
REPRESENTATIONS OF REDUCTIVE GROUPS

January 19, 2007
Syllabus.

Complex representations of reductive groups over different

fields. [Course 80759 - I changed the topic]

Sundays 11.30-13.15

This course consists of two parts. In the first we will study represen-
tations of reductive groups over local non-archimedian fields [ such as
Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of
J.Bernstein. Moreover I’ll often copy big chanks from these notes. In
the second the representations of reductive groups over 2-dimensional
local fields [ such as Qp((s))].

In the first part we explain the basics of

a) induction from parabolic and parahoric subgroups,

b) Jacquet functors,

c) cuspidal representations

d) the second adjointness and

e) Affine Hecke algebras.

In the second we discuss the generalization these concepts to the case
of representations of reductive groups over 2-dimensional local fields.

Prerequisites. The familiarity with the following subjects will be
helpful.

a) P -adic numbers, [see first few chapters of the book ”p-adic num-
bers, p-adic analysis, and zeta-functions” by N.Koblitz or sections 4-5
in the book ”Number theory” of Borevich and Shafarevich].

b) Basics of the theory of split reductive groups G [Bruhat decompo-
sition, Weyl groups, parabolic and Levi subgroups] of reductive groups,
[ One who does not know this this theory can restrict oneself to the case
when G = GL(n) when Bruhat decomposition= Gauss decomposition.]

c) Basics of the category theory: adjoint functors, Abelian cate-
gories. [ see the chapter 2 of book ”Methods of homological algebra”
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2 REPRESENTATIONS OF REDUCTIVE GROUPS

by Gelfand-Manin or Appendix and the first 2 chapters of ”An intro-
duction to homological algebra” by C.Weibel ].

Lecture 1.

1. Fourier transform

1.1. Finite fields. For any prime number p and a number q of the
form q = pn, n > 0 there exist unique [ up to an isomorphism] finite
field Fq with q elements. It has characteristic p and contains the field
Fp. We denote by ψ̄ : Fp → C⋆ the additive character given by

ψ̄(x) = exp(2πx̃)

where x̃ ∈ Z is any representative of x ∈ Fp = Z/pZ.
For any finite field Fq, q = pn we denote by ψ̄ : Fq → C⋆ by the

additive character given by

ψ̄(x) = ψ̄(TrFq/Fp
(x))

where Fp = Z/pZ is the prime subfield of Fq.
For any λ ∈ Fq we denote by ψ̄λ the additive character
x→ ψ̄λ(x) := ψ̄(λx).

Definition 1.1. D:F0 Let k be a finite field.

a) We denote by C(k) the linear space of complex-valued functions
on k and denote by <,> the scalar product

< f, g >:=
∑

x∈k

f(x)g(x), f, g ∈ C(f)

b) For any f ∈ S(F ) we define f− ∈ S(F ) by

f−(a) := f(−a)

c) We define the Fourier transform F : C(f)→ C(f) by

F(f)(x) :=
∑

y∈k

ψ̄(xy)f(y)

Exercise 1.2. . a) Show that F2(f) = qf− where f−(v) := f(−v).

b) Let χ be a non-trivial multiplicative character of the group k⋆ and
χ̃ the extension of χ to a function on k such that χ̃(0) = 0. Find F(χ̃).

c) < F(f),F(g) >= q < f, g− > ∀f, g ∈ C(k).

d) Show that the map λ → ψ̄λ defines a bijection between Fq and
the set additive characters F∨

q of Fq.
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Definition 1.3. D:FV0 Let V be a finite-dimensional k vector space.
We define by C(V ) the space of complex-valued functions on k and by
<,> the scalar product

< f, g >:=
∑

x∈V

f(x)g(x), f, g ∈ C(f)

b) We define the Fourier transform F : C(V ) → C(V ∨), where V ∨ is
the dual space, by

F(f)(v∨) :=
∑

v∈V

ψ̄(v∨, v)f(v), v∨ ∈ V ∨

where (, ) : V × V ∨ is the natural pairing.

Exercise 1.4. a) Show that F2(f) = qdimk(V )f−.

b) < F(f),F(g) >= qdimk(V ) < f, g− >.

1.2. Local fields. .

Definition 1.5. D:local Local fields are locally compact non-discrete
fields. As well known archimedian local fields are isomorphic either to
R or to C. In this course we will only consider non-archimedian local
fields.

If K is non-archimedian local field then there exists a valuation v :
K→ Z ∪∞ such that

a) v−1(∞) = {0},

b) the restriction of v on the multiplicative group K⋆ = K− {0} is
a group homomorphism,

c) the preimage O := v−1(Z≥0) is the maximal compact subring of
K,

d) the preimage m := v−1(Z>0) is the maximal ideal of O. Moreover
m is a principal ideal of O. Sometimes we will fix a generator of m.

e) the quotient field O/m is finite and therefore is isomorphic to Fq.

f) For any a ∈ K, n > 0 we define Ua,n = {b ∈ K|v(a − b) ≥ n}.
It is clear that that subsets Ua,n ⊂ K are open and closed and they
constitute a basis of open sets.

g) For a ∈ K we define ‖a‖ = q−v(a) if a 6= 0 and define ‖0‖ = 0.

We will use the letter K to denote non-archimedian local fields.

Examples 1.6. a) Let K = Fq((t)) be the field of formal Laurent series
over a finite field Fq. So any element a in K is a formal power series
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a(t) =
∑

i≥i0
ait

i. We can define a topology of K such that the sets

tiFq[[t]], i > 0 are a basis of open neighborhoods of 0 in K. In this case
we have v(a(t)) = i0 is ai0 6= 0.

b) K = Qp. In this case the maximal compact subring is equal to
the ring Zp and ‖‖ is the usual norm on Qp.

c) Any non-archimedian local field of positive characteristic is iso-
morphic to the field Fq((t)).

d) Any non-archimedian local field of characteristic zero is isomor-
phic to a finite extension of the field Qp.

Definition 1.7. Let L be a one-dimensional K-vector space. We de-
note by ‖L‖ the one-dimensional R-vector space L − {0} × R/Kstar

where a ∈ Kstar acts on L− {0} ×R/Kstar by a(l, r) = (al, ‖a−1‖r).

Exercise 1.8. E:tor a) Let V be a finite-dimensional K-vector space
of dimension d. Show that we can identify the real line ‖Λd(V ∨)‖ with
the line of real-valued invariant measures on V .

b) Show that ‖Λd(V ∨)‖ ⊗ ‖Λd(V )‖ ≡ R

Definition 1.9. D:add An additive character on K is a continuous
complex-valued function ψ on K such that

ψ(a+ b) = ψ(a)ψ(b), ∀a, b ∈ K

Examples 1.10. a) K = Fq((t)). Then t is a generator of m and the
function
ψ(a) := ψ̄(a−1) is a non-trivial additive character of K.

b) K = Qp. Then p is a generator of m and the function
a → ψ(a) := exp(2πiã) where ã ∈ Z[1/p] is such that a − ã ∈ Zp is

a well defined non-trivial additive character of K.

c) If K is a finite extension of Qp, then the function a→ ψ(TrK/Qp
a)

is a non-trivial additive character of K which we will also denote by ψ.
For any λ ∈ K we denote by ψλ the additive character
x→ ψλ(x) := ψ(λx), x ∈ K.

Exercise 1.11. Show that the map λ→ ψ̄λ defines a bijection between
K and the set additive characters of K.

Definition 1.12. D:sp1 a) We denote by S(K) the space of locally
constant complex-valued functions on K with compact support.

b) For any f ∈ S(K) we define f− ∈ S(K) by

f−(a) := f(−a)
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c) we denote by φ0 ∈ S(K) the characteristic function of the subset
O ⊂ K and by µ0 be the Haar measure on the additive group of K

such that µ0(O) = 1.

Remark 1.13. The integration
∫

: S(K)→ C, f →
∫

K

f(a)µ0

is reduced to a finite sum and the topology of C does not play any role.

Definition 1.14. D:F1 a) Using our choice of a Haar measure µ0 we
define the scalar product <,> on S(K) by

< f, g >:=

∫

K

f(a)g(a)µ0, f, g ∈ S(K)

b) For any function f ∈ S(K) we define the Fourier transform F(f) as
a function on K given by

F(f)(x) :=

∫

y∈K

ψ(xy)f(y)µ0

Exercise 1.15. a) For any f ∈ S(K) we have F(f) ∈ S(K),

b)F2(f) = f−

c) < F(f),F(g) >=< f, g− >.

d) F(φ0) = φ0.

Definition 1.16. D:F’1 a) We denote by S ′(K) the space of linear
functionals on S(K) and by M(K) ⊂ S ′(K) the subspace of locally
constant measures on K with compact support.

b) For any µ′, µ′′ ∈M(K) we define a measure µ′ ⋆ µ′′ := +⋆(µ
′
�µ′′)

on K where + : K×K→ K is the addition.

c) For any invertible linear operator A ∈ Aut(S(K)) we define A∨ ∈
Aut(S ′(K)) by

A∨(α)(f) := α(A−1(f))

d) We define an imbedding i : S(K) →֒ S ′(K) by

i(f)(g) :=< f, g− >

e) We define the Fourier transform F ′ : S ′(K)→ S ′(K) by

F ′ := F∨

Exercise 1.17. E:F a) The imbedding i identifies S(K) with the
subspace M(K) ⊂ S ′(K).

b) For any µ′, µ′′ ∈M(K) we have µ′ ⋆ µ′′ ∈M(K).
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c) For any µ′, µ′′ ∈M(K) we have F(µ′ ⋆ µ′′) = F(µ′)F(µ′′)

Exercise 1.18. Show that i0(F(f)) = F(i0(f
−)), ∀f ∈ S(K).

1.3. The multiplicative group K⋆. Using the valuation v : K⋆ → Z
we see that the multiplicative group K⋆ is an extension of Z be the
compact group O⋆ := v−1(0). A choice of a generator of m defines a
splitting K⋆ = Z×O⋆.

Definition 1.19. a) We define a representation ρ : K⋆ → Aut(S(K))
by

ρ(c)(f)(a) := f(c−1a)‖c‖−1/2

b) We denote by ρ∨ : K⋆ → Aut(S ′(K)) the dual representation
c→ ρ∨(c) := ρ(c)∨

Exercise 1.20. Show that i0(ρ(c)(f)) = ρ∨(c)(i0(f)).

Definition 1.21. D:mult1 a) A multiplicative character of K is a
continuous group homomorphism χ : K⋆ → C⋆.

b) For any multiplicative character χ we define

S ′
χ(K) = {α ∈ S ′|ρ∨(c)(α)χ(c)α, ∀c ∈ K⋆}

Examples 1.22. For any z ∈→ C⋆ the map a → zv(a), a ∈ K⋆ is
multiplicative character. For any multiplicative character χ and z ∈ C⋆

we define the multiplicative character χz by

χz(a) = χ(a)zv(a)

Exercise 1.23. a) Show that F ′(S ′
χ(K)) = S ′

χ−1(K).

b) Prove that for any multiplicative character χ we have

dim(S ′
χ(K)) = 1

Definition 1.24. D:FV1 a) We denote by S(V ) be the space of
complex-valued locally constant functions on V with compact support,
by M(V ) the space of locally constant measures on V with compact
support by M(V ) the space of locally constant measures on V with
compact support [we say that a measure µ on V is locally constant µ
is invariant under shifts by u ∈ U where U ⊂ V is an open subgroup]
and by S ′(V ) the space of linear functionals on by S(V ). We have a
natural imbedding M(V ) → S ′(V ). As we know we can identify the
space M(V ) with S(V )⊗ ‖Λd(V ∨)‖.

b) For any µ ∈M(V ) we define it’s Fourier transform as a function
FV (f) on the dual space V ∨ by

FV (µ)(v∨) :=

∫

v∈V

ψ(< v∨, v >)µ
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We can consider FV as a map from S(V ) ⊗ ‖Λd(V ∨)‖ to S(V ∨) or
as map from S(V ) to S(V ∨)⊗ ‖Λd(V )‖ (see Exercise 1.8 ).

We can consider FV ∨ ◦FV as a map from S(V ) to S(V )⊗‖Λd(V )‖⊗
‖Λd(V ∨)‖ = S(V )

c) Let dv be a Haar measure on V . Then we can identify the space
S(V ) with M(V ) by f → fdv and define the scalar product <,>V on
S(V ) by

< f ′, f ′′ >=:=

∫

V

f ′(v)f ′′(v)dv

d) We define representation of the group Aut(V ) of linear automor-
phisms of V on S(V ) by

ρ(g)(f)(v) = f(g−1v)‖det(g)‖−d/2

and by ρ∨ the representation of Aut(V ) on S ′(V ) by

ρ∨(g)(α)(f) := α(ρ(g−1)(f))

e) We denote by F ′
V ∈ Aut(S

′(V )) an operator defined by

F ′
V (α)(f) := α(F−1

V (f))

Exercise 1.25. a) For any f ∈ S(V ) we have FV (f) ∈ S(V ∨).

b) Show that FV ∨ ◦ FV (f) = f−.

c) There exists a Haar measure dv∨ on V ∨ such that

FV ∨ ◦ FV (f) = f−, f ∈ S(V )

d) For any f ′, f ′′ ∈ S(V ) we have

< f ′, f ′′ >V =< FV (f ′),FV (f ′′) >V ∨

e)
F(ρ(g)f)) = ρ∨(g)(F(f), f ∈ S(V )

2. Fourier transform over 2-dimensional local fields.

Let F = K((t)) be the field of formal Laurent series over K. For any
x(t) =

∑

i ait
i, ai ∈ K in F we define [x] := a0 ∈ K to be the constant

term of x(t).

Given a finite-dimensional F-vector space V one can try to associate
to it a topological vector space S(V) and to define the Fourier transform
F : S(V)→ S(V∨).

Remark. It is more correct to consider S(V) as a pro-vector space

We consider first the special case when V =F.
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Definition 2.1. D:S2 a) Let OF := K[[t]] be the ring of formal Taylor
series over K. and as before da be the Haar measure on K such that
∫

a∈OK
da = 1.

b) For any pair m,n ∈ N the quotient Nm
n := t−mO/tnO is isomor-

phic to the n +m-dimensional K-vector space of polynomials
x(t) =

∑i=n−1
−m ait

i, ai ∈ K.

c) We have an natural imbeddings i : Nm
n → Nm+1

n and also projec-
tions p : Nm

n+1 → Nm
n when we forget the coefficients at tn.

d) For any pair m,n ∈ N we define a vector space Sm
n := S(Nm

n ) of
locally constant complex-valued functions f on V with compact sup-
port. The imbeddings i defines the restrictions

i∗ : Sm+1
n → Sm

n

and projections p define the pushforwards p∗ : Sm
n+1 → S

m
n

where for any f ∈ Sm
n+1, x =

∑−m
i=n−1 ait

i ∈ Nm
n

p∗(f)(x) :=

∫

a∈K

f(x+ atn)da

e) We define now the space S(F) as the vector space of sequences
{fm

n } ∈ S
m
n

i∗(fm+1
n ) = p∗(f

m
n+1) = fm

n

such that for all (m,n) ∈ N.

The space S(F) has a natural topology such that open sets are unions
of fibers of the projections S(F)→ Sm

n .

f) For any pair m,n ∈ N we define a pairing <,>: Nm
n × N

n
m → K

of K-vector spaces as follows. Given x̄ ∈ Nn
m, ȳ ∈ Nm

n consider the
product xy ∈ F of representatives x, y ∈ F of x̄, ȳ. It is easy to see
that the constant term < x̄, ȳ >:= [xy] does not depend on a choice of
representatives of x̄, ȳ.

g) Since the pairing <,>: Nm
n × Nn

m → K is non-degenerate we
identify the Nn

m with the dual space to Nm
n and denote by F : Sm

n → Sn
m

the Fourier transform.

Exercise 2.2. a) For any f ∈ Sm
n we have

i∗(F(f)) = F(p∗(f)), (p∗(F(f)) = F(i∗(f))

b) For any sequence {fn
m} ∈ S(F) the sequence

{φm
n }, φ

m
n := F(fn

m) belongs to S(F)
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Definition 2.3. D:F2 We define the Fourier transform F : S(F) →
S(F) by
F{fm

n } := {φm
n } where φm

n := F(fn
m)

2.1. The multiplicative group F∗. The multiplicative group F∗ acts
naturally on F and we can ask whether this action induces a represen-
tation of the group F∗ on the space S(F).

The group F∗ is a direct product of the subgroup of generated by
an element t and the subgroup O∗ of series x((t)) of the form x((t)) =
∑

i≥0 ait
i, ai ∈ K, a0 6= 0.

The multiplication by t defines an isomorphism of vector spaces
Nm

n → Nm−1
n+1 and therefore of an isomorphism t̂ : Sm+1

n−1 → Sm
n such

that t̂(f)(x) := f(t−1x), x ∈ Nm
n . It is clear that the operators t̂ com-

mute with the operators i∗ and p∗. In other word for any sequence
f = {fm

n } ∈ S(F) the sequence

t̃(f) := {φm
n }, φ

m
n = t̂(fm+1

n−1 )

belongs to S(F).

Let us now try to define a representation of the group O∗ on S(F).
For any u =

∑

i≥0 uit
i ∈ O∗ the multiplication by u defines an isomor-

phism of vector spaces Nm
n → Nm

n and therefore of an isomorphism
ũ : Sm

n → Sm
n such that ũ(f)(x) := f(u−1x), x ∈ Nm

n . The operators
ũ commute with operators i∗. On the other hand, the operators p∗ are
defined as an integration by the Haar measure da which is preserved
under the multiplication by u only if ‖u0‖p = 1. So if ‖u0‖p 6= 1 and
f = {fm

n } ∈ S(F) the sequence

ũ(f) := {φm
n }, φ

m
n = ũ(fm

n )

does not belong to S(F).

One can correct the operators ũ and consider operators û := ‖u0‖
−n
p ũ :

Sm
n → Sm

n .
The operators û commute with the operators i∗ and p∗ and we obtain

a representation of the group O∗ on the space S(F). But the operators
t̂ and û on S(F) do not commute if ‖u0‖p 6= 1. One can easily check

that the operators t̂ and û, u ∈ O∗ generate a group F̃∗ which is a
central extension of the group F∗ by a cyclic group. In other words
there exists a central extension

{0} → Z→ F̃∗ → F∗ → {0}

and we obtain a representation of the group F̃∗ on S(F) such that the
generator 1̄ ∈ Z acts by the multiplication by p.
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Lecture 2.

3. Some Analysis

Let K be a local, non-archimedean field. We want to do analysis on
X(K) where X is an algebraic variety defined over K.

Definition 3.1. (1) An l-space is a topological space which is Haus-
dorff, locally compact and 0-dimensional (i.e. totally discon-
nected: any point has a basis of open compact neighborhoods).

(2) An l-group is a Hausdorff topological group such that e (=
identity) has a basis of neighborhoods which are open compact
groups.

Fact. If G is an algebraic group over K then G(K)) is an l-group.

Exercise 3.2. Let X be an l-space.

(1) If Y ⊂ X is locally closed (i.e. the intersection of an open and
a closed subset), then Y is an l-space.

(2) If K ⊂ X is compact and K ⊂
⋃

α Uα is an open covering, then
there exists disjoint open compact Vi ⊂ X, i = 1 . . . k such that
Vi ⊂ Uα for some α and

⋃

Vi ⊃ K.
(3) Let G be an l-group which is countable at infinity (i.e. G is a

countable union of compact sets). Suppose that G acts on an
l-space X with a finite number of orbits. Then G has an open
orbit X0 ⊂ X so that X0 ≈ G/H for some closed subgroup
H ⊂ G.

It is obvious that by applying this lemma to X \ Xi, we can get a
stratification X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X such that Xi \Xi−1 is an orbit.

Example. Let G = GL(n,K), B = the set of upper triangular
matrices. Then we may set X = G/B and consider the action of B on
X. When n = 2, X = P1 and there are two orbits: a single point and
the complement of that point.

3.1. Distributions. If X is an l-space, let S(X) be the algebra of
locally constant, compactly supported, complex-valued functions on
X. S(X) will serve as the “test functions” for our analysis on X.
Thus, S∗(X) = the set of functionals on S(X) are called distributions.
Note that as S(X) has no topology, there is obviously no continuity
assumed.

Exercise 3.3. E:exact [Exact Sequence of an Open Subset] a) Let
U ⊂ X be open and Z = X \ Z. Then

0→ S(U)→ S(X)→ S(Z)→ 0
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is exact.

b) If A,B are compcat l-spaces then S(A× B) = S(A)⊗ S(B).

Proof. For the injection at S(U) just extend functions on U by zero to
all of X. For the surjection at S(Z) we must explain how to extend
functions from a closed subset. Since f ∈ S(Z) is locally constant and
compactly supported, we may assume that Z is compact and has a
covering by a finite number of open sets Uα with f |Uα

= cα constant.
Let Vi be as in Lemma 1 (2). Then we can extend f by defining
f(x) = cα if x ∈ Vi ⊂ Uα and zero otherwise. �

Corollary 3.4. The sequence of distributions

0→ S∗(Z)→ S∗(X)→ S∗(U)→ 0

is exact.

3.2. Idempotented Algebras. Unless X is compact, S(X) has no
identity element; 1 is not compactly supported. However, if K ⊂ X is
open and compact, eK = characteristic function of K is an idempotent
in S(X).

Definition 3.5. (1) An algebra H is an idempotented algebra if for
every finite collection of elements of H, {fi}, there exists an
idempotent e ∈ H such that efi = fie = fi for all i.

(2) A module M of an idempotented algebra H is called non-
degenerate or unital if HM = M .

It is clear that S(X) is an idempotented algebra: let K be an open
compact set containing the support of the fi’s; then e = eK works.

If H is an idempotented algebra, we will denote byM(H) the cate-
gory of non-degenerate H-modules.

4. Smooth Representations of l-Groups: Definitions.

Definition 4.1. Let V be a representation of an l-group G. A vector
v ∈ V is smooth if its stabilizer in G is open.

We will denote the set of smooth vectors in V by Vsm ⊂ V .

Exercise 4.2. (1) Vsm is a G-invariant subspace of V .
(2) If V is a topological representation, then Vsm is dense in V .

We will study smooth representations, that is, representations V such
that Vsm = V .
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4.1. Smooth Representations of l-Groups: the Hecke Algebra.

We are interested in studying M(G) = the category of smooth repre-
sentations of an l-group G.

Definition 4.3. If X is an l-space, define the support of a distribution
E ∈ S∗(X) by Supp E = the smallest closed subset S such that E|X\S =
0.

If E is distribution supported on an open compact set A, then it
defines a functional on the set of locally constant functions, C∞(X) by

< E , f >
def
=< E , eAf > .

Definition 4.4. a) For any distributions α, β ∈ S∗(G)c we define a
distribution α ⋆ β ∈ S∗(G)c by

α ⋆ β(f) := (α⊗ β)(m⋆f)A×B

where m : G×G→ G is the product and A,B ⊂ G are compacts such
that supp(α) ⊂ A, supp(β) ⊂ B.

b) G acts on the space S∗(G)c by left translation. We define H(G) =
(S∗(G)c)sm.

It is clear that H(G) ⊂ S∗(G)c is a subalgebra.

c) The algebra H(G) is called the Hecke Algebra.

Exercise 4.5. (1) Multiplication by Haar measure gives an iso-
morphism S(G)→ H(G).

(2) Any h ∈ H(G) is locally constant with respect to the right
action.

(3) Suppose K is a compact open subgroup of G and h is a K-
invariant distribution with compact support. Then there exist
g1, . . . , gk ∈ G and a1, . . . , ak ∈ C such that

h =

k
∑

i=1

ai(eK ∗ egi
).

If (π, V ) is a smooth representation of G, we can give V the structure
of an H(G)-module (in fact, of an S∗(G)c-module) as follows. Choose
E ∈ S∗(G)c and fix an open compact K ⊂ G containing the support of
E .

For fixed v, π(g)v may be considered as a locally constant function on
G with values in V , and thus the restriction of π(g)v may be considered
as as an element of C∞(K)⊗ V . Therefore, it makes sense to define

π(E)v =< E , π(g)v >
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Proposition 4.6. P:Heck Let G be an l-group.

(1) H(G) is an idempotented algebra.
(2) If V is a smooth G-module, then the associated H(G)-module is

non-degenerate.
(3) This gives an equivalence of categories

M(G) ∼=M(H(G))

between smooth representations of G and non-degenerate H(G)-
modules.

Proof.

If Γ is a compact subgroup, then normal Haar measure on Γ, eΓ ∈
S∗(G)c; if Γ is open and compact, then eΓ ∈ H(G)c. Moreover, if g ∈ G,
the δ distribution at g, eg ∈ S

∗(G)c (but not in H(G); it is not locally
constant) . These satisfy the relations eΓ∗eΓ = eΓ, eΓ∗eg = eg∗eΓ = eΓ
if g ∈ Γ.

Clearly, if K is a compact open subgroup of G, eK is an idempotent
in H(G). In fact, eK is the unit for the algebra HK = eKH(G)eK . As
H(G) =

⋃

HK , we see that H(G) is an idempotented algebra.

Lemma 4.7. Let H be any idempotented algebra, A : H → H an
operator commuting with the right action of H. Then there exists
unique way to associate to any non-degenerate H-module M a mor-
phism AM : M : M → M such that for all morphisms ϕ : M → N
there is a commutative diagram

M
ϕ

−−−→ N

AM





y





y

AN

M
ϕ

−−−→ N

and AH = A.

Proof. I’ll show the existence of AM and leave for you to check the
uniqueness. Since M is non-degenerate, each m ∈M has the form hm
for some H ∈ H. Thus, we may define A(hm) = (Ah)m. �

Now we can finish the proof of the Proposition.

Proof. Given an H(G)-module M , we must show how to define a G-
module. First observe that if E ∈ S∗(G)c, then h 7→ E ∗h is an operator
on H(G) commuting with convolution on the right. By the lemma, this
extends to an operator E : M → M . Specializing E = eg, this gives M
the structure of a G-module. �
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4.1.1. Contragredient Representations. It is easy to see that the dual
V ⋆ of a smooth representation V may not be smooth.

Definition 4.8. If (π, V ) is a smooth representation, the contragredient

representation (π̃, Ṽ ) is given by Ṽ = V ∗
sm and π̃ = π∗(g−1)|Ṽ .

Exercise 4.9. (1) For all compact open subgroups K, π̃(eK)Ṽ =
(π(eK)V )∗.

(2) For any smooth representations V,W of G we have a natural
isomorphism

HomG(V, W̃ ) = HomG(W, Ṽ )

(3) For any smooth representation V we have a natural imbedding

V →֒ ˜̃V
(4) The functor V → Ṽ is exact.

Proof. (1) π(eK)V = V K so this reduces to Ṽ K = (V K)∗. Which is
obvious from the definitiion the of smoothness.

For (2),

HomG(V, W̃ ) = HomG(V,W ∗)

= HomG(V ⊗W,C)

= HomG(W,V ∗)

= HomG(W, Ṽ )

where the first and last equalities follow since the image of a smooth
module is always smooth.

(3) Just restrict to an appropraite compact open subgroup. �

Theorem 4.10. M(H) has enough injectives.

4.2. Applications. Recall that ifM is an abelian category, an object
P ∈ Ob(M) is projective if the functor

M → Ab given by

X 7→ Hom(P,X)

is exact and an object Q ∈ Ob(M) is injective if the functor

M → Ab given by

X 7→ Hom(X,Q)

is exact.

Theorem 4.11. T:inj If H is an idempotented algebra, then the cat-
egoryM(H) has enough projectives and injectives.
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Proof. To prove that H has enough projectives we have to show that
fro any non-degenerate H-module X we can find a projective non-
degenerate H-module P and a surjective map P → X.

Let e ∈ H be any idempotent. Consider the H-module Pe = He.
This is projective since Hom(Pe, X) = eX is clearly exact. Note that
the direct sum of any collection of the Pe is also projective.

If X ∈ ObM(H) and ξ ∈ X, then it follows from non-degeneracy
that there exists an idempotent e so that eξ = ξ. Then ξ is in the
image of the map Pe → X given by he 7→ hξ. Taking the direct sum
over all ξ ∈ X of the associated Pe, we see that X is a quotient of a
projective object.

In order to prove that we have enough injectives, we use the following
result.

Lemma 1. If P is a projective object, then P̃ is an injective object.

Proof. We must show thatX 7→ Hom(X, P̃ ) is exact. But Hom(X, P̃ ) =

Hom(P, X̃) by the earlier claim, so this is clear. �

Fix X. As we have enough projectives, there is an epimorphism
P → X̃. Now just consider the composition

X →֒ ˜̃X →֒ P̃

where P̃ is injective by the lemma. �

4.2.1. Admissible Representations.

Definition 4.12. A smooth representation (π, V ) of G is called ad-
missible if for every open compact subgroup K, the space V K is finite
dimensional.

Exercise 4.13. An equivalent definition is that V is admissible if V →
˜̃V is an ismorphism.

Remark. It is a (hard to prove) fact that every irreducible repre-
sentation is admissible.

Let (ρ,W ) be a representation of G. Consider EndW as a G × G-
module under the action (g1, g2)(a) = ρ(g1)aρ(g2)

−1. Let EndW sm be
the smooth part of this module. Then there exists a natural morphism
of G×G-modules

α : W ⊗ W̃ → EndW sm

such that α(w ⊗ w̃)(v) := w̃(v)w.



16 REPRESENTATIONS OF REDUCTIVE GROUPS

Exercise 4.14. Let (ρ,W ) be an irreducible representation of G.

a) Show that the linear map α : W⊗W̃ → EndW sm is an imbedding.

b) Then there exists a natural morphism of G×G-modules

ϕ : S(G) ∼= H(G)→ W ⊗ W̃ .

Moreover, ϕ is unique up to scaler and can be normalized so that
tr ρ(h) =<,> ◦(ϕ(h)). Here <,> : W ⊗ W̃ → C is the natural pairing.

Lemma 4.15. L:tensor If (ρ,W ) is an admissible irreducible repre-
sentation of G then the linear map α : W ⊗ W̃ → EndW sm is onto.

Proof. To prove the surjectivity of α it is sufficient to show that for
any open compact subgroup K ⊂ G the restriction

αK : WK ⊗ W̃K → (EndW )K×K

is surjective.
Since α is an imbedding it is sufficient to show that

dim((EndW )K×K) ≤ (dimWK)2 ≤ dimW ⊗ W̃

. But it is clear that (EndW )K×K is a subset of EndWK . �

5. Induction and Jaquet Functors.

5.0.2. Inductive limits.

Definition 5.1. Let C be a category

a) We denote by Proℵ0(C) the pro-completion of C which is the full
subcategory of the category of functors C → Sets which consists of
objects isomorphic to ones of the form

X 7→ lim←−HomC(Xi, X)

where → Xi → Xi− 1→ is a sequence of objects of C.

b) We denote by Indℵ0(C) the ind-completion C which is the full
subcategory of the category of contravariant functors C → Sets which
consists of objects isomorphic to ones of the form

X 7→ lim−→HomC(X,Xi)

where → Xi → Xi− 1→ is a sequence of objects of C.

Remark 5.2. a) Instead of a sequence one has sometimes consider
more general filtering sets of indexes.
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Exercise 5.3. a) Indℵ0(C) = (Proℵ0(C0))0

b) Indℵ0(V ectf ) = V ectℵ0 where V ectf is the category of finite-
dimensional C-vector spaces and V ectℵ0 is the category of C-vector
spaces of finite or countable dimension.

c) Let V̂ be an object of Proℵ0(V ect) represented by the sequence
→ Ci → Ci−1 → where Ci → Ci−1 is the projection to the first i −
1 coordinates and V ∈ Ob(V ect) be the vector space of sequences
c1, . . . , ci, . . . ci ∈ C such that ci = 0fori >> 0. Construct a natural
morphism p : V → V̂ , show that p is surjective and describe the Ker(p)

Proposition 5.4. In C is an abelian category then the categories Proℵ0(C)
and Indℵ0(C) are also abelian.

5.1. Induction. Remark. The way to make an advance in represen-
tation theory is to find a way to construct representations. Practically
our only tool is induction.

If H is a closed subgroup of G, we may restrict G-modules to H .
This gives a functor Res = ResG

H :M(G)→M(H).

Exercise 5.5. Res has a right adjoint: Ind = IndG
H :M(H)→M(G).

More precisely for any smooth H-module (ρ, V ) consider

L(V ) = {f : G→ V |f(gh) = ρ(h−1)f(g)}

with the action π(g)f(x) = f(xg−1) and define IndG
H(ρ, V ) := L(V )sm.

Let ev : L(V )sm → V be the evaluation at e.
Show that for any G-module (π,W ) the composition φ → ev ◦ φ

defines a bijection

HomM(G)(W, IndG
H(ρ, V ))→ HomM(H)(W,V )

There is another functor ind:M(H)→M(G) given by

ind(V ) = {f ∈ L(V )|f has compact support modulo H}.

Exercise 5.6. Show that in the case when H is an open subgroup of
G then the functor ind(V ) is the left adjoint to RES.

If G is not discrete the functor

Fiber :M(G)→ V ect, (ρ, V )→ V

is not representable and therefore the functor RESG
e of the restriction

to {e} does not have a left adjoint. But the functor Fiber is pro-
representable. Really let Kn be decreasing sequence of open compact
subgroups which consitute a basis of neighborhoods of e. Let Rn ⊂ G
be the representation of G on the space of right Kn-invariant functions
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and pn : Rn → Rn−1 be the averaging by the right action of the group
Kn−1.

Exercise 5.7. For any representation ρ, V the morhisms pn define an
inductive system

→ HomG(Rn, V )→ HomG(Rn+1, V )→

such that lim−→HomG(Rn, V ) = V .

Proposition 5.8. These functors have the following properties.

(1) indG
H ⊂ IndG

H

(2) Both are exact.
(3) If H\G is compact, Ind = ind.
(4) If H\G is compact, induction maps admissible representations

to admissible representations.

Proof. (1) and (3) are obvious. To prove (2) use arguments analogous
to ones used in the proof of Exercise 3.3.

Now we prove (4). Let V be an admissible representation of H and
fix K ⊂ G a compact open subgroup. Let {HgiK} be a system of coset
representatives for H\G/K. By our assumption, this is a finite set. It
is clear that an element, f ∈ L(V )K is determined by its values on
the gi. Moreover, the image of gi must lie in the subset of V fixed by
H ∩ giKg

−1
i . Since V is admissible this subspace is finite dimensional.

Therefore, there can be only finitely many linearly independent such
f ∈ L(V )K . �

5.2. Jacquet Functor. If G is any group, and W is a vector space
we denote by WG ∈ Ob(G) the trivial representation on the space W .
When G is a finite group, it is often usefull to consider the functor
V → V G = HomG(CG, V ) of invariants. It turns out that when an
l-groups is not comact this functor is never exact and therefore almost
useless. However, we often use the functor of coinvariants, V → VG =
V/V (G) where V (G) is the subspace spanned by π(g)v−v. If H ⊂ G is
a subgroup we have a natural imbedding V (H) →֒ V (G) and therefore
a natural projection JH(V ) → JG(V ). It is quite easy to see that this
functor is equivalent to the Jacquet Functor

JG : M(G)→ V ