotient Λ := T/T0. The map from Zn to Λ
which associates with (e1, . . . , en) ∈ Zn the class of the diagonal
matrix with elements aii = tei , 1 ≤ i ≤ n provides an identification
of the group Λ with Zn.

(4) We define

Λ+ = {(e1, . . . , en)|e1 ≥ e2 ≥ · · · ≥ en}.

The subset Λ+ ⊂ Λ is called the Weyl chamber.
(5) We define

Λ++ = {(e1, . . . , en)|e1 > e2 > · · · > en}
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(6) We fix an imbedding Λ ↪→ T by

λ = (l1, . . . , ln) 7→

π
l1

. . .

πln

 .

(7) For any r > 0 we denote by Kr ⊂ K0 the kernel of the natural
projection pr : GL(n,O) → GL(n,O/Pr). We say that Kr, r > 0
are congruence subgroups of G.

(8) For any congruence subgroup K of G we denote by HK(K0) ⊂
HK(G) the subset of measures supported on K0.

(9) We fix a Haar measure dg on GL(n, F ) such that
∫
K0
dg = 1.

Remark 0.120. To simplify notations we denote the subgroup of upper-
triangular matrices by B and not by B0 as in the definition 0.86.

Problem 0.121. Show that

(1) G = K0Λ
+K0. [The Cartan decomposition].

(2) G = K0B = BK0. [The Iwasawa decomposition].
(3) For any congruence subgroup K ⊂ G and any k′, k′′ ∈ K0, g ∈ G

we have a(k′)a(g)a(k′′) = a(k′gk′′) where a(k) ∈ HK are as in 0.45.
(4) For any set {x1, . . . , xr} of representatives forK\K0 = K0/K H0 =

HK(K0) ⊂ HK(G) is equal to the span of a(xi).
(5) The shifts of congruence subgroups form a basis for the topology

for G.

A hint. Use the Lemma 0.117 and the Problem 0.118 to prove (1) and
(2).

Definition 0.122. Let λ = (m1, ...,mn) where the sequence mi decreas-
ing but is not necessarily strictly decreasing

m1 = ... = mi1 > mi1+1 = ... = mi1+i2 > ... > mi1+i2+...ir−1+1 = ... = mn.

(1) We denote by Pλ ⊂ GL(n, F ) the subgroup of block upper-triangular
matricies with blocks of the size nj := mij −mij−1 , 1 ≤ j ≤ r.

(2) We denote by P̄λ ⊂ GL(n, F ) the subgroup of block lower-triangular
matricies with blocks of the size nj , 1 ≤ j ≤ r.

(3) We denote by Pλ ⊂ GL(n, F ) the subgroup of block diagonal ma-
tricies with blocks of the size nj , 1 ≤ j ≤ r.

(4) We denote by Uλ the unipotent radical of Pλ and by Ūλ the unipo-
tent radical of P̄λ.

(5) We denote by Λ+
Mλ

the subset of µ ∈ Λ+ such that Mµ =Mλ.

(6) For any congruence subgroup K we define

K+
λ = K ∩ Uλ,K−

λ = K ∩ Ūλ,K0
λ = K ∩Mλ.

Problem 0.123. Show that

(1) Mλ is a standard Levi subgroup of Pλ and of Pλ−1 for any λ ∈ Λ+.
Moreover Mλ is the centralizer of λ in G.
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(2) Any Levi subgroup is conjugated to a standard Levi subgroupMλ <
G but such standard Levi subgroup is not necessirely unique.

(3) For each semisimple g ∈ G the subgroups Pg and Pg−1 form a pair
of opposite parabolic subgroups.

(4) For any λ ∈ Λ+

(a) K = K+
λ K

0
λK

−
λ , λ(K ∩ P )λ−1 ⊂ K ∩ P and λ−1K−

λ λ ⊂ K−
λ .

(b) (Adλn)|K+
λ

→ {e} as n → ∞, and (Adλ−n)|K−
λ

→ {e} as
n→ ∞.

(c) ∪nAd(λ−n)(K+
λ ) = Uλ.

Remark 0.124. This problem has a natural extension to the case of an
arbitrary reductive group.

6.3. The structure of Hecke algebras. LetK ⊂ K0 be a congruence
subgroup. Since K0 normalizes K we have Kx = xK for all x ∈ K0.

Let C be the span of {a(λ)|λ ∈ Λ+}. The next proposition is key for
our analysis of the structure of the algebra HK(G).

Proposition 0.125. (1) HK(G) = H0CH0.
(2) C is a commutative, finitely generated algebra.

Remark. This is saying that that HK(G) is somehow of finite type but it
is neither generated over C on the left nor on the right but rather “in the
middle”. It is a question whether one can use this property directly to show
that HK(G) is of finite over the center.

Proof. (1). By the Cartan decomposition, G = ∪λ∈Λ+K0λK0.Since
K0 = ∪ri=1Kxi = ∪ri=1xiK we have

G = ∪ λ∈Λ+,1≤i,j≤r KxiλxjK.

This implies that the a(xiλxj) form a basis for HK(G). But we as we have
seen a(xiλxj) = a(xi)a(λ)a(xj). This equality proves (1). �

To prove the part (2) of the Proposition we have to show that

a(λ)a(ν) = a(ν)a(λ)

for all λ, ν ∈ Λ+. Of course it is sufficient to show that a(λ)a(ν) = a(λ+ ν).
In other words it is sufficient to show that

(KλK)(KνK) = KλνK

for all λ, ν ∈ Λ+. This equality is not trivial since the elements of Λ+ do
not normalize K. The idea is to decompose K into parts that can be moved
to the right and to the left.

We will use the following notation. For any congruence subgroup K we
define

K+ = K ∩ U,K− = K ∩ U and K0 = K ∩ T .

Lemma 0.126. (1) K = K+K0K−.
(2) K = K−K0K+.
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(3) If λ ∈ Λ+ then λK+λ−1 ⊂ K+ and λ−1K−λ ⊂ K−.
(4) For any λ ∈ Λ we have

∫
KiλKi

dg/
∫
Ki
dg = mod−1

U (λ).

Proof. (1) Since Kj ⊂ Ki, j > i are normal subgroups and ∩iKi = {e}
it is sufficient to prove that for any i > 0, k ∈ Ki there exist k+ ∈ K+

i , k
0 ∈

K0
i , k

− ∈ K−
i such that k ∈ k+k0k−Ki+1. To prove the existence of such a

decomposition consider a map κ̃i : Ki →Mn(k) given by x→ x−1
ti

where as
before y → ȳ is the projection O → O/P = k.

Problem 0.127. Show that the map κ̃i : Ki → Mn(k) defines a group
isomorphism κi : KiKi+1 →Mn(k).

To finish the proof of (1) it is sufficient now to observe that any matrix
in Mn(k) is a sum of an upper nilpotent, a lower nilpotent and a diagonal
matricies.

The proof of (2) is completely analogous. The part (3) is immediate and
(4) follows immediately from (1). �

We can now finish the proof of the part (2) of the Proposition. We
have reduced the problem to showing KλKνK = KλνK. It is clear that
KλνK ⊂ KλKνK. On the other hand we have

KλKνK = KλK+K0K−νK

= K(λK+λ−1λK0λ−1λνν−1K−ν)K

⊂ KK+K0λνK−K = KλνK

where the inclusions λK+λ−1 ⊂ K+, λK0λ−1 ⊂ K0 and ν−1K−ν ⊂ K−

follow from the previous Lemma. �
Remark. This decomposition is true only for congruence subgroupsKr, r >
0 but not for the group K0.

6.4. Modules. We have shown that HK = H0CH0 with C commuta-
tive and that a(λn) = a(λ)n for λ ∈ Λ+. We use this information to study
HK-modules. In this subsection we fix a congruence subgroup K ⊂ G and
λ ∈ Λ+.

Let (π, V ) be a representation of G and πK be the associated represen-
tation of HK on V K . I’ll use notations and results of the Problem 0.45.

Lemma 0.128. Ker a(λ)|V K = Ker eλ−1K+
λ λ

|V K .

Proof. By the definition a(λ) = eK ∗Eλ ∗ eK . Using the decomposition
K = K+

λ K
0
λK

−
λ we see that eKλ

= eK+
λ
∗ eK0

λ
∗ eK−

λ
and therefore

a(λ) = Eλ ∗ eλ−1K+
λ λ

∗ eλ−1K0
λλ

∗ eλ−1K−
λ λ
eK

Since λ−1K0λ = K0 and λ−1K−λ ⊂ K− we see that a(ν) = Eν∗eν−1K+ν∗eK .
Since eK acts as the identity on V K and Eν , which acts on V as π(ν), is

invertible we see that
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Ker a(λ)|V K = Ker eν−1K+
λ λ

|V K

�

Proposition 0.129. For any λ ∈ Λ+ we have

∪nKer a(λn) ∩ V K = V (Uλ) ∩ V K

where as before V (Uλ) ⊂ V is the span of vectors v − π(u)v, v ∈ V, u ∈ Uλ.

Proof. Let Um := λ−mK+
λ λ

m. As we know [ see Problem 0.123] U1 ⊂
U2 ⊂ ... ⊂ Um ⊂ ... and U = ∪mUm. So

Ker eU1 ⊂ Ker eU2 ⊂ . . .

and as follows from the Problem 0.74 we have V (Uλ) = ∪mKer eUm . The
Proposition follows now from Lemma 0.128 applied to ν = λn. �

Let (ρ, V ) be a representation of G,λ ∈ Λ+, P = Pλ = MλUλ and K
a congruence subgroup of G. To simplify notations we will write in the
formulation of the next problem M instead of Mλ and U instead of Uλ. As
before we denote by J : V → VU is the projection onto coinvariants and by
ρM :M → Aut(VU ) the representation as in 0.75. We fix µ ∈ Λ+.

Proposition 0.130. (1) J(ρ(aµ)(v)) = ∆1/2(µ)rM (µ)J(v), v ∈ VK
(2) The image J(V K) ⊂ VU is rM (ρ)(µ)-invariant.

Assume now that the representation (ρ, V ) of G is admissible.
Then

(3) The restriction of rM (ρ)(µ) on J(V K) is invertible.

(4) J(V K) = rM (V )K
0
.

Proof. (1) follows from the defintion the representation rM (ρ).
(2) We have to show that rM (ρ)(µ)(J(v)) ∈ J(V K) for any v ∈ V K . Let

w := ρ(µ)(v). Then by (1) we have rM (ρ)(µ)(J(v)) = cJ(w), c ∈ C. So it is
sufficient to show that J(w) ∈ J(V K).

Let ṽ :=
∫
K ρ(k)wdk. It is clear that ṽ ∈ V K . On the other hand as

follows from the Problem 0.123 xw = w for all x ∈ K0K− and therefore
ṽ :=

∫
K+ ρ(k

+)wdk+. So

J(w) = J(

∫
K+

ρ(k+)w)dk+ = J(ṽ) ∈ J(V K).

To prove (3) we observe that rM (ρ)(µ) is an invertible transformation of
the space rM (V ). Therefore the restriction of rM (ρ)(µ) to J(V K) ⊂ rM (V )
does not annihilate any non-zero vector. Since V is admissible the space
J(V K) is finitely dimensional and therefore the restriction of rM (ρ)(λ) to
J(V K) is invertible.

The inclusion J(V K) ⊂ (rM (V ))K
0
follows from the defintion. So for a

proof of (4) it is sufficient to prove that (rM (V ))K
0 ⊂ J(V K). As follows
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from (3) it is sufficient to show that for any ξ ∈ rM (V )K
0
there exist µ ∈ Λ+

such that rM (ρ)(µ)(ξ) ∈ V K .

To find such µ we fix a lift v ∈ V K0
of ξ. Since V is smooth there exists

a congruence subgroup K ′ such that v is K ′-invariant. Then as follows from
0.123 the vector v′ := ρ(λN )v is invariant with respect to λNK ′

−λ
−N as well

as respect to K0.
Since, [see 0.123]

∪NλNK ′−λ−N = U

there exists N > 0 such that K− ⊂ λNK ′−λ−N . Set w :=
∫
K ρ(k)v

′. It

is clear that w ∈ V K and that that w is K−-invariant. On the other hand
since λk0 = k0λ for all k0 ∈ K0 and and v′ is K0-invariant we see that w is
K0K−-invariant. Therefore

w :=

∫
K
ρ(k)v′ =

∫
K+

ρ(k+)v
′.

On the other hand we have

J(ρ(k+v
′)) = J(v′), k+ ∈ K+.

So J(w) = J(v′) = rM (ρ)(λN )ξ and we see that rM (ρ)(λN )ξ ∈ J(V K). �

Remark 0.131. One can show that the condition of the admissibility of
ρ is not necessary for the validity of the parts (3) and (4) of the Proposition.

6.5. An Application. We start with a result on representations of the
group SL(n, F ). Define

Λ1 := {(m1, . . . ,mn) ∈ Λ|m1 + · · ·+mn = 0}

and Λ+
1 := Λ+ ∩Λ1. As follows from the Cartan decomposition for GLn(F )

we have an analogous decomposition

SL(n, F ) = ∪λ∈Λ1SL(n,O)λSL(n,O)

Definition 0.132. A representation (π, V ) of a groupGL(n, F ) or SL(n, F )
is quasi-cuspidal if rM,U (V ) = {0} for all parabolic subgroups P =MU ̸= G.

Remark 0.133. (1) As all unipotent subgroups of GL(n, F ) lie in
SL(n, F ) a representation of GL(n, F ) is quasi-cuspidal iff the re-
striction onto SL(n, F ) is quasi-cuspidal.

(2) Since any parabolic subgroup is conjugate to a standard one we can
restate the definition by saying that rM,U (V ) = {0} for unipotent
radicals of standard parabolic subgroups P ̸= G.

Lemma 0.134. Let (π, V ) be a quasi-cuspidal representation of SL(n, F ), v ∈
V and K be a congruence subgroup. Then ρ(a(λ))(v) = 0 for almost all
λ ∈ Λ+

1 .
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Proof. For any i, 1 ≤ i < n we define

νi := (n− i, n− i, ..., n− i,−i,−i, ...,−i) ∈ Λ+
1

where n − i appears i times and −i appears n − i times. Let Λ+
1 (0) ⊂ Λ+

1
be the subsemigroup generated by νi, 1 ≤ i < n.

Problem 0.135. (1) The set νi, 1 ≤ i < n generates the semigroup
Λ+
1 .

(2) For any N > 0 there exists a finite subset S ⊂ Λ+
1 such that

S +NΛ+
1 = Λ+

1 .

Since a(λ)a(ν) = a(ν)a(λ) for λ, ν ∈ Λ+
1 [see Proposition 0.125 ] for

a proof of the Lemma it is sufficient to show that a(νi)
Nv = 0 for any

i, 1 ≤ i ≤ n− 1 and any v ∈ V if N >> 0. In other words we have to show
that ∪nKer(a(νni )) = V .

Let Pi = MiUi be the parabolic subgroup corresponding to νi. Since
(π, V ) is quasi-cuspidal we have V = V (Ui) and it follows from Proposition
0.130 that ∪nKer(a(νni )) = V .

�
Theorem 0.136. A representation (π, V ) of SL(n, F ) is quasi-cuspidal

if and only if it is compact.

Proof. a) Assume that a representation (π, V ) of SL(n, F ) is quasi-
cuspidal. To prove that (π, V ) is compact we have to show that for any
congruence subgroup K and any v ∈ V the function

SL(n, F ) → V, g → π(eK)π(g)v

has compact support. By changing K we can assume that our vector v is
K-invariant. Then,

π(eK)π(g)v = π(eK)π(g)π(eK)v

As follows from the Cartan decomposition for SLn(F ) it is sufficient to show
that the function

Λ+
1 → V, λ→ π(eK)π(k0)v

has finite support for any k0 ∈ K0. By replacing v by π(k0)v we see that it
is sufficient to prove that the function

Λ+
1 → V, λ→ π(eK)v

on Λ+
1 has finite support . But this is an immediate consequence of the

previous Lemma.
b) Conversely, suppose that the represention (π, V ) on SL(n, F ) is com-

pact. By reversing the reasoning given above, we see that the function
λ 7→ π(a(λ))v from Λ+

1 to V has finite support for all v ∈ V . Therefore for
any non-zero λ ∈ Λ+

1 , v ∈ V we have a(λr)(v) = 0 for r >> 0. it follows
then from Proposition 0.130 (1) and Proposition 0.125 that V (Uλ) = V
for any non-zero λ ∈ Λ+

1 . Therefore rMλ,Uλ
(V ) = {0} for for any non-zero
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λ ∈ Λ+
1 , v ∈ V . It follows from Problem 0.123 (1) that rM,U (V ) = {0} for

all proper parabolic subgroups P of G. �
6.6. Irreducibility implies Admissibility.

Definition 0.137. A representation of G is cuspidal if it is both quasi-
cuspidal and finitely generated.

Let G = GLn(F ) and G
0 := {g ∈ G|det(g) ∈ O⋆}. The same arguments

as in the proof of Theorem 0.136 prove the following result.

Theorem 0.138. [Harish-Chandra] A representation (π, V ) of G0 is
quasi-cuspidal if and only if it is compact.

Corollary 0.139. Any irreducible cuspidal representation of G is ad-
missible.

Proof of the Corollary. Let (ρ,W ) be an irreducible cuspidal rep-
resentation of G. Then W is a finitely generated G0-module. Really since
[G : ZG0] is finite, W |ZG0 is a finitely generated module. On the other hand
since (ρ,W ) is irreducible it follows from the Schur lemma that Z acts onW
by multiplication by scalars. Hence W is finitely generated as a G0-module.

By Harish-Chandra’s theorem,W |G0 is compact. As follows from Propo-
sition 0.56 all finitely generated compact representations are admissible. So
W |G0 is admissible. As G0 contains all compact subgroups, the corollary
follows.�

This corollary is the first step toward our goal of proving

Theorem 0.140. Any smooth irreducible representation of G is admis-
sible.

Proof. We start with a reminder on the normalized induction and of
the Jacquet Functors.

Since we want to apply the results of the previous section to the case
when G is a Levi component of some larger group we consider the case when
G can be a product of groups of the form GL(m,F ).

Definition 0.141. Let P =MU be a Parabolic subgroup of G.

(1) We denote by rM,U : M(G) → M(M) the Jacquet functor which
associates with a representation (π, V ) of G the representation
rM,U (π) of M on V/V (U) such that

rM,U (π)(m)(J(v)) := ∆
−1/2
P (m)J(ρ(m)v)

where J : V → rM,U (V ) is the natural projection. If M is a stan-
dard Levi subgroup of G we often write rM instead of rM,U .

(2) We denote by iM,U : M(M) → M(G) the induction functor defined
as follows: given a representation ρ : M → Aut(V ) extend it triv-
ially to a representation of P on V and define iM,U (ρ) := indGP (ρ).
If M is a standard Levi subgroup of G we often write iM instead
of iM,U .
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Remark 0.142. The Iwasawa decomposition implies that indGP = IndGP .

Let P = MU,Q = NV be parabolic subgroups of G such that Q ⊂ P
and N ⊂ M and QM := Q ∩M . As we know QM is a parabolic subgroup
of M and QM = N n VM , VM := V ∩M .

Proposition 0.143. (1) rM,U is left adjoint to iM,U .
(2) If N is a Levi subgroup of M , then rN,VM ◦ rM,U = rN,V and iM,U ◦

iN,VM = iN,V .
(3) iM,U maps admissible representations of M to admissible represen-

tations of G.
(4) iM,U and rM,U are exact.
(5) rM,U maps finitely generated representations of G to finitely gener-

ated representations of M .

Proof. The proof of (1) is contained in Problem 0.70 which is a a
modification of Lemma 0.67. The part (2) is a simple verification and parts
(3) and (4) follow from the equality indGP = IndGP since as we already know
the functor indGP is exact and takes admissible representations to admissible
ones.

To prove (5) consider a smooth finitely generated G-module (π, V ) .
As follows from the Iwasawa decomposition V is finitely generated as a P -
module. Since the action of P =MU on V descends to an action of P/U =
M on V/V (U) we see V/V (U) is finitely generated as a M -module. �

Corollary 0.144. (1) Let (π,W ) be an irreducible representation
of G and M < G be a standard Levi subgroup, minimal subject to
the condition rM (π) ̸= 0. Then the representation rM (π) of M is
cuspidal.

(2) For any irreducible representation (π,W ) of G there exists a para-
bolic P = MU and an irreducible cuspidal representation (τ,R) of
M , such that W is a submodule of iM (R).

Proof. Let ρ :=M(π).
(1) By part (2) of the Proposition and the choice of M we have

rN,M (ρ) = rN,M ◦ rM,G(π) = rN,G(π) = 0

for any proper parabolic Q = NV of M . So ρ is quasi-cuspidal.
Since W is irreducible it is finitely generated. Thus, by part (4) of the

Proposition, ρ is finitely generated. So it is cuspidal.
(2) Let ρ be as in (1) and τ be an irreducible quotient of ρ. Then (τ,R)

is an irreducible cuspidal representation of M such that

HomM (rN,M (W ), R) ̸= {0}.

So [by the Frobenious reciprocity] we get a non-zero map W → iM,U (R).
As W is irreducible it is an embedding. �
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Remark 0.145. This use of the adjunction property is typical. It helps
to show that something is non-zero. but does not give more detailed infor-
mation.

Now we can prove Theorem 0.140.
Let (π, V ) be an irreducible representation of G. By Corollary we can

find a parabolic P = MU and an irreducible cuspidal representation (τ,R)
of M , such that there exists an embedding V ↪→ iM,U (L). By part (c) of
Proposition and Corollary 0.136 the representation iM,U (L) is admissible.
Since V ↪→ iM,U (L) the representation V is also admissible. �

Corollary 0.146. For any irreducible representation (ρ, V ) of G, a
congruence subgroup K and a parabolic subgroup P = MU of G we have
J(V K) = (rM (V ))K∩M .

Definition 0.147. To simplify notations we write iM instead of iM,U

and rM instead of rM,U .

(1) We denote by κM : IdM(G) → iM ◦ rM and τM : rM ◦ iM →
IdM(M) the morphisms of functors coming from the adjunction in
Proposition 0.231.

Problem 0.148. The morphism κM (iM (π) : iM (π) → iM ◦ rM ◦ iM (π)
is a monomorphism for all π ∈ Ob(M(M)).

6.7. Uniform Admissiblity. As follows from Theorem 0.140 and Lemma
0.19 for any open compact subgroup K of G all irreducible representations
of the algebra HK are finite dimensional. However we did not yet show the
existence of a bound c(K) on dimensions of irreducible representations of
HK .

Theorem 0.149. [Uniform Admissibility] For any open compact sub-
group K ⊂ G there exists an effectively computable constant, c = c(G,K),
such that all irreducible representations of the algebra HK(G) have dimen-
sion bounded by c(K).

Reformulation. For any irreducible representations V of G we have
dimV K ≤ c(K).

The proof is based on the following result from Linear Algebra.

Proposition 0.150. Let V be a complex vector space of dimension m <
∞ and C ⊂ End(V ) a commutative subalgebra generated by l elements.
Then

dimC ≤ m2−ϵl , ϵl :=
1

2l−1

Proof. Since C is commutative we can decompose V into a direct sum
of C-invariant subspaces Vi such that for any c ∈ C the restriction ci of c to
Vi has a form λi(c)IdVi + a where a ∈ End(Vi) is nilpotent.



44

Problem 0.151. Show that it is sufficient to prove the Proposition in
the case when all c ∈ C are nilpotent.

From now on we assume that all c ∈ C are nilpotent. For any r > 1
we denote by dl(r), l ∈ Z+, r > 1 the maximal dimension of commutative
subalgebras of M[r](C) generated by l nilpotent elements c1, ..., cl where [r]
is the integral part of r.

Problem 0.152. Show that the Proposition is implied by the following
inductive result.

Claim 0.153. dl(r) ≤ dl(r − dl(r)
r ) + dl−1(r).

Proof of the Claim. We may assume that C ⊂ EndV, V = Cn where
n := [r] and that dim(C) = dl(r). Let I ⊂ End(V ) be the ideal generated
by ci, 1 ≤ i ≤ l and V k := Ik(Cn). Then

V = V 0 ⊃ V 1 ⊃ ... ⊃ V n = {0}
Choose a subspace L ⊂ V 0 complementary to V 1 and define m := dim(L).

Problem 0.154. Use the equality V k = Ik(L) + V k+1 to show that
CL = V .

Since CL = V any c ∈ C is determined by it restriction to L. So
dim(C) = dl(r) ≤ nm and therefore m ≥ dl(r)/n.

Let C ′ ⊂ C be the subalgebra generated by ci, 1 < i ≤ l and R := c1C.
Then C = C ′+R. Since c1 maps V to V 1 the dimension of R is not greater
then the dimension of the restriction of C on V 1. So

dim(R) ≤ dl(n−m) ≤ dl(n− dl(r)/n)

On the other hand dim(C ′) ≤ dl−1(r). �
We now prove the theorem.

Proof. We know already that any irreducible representations ofHK(G)
is finite-dimensional. To prove the Theorem it is sufficient to show that

dim(V ) ≤ |K0/K|2n

for any irreducible representations (ρ, V ) of HK(G). In other words we have
to show that any N -dimensional representations (ρ, V ) of HK(G) where
N > |K0/K|2n is reducible.

Since HK = H0CH0, dimC(H0) = |K0/K| follows from Lemma 0.125
that

dim(ρ(HK)) ≤ |K0/K|2dimC()̃

where C̃ := ρ(C) ⊂ End(V ). On the other hand since C̃ is a commutative

algebra with n generators it follows from the Propostion that dim(C̃) ≤
N2−1/2n−1

. Since N1/2n−1
> |K0/K|2 we see that

dimC(ρ(HK) < dim(End(V )
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Now we appeal to the Burnside’s Theorem which says that ρ : HK(G) →
EndV is surjective for any finite-dimensional irreducible representations
(ρ, V ) of HK(G) to see that the representation ρ is reducible.

�
Consider the subgroup G0 ⊂ G as before, and fix a congruence subgroup

K ⊂ G0. We know that given any irreducible cuspidal representation (ρ, V )
of G0, and v ∈ V K , the function g → ρ(eK)ρ(g)ρ(eK)v, g ∈ G0 has compact
support. We will now show how the uniform admissibility theorem can
strengthen this result.

Proposition 0.155. Given K ⊂ G0 ⊂ G as above, there exists an open
compact subset Ω ⊂ G0 such that

supp ρ(eK)ρ(g)ρ(eK)v ⊂ Ω

for all irreducible cuspidal representations (ρ, V ) of G and all v ∈ V .

Proof. It follows from the proof of Harish-Chandra’s theorem that
compact representations of G0 are exactly those for which λ 7→ ρ(a(λ))v
has finite support in Λ+

1 . This is in turn equivalent to the statement
that for any non-zero ν ∈ Λ+

1 , v ∈ V K and any irreducible cuspidal rep-
resentation (ρ, V ) of G0 the operator ρ(a(ν)) on V K is nilpotent. Since

dim(V K) ≤ c(K) we see that ρ(a(νc(K))) = 0 for all non-zero ν ∈ Λ+
1 . But

there exists a finite subset S of Λ+
1 such that any λ ∈ Λ+

1 − S has a form

λ = νc(K)µ, ν ∈ Λ+
1 − {0}, µ ∈ Λ+

1 . So supp ρ(eK)ρ(g)ρ(eK)v ⊂ K0SK0 for
any irreducible cuspidal representation (ρ, V ) of G and any v ∈ V . �

Corollary 0.156. For any congruence subgroup K of G there are only
finitely many equivalence classes of irreducible cuspidal representations of
HK(G

0).

Proof. Since the support of the matrix coefficients of the irreducible
cuspidal representations must lie in Ω(G,K), the corollary follows from the
following general result.

Problem 0.157. The matrix coefficients of any set of pairwise non-
isomorphic irreducible representations are linearly independent functions.

�

6.8. Decomposing the Categories.

Definition 0.158. (1) We denote by Irrc(G) ⊂ Irr(G) be the sub-
set of cuspidal irreducible representations.

(2) We denote by Irri(G) ⊂ Irr(G) be the set equivaence classes of
irreducible representations of G which a subquotients of represen-
tations induced from proper parabolic subgroups of G.

(3) M(G)c := {V ∈ M(G)|JH(V ) ⊂ Irrc(G)}.
(4) M(G)i = {V ∈ M(G)|JH(V ) ⊂ Irri(G)}.
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Lemma 0.159. Irrc(G) ∩ Irri(G) = ∅.

Proof. It is sufficient to show that [D] /∈ JH(iM (ρ) for any irreducible
cuspidal representation D of G, any proper standard parabolic M < G and
any ρ ∈ M(M). As follows from the Harish-Chandra theorem the restriction
D0 ofD onG0 is compact. So it is sufficinet to show that [D0] /∈ JHG0(iM (ρ)
for any irreducible compact representation D0 of G0, any proper standard
parabolic M < G and any ρ ∈ M(M). Since every irreducible compact
representation of G0 splits the category M(G0) we have a decomposition

iM (ρ) = iM (ρ)D0 ⊕ iM (ρ)⊥D0

where iM (ρ)D0 is a mulitple of D0 and [D0] /∈ JHG0(iM (ρ)⊥D0 . So it is

sufficient to see that HomG0(D0, iM (ρ)) = {0}. Since MG0 = G we have

HomG0(D0, iM (ρ)) = HomG0∩M (rM (D0), ρ) = 0

since D is cuspidal. �

Corollary 0.160. Irr(G) is a disjoint union of Irrc(G) and Irri(G).

Theorem 0.161.

M(G) = M(G)c ⊕M(G)i

.

Proof. We start with the following result. Let V be a representation
of G and V = Vc ⊕ Vi a direct sum decomposition into G0-invariant sub-
spaces the set JHG0(Vc) consists only of compact representations and the
G0-representation Vi has no compact subquotients.

Problem 0.162. (1) The subspaces Vc, Vi ⊂ V are G-invariant.
(2) Vi ∈ M(G)i.

It follows now from the Harish-Chandra theorem that it is sufficient to
prove that the subset IrrcG

0 ⊂ IrrG0 of irreducible compact representa-
tions, splits M(G0). Let V be a representation of G0. As we have seen for
any congruence subgroup K there are only a finite number of irreducible
cuspidal representations D1, ..., Dr of G0 with K-invariant vectors. Since
representations D1, ..., Dr are compact we have

V = VK,c ⊕ V ⊥
c,K

where VK,c is a direct sum of compact irreducible representations of G which

have a non-zero K-invariant vector and V ⊥
c,K does not have irreducible sub-

quotients of this form.
Consider a decreasing sequence of congruence subgroups, K1 ⊃ K2 ⊃ . . .

such that ∩iKi = {e} and define
Vc := ∪KiVc,Ki , Vi :=

∩
Ki
V ⊥
c,Ki

.

Obviously, JH(Vc) ⊂ IrrcG and JH(Vi) ∩ IrrcG = ∅.
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It only remains to show that V = Vc ⊕ Vi. Take v ∈ V and choose a
congruence subgroup K which stabilizes v. The decomposition

V = Vc,K ⊕ V ⊥
c,K

shows that we have a decomposition v = vc,K + v′ where vc,K ∈ Vc,K , v
′ ∈

V ⊥
c,K . To finish the proof of the Theorem it is sufficient to show that v′ ∈ Vi.

Since v′ ∈ Vi it is sufficient to show that the G-submodule V ′ ⊂ V
generated by v′ does not contain any compact irreducible representation D
without a non-zero K-invariant vector. Since D splits the category we have

V ′ = V ′
D ⊕ V ′

D
⊥ where V ′

D is a multiple of D and D /∈ JH(V ′
D
⊥). Since v′

generates V ′ the projection of v′ to V ′
D generates V ′

D. On the other hand v
and therefore v′ are K-invariant while D does not have non-zero K-invariant
vectors. So V ′

D = {0}. �
Definition 0.163. Let M < G be a standard levi subgroup.

(1) For any V ∈ M(M) we denote by Vc the projection of V on the
subcategory of quasi-cuspidal representations.

(2) We denote by κM,c(V ) : V → iM ◦ rM (Vc) the composition of
κM (Vc) [see 0.147] with the projection V → Vc.

Lemma 0.164. For any V ∈ M(G) the map

⊕M<GκM,c(V ) : V → ⊕M<GiM ◦ rM,U (V )

is an imbedding.

Proof. Let V0 := ∩M<GKerκM,c(V ). It follows from Problem 0.148
that rM (V0) = {0} for any standard proper parabolic subgroup M of G. So
the representation of G on V0 is quasi-cuspidal. Since (V0)c = {0} we see
that V0 = {0}.

�

7. Examples of cuspidal representations.

Let G = GL(n, F ), Z = F ⋆ be the center of G and ψ : k → C⋆ be a
non-trivial additive character.

Definition 0.165. (1) To any matrix A ∈ g = Mn(k) we can as-
sociate a function

νA : K1 → C⋆, ν(k) := ψ(Tr(A(k − 1)).

It is clear that νA is a character of K1.
(2) A matrix A ∈ g = Mn(k) is anisotropic iff the characteristic poli-

nomial pA(x) := det(xId−A) ∈ k[x] is irreducible.
(3) A character νA, A ∈Mn(k) is anisotropic is A is anisotropic.
(4) We denote by by ZG(νA) ⊂ ZK0 the stabilizer of ν̃A in Z(G)K0

[which make sense sinceK1 is a normal subgroup of Z(G)K0]. Since
νA is a character of K1 we have K1 ⊂ ZG(νA).

Problem 0.166. Show that
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(1) A matrix A ∈ Mn(k) is anisotropic iff it does not stabilize any
non-trivial flag F in kn.

(2) A matrix A is anisotropic iff for any proper parabolic subgroup
P = MU of G the restriction of νA on K1 ∩ U is not equal to the
function 1.

(3) For any g ∈ G− Z(G)K0 there exists a standard proper parabolic
P = MU of G and a subgroup H of K2 such that gHg−1 ⊂ K1

and K1 ∩ U ⊂ gHg−1K2.
(4) For any congruence subgroup Kn there exists a compact Cn ⊂ G

such that for any g ∈ G − Z(G)Cn there exists a proper stan-
dard parabolic P = MU of G and a subgroup H of Kn such that
gHg−1 ⊂ K1 and K1 ∩ U ⊂ gHg−1K2.

(5) For any A ∈Mn(k) there exists a character χ : ZG(νA) → C⋆ with
the restriction on K1 is equal to νA.

(6) For any A ∈Mn(k) and any unitary character χ : ZG(νA)K1 → C⋆
the induced represntation indGZG(νA) χ has a natural G-invariant
unitary structure.

Proposition 0.167. Let A ∈ Mn(k) be an anisotropic matrix ν = νA
and χ : ZG(νA) → C⋆ be a character with the restriction on K1 equal to νA.
Then the induced representation (πν,χ, V ) := IndGZG(νA)K1

χ is cuspidal and

irreducible.

Proof. We first prove that the representation (πν,χ, V ) is admissible

and equal to indGZG(νA) χ. It is sufficient to prove that for any n > 0 there

exists a compact Cn such that supp(f) ∈ Z(G)Cn for all f ∈ V Kn . We take
Cn to be the compact set as in Problem 0.166. We have to show that for any
g ∈ G−Z(G)Cn we have f(g) = 0 if f ∈ V Kn . Choose subgroups P =MU
and H as in Problem 0.166. Then for any h ∈ H we have

f(g) = f(gh) = f((ghg−1)g) = ν(ghg−1)f(g).

Since ν is anisotropic and K1 ∩U ⊂ gHg−1K2 there exists h ∈ H such that
ν(ghg−1) ̸= 1. Therefore f(g) = 0.

Since the representation (πν,χ, V ) is unitary and admissible it is sufficient
to show that HomG(V, V ) = C. [See Corollary 0.251]. As follows from the
Frobenuous reciprocity we have

HomG(V, V ) = HomZG(νA)(Cχ, V ).

For a proof of the inequality dim(HomZ̃(Cχ, V )) ≤ 1 it is sufficient to show

that ϕ(1)(g) = 0 for any ϕ ∈ HomZG(νA)(Cχ, V ) and g ∈ G− Z̃.
Consider first the case when g ∈ G − Z(G)K0. As follows from the

part (3) of the previous problem there exists a proper parabolic subgroup
P =MU and a subgroup H of K2 such that gHg−1 ⊂ K1 and gHg−1K2 ⊃
U ∩K1.
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Since ϕ ∈ HomZ̃(Cχ, V ) we see that

ϕ(1)(g) =
1

|K1 ∩ u/K2 ∩ U)|
∑
u∈u(k)

ψ(ν(u))ϕ(1)(g)

Since the functional ν is anisotropic the restriction of ψ ◦ ν on u is a non-
trivial character of the group u and we see that∑

u∈u
ψ(ν(u)) = 0

So ϕ(1)(g) = 0.

Consider now the case when g ∈ Z(G)K0 − Z̃. Since g does not belong
to the stabilizer of ν̃ there exists k ∈ K1 such that ν̃(gkg−1 ̸= ν̃(k). Now
the same arguments show that ϕ(1)(g) = 0.

Now we prove the cuspidality of the representation π := πν,χ̃. Let P =
MU be a proper parabolic subgroup of G and q : V → rM (V ) the canonical
projection. Consider v ∈ V, v : G → C given by the function supported on
Z(G)K0 and such that v(e) = 1. Since the representation π is irreducible it
is sufficient to show that q(π(g)v) = 0 for all g ∈ G. Since G = PK0 and
the projection q commutes with the action of P it is sufficient to show that
q(π(k)v) = 0 for all k ∈ K0. Since q(π(u)w) = q(w) for all w ∈ V, u ∈ U it
is sufficient to show that∫

u∈U∩K1

π(u)π(k)vdu = 0.

In other words it is sufficient to check that∫
u∈k−1Uk∩K1

π(u)vdu = 0.

Since suppπ(u)v ⊂ Z(G)K0 for any u ∈ k−1Uk ∩K1 it is sufficient to show
that ∫

u∈k−1Uk∩K1

π(u)v(e) = 0.

We have ∫
u∈k−1Uk∩K1

π(u)v(e) =
∑
u∈u(k)

ψ(νg(u))

Since the functional ν is anisotropic the restriction of the charaqcter νg(u) on
U∩K1 is a non-trivial character of the group U∩K1. So

∑
u∈u(k) ψ(ν

g(u)) =
0. �

8. Cuspidal components

8.1. Relations between representations of a group and of it
subgroups of finite index.
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Claim 0.168. Let G be a group, H ⊂ G a subgroup of finite index and
ρ : G → Aut(V ) an irreducible representation. Then the restriction ρH
is semisimple and of finite length. [That is ρH is a finite direct sum of
irreducible representations].

Proof. Let L := ∩g∈G/HgHg−1. It is clear that L ⊂ G is a normal
subgroup of finite index. We show that the restriction ρL is semisimple and
of finite length and will leave for the reader to prove that the restriction ρH
is also semisimple.

Since V is irreducible, V is a finitely generated C[G]-module and, since
L is of finite index, V is a finitely generated C[L]-module. Hence the Zorn’s
Lemma implies the existence of an L-irreducible quotient q : V →W .

Let K ⊂ V be the kernel of q. Since L ⊂ G is a normal subgroup we
see that for every g ∈ G the subspace ρ(g)(K) ⊂ V is L-invariant and the
quotient V/ρ(g)(K) is an irreducible representation of L. The kernel of the
natural map V → ⊕g∈G/LV/ρ(g)(K) is G invariant, and hence [since V is
irreducible] is equal to {0}. So we see that (ρL, V ) is a subrepresentation of
a finite direct sum of irreducible representations of L. Therefore (ρL, V ) is
a finite direct sum of irreducible representations of L. �

Let G be a group, H ⊂ G a normal subgroup of finite index, ρ :
G → Aut(V ) an irreducible representation of G and (π,W ) an irreducible
representation of H. Since the the restriction ρH is completely reducible
we can write V as a direct sum V = VW ⊕ V ⊥

W where VW is a multi-

ple of W and W does not appear as a subquotient of V ⊥
W . We define

Φ := HomH(W,V ) = HomH(W,VW ). It is clear that the map ϕ⊗w → ϕ(w)
defines an isomorphism Φ⊗W → VW .

Definition 0.169. (1) For any g ∈ G we denote by πg : H →
Aut(V ) the representation πg(h) := π(ghg−1).

(2) We denote by Gπ ⊂ G the subgroup of elements g ∈ G such that
the representation πg of H is equivalent to π.

By the definition for any g ∈ Gπ there exists an automorphism A(g) ∈
Aut(W ) such that π(g−1hg) = A(g)−1π(h)A(g), ∀h ∈ H. Since W is irre-
ducible an automorphism A(g) is defined uniquely up to a multiplication by
a scalar c ∈ C⋆.

Problem 0.170. (1) There exist cg′,g′′ ∈ C⋆, g′, g′′ ∈ G such that
A(g′g′′) = cg′,g′′A(g

′)A(g′′). In other words the map g → A(g) is a
projective representation of the group Gπ on W .

(2) The subspace VW of V is Gπ-invariant.
(3) There exist a projective representation ν of the group Gπ/H on Φ

such that A(g) = ν(g)u⊗ π(g) for all g ∈ Gπ.
(4) Let a : indGGπ

(VW ) → V be the morphism corresponding to the
imbedding VW ↪→ V under the Frobenious reciprocity

HomG(ind
G
Gπ

(VW ), V ) = HomGπ(VW , V ).
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Then a is an imbedding.
(5) The representation τ of Gπ on VW is irreducible and ρ is equivalent

to IndGGπ
τ .

(6) The projective representation ν of Gπ/H on Φ is irreducible.
(7) If G/H is cyclic then dim(Ψ) = 1 and we can assume that τ ≡ 1.

Definition 0.171. Let H be a normal subgroup of G such that the
quotient group Ḡ := G/H is commutative.

(1) We denote by Ψ the group Hom(Ḡ,C∗) of characters of Ḡ.
(2) For any irreducible representation ρ of G we define Ψρ ⊂ Ψ as

the subgroup of characters ψ such that the representation ψ ⊗ ρ is
equivalent to ρ.

(3) For any ψ ∈ Ψρ we choose an intertwining operator Iψ ∈ AutH(V )
which defines an equivalence between ρ and ψ ⊗ ρ.

Lemma 0.172. Let H be a normal subgroup of G such that the quotient
group G/H is cyclic.

(1) The restriction ρH is a direct sum of distinct irreducible represen-
tations.

(2) The representation ρH of H is irreducible iff Ψρ = {1}.
(3) There exist constants cψ′,ψ′′ ∈ C∗, ψ′, ψ′′ ∈ Ψρ such that

Iψ′ψ′′ = cψ′,ψ′′Iψ′Iψ′′ .

(4) The the set {Iψ ∈ EndH(V )}, ψ ∈ Ψρ is a basis of EndH(V ).

Proof. We use notation of Problem 0.170.
(1) follows from the equality dim(Ψ) = 1.
(2) Follows from the Frobenious reciprocity.
(3) Follows from the Schur lemma and
(4) is true since charaters of any finite commutative group is a basis in

the space of functions on this group. �

Problem 0.173. Generalize the statements of the Lemma to the case
when G =

∏
iGi,H =

∏
iHi, i ∈ I where Gi is a finite family of groups and

Hi ⊂ Gi a family of normal groups such that the quotients Gi/Hi is cyclic.

8.2. Relations between representations of a reductive group G
and the subgroup G0 ⊂ G. Let now G be a connected reductive group.
As before we denote by G0 ⊂ G the subgroup generated by all compact
subgroups of G. We assume that G =

∏
iGii ∈ I where all the quotients

Gi/G
0
i are cyclic. Then the quotient Λ(G) := G/G0 is isomorphic to Zl, l ≥ 0

the natural map Z(G)/Z(G) ∩ G0 → Λ is an isomorphism on a subgroup
ΛZ(G) ⊂ Λ(G) of finite index and the subgroup Z(G)G0 ⊂ G is of finite
index.

Problem 0.174. If G = GL(n, F ) then G0 = {g ∈ GL(n, F )|det(g) ∈
O⋆,Λ(G) = Z and ΛZ(G) = nZ.
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Definition 0.175. An unramified character of G is a character ψ : G→
C∗ which is trivial on G0. The set of unramified characters is denoted Ψ(G).

Remark 0.176. Since Λ(G) := G/G0 is isomorphic to Zl, l ≥ 0 we see
that Ψ(G) = Hom(Λ(G),C∗) = (C∗)l. In this way, we introduce (complex)
algebraic geometry into the study of G.

Lemma 0.177. For any irreducible representations (ρ′, V ) and (ρ′′, V ′)
of G the space W := HomG0(ρ′, ρ′′) is finite-dimensional.

Proof. Let χ′, χ′′ : Z(G) → C∗ be the central characters of repre-
sentations (ρ′, V ′) and (ρ′′, V ′′). If the restrictions χ′

Z(G)∩G0 , χ
′′
Z(G)∩G0 :

Z(G ∩G0) → C∗ differ then W = {0}. So we can assume that χ′
Z(G)∩G0 =

χ′′
Z(G)∩G0 . In this case the ratio χ′/χ′′ is a character of the group Z(G)/Z(G)∩
G0. As well known there exists a character χ : G/G0 = Λ → C∗ such that
the restriction of χ on Z(G)/Z(G) ∩ G0 is equal to χ′/χ′′. Consider now
the representation ρ̃′′ := ρ′′ ⊗ χ. Since the restriction of χ on G0 is equal
to 1 the restriction of ρ̃′′ on G0 is equal to the restriction of ρ′′ on G0 and
HomG0(ρ′, ρ′′) = HomG0(ρ′, ρ̃′′) . On the other hand since the central char-
acters of representations (ρ′, V ′) and (ρ̃′′, V ′′) coinside we have

W = HomG0(ρ′, ρ̃′′) = HomZ(G)G0(ρ′, ρ̃′′))

and it follows from Lemma 0.168 that dim(W ) <∞. �

Proposition 0.178. Let (ρ, V ) and (ρ′, V ′) be irreducible representa-
tions of G. The following conditions are equivalent

(1) The representations ρ|G0 and ρ′|G0 of the group G0 are equivalent.
(2) JH(ρ|G0) ∩ JH(ρ′|G0) ̸= ∅.
(3) ρ′ = ψρ for some unramified character ψ ∈ Ψ.

Proof. (1)The implications ⇒(2) and (3)⇒(1) are obvious. Thus, it is
enough to show that (2)⇒(3).

LetW := HomG0(V, V ′). As follows from the previous Lemma the space
W is finite-dimensional and the condition (2) implies that W ̸= {0}. We
define a representation τ of G on W by

τ(g)f = ρ′(g)fρ(g)−1g ∈ G, f ∈W.

By the definition of W, the restriction τ |G0 is the identity. Thus, we may
think of τ as a representation of the group Λ(G) on W . Since the group
Λ is commutative and the space W is finite-dimensional there exists an
eigenvector h ∈ W,h ̸= 0. In other words τ(g)h = ψ(g)h for all g ∈ G for
some character ψ of G.

Consider h as a linear map from V to V ′. Then h intertwines the (ψρ, V )
with (ρ′, V ′). As both representations are irreducible, we see that ρ′ =
ψρ. �



8. CUSPIDAL COMPONENTS 53

Definition 0.179. (1) We define an action of the complex the al-
gebraic group Ψ(G) on the set IrrG by

(ψ, ρ) → ψ ⊗ ρ

(2) For any ρ ∈ IrrG we define
Ψρ := {ψ ∈ |Ψ(G)|ρ⊗ ψ is equivalent to ρ}.

Lemma 0.180. The subgroup Ψρ is finite for all ρ ∈ IrrG.

Proof. It is clear that for any ψ ∈ Ψρ the restriction of ψ on the center
Z is trivial. So Ψρ is a subgroup of characters of the finite quotient group
Λ/ΛZ . �

Lemma 0.181. Let (ρ, V ) be a cuspidal representation of G and (π,W ) ∈
JH(ρ). Then there exists a G-equivariant surjection V → W and a G-
equivariant injection W ↪→ V .

Proof. We will only prove the existence of a G-equivariant injection
W ↪→ V . The proof of the existence of a surjection is completely analogous.

Let Φ := HomG0(W,V ). As we know Φ is a finite-dimensional C-vector
space and the commutative group Λ = G/G0 acts on Φ by

g(ϕ)(w) := ρ−1(g)ϕ(π(g)(w))

Since π ∈ JH(ρ) there exists a Λ-invariant subspaces Φ′ ( Φ′′ of Φ such
that Λ acts trivially on Φ′′/Φ′. Since the space Φ is a finite-dimensional
there exists a non-zero Λ-invariant vector ϕ ∈ Φ = HomG0(W,V ). Since the
map ϕ is Λ-invariant we see that ϕ ∈ HomG(W,V ). �

Definition 0.182. (1) A cuspidal component of M(G) is an orbit
of Ψ(G) in the set IrrcG of cuspidal irreducible representations of
G.

(2) We denote by Xc(G) the set of cuspidal components of M(G).

Remark 0.183. It is easy to see that ψρ is cuspidal whenever ρ is.

Each cuspidal component D has the form where by Lemma 0.180 the
subgroup Ψρ ⊂ Ψ(G) is finite. Therefore, D has the structure of a connected
complex algebraic variety and the action of Ψ(G) on D is algebraic.

Theorem 0.184. Let D ⊂ IrrG be a cuspidal component. Then D splits
the category M(G).

Proof. We have to show that every V ∈ M(G) can be written V =
VD ⊕ V ⊥

D where JH(VD) ⊂ D and JH(V ⊥
D ) ∩ D = ∅. By Proposition

0.178 the restrictions of irreducible objects of M(D) on G0 all coincide
and are finite direct sums of irreducible representations ρi, 1 ≤ i ≤ r
of G0. These irreducible representations are cuspidal and therefore com-
pact (Harish-Chandra). Since compact representations split the category
M(G) there exists a decomposition V = VD ⊕ V ⊥

D of G0-modules, where

JH(VD|G0) ⊂ ρ1, . . . , ρr and JH(V ⊥
D |G0) ∩ {ρ1, . . . , ρr} = ∅.
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It only remains to observe that this decomposition is preserved by the
action of G. But this follows from the fact that G permutes the ρi. �

Using arguments analogous to ones used in the proof of Theorem 0.161
we obtain a proof of the following result.

Theorem 0.185. The subset of irreducible cuspidal representations, IrrcG ⊂
IrrG, splits M(G). In other words, any V ∈ M(G), can be uniquely decom-
posed in the direct sum V = Vc ⊕ Vi where JH(Vc) consists only of cuspidal
representations and Vi has no cuspidal subquotients.

Definition 0.186. For any ρ ∈ Ob(M(G)) we denote by ρcusp the pro-
jection to the cuspidal summand of M(G).

8.3. A result from the category theory.

Definition 0.187. Let M be an abelian category with arbitrary direct
sums.

(1) A functor F from M to the category Ab of abelian groups is faithful
if F(f) ̸= 0 for any non-zero morphism f ∈ HomM(X,Y ).

(2) An object X of M is compact if the functor Hom(X, ⋆) from M to
Sets commutes with direct limits.

(3) A projective object Π in M is a generator if the functor

FΠ : X → Hom(Π, X)

from M to the category Ab is faithful.

Problem 0.188. (1) Let Π be a projective object in M such that
FΠ(X) ̸= 0 for all non-zero objects X of M. Then Π is a generator.

(2) If P is a generator of M then any X ∈ Ob(M) can be presented as
a cokernel of a morphism f : PS → P T where S, T are sets where
PS := ⊕s∈SP .

Lemma 0.189. Let M be an abelian category , Π ∈ M a compact, pro-
jective generator and A := EndMΠ. Then the functor

α : M → C(A), X → HomM(P,X)

from M to the category M(A) of right A-modules is an equivalence of cat-
egories.

Proof. It is sufficient for a proof of the Lemma to construct a functor
β : M(A) → M and functorial morphisms a : β ◦ α → IdM and b :
α ◦ β → IdM(A) such that the morphisms a(M) : β ◦ α(M) → M and
b(X) : X → α ◦ β(X) are isomorphisms for any A-module M and any
X ∈ Ob(M).

We start with a construction of a functor β : M(A) → M. For any A-
module M we define AM := ⊕m∈MMA and denote by πM : AM → M the
A-morphism given by πM (am) :=

∑
m∈M amm ∈ M . Let N := Ker(πM )i :

N ↪→ AM be the imbedding and qM := i ◦ πN : AN → AM . Such a map is
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given by a matrix qM = (qm,n),m ∈M,n ∈ N, qm,n ∈ A and for any n ∈ N
we have qm,n = 0 for almost all m ∈M .

We define ΠM ∈ Ob(M) as the direct sum ⊕m∈MΠ which exists since
M is an abelian category with arbitrary direct sums. The matrix qM defines
a morphism q̃M : ΠN → ΠM and we define β(M) as the cokernel of q̃M .

Problem 0.190. (1) The functor β is right exact.
(2) The functor β commutes with direct sums.
(3) β(A) = P .

Now we define a functorial morphism a : β ◦ α→ IdM.
For any X ∈ Ob(M) we have α(X) = HomM(Π, X) and therefore β ◦

α(X) is the quotient of ⊕ϕ∈HomM(Π,X)Π by the image of q̃HomM(Π,X). We
define ã : ⊕ϕ∈HomM(Π,X)Π → X by

ã(
∑

ϕ∈HomM(Π,X)

pϕ) :=
∑

ϕ∈HomM(Π,X)

ϕ(pϕ) ∈ X

Problem 0.191. ã(X) ◦ q̃HomM(Π,X) = 0 for all X ∈ Ob(M).

We see that ã(X) defines a morphism a(X) : β ◦ α(X) → X.
Let’s now prove that the morphism a(X) : β ◦α→ X is an isomorphism.

Consider first the case X = P . We have α(P ) = A, β ◦ α(P ) = P and I’ll
leave for you to check that the morphism a(P ) : P → P is the identity.

Consider now the case X = PS for some set S. Since P is compact
we have α(X) = ⊕s∈SA and, since β commutes with direct sums, we have
β◦α(X) = X and I’ll leave for you to check that the morphism a(P ) : P → P
is the identity.

Now let X be an arbitrary object of M. Then we can present X as a
cokernel of a morphism f : PS → P T . Since the functor α is exact and the
functor β is right exact the composition β◦α is also right exact . Now the five
homomorphisms lemma implies that a(X) : β ◦ α→ X is an isomorphism.

Problem 0.192. Show that

(1) Construct a functorial morphisms b : IdM(A) → α ◦ β.
(2) Show that the morphism b(M) are isomorphisms for any A-module

M .

�
8.4. A description of cuspidal components. In this secion we in-

vestigate categories M(D) of representations corresponding to a cuspidal
component

D = {ψρ, ψ ∈ Ψ(G)}
where ρ is a cuspidal irreducible representation.

Let R be the algebra of regular functions on the algebraic variety Ψ(G).
R is naturally a G/G0-module and therefore is also a G-module.

Example 0.193. If G = GL(n, F ) then Λ = Z and R = C[t, t−1].
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Problem 0.194. (1) Construct a G-equivariant isomorphism

R = C[Λ(G)] = indGG0 C.

(2) Construct a G-equivariant isomorphisms R ⊗ ρ = indGG0(C) ⊗ ρ =

indGG0(ρ|G0).

Proposition 0.195. Let Π(D) := R⊗ ρ. Then

(1) Π(D) ∈ M(D).
(2) Π(D) is a projective object in M(D).
(3) Π(D) is a compact object.
(4) Π(D) is a generator of the category M(D)

Proof. For (1), just observe that JH(Π(D)|G0) ⊂ JH(ρ|G0).
To prove (2), we must show that the functor X 7→ HomG(Π(D), X) from

M(D) to the category of sets is exact. Since Π(D) = indGG0(ρ|G0) it follows
from the Frobenious adjunction [see Problem 0.67 ] that

HomG(Π(D), X) = HomG0(ρ|G0 , X|G0).

Since ρ|G0 is a direct sum of compact representation (see Proposition 0.168
and Theorem 0.138) it follows from Problem 0.21 that the functor X 7→
HomG(Π(D), X) is exact.

(3) Follows from the Frobenious adjunction and the finiteness of the
decomposition ρG0 to a direct sum of irreducible representations.

(4) Follows from the Frobenious adjunction. �

This proposition is a powerful tool for elucidating the structure of M(D)
when combined with the previous lemma which implies thatM(D) = C(End(Π(D)).
Our next goal is to describe the ring End(Π(D)) explicitly.

For any ψ ∈ Ψρ we fix an intertwining operator Iψ ∈ Aut(V ) as in
Problem 0.168 and define νψ := Id⊗ Iψ ∈ AutC(Π(D)).

Problem 0.196. a) νψ ∈ A(D) := EndG(Π(D)).
b) For any ψ ∈ Ψρ, f ∈ R we have

fνψ = νψfψ

where fψ is the shift of f by ψ.

Lemma 0.197. Let D be a cuspidal component. Then

(1) A(D) is a free R-module whith generators νψ, ψ ∈ Ψρ

(2) As an algebra A(D) is defined by the following relations
(a)

fνψ = νψfψ, f ∈ R,ψ ∈ Ψρ

where fψ is the translation of f by ψ.
(b) νψνϕ = cψϕνψϕ, ψ, ϕ ∈ Ψρ.

(3) The algebra A(D) is Noetherian.
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Proof. It is clearly sufficient to prove the part (a).

A(D) = HomG(Π(D),Π(D)) = HomG(ind
G
G0(ρG0),Π(D)) = HomG0(ρ, ρ⊗R)

where the second and the third equalities follow from Problem 0.194. So
A(D) = EndG0(ρ) ⊗ R. The result now follows from Lemma 0.170 and
Problem 0.173. we have �

Corollary 0.198. (1) ba ̸= 0 for any b ∈ B − {0}, a ∈ A− {0}.
(2) A(D) = R if Ψρ = {e}.

8.4.1. General Remarks. It is important to keep in mind that there may
be more than one projective generator so that we get different realizations
of the category. As an example, we took Π = indGG0(ρ|G0) as our projective

generator for M(D). We could also have taken Π′ = indGG0 τ for some
τ ⊂ ρ|G0 .

9. Basic geometric Lemma

In this section we will prove a very important result which allows a
reduction of number of representation-theoretical problems to the cuspidal
case. We start with a reminder of the Mackey theory for finite groups.

9.1. More on l-spaces.

Problem 0.199. (1) A locally closed subset (i.e. the intersection
of an open and a closed subset) of an l-space is an l-space.

(2) If K ⊂ X is compact and K ⊂ ∪αUα is an open covering, then
there exists disjoint open compact Vi ⊂ X, i = 1 . . . k such that
Vi ⊂ Uα for some α and ∪Vi ⊃ K.

(3) Let G be a countable at infinity l-group acting on an l-space X
with a finite number of orbits. Then G has an open orbit X0 ⊂ X.

Definition 0.200. For any l-space X we denote by S(X) the algebra
of locally constant, compactly supported, complex-valued functions on X.
S(X) will serve as the “test functions” for our analysis on X. Thus, the set
S∗(X) of linear functionals on S(X) are called distributions. Note that as
S(X) has no topology, there is obviously no continuity assumed.

Lemma 0.201 (Exact Sequence of an Open Subset). Let U ⊂ X be open
and Z = X \ U . Then

0 → S(U) → S(X) → S(Z) → 0

is exact.

Proof. For the injection at S(U) just extend functions on U by zero
to all of X. For the surjection at S(Z) we must explain how to extend
functions from a closed subset. Since f ∈ S(Z) is locally constant and
compactly supported, we may assume that Z is compact and has a covering
by a finite number of open sets Uα with f |Uα = cα constant. Let Vi be as in
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0.199 (2). Then we can extend f by defining f(x) = cα if x ∈ Vi ⊂ Uα and
zero otherwise. �

Definition 0.202. Let G be a countable at infinity l-group acting on
an l-space X with a finite set I of orbits.

(1) We say that i ≤ j, i, j ∈ I if Ωi is in the closure Ω̄j of the orbit Ωj .
In this way we define a partial order on I.

(2) For any i ∈ I we define Si = {f ∈ S(X)|fΩi = 0}. It is clear that
Si ⊃ Sj if i ≤ j, i, j ∈ I.

(3) For any i ∈ I we define S̄i = (
∑

j<i Sj)/Si.

Problem 0.203. Define a canonical isomorphism between the space S̄i
and the space S(Ωi).

9.2. The formulation and the proof of the Basic geometric
Lemma.

Definition 0.204. (1) For any semidirect product P = M n U
such that M and U are unimodular l-groups and a smooth rep-
resentation ρ : P → Aut(R) we denote by RU the space of U -
coinvariants and by qU : R → RU the natural surjection. Since M
normalizes U the restriction of ρ on M induced a representation
(m, r̄) → mr̄,m ∈M, r̄ ∈ RU of M on RU .

(2) We denote by cUP the functorM(P ) → M(M), (ρ,R) → (cUP (ρ), RU )
where we define the action of M on RU by

cUP (ρ)(m)(r̄) = mod
−1/2
U (m)mr̄

where the function mod is defined in 0.36.
(3) Let G be an l-group, P,Q closed subgroups of G,P =M n U,Q =

N n V . As before we say that the semidirect products decomposi-
tions of subgroups P,Q are compatible if

P ∩Q = (M ∩Q)(U ∩Q) = (N ∩ P )(V ∩ P )
In this case we define L =M ∩N,V ′ =M ∩ V and U ′ = N ∩ U .

Let P =M nU,Q = N n V be a compatible pair of subgroups
of G.

(4) We define functors iM,U : M(M) → M(G), rN,V : M(G) → M(N)
by

iM,U = IndGP ◦ InfPM , rN,V := cNQ ◦ ResQG
As before we often write iU , rV of iM , rN instead of iM,U and rN,V .

(5) Since the pair (P,Q) is compatible we can also define functors iU ′ :
M(L) → M(N) and rV ′ : M(M) → M(L).

Assume now that G is a reductive F -group and P,Q are parabolic sub-
groups. We consider the action of P ×Q on G given by (p× q; g) → pgq−1.
As we know the set I of P ×Q-orbits is finite moreover can be identify with
the set WM,N . As follows from 0.202 the set WM,N is partially ordered and
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we have a filtration Ψw on the functor Ψ := rN,V ◦ iM,U : M(M) → M(N).

In particular for any w ∈WM,N we can define the functor

Ψ̄w = (
∑
w′<w

Ψw′)/Ψw

Since pairs (w(P ), Q) are compatible for all w ∈WM,N we can define func-
tors

Ψ̃w := iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V )

Proposition 0.205. For any w ∈ WM,N the functors Ψ̄w and Ψ̃w are
isomorphic.

Proof. We start with the simplest case when G = SL(2, F ), P = Q =
B = TU .

Lemma 0.206. Let G = SL(2, F ), P = Q = B = TU . Then for any
character χ of T we have an exact sequence

{0} → Cχw → rT,U (V (χ) → Cχ → {0}

Proof. Let V (χ) := iT,U (Cχ). Then

V (χ) = {f : G→ C|f(t̂ug) = χ(t)mod
1/2
U (t)f(g)}, t̂ =

(
t−1 0
0 t

)
, t ∈ F ⋆

and G acts on V (χ) by right shifts. We have U\G = F 2 − {(0, 0)} where
the map G→ F 2 − (0, 0) is given by(

α β
γ δ

)
→ (γ, δ)

So we have
V (χ) = {f(x, y), (x, y) ̸= (0, 0)|f(tx, ty) = |t|−1χ(t)f(x, y)}, t ∈ F ⋆ and

there exists r > 0 such that iχ(k)(f) = k, k ∈ Kr}
where G acts by iχ(g)(f)(x, y) = f(αx+ γy, βx+ δy) for

g =

(
α β
γ δ

)
We write W = {e, s}, Y := {(0, y) ⊂ F 2 − (0, 0)} and define

V (χ)s := {f ∈ V (χ)|f|Y = 0}
By the construction we have an exact sequence

{0} → V (χ)s → V (χ) → V (χ)/V (χ)s → {0}
where the subspace V (χ)s ⊂ V (χ) is B-invariant. Since the functor of U -
coinvariants is exact we obtain an exact sequence

{0} → rT,U (V (χ)s) → rT,U (V (χ) → rT,U (V (χ)/V (χ)s) → {0}
By the definition we have

Ψs(Cχ) = rT,U (V (χ)s),Ψe(Cχ) = rT,U (V (χ)/V (χ)s)
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So for the proof of the Lemma we have to check that rT,U (V (χ)e) = Cχ and
rT,U (V (χ)s) = Cχw .

The restriction to Y defines an isomorphism of the B-representation
Ψe(χ) with the one-dimensional space on which t̂u ∈ Q acts by multiplica-
tion by |t|−1χ(t). So Ψe(χ) = Cχ.

Let C(F ) be the space of functions on F and consider the operator
ν : V (χ)s → C(F ) of the restriction ν(f)(y) := f(1, y) of f to the line
l := {(1, y)}, y ∈ F .

Claim 0.207. The operator ν defines an isomorphism ν : V (χ)s → S(F ).

Proof. Let us fix f ∈ V (χ)s. Since the representation V (χ)s is smooth
there exists a congruence subgroup Kr ⊂ G such that iχ(k)(f) = k for
k ∈ Kr. By the definition f|Y ≡ 0. Therefore f|KrY ≡ 0. But it is easy to see
that the complement l− l∩KrY coincides with the set {(1, y), ∥y∥ ≤ ∥b∥qr}
which is compact. So we see that ν(f) ∈ S(F ). On the other hand for any
ϕ ∈ S(F ) we can consider the function fϕ : F 2 − {(0, 0)} → C given by
fϕ(x, y) = χ(x)∥x∥−1ϕ(y/x). �

By the construction the group B acts on the space V (χ)s and therefore
the isomorphism ν defines a representation τ : B → Aut(C(F )).

Let us describe τ(t̂)(ϕ), ϕ ∈ C(F ). Since τ(t̂)(ϕ) := ν(iχ(t̂)(fϕ) we have

τ(t̂)(ϕ)(y) = iχ(t̂)(fϕ)(1, y) = fϕ(t
−1, ty) = χ(t−1)∥t∥ϕ(t2y)

Problem 0.208.

τ(

(
1 u
0 1

)
)(ϕ)(y) = ϕ(y + u)

As we know that space S(F )U = C and the map q : S(F ) → S(F )U = C
is given by ϕ →

∫
F ϕ(y)dy. So we see that dim(rT,U (V (χ)) = 1. Let us

describe the action θ of T on the space rT,U (V (χ).
By the definition we have

θ(t̂)q(ϕ) = ∥t∥q(τ(t̂)(ϕ))

for any ϕ ∈ S(F ). But

q(τ(t̂)(ϕ)) =

∫
F
(t̂)(ϕ)(y)dy =

∫
F
χ(t−1)∥t∥ϕ(t2y) = χ(t−1)∥t∥−1

∫
F
(ϕ)(y)dy

So θ(t̂)q(ϕ) = χ(t−1)q(ϕ) and we see that θ(t̂) = χ(t−1).
�

Now we consider the case when G = GL(n, F ), P = Q = B = TU . since
the proof is completely parallel to the proof of the previous Lemma I will
omit details. in the proof we will use notations and results from Section 5.2.
In particular we know that B is the union of B-orbits Bw ⊂ B, w ∈ W and
Bw′ is in the closure B̄w if and only if w′ ≤ w in the partial order on W
defined in in section 5.2. Let r : U\G→ B\G = B be the natural projection
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and Xw := r−1(Bw). It is clear that Xw′ is in the closure X̄w if and only if
w′ ≤ w.

Let χ be a character of T, V (χ) := iT (χ). Then V (χ) is the space of

functions f on U\G such that f(tx) = ∆1/2(t)χ(t)f(x), x ∈ U\G, t ∈ T
for which there exists r > 0 such that f(xk) ≡ f(x) for all k ∈ Kr. The
representation of the group G = GL(n, F ) on the space V (χ) comes from
the action of G on U\G.

For any w ∈ W we denote by Vw(χ) ⊂ V (χ) of functions f such that
f|Xw

≡ 0. It is clear that Vw0(χ) = {0} and Vw′(χ) ⊂ Vw(χ) if and only if
w′ ≥ w. We define

Ṽw(χ) := ∩w′<wVw′(χ), V̄ iw(χ) := Ṽw(χ)/Vw(χ)

Problem 0.209. (1) The restriction to wUw ⊂ Xw defines an iso-
morphism ν : V̄w(χ) → S(Uw).

Using the isomorphism ν we define can use the action of iT (χ)
of B on Ψ̄w(χ) to define a representation τw : B → Aut(S(Uw)) by

τ(b)(ϕ) := ν(iT (chi)(b)ν
−1(ϕ)

(2) τw(u0)(ϕ)(u) = ϕ(uu0), ϕ ∈ S(Uw), u, u0 ∈ Uw.
(3)

τw(t)(ϕ)(u) = ∆1/2(tw)χ(tw)(ϕ)(t−1twu(t−1tw)−1)

Lemma 0.210. The space rT (iT (χ)) has a filtration Ψw(χ), w ∈W by T -
invariant subspaces such that the quotient spaces Ψ̄w(χ) := Ψw(χ)/

∑
w′<wΨw′(χ)

are one-dimensional and t ∈ T acts on Ψ̄w(χ) by the multiplication by χ(tw).

Proof. As in the proof of the previous Lemma we can define a filtration
of the space rT ◦iT (χ) has a filtration rT ◦iT (χ) by T -invariant subspaces such
that the quotient spaces Ψ̄w(χ) equal to rT (τw). Since the group Uw ⊂ U
acts transitively on the space Uw we see that the spaces Ψ̄w(χ) as one-
dimensional. The lemma follows now from Problem 0.90. �

We start the proof of the general case with the following observation.

Claim 0.211. Let G,P,Q,w be as in the Proposition. We de-
note by wG, wM , wN the longest elements of WG,WM ,WN .

(1) There exists a character κ(M,N,w) :M ∩w−1(N) → R+ such that
the functor Ψ̄w is isomorphic to the functor

iN∩w(M),N∩w(U) ◦Ad(w) ◦ ⊗κ(M,N,w) ◦ rM∩w−1(N),M∩w−1(V )

where we consider ⊗κ(M,N,w) as an automorphism of the category
M(M ∩ w−1(N))

(2) There exists an algebraic homomorphism

θ(M,N,w) :M ∩ w−1(N) → Gm

such that κ(M,N,w) = |θ(M,N,w)|1/2.
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(3) For any L < M,K < N,w ∈WM,N we have

θ(M,N,w) = θ(L,K,w′ww′′), w′ := wGwM , w
′′ := wNwG

I will not give a proof but only observe that (1) is completely analogous to
the problem ??, (2) follows from (1) since the only reasons for the appearance

of κ are either our twisting by mod1/2 or the characters which come as
determinants of changes of variables. The part (3) is a tautology.

The Proposition is equivalent to the equality θ(M,N,w) ≡ 1. Since the
claim is purely algebraic we can assume that G is split. Using the part (3)
of the Claim we reduce the statement to the case P = Q = B.

It is easy to check that that for any w′, w′′ ∈ W such that l(w′w′′) =
l(w′)+ l(w′′) we have θ(B,B,w) = θ(B,B,w′)w′(θ(B,B,w′′)). So the proof
reduced to the case G = SL(2) which was analyzed in the previous example.

�
Corollary 0.212. [Basic geometric Lemma] For any standard parabolic

subgroups P = M n U,Q = N n V of a reductive F -groups G the functor
rN ◦ iM : M(M) → M(N) has a filitration by subfunctors Ψw, w ∈ WM,N

such that for any w ∈WM,N the quotient Ψ̄w are isomorphic to the functor
iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V ).

We say that the functor rN ◦iM : M(M) → M(N) is glued from functors
iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V ).

Corollary 0.213. For any M,N < G and a quasicuspidal representa-
tion ρ of M we have

(1) If N does not have standard subgroups associated with M then rN ◦
iM (ρ) = {0}.

(2) If N is not associated with M then rN ◦ iM (ρ) does not have any
non-zero quasicuspidal subquotients.

(3) If N ∼ M then the representation rN ◦ iM (ρ) is glued from repre-
sentations w(ρ), w ∈W (M,N)/WM .

(4) There exists a proper Zariski closed subset X of ΨM such that
EndG(iM (ρ⊗ ψ) = C for ψ ∈ ΨM −X.

Proof. The parts (1),(2) and (3) are immediate consequences of the
Basic geometric Lemma.

Let D = {ρ⊗ ψ}, ψ ∈ ΨM be the cuspidal component containing ρ and
W (M,D) = {w ∈ W (M,M)/WM |Dw = D}. For any w ∈ W (M,M)/WM

we fix κw ∈ ΨM such that ρw = ρ⊗ κw and define

Yw := {ψ ∈ ΨM |ψw ⊗ ψ−1 ∈ κwΨρ.

Since the subgroup Ψρ is finite [see Lemma 0.180] Yw is a proper Zariski
closed subset of ΨM for all w ̸= {e}. ConsiderX := ∪w∈W (M,N)/WM−{e}Yw ⊂
ΨM . As follows from (3) the representation rM ◦ iM (ρ ⊗ ψ) is glued from
representations w(ρ⊗ψ), w ∈W (M,N)/WM . By the construction the rep-
resentation w(ρ ⊗ ψ) is not equivalent to the representation ρ ⊗ ψ for all
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w ∈W (M,N)/WM − {e}. Therefore
dim(HomM (rM ◦ iM (ρ⊗ ψ), ρ⊗ ψ)) ≤ dim(HomM (ρ⊗ ψ, ρ⊗ ψ)) = 1.

But then it follows from the Frobenious reciprocity that

dim(EndG(iM (ρ⊗ ψ)) ≤ 1.

�
9.3. Some applications.

Definition 0.214. Let M,M ′ < G be standard Levi subgroups.

(1) W (M,M ′) := {w ∈W |w(M) =M ′},where w(M) := wMw−1. We
write M ′ ∼M if W (M,M ′) ̸= ∅.

(2) Given representations ρ ∈ M(M), ρ′ ∈ M(M ′). We define
W (ρ, ρ′) := {w ∈ W |w(ρ) = ρ′}, where w(ρ) ∈ M(M ′) is

defined by w(ρ)(m′) := ρ(w−1m′w),m′ ∈ M ′. We write ρ′ ∼ ρ if
W (ρ, ρ′) ̸= ∅.

(3) W (M,⋆) := ∪M ′∼MW (M,M ′).
(4) l(M) i s the cardinality of the set W (M,⋆)/WM .
(5) We denote by l′ = l′M the function on M(G) given by

l′(τ) =
∑
L∼M

l(rL(τ))

where l(ρ) is the length of the representation ρ.

Problem 0.215. (1) l(M) = 2 iff M is a maximal Levi subgroup
of G.

(2) For any associated pairM,M ′ of standard Levi subgroups and w ∈
W (M,M ′) there exists chainsM =M0,M1, ...,Mr =M ′, L1, L2, ..., Lr
of standard Levi subgroups of G and a decomposition w = wr...w1

such that
(a) Mi−1,Mi are maximal Levi subgroups of Li, 1 ≤ i ≤ r.
(b) wi ∈WLi .
(c) wi(Mi−1) =Mi, 1 ≤ i ≤ r.

Claim 0.216. Let M be a standard Levi subgroup of G, ρ ∈ Irrc(M), π =
iM (ρ) and π0 an irreducible subquotient of π. Then l′(π0) > 0.

Proof. As follows from Lemma 0.231 there exists a standard Levi sub-
groupM ′ < G such that rM ′(π0) is a non-zero quasi-cuspidal representation
of M ′. As follows from Corollary 0.213 we have M ′ ∼M . �

Lemma 0.217. LetM,M ′ be standard Levi subgroups of G, ρ ∈ Irrc(M), ρ′ ∈
Irrc(M

′) and π = iM (ρ), π′ = iM ′(ρ′). Then

(1)
dim(HomG(π, π

′)) ≤ |W (ρ, ρ′)/WM |
(2) The length l(π) of the representation π is finite and moreover l(π) ≤

l(M).
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Proof. (1) By the Frobenious reciprocity we have

HomG(π, π
′) = HomM ′(rM ′ ◦ iM (ρ), ρ′)

As follows from 0.213 the representation rM ′ ◦ iM (ρ) has a filtration parame-
terized by w̄ ∈W (M,M ′)/WM with subquotients equal to w̄(ρ). Therefore

dim(HomG(π, π
′)) ≤

∑
w̄∈W (M,M ′)/WM

dim(HomM ′(w̄(ρ), ρ′))

Since dim(HomM ′(w̄(ρ), ρ′) = 0 for w̄ /∈W (ρ, ρ′) and dim(HomM ′(w̄(ρ), ρ′) =
1 for w̄ ∈W (ρ, ρ′) we see that dim(HomG(π, π

′)) ≤ |W (ρ, ρ′)/WM |.
(2) As follows from the exactness of the functor rM we have

l′(τ) = l′(τ ′) + l′(τ/τ ′)

for any subrepresentation τ ′ of τ . By the previous Claim l′(π0) > 0 for any
non-zero subquotient π0 of π. So l(π) ≤ l′(π). But it follows from 0.213
that l′(π) = |W (M,⋆)/WM | = l(M). �

Lemma 0.218. LetM < G be a standard Levi subgroup such that l(M) =
2 and ρ ∈ Irrc(M) a representation such that dim(HomG(iM (ρ), iM (ρ))) >
1. Then

(1) W (M,M) ̸=WM .
(2) w(M) =M and w(ρ) = ρ for any w ∈W (M,M)−WM .

Proof. (1) By the Frobenious reciprocity we have

HomG(iM (ρ), iM (ρ)) = HomM (rM ◦ iM (ρ), ρ)

If W (M,M) =WM then (see 0.213 ) rM ◦ iM (ρ) = ρ and

HomM (rM ◦ iM (ρ), ρ) = C

So W (M,M)−WM ̸= ∅.
Since l(M) = 2 we haveW (M,M)−WM = wWM for any w ∈W (M,M)−

WM . As follows from 0.213 we have an exact sequence

{0} → w(ρ) → rM ◦ iM (ρ) → ρ→ {0}

So

dim(HomG(iM (ρ), iM (ρ))) ≤ dim(HomM (ρ, ρ)) + dim(HomM (w(ρ), ρ))

By the assumption dimHomG(iM (ρ), iM (ρ)) > 1. So w(ρ) = ρ. �

Theorem 0.219. LetM,M ′ be standard Levi subgroups of G, ρ ∈ Irrc(M), ρ′ ∈
Irrc(M

′), π = iM (ρ), π′ = iM ′(ρ′). The following conditions are equivalent.

(1) M ∼M ′ and ρ ∼ ρ′.
(2) HomG(π, π

′) ̸= {0}.
(3) JH(π) = JH(π′).
(4) JH(π) ∩ JH(π′) ̸= ∅.
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Proof. It is clear that (2) ⇒ (4) and (3) ⇒ (4). We start with a
proof of the implication (4) ⇒ (1). Since JH(π) ∩ JH(π′) ̸= ∅ we can find
τ ∈ JH(π) ∩ JH(π′). Let N < G be a standard Levi subgroup standard
Levi subgroup such that rN (τ) is a non-zero quasi-cuspidal representation
of N . As follows immediately from Corollary 0.213 we have

rN (τ) ⊂ rN (π) = {w(ρ)}, w ∈W (M,N)

and also

rN (τ) ⊂ rN (π
′) = {w′(ρ′)}, w′ ∈W (M ′, N)

But this implies that ρ ∼ ρ′.
We now show that (1) ⇒ (2). Since ρ ∼ ρ′ it follows from Corollary 0.213

that ρ′ ∈ JH(rM ′ ◦ iM (ρ)). Now Lemma 0.181 implies that rM ′ ◦ iM (ρ) has
a quotient isomorphic to ρ′. In other words

HomM ′(rM ′ ◦ iM (ρ), ρ′) ̸= {0}

and therefore it follows from the Frobenious reciprocity that

HomG(π, π
′) = HomM ′(rM ′ ◦ iM (ρ), ρ′) ̸= {0}.

It is clear that for a proof of Theorem it is sufficient now to prove the
implication (1) ⇒ (3). We start a proof with the case when l(M) = 2.

Lemma 0.220. If l(M) = 2 then (1) ⇒ (3) .

Proof. IfM =M ′, ρ = ρ′ then there is nothing to prove. So we assume
that ρ ̸= ρ′ and therefore l′(π) = l′(π′) = 2. Since we know already that
(1) ⇒ (2) we can choose non-zero G-equivariant morphisms a : π → π′ and
a′ : π′ → π. Since l(π) ≤ l(M) = 2 we see that either π is irreducible or
l(π) = 2. If the morphism a is an isomorphism then there is nothing to
prove. So we assume that a is not an isomorphism.

If π is irreducible then a is an imbedding and

l′(π′/a(π)) = l′(π′)− l′(π) = 0

and it follows from Claim 0.216 that a is onto. So a is an isomorphism and
JH(π) = JH(π′). The same arguments work if π′ is irreducible. So

From now on we assume that both π and π′ are reducible. Then l(π) =
l(π′) = 2 and we have exact sequences

{0} → π1 → π → π2 → {0}

{0} → π′1 → π′ → π′2 → {0}
where π1, π

′
1, π2, π

′
2 are irreducible representations of G such that l′(π1) =

l′(π′1) = l′(π2) = l′(π′2) = 1.

Claim 0.221. (1) If dimHomG(π, π) > 1 then M = M ′ and ρ =
ρ′.

(2) If dimHomG(π, π) = 1 then Im(a′) is the only irreducible submod-
ule of π.
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Proof. (1) If dimHomG(π, π) > 1 then it follows from Corollary 0.218
that there exists w ∈ W (M,M) −WM such that w(ρ) = ρ. On the other
hand since Since l(M) = 2 and W (M,M) −WM ̸= ∅ we see that M ′ = M
and ρ′ = ρ.

(2) Since l′(Ker(a′)) > 0 and l(π′) = 2 we have l′(Im(a′)) = 1 and there-
fore l(Im(a′)) = 1. So Im(a′) is an irreducible submodule of π. Suppose
that there exists another irreducible submodule τ of π. Since l(π) = 2 we
have π = Im(a′)⊕ τ . But then dimHomG(π, π) > 1. �

From now on we assume that dimHomG(π, π) = 1.
By the Frobenious reciprocity we have Hom(rM (π1), ρ) = Hom(π1, π) ̸=

{0}. As follows from the definition of the function l′ the equality l′(π1) = 1
implies that rM (π1) = ρ and rM ′(π1) = {0}. Therefore [by the Frobenious
reciprocity] we have

Hom(π1, π
′) = Hom(rM ′(π1), ρ

′) = {0}.

So a(π1) = {0} and [by the Claim] a defines an isomorphism ā : π/π1 → π′1.
Analogous arguments show the existence of an isomorphism ā′ : π′/π′1 → π1.
So JH(π) = JH(π′). �

Now we prove the implication (1) ⇒ (3) in the general case. Choose w ∈
W (M,M ′) such that w(ρ) = ρ′. As follows from Problem 0.215 there exists
chains M = M0,M1, ...,Mr = M ′, L1, L2, ..., Lr of standard Levi subgroups
of G and a decomposition w = wr...w1 such that

(1) Mi−1,Mi are maximal Levi subgroups of Li, 1 ≤ i ≤ r.
(2) wi ∈WLi .
(3) wi(Mi−1) =Mi, 1 ≤ i ≤ r.

Let ρk := wk...w1(ρ) ∈ M(Mk), 1 ≤ k ≤ r. It is sufficient to show that

JH(iMk
(ρ)) = JH(iMk−1

(ρk−1))

for all k, 1 ≤ k ≤ r. Since

iGMk
= iGLk

◦ iLk
Mk
, iGMk−1

= iGLk
◦ iLk

Mk−1

the equality

JH(iMk
(ρ)) = JH(iMk−1

(ρk−1))

would follow from the equality

JH(iLk
Mk

(ρ)) = JH(iLk
Mk−1

(ρk−1)), 1 ≤ k ≤ r.

Since Mk−1,Mk, 1 ≤ k ≤ r are standard maximal Levi subgroups of Lk the
equality

JH(iLk
Mk

(ρ)) = JH(iLk
Mk−1

(ρk−1))

follows from 0.220.
�
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9.4. Cuspidal datas.

Definition 0.222. (1) A cuspidal data of G is a pair (M,ρ) where
M < G is a standard Levi subgroup and ρ ∈ Irrc(M).

(2) Two cuspidal datas (M,ρ) and (M ′, ρ′) are associated if there exists
w ∈ W such that w(M) = M ′ and [w(ρ)] = [ρ′]. In this case we
write (M,ρ) ∼ (M ′, ρ′).

(3) We denote by X(G) the set of cuspidal datas up to associate
(4) A component of M(G) is an equivalence class of pairs (M,D) where

M < G is a standard Levi subgroup and D ∈ Xc(M) is cuspidal
component of M(M) where two pairs (M,D), (M ′, D′) are equiva-
lent if there exists w ∈W such that w(M) =M ′ and w(D) = D′.

(5) We denote by X̄(G) the set of components of M(G).
(6) For any component Ω ∈ X̄(G) we denote by XΩ ⊂ X(G) the set of

cuspidal datas in Ω.

Remark 0.223. By the definition for any Ω ∈ X̄(G) the set XΩ is equal
to the quotient D/W(M,D) of some cuspidal component D ∈ Xc(M),M < G.
Therefore the structure of an C-algebraic variety on D induces a structure
of an C-algebraic variety on XΩ.

Lemma 0.224. Let π be an irreducible representation of G.

(1) There exists a cuspidal data (M,ρ) of G such that ρ ∈ JH(rM (π)).
(2) Let (M,ρ) be a cuspidal data of G. Then ρ ∈ JH(rM (π)) iff π ∈

JH(iM ′(ρ′)) for any cuspidal data (M ′, ρ′) associated with (M,ρ).
(3) Let (M,ρ), (M ′, ρ′) be cuspidal datas of G such that ρ ∈ JH(rM (π))

and ρ′ ∈ JH(rM ′(π)) for some π ∈ Irr(G). Then (M,ρ) and
(M ′, ρ′) are associated.

Proof. (1) Choose M to be a minimal standard Levi subgroup such
that rM (π) ̸= {0}. Then rM (π) is a non-zero cuspidal representation of M
and any ρ ∈ JH(rM (π)) satisfies the condition of (1).

(2) Assume that ρ ∈ JH(rM (π)). As follows from Lemma 0.181 we have
HomM (rM (π), ρ) ̸= {0}. Then [by the Frobenious duality] HomM (π, iM (ρ)) ̸=
{0} and therefore π ∈ JH(iM (ρ)). If (M ′, ρ′) is cuspidal data associated
with (M,ρ) then by Theorem 0.219 we have JH(iM (ρ)) = JH(iM ′(ρ′)).

Conversely assume that π ∈ JH(iM (ρ)). Then as, follows from Corollary
0.213, all the irreducible subquotients of rM (π) are of the form w(ρ), w ∈
W (M,M).

(3) Assume now that (M,ρ), (M ′, ρ′) are cuspidal datas such that ρ ∈
JH(rM (π)) and ρ′ ∈ JH(rM ′(π)). As follows from (2) we have ρ′ ∈
JH(rM ′ ◦ iM (ρ)). Now the result follows from Corollary 0.213 c).

�
Definition 0.225. (1) For any π ∈ Irr(G) we denote by pr(π) ∈

X(G) the associated class of cuspidal datas (M,ρ) such that ρ ∈
JH(rM (π)). As follows from the last Lemma the map pr : Irr(G) →
X(G) is well defined.
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(2) For any component Ω ∈ X̄(G) of M(G) we denote by IrrΩ the
preimage pr−1(XΩ) ⊂ Irr(G) and denote by M(Ω) the full sub-
category of M(G) of objects V such that JH(V ) ⊂ IrrΩ.

(3) For and cuspidal date (M,ρ) we define
X(ρ) := {ψ ∈ ΨM | the representation πψ is not irreducible}.

Corollary 0.226. The map pr : Irr(G) → X(G) is finite-to -one and
surjective.

Proof. The surjectivity follows immediately from the definition of the
map pr and the finiteness of fibers pr−1(π) follows from Lemma 0.217 (2).

�
Theorem 0.227. [Decomposition Theorem]. For any Ω ∈ X̄(G) the set

IrrΩ splits the category M(G).

Proof. We start with the following definition.

Definition 0.228. (1) Let V be a G-module. For any Ω ∈ X̄(G)
we define V (Ω) as the maximal submodule of V such that JH(V (Ω)) ⊂
IrrΩ.

(2) We say that V is split if V =
⊕

Ω∈X̄(G) V (Ω).

Lemma 0.229. Any submodule of a split module is split.

Proof. Let V ′ ⊂ V be a submodule of a split module. We want to
show that V ′ =

⊕
Ω∈X̄(G) V

′(Ω). As follows from Lemma 0.25 it is sufficient

to show that JH(W ) = ∅ for

W = V ′/
⊕

Ω∈X̄(G)

V ′(Ω).

Fix Ω0 ∈ X̄(G) and consider

pΩ0 : V →
⊕
Ω ̸=Ω0

V (Ω)

Since V is split, Ker pΩ0 = V (Ω0). Consequently, Ker(pΩ0V ′ ) = V ′(Ω0).

Since V ′(Ω) = V (Ω) ∩ V ′ for all Ω ∈ X̄(G) we have

JH(W ) ⊂ ∪Ω∈X̄(G)−{Ω0} IrrΩ .

So
JH(W ) ⊂ ∩Ω∈X̄(G) IrrΩ = ∅

Since Irr(G) is a disjoint union of IrrΩ,Ω ∈ X̄(G) we see that JH(W ) =
∅. �

Now we remind some results on the the decomposition of the cuspidal
part.

Definition 0.230. (1) We define M(cusp) :=
∏
M<GM(M)cusp.

(2) We define the functor I : M(cusp) → M(G) by I({(M,ρM )}) :=
⊕M<GiM (ρM ).
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(3) We define the functorR : M(G) → M(cusp) byR(π) := {rM (π)c},M <
G where Vc is the cuspidal part of V as in Definition 0.163.

Lemma 0.231. (1) Let (π,W ) be an irreducible representation of G
and

(2) For any smooth irreducible representation (π,W ) of G there ex-
ists a standard parabolic P = MU and an irreducible cuspidal
representation (τ,W ) of M , such that there exists an embedding
W ↪→ iM (W ).

(3) R is the left adjoint to I.
(4) Functors R and I are exact.
(5) Functors R and I are faithful.
(6) The adjoint map κ(π) : π 7→ IR(π) is a monomorphism.

Proof. The parts (1) and (2) are familiar. It is also clear that the
functor I is faithful. Let us first of all show that functor R(θ) ̸= {0} for any
non-zero maps non-zero θ ∈ M(G). Choose π ∈ JH(θ). Since the functor R
is exact it is sufficient to show that R(π) ̸= {0}. Let M be a Levi subgroup,
minimal subject to the condition rM,U (π) ̸= 0. Then rM,U (π) is cuspidal.
So R(π) ̸= {0}.

Let us now show that κ(π) ̸= 0 for any non-zero π ∈ M(G). By the
adjunction we have a bijection

a : HomM(G)(π, IR(π)) → HomM(cusp)(R(π), R(π))

such that a(κ) = IdR(π). Since R(π) ̸= {0} we see that κ(π) ̸= 0.
Let us now prove the injectivity of the map κ : π 7→ IR(π), π ∈ M(G).

Let τ := Kerκ. We want to show that τ = {0}. Assume that τ ̸= {0}.
Since the functors R and I are exact the map RI(κ) : RI(τ) → RI(π) is
a monomorphism and therefore the composition τ → IR(τ) → IR(π) does
not vanish. But it is zero by the definition of τ . So τ = {0}.

Since the adjoint map κ(π) : π 7→ IR(π) is a monomorphism we see that
R is faithful. IR(π) = {0}. Since the functors R and I are faithful we see
that τ = {0}. �

We are now ready to prove the theorem. As we have shown it is sufficient
to prove that any M ∈ M(G) is a submodule of a split module. But
as follows from Lemma 0.231 any smooth G-module V is a submodule of
IR(V ) =

⊕
{M<G} iM (τM ) where τM is a cuspidal representation of M .

Thus, to prove the theorem, it is enough to prove that theG-modules iM (τM )
are split for cuspidal M -modules τM . Since τM is cuspidal, it follows from
Theorem 0.149 that we may write τM =

⊕
D τ(D) where the D run through

the cuspidal components of M . This reduces our problem further; we must
prove that iM (τM ) splits when τM ∈ MD(M) for some cuspidal component
D. But it follows from Corollary 0.213 that JH(iM (τM )) ⊂ XΩ where XΩ

is the component of M(G) corresponding to the pair (M,D). So iM (τM ) =
iM (τM )(Ω). �
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Lemma 0.232. Let (M, (ρ, V )) be a cuspidal data, K ⊂ G be a congru-
ence subgroup such that V K∩M ̸= {0} and Ω ∈ X̄(G) be the corresponding
component. Then LK ̸= {0} for any irreducible (π, L) ∈ IrrΩ.

Proof. As follows from Corollary 0.213 rM (L) ̸= {0} the representation
rM (π) of M has a subquotient isomorphic ρ ⊗ ψ for some character ψ :
M/M0 → C⋆. Therefore (rM (L))K∩M ̸= {0}. But then it follows from
Lemma 0.125 that LK ̸= {0}. �

Corollary 0.233. Let K ⊂ G be a congruence subgroup.

(1) The set

IrrK(G) := {(π, V ) ∈ Irr(G)|V K ̸= {0}}
splits the category M(G).

(2) If a representation (ρ, V ) of G is generated by the subspace V K then
the same is true for any subquotient of V .

Proof. (1) As follows from the decomposition theorem it is sufficient
to show that the set IrrK(G) ∩ IrrΩ splits the category M(Ω). But by the
Lemma 0.232 either IrrK(G) ∩ IrrΩ = IrrΩ or IrrK(G) ∩ IrrΩ = ∅.

(2) Let V = V1 ⊕ V2 be the decomposition such that JH(V1) ⊂ IrrK(G)
and JH(V1)∩ IrrK(G) = ∅. Since V is generated by the subspace V K we see
that V2 is generated by the subspace V K

2 . By the definition of V2 we have
V K
2 = {0}. So V = V1 and therefore JH(L) ⊂ IrrK(G) for every irreducible

subquotient L of V .
Assume now that the claim (2) is false and V ′ ⊂ V ′′ ⊂ V be submodules

such that (V ′′/V ′)K = {0}. Since JH(V ′′/V ′)subsetJH(V ) ⊂ IrrK(G) and
(V ′′/V ′)K = {0} we see that V ′′/V ′ = {0}. �

Remark 0.234. (1) The Corollary is true for all open subgroups
K of G such that K = (K ∩ U)(K ∩M)(K ∩ Ū) for any M < G.
For example you can take K to be the Iwahori subgroup.

(2) The result is not true when K = K0. Consider the case when
G = SL(2, F ) and V the space of smooth measures on P1 = B\G.
The integration defines an exact sequence

{0} → V0 → V → C → {0}
which [see ??] does not admit a splitting. On the other hand V0
does not have K0-invariant vectors.

9.5. Noetherian properties.

Definition 0.235. We say that an object V of an abelian category C is
Noetherian if any increasing chain V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ ... of subobjects of
V stabilizes.

Remark 0.236. Let A be a Noetherian ring and V an A-module. Then
V is Noetherian as an object of the category of A-modules iff V is finitely
generated.
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Lemma 0.237. Let V be a smooth G-module. The following conditions
are equivalent

(1) V is Noetherian.
(2) V is finitely generated.
(3) There exists a congruence subgroup K such that GV K = V and the

HK-module V K is finitely generated.

Proof. It is clear that (1) ⇒ (2).
(2) ⇒ (3). Assume that V is finitely generated, V = G(W ), dim(W ) <

∞. Then there exists a congruence subgroup K such that W ⊂ V K . Then
HK(W ) = eKG(W ) = eK(V ) = V K .

(3) ⇒ (1). Let V ∈ M(G) be such that there exists a congruence sub-
group K such that GV K = V and the HK-module V K is finitely generated.

Claim 0.238. The module R(V ) [see Lemma 0.231] is Noetherian.

Proof. By the definitionsR(V ) =
∏

{M<G,DM∈Xc(M)}R(DM )(V ) where

for any M < G and a cuspidal component DM ∈ Xc(M) we denote by
R(DM )(V ) the projection of rM (V ) on the factor M(DM ) of M(M). As
follows from the previous Corollary and the Uniform Admissibility Theorem
0.149 R(DM )(V ) = {0} for almost all pairs (M,DM ). So it is sufficient to
show that the representations R(DM )(V ) ∈ M(DM ) are Noetherian. As
follows from Corollary 0.233 the M -module R(DM )(V ) is generated by the
subspace RK ∩M(DM )(V ) = J(V K) [see Proposition 0.130] is finite di-
mensional. So the M -module R(DM )(V ) is finitely generated. On the other
hand it follows from Lemma 0.197 that the category M(DM ) is equiva-
lent to the category of right modules over a Noetherean ring A(DM ). So
R(DM )(V ) ∈ M(DM ) are Noetherian objects. �

To prove that V is Noetherian consider an increasing chain V1 ⊂ V2 ⊂
... ⊂ Vn ⊂ ... of subobjects of V . Since the object R(V ) is Noetherian the
chain R(V1) ⊂ R(V2) ⊂ ... ⊂ R(Vn) ⊂ ... stabilizes. Since the functor R is
faithful this implies the stabilization of the chain V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ ...
also stabilizes. �

Corollary 0.239. (1) The functors rM map Noetherian objects
into Noetherian objects.

(2) The functors iM map Noetherian objects into Noetherian objects.

Proof. (1) Let V ∈ M(G) be a Noetherian object. Then by 0.237 V is
finitely generated, V = G(W ), dim(W ) <∞ and we may assume that W is
K0-invariant. Choose a congruence subgroup K such that W ⊂ V K . Since
K0W = W the decomposition G = MUK0 implies that Mq(W ) = rM (V )
where q : V → rM (V ) is the natural projection. So the module rM (V ) is
finitely generated and therefore it is Noetherian.

(2) Let W be a Noetherian object of M(M). We want to show that
any chain increasing V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ ... of subobjects of V := iM (W )
stabilizes. Since the functor R is faithful it is sufficient to show that the
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chain R(V1) ⊂ R(V2) ⊂ ... ⊂ R(Vn) ⊂ ... stabilizes. In other words we have
to show that for any standard subgroup N the chain rN (V1)c ⊂ rN (V2)c ⊂
... ⊂ rN (Vn)c ⊂ ... stabilizes. But now the stabilization of these chains
follow from (1), the inductive assumptions and the Basic Geometric Lemma
0.212 which says that objects rN (V1)c are glued from a finite number of
Noetherian objects.

�

10. Irreducibility of induced representations

Definition 0.240. LetM < G be a standard Levi subgroup and (ρ, V ) ∈
M(M).

(1) We write (π,W ) := iM (ρ, V ) and for any character ψ ∈∈ ΨM write
(πψ,Wψ) := iM (ρ⊗ ψ, V ).

(2) We use the Iwasawa decomposition G = PK0, P =MU to identify
the restriction of the representation πψ on K0 with the representa-
tion

indK0
K0∩P (inf

K0∩P
K0∩M (ResK0∩M (ρ))).

(3) Using this isomorphism we identify spaces Wψ, ψ ∈∈ ΨM with the
fixed space W in such a way that the restriction of πψ on K0 does
not depend on ψ.

As we know the representation iM (ρ) is admissible and therefore the
space WK is finite-dimensional for any congruence subgroup K.

Lemma 0.241. For any h ∈ HK the operator ĥ(ψ) := πψ(h) is a regular

function on ΨM with values in EndWK .

Proof. Since the support of h is compact there exists a congruence
subgroup K ′ ⊂ K such that x−1k′x ∈ K for all x ∈ supp(h). Then

πψ(x)(W
K′
) ⊂ WK for all x ∈ supp(h). It is sufficient to show that for

any x ∈ supp(h) the operator πψ(x) : W
K′ → WK is a regular function on

ΨM with values in Hom(WK′
,WK). But for any f ∈Wψ = indK0

K0∩P (V ) we

have πψ(x)(f)(k) = ψ(θM (kx))π(x)(f)(k). �

Lemma 0.242. Let X(ρ,K) := {ψ ∈ ΨM | the representation πψ : HK →
End(WK) is not irreducible}.

Then X(ρ,K) ⊂ ΨM is a Zariski closed subset.

Proof. We start with the following general result.

Problem 0.243. Let k be an algebraically closed field, L be a finite-
dimensional k-vector space, Y an algebraic k-manifold, fi, i ∈ I a family of
L-valued regular function on Y = Y (k) and Z ⊂ Y the set of z ∈ Y such
that {fi(z)}, i ∈ I do not generate L. Then there exists a Zariski closed
subset Z ⊂ Y such that Z = Z(k).
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The proof of the Lemma is based on the Bernside’s theorem which says
that there is no proper subalgebras of the algebra End(WK) which act irre-
ducibly on WK . Therefore

X(ρ,K) := {ψ ∈ ΨM | the span of ĥ(ψ), h ∈ HK is equal to End(WK)}.
We now apply Problem to the case when

k = C, Y = ΨM , L = EndC(W
K), I = G, fg(ψ) := πψ(eKgeK).

�
Corollary 0.244. For any cuspidal data (M,ρ) the subset X(ρ) [see

0.225] is Zariski closed.

Proof. Follows from Corollary 0.233. �
The main goal of this section is to prove that X(ρ) ̸= ΨM . The proof is

based on the analysis of of the unitary structure.

10.1. The Unitary Structure. Let (ρ, V ) be a smooth representation
of G.

Definition 0.245. For any v ∈ V, λ ∈ Ṽ we define the ma-
trix coefficient mṽ,v(g) as a function on G given by mṽ,v(g) =

ṽ(π(g)v), v ∈ V, ṽ ∈ Ṽ .
(1) Assume now that (π, V ) is an irreducible representation of G such

that the restriction to the center Z(G) is equal to χIdV where
χ : Z(G) → C⋆ is a unitary character. We say that V is square
integrable modulo center if∫

G/Z
|mξ,ξ̃(g)|

2dg <∞.

(2) A unitary structure on a G-module (π, V ) is a positive definite,
G-invariant Hermitian scalar product Q : V ⊗ V → C.

(3) Let P = MU be a parabolic subgroup of G and (ρ,W,<,>) be a
unitary representation of M . We define the unitary structure Q on
(π, V ) = (iM (ρ), iM (W )) by

Q(f1, f2) =

∫
x∈P\G

< f1(x), f2(x) >

where the linear functional
∫

is as in Definition ??.

Remark 0.246. We do not assume that V is complete with respect to
this structure.

Problem 0.247. Let (π, V ) be an irreducible representation of G which
is essentially square integrable modulo center. Then

(1) (π, V ) admits a unitary structure.

(2) |mv,ṽ(g)|2 ∈ L1(G/Z(G)) for all v ∈ V, λ ∈ Ṽ .

The essential uniqueness of an invariant scalar product for irreducible
representations follows from the following version of the Schur’s lemma.
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Lemma 0.248 (Schur’s Lemma). Let V be an irreducible G-module.
Then any two G-invariant unitary structures on V are proportional.

Proof. Let V + be anti-linear dual of V , that is the space of anti-
linear functionals. An invariant scalar product Q : V ⊗ V → C defines
a G-equivariant semi-linear map V → V +. As V is smooth, we obtain a
semi-linear map V → (V +)sm. Since V is admissible we see that V +

sm is
also admissible and irreducible. Therefore any non-zero G-equivariant semi-
linear map V → (V +)sm is a bijection. It follows now from the Schur’s
lemma that any two non-zero G-equivariant semi-linear maps V → (V +)sm
are proportional. �

10.2. Applications of the unitarity.

Lemma 0.249. Any smooth admissible unitary representation (π, V ) of
G is completely reducible. [That is, V =

⊕
Vi where the Vi are irreducible

unitary subrepresentations.]

Remark 0.250. The assumption of the admissibility is important.

Proof. Suppose W ⊂ V is a submodule. Then the orthogonal comple-
ment, W⊥ ⊂ V is also a submodule and W ∩W⊥ = 0. It remains to check
thatW +W⊥ = V . For this it is enough to check that for any compact open
subgroup K ⊂ G we have WK +(W⊥)K = V K . Since [by the admissibility]
the space V K is finitely-dimensional we have V K =WK⊕(WK)⊥∩V K . So it
is sufficient to show that (WK)⊥∩V K ⊂W⊥. Since the group K is compact
we haveW =WK⊕L where

∫
K π(k)ldk = 0 for l ∈ L. Then < l, v >= 0 for

all v ∈ V K and we see that < w, v >= 0 for all v ∈WK)⊥∩V K , w ∈W. �
Corollary 0.251. Let V be an admissible unitary representation V of

G such that EndG(V ) = C. Then V is irreducible.

This Corollary provides a method for establishing the irreducibility of
some representations. Here is an important example.

Let ρ be an irreducible cuspidal representation of a Levi subgroup M <
G. We denote by X(ρ) ⊂ ΨM the set characters ψ such that the represen-
tation πψ := iM (ρ⊗ ψ) of G is reducible.

Theorem 0.252. X(ρ) is a proper Zariski closed subset of ΨM .

Proof. Since ρ is irreducible there exists a character χ : Z(M) → C⋆
such that ρ(z) = χ(z)Id for z ∈ Z(M). Since the subgroup Z(G) ∩M0 ⊂
Z(G) is compact there exists ψ ∈ ΨM such that |χ(z)ψ(z)| = 1 for all
z ∈ Z(M). Therefore [see Problem 0.84] the representation ρ⊗ ψ admits a
unitary structure. By replacing ρ by ρ⊗ ψ we may assume that ρ admits a
unitary structure.

As follows from Corollary ?? the subset X(ρ) ⊂ ΨM is Zariski closed.
So we only have to show that X(ρ) ̸= ΨM .

As follows from Corollary 0.213 there exists a proper Zariski closed sub-
set Y of ΨM such that EndG(iM (ρ ⊗ ψ)) = C for ψ ∈ ΨM − Y . Since
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the subset Ψu
M ⊂ ΨM of unitary characters is Zariski dense in ΨM the set

Ψu
M −Ψu

M ∩Y is not empty. But for any ψ ∈ Ψu
M −Ψu

M ∩Y the representa-
tion πψ is unitary and EndG(iM (ρ⊗ψ)) = C. It follows now from Corollary
0.251 that πψ is irreducible. �

11. The second adjointness.

11.1. The comparison of orbits of P and P̄ . We start this section
with some results on the structure of of P orbits on G/Q for parabolic
subgroups P,Q of G.

Definition 0.253. For a pairM,N of standard Levi subgroups we define

WM,N := {w ∈W |w(M ∩B) ⊂ B,w−1(N ∩B) ⊂ B}

Problem 0.254. Let P,Q be standard parabolic subgroups of G.

(1) For any w ∈ W the intersection WMwWN ∩ WM,N consists of
one element. In other words any double coset WMwWN contains
unique representative in WM,N and we can identify the sets WM,N

and WMσW/WN .
(2) For any standard parabolic subgroups P,Q of G the imbedding

W ↪→ G induces the bijection WM\W/WN → P̄\G/Q.
(3) So the set WM,N parametrizes the both double cosets P̄\G/Q and

double cosets P\G/Q and we defined a bijection κ : P\G/Q →
P̄\G/Q.

(4) κ reverses the order on partially ordered sets P\G/Q and P̄\G/Q.
(5) The map w → w−1wG defines bijection κ′ : P\G/Q → Q\G/P̄

which reverses the order on partially ordered sets.
(6) There exists unique wG ∈ WG such that w ≤ wG for all w ∈ WG

and the map w → wwG reverses the partial order on WG.
(7) Assume that P =MU is a maximal parabolic subgroup of G. Then

(a) W (M,⋆) =WM ∪ wGWM .
(b) If W (M,M) =WM then the parabolic subgroups P and P̄ of

G are not conjugate and N := wG(M) < G is a standard Levi
subgroup of G associated with M . Moreover any standard
Levi subgroup of G associated with M is either equal to M or
is equal to N . In particular lG(M) = 2.

(c) If W (M,M) ̸= WM then the parabolic subgroups P and P̄
are conjugate, |W (M,M)/WM | = 2 and any standard Levi
subgroup of G associated with M is equal to M . So in this
case we also have lG(M) = 2.

Remark 0.255. In the case when G = GL(n, F ), P = Q = B any double
coset BgB has a form BwB where w ∈W = Sn where the symmetric group
Sn ⊂ GL(n, F ) is realized as the subgroup of permutation matrices. In
this case standard parabolic subgroups P correspond to partitions σP of n
and we denote by WP ⊂ W the subgroup of permutations preserving this
partition.
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Problem 0.256. a) Show that one can identify the sets PσG/Q and
WPσW/WQ.

b) Prove all the statements of the last Claim in the case G = GL(n).
c) Show that any parabolic subgroup of G is is conjugate to a standard

parabolic by an element of K0 and that G/P is compact.

Let P =MU be a parabolic subgroup of G and P̄ =MŪ be the opposite
parabolic. For any parabolic Q = NV of G the set WM,N parametrizes the
both double cosets P̄\G/Q and double cosets P\G/Q. So we defined a
bijection κ : P\G/Q→ P̄\G/Q.

Definition 0.257. (1) For any parabolic subgroups P,Q of G we
define a partial order on the finite set P\G/Q in such a way that
i ≤ j, i, j ∈ P\G/Q if Ωi is in the closure Ω̄j of Ωj where Ωi,Ωj ⊂ G
are P ×Q-orbits corresponding to i, j ∈ P\G/Q.

(2) We define a partial order on W using the bijection W → P0\G/P0.
(3) For any standard parabolic subgroup P = MU we denote by P̄ =

MŪ be the opposite parabolic.

Claim 0.258. (1) For any standard parabolic subgroups P,Q of G
the imbedding NG(M0) ↪→ G induces the bijection WM\W/WN →
P̄\G/Q. So the set WM,N parametrizes the both double cosets
P̄\G/Q and double cosets P\G/Q and we defined a bijection κ :
P\G/Q→ P̄\G/Q.

(2) κ reverses the order on partially ordered sets P\G/Q and P̄\G/Q.
(3) The map w → w−1wG defines bijection κ′ : P\G/Q → Q\G/P̄

which reverses the order on partially ordered sets.
(4) There exists unique wG ∈ WG such that w ≤ wG for all w ∈ WG

and the map w → wwG reverses the partial order on WG.
(5) Assume that P =MU is a maximal parabolic subgroup of G. Then

(a) W (M,⋆) =WM ∪ wGWM .
(b) If W (M,M) = WM then the parabolic subgroups P and P̄ of

G are not conjugate and N := wG(M) < G is a standard Levi
subgroup of G associated with M . Moreover any standard Levi
subgroup of G associated with M is either equal to M or is
equal to N . In particular lG(M) = 2.

(c) If W (M,M) ̸= WM then the parabolic subgroups P and P̄
are conjugate, |W (M,M)/WM | = 2 and any standard Levi
subgroup of G associated with M is equal to M . So in this
case we also have lG(M) = 2.

Remark 0.259. In the case when G = GL(n, F ), P = Q = B any double
coset BgB has a form BwB where w ∈W = Sn where the symmetric group
Sn ⊂ GL(n, F ) is realized as the subgroup of permutation matrices. In
this case standard parabolic subgroups P correspond to partitions σP of n
and we denote by WP ⊂ W the subgroup of permutations preserving this
partition.
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Problem 0.260. a) Show that one can identify the sets PσG/Q and
WPσW/WQ.

b) Prove all the statements of the last Claim in the case G = GL(n).
c) Show that any parabolic subgroup of G is is conjugate to a standard

parabolic by an element of K0 and that G/P is compact.

11.2. The construction of second adjointness. Let P =MU be a
parabolic subgroup of G. We know that rM,U is the left adjoint to iM,U . This
implies that for any representation π ofM we have a canonical isomorphism

HomM (rM,U ◦ iM,U (π), π) = HomG(iM,U (π), iM,U (π)).

In particular we have a canonical morphism rM,U ◦ iM,U → IdM(M) of
functors. In fact, the existence of such a morphism is implies by the existence
of the filtration of the functor rM,U ◦ iM,U described in the Basic Geometric
Lemma. Really subquotients in this filtration correspond to orbits of P
acting on X = P\G. There is a distinguished orbit of the action of P on
P\G, namely point P which is the only closed orbit. Since P is closed it
corresponds to the quotient of rM,U ◦iM,U . It is easy to see that this quotient
is equal to IdM(M). We see that the adjointness property is related to the
existence of the distinguished orbit.

Let P =MU be the parabolic opposite to P .
As follows from Problem 0.258 there is unique open orbit of the action

of P̄ on G/P and the functor associated with this orbit is equal to IdM(M).
Set, rM = rM,Ū . We have shown that for any representation τ ∈

M(M) there is a canonical imbedding τ → r̄M ◦ iM (τ). Now for any
φ ∈ HomG(iM,U (τ), π). we define a morphism β(φ) ∈ HomM (τ, rM (π))
as the composition

β(φ) : τ → r̄M ◦ iM (τ)
r̄M (φ)→ rM (π)

In other words, we defined a map

βG,M (τ, π) : HomG(iM (τ), π) → HomM (τ, rM (π))

We will often write β(τ, π) or simply β instead of βG,M (τ, π).

Theorem 0.261. β is an isomorphism. In other words, rM is the right
adjoint functor to iM .

Proof. We assume that the result is known for all proper Levi sub-
groups of G.

Lemma 0.262. (1) Let

τ ′′ → τ ′ → τ → {0}

be an exact sequence in M(M) such that the morphisms β(τ ′′, π)
and β(τ ′, π) are isomorphisms. Then β(τ, π) is also an isomor-
phism.
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(2) Let

{0} → π → π′ → π′′

be an exact sequence in M(G) such that the morphisms β(τ, π′′) and
β(τ, π′) are isomorphisms. Then β(τ, π) is also an isomorphism.

Proof. The result follows from the exactness of functors rM and iM
and the five-homomorphisms lemma. �

Corollary 0.263. It is sufficient to check the validity of the Theorem
in the case when τ is a projective object of M(M) and π is an injective
object of M(G).

Proposition 0.264. β(τ, π) is an isomorphism if τ is projective and π
is equal to iN (ρ) where N < G is a proper Levi subgroup of G and ρ is an
injective object of M(N).

Proof. As follows from the Frobenious reciprocity we have equalities

HomG(iM (τ), π) = HomG(iM (τ), iN (ρ)) = HomN (rN (iM (τ)), ρ)

By the Basic Geometric Lemma the functor HomN (rN (iM (τ)) admits a de-
creasing filtration parametrized by double cosets P\G/Q and the subquo-

tients are isomorphic to Ψ̃w(τ), w ∈WM,N where

iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V )

Since the object ρ is injective we see that the space HomN (rN (iM (τ)), ρ)
admits an increasing filtration parametrized by double cosets P\G/Q and
the subquotients are isomorphic to

HomN (iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V )(τ), ρ), w ∈WM,N

On the other hand the functor r̄M ◦ iN admits a decreasing filtration
parametrized by double cosets Q\G/P̄ . By Problem 0.258 this set coincides
with the set {w−1wG}, w ∈ WM,N and we can consider this filtration as an
increasing filtration parametrized by the set P\G/Q and the corresponding

subquotients are isomorphic to Ψ̃′
w(τ), w ∈WM,N where

Ψ̃′
w(τ) = iM∩w−1(N),M∩w−1(V ) ◦Ad(w−1) ◦ rN∩w(M),N∩w(Ū)

Since τ is a projective object of M(M) we see that the space HomN (τ, r̄M ◦
iN (ρ)) admits an increasing filtration parametrized by double cosets P\G/Q
and the subquotients are isomorphic to

HomM (τ, iM∩w−1(N),M∩w−1(V ) ◦Ad(w−1) ◦ rN∩w(M),N∩w(Ū)(ρ)), w ∈WM,N

Problem 0.265. (1) The functor β(τ, iN,V (ρ)) is compatible with
the increasing filtrations on HomG(iM (τ), π) and HomM (τ, rM (π)), w ∈
WM,N .
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(2) For all w ∈WM,N the induced map from

HomN (iN∩w(M),N∩w(U) ◦Ad(w) ◦ rM∩w−1(N),M∩w−1(V )(τ), ρ)

to

HomM (τ, iM∩w−1(N),M∩w−1(V ) ◦Ad(w−1) ◦ rN∩w(M),N∩w(Ū)(ρ))

is given by βN,N∩w(M)Ad(w) ◦ rM∩w−1(N),M∩w−1(V )(τ), ρ).

Now Proposition follows from the inductive assumptions. �
Corollary 0.266. (1) β(τ, π) is an isomorphism if π is equal to

iN (ρ) where N < G is a proper Levi subgroup of G, ρ ∈ M(M).
(2) β(τ, π) is an isomorphism if π ∈ Ob(M⊥

c (G)).

Proof. The part (1) follows arguments used in the proof of Lemma
0.262.

Since π ∈ M⊥
c (G) the map

⊕{M<G,M ̸=G}κM (π) : V → ⊕{M<G,M ̸=G}iM ◦ rM,U (π)

is an imbedding. Applying this argument once more we find an exact se-
quence

{0} → π → π′ → π′′

such that π′ and π′′ are direct sums of representations of the form iN,V (ρ)
where Q = NV is a proper parabolic subgroup of G, ρ ∈ M(M). Now the
Claim follows from Lemma 0.262. �

Now we can finish the proof of the Theorem. As follows from the last
Corollary and the decomposition theorem saying that M(G) = Mc(G) ⊕
M⊥

c (G) it is sufficient to prove the theorem in the case when π is quasi-
cuspidal. But it is clear that in this case both sides are equal to {0}. �

Corollary 0.267. The functor iM : M(G) → M(M) maps projective
objects into projective.

11.3. The Bernstein’s morphism. Let P =MU ⊂ G be a standard
parabolic, P̄ =MŪ be the opposite parabolic , H ⊂ P × P̄ be the preimage
of the diagonal under the projection P × P̄ → P/U × P̄ /Ū = M ×M and
XM := H\G × G. We use the second adjointness to construct a G × G-
equivariant morphism BM : S(XM ) → S(G) introduced by J.Bernstein.

For any V ∈ M(G×G) we write

r̄M × rM (V ) := rM×M,Ū×U (V ) ∈ M(M ×M).

Let Y := PP̄ ⊂ G. Then Y is an open P̄ × P subset of G.

Problem 0.268. We can identify the M × M representation r̄M ×
rM (S(Y )) with of the regular representations of M ×M on S(M).

We denote by jM the composition jM : S(M) → r̄M × rM (S(Y )) ↪→
r̄M × rM (S(G)).
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Definition 0.269. (1) By the construction

S(XM ) = indG×G
H C = indG×G

P×P̄ S(M)

where the action of P × P̄ on S(M) is the composition of the
regular representations of M × M on S(M) and the projection
P × P̄ → M × M . As follows from Theorem 0.261 we have an
isomorphism

HomG×G(S(XM ),S(G)) = HomM×M (S(M), r̄M × rM (S(G))).

Therefore the canonical imbedding jM defines a a G×G-equivariant
morphism BM : S(XM ) → S(G).

(2) Let C(G),C(XM ) be the space of C-valued functions on G and
X(M) which are two-sided invariant under some open compact sub-

group of G. Then C(G) = S̃(G),C(XM ) = S̃(XM ) and we denote

by B̃M : C(G) → C(XM ) the morphism dual to BM .
(3) Let C(G),C(XM ) be the space of C-valued functions on G and

X(M) which are two-sided invariant under some open compact sub-

group of G. Then C(G) = S̃(G),C(XM ) = S̃(XM ) and we denote

by B̃M : C(G) → C(XM ) the morphism dual to BM .
(4) For any pair W1,W2 of smooth representations of M denote by

P(W1,W2) the space of M -invariant C-valued bilinear forms on
W1 ×W2.

(5) We denote by κ : HomG×G(V1 ⊗ V2,C(XM )) → P(rM (V1), rM (V2))
given by

κ(ϕ)(J(v1), J̄(v2)) := ϕ(v1 ⊗ v2)(e)

where J : V1 → rM (V1), J̄ : V2 → r̄M (V2) are the canonical projec-
tions.

Problem 0.270. (1) Show that the bilinear form κ(ϕ)(w1, w2), w1 ∈
rM (V1), w2 ∈ r̄M (V2) is well defined. [That is the number ϕ(v1 ⊗
v2)(e) does not depend on a choice v1 ∈ V1, v2 ∈ V2 such that
w1 = J(v1), w2 = J̄(v2).]

(2) The map

HomG×G(V1 ⊗ V2,C(XM )) → P(rM (V1), rM (V2)), ϕ→ κ(ϕ)

is a bijection.

Definition 0.271. Let V1, V2 be smooth representations of G and <,>:
V1 × V2 → C be a G-invariant pairing. We denote by <,>M : rM (V1) ×
r̄M (V2) → C the M -invariant bilinear form as in the last Problem.

Let M < G be a standard Levi subgroup, (σ, V ) be a smooth repre-

sentation of G and <,>: V × Ṽ → C be the canonical G-invariant pairing.
We denote by J : V → rM (V ), J̃ : Ṽ → r̄M (Ṽ ) the canonical projections.
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As follows from the Corollary the canonical pairing <,>: V × Ṽ → C in-
duces a pairing <,>M : rM (V ) × r̄M (Ṽ ) → C and therefore a morphism

κM,V : r̄M (Ṽ ) → r̃M (V ).

Lemma 0.272. The κM,V is an isomorphism.

Proof. Consider the morphism a : r̃M (V ) → r̄M (Ṽ ) which is the image
of the identity IdrM (V ) under the composition

HomM (rM (V ), rM (V )) → HomG(V, iM◦rM (V )) → HomG( ˜iM ◦ rM (V ), Ṽ ) =

= HomG(iM (r̃M (V )), Ṽ ) → HomM (r̃M (V ), r̄M (Ṽ ))

where the first map comes from the Frobenious reciprocity, the second is
the duality, the third comes from the inverse of the natural morphism

iM (r̃M (V )) → ˜iM ◦ rM (V ) and the last map is equal to β(r̃M (V ), Ṽ ). It
is easy to check that a is the inverse of κM,V . �

Proposition 0.273. For any admissible representation (σ, V ) of G the
M -invariant pairings <,>M and <̃,>M [see Lemma ??] between rM (V ) and

r̄M (Ṽ ) coincide.

Proof. Let b(V ) : r̃M (V ) → r̄M (Ṽ ) be the isomorphism coming from

the pairing <̃,>M and β̃ : HomG(iM (r̃M (V ), Ṽ ) → HomM (r̃M (V ), r̄M (Ṽ )
be the map defined as the composition of the isomorphism Hom(i(τ), σ̃) =

Hom(τ, r̃(σ)) and the morphism b(V ). It is sufficient to show that β̃G,M =
βG,M . By the definition �


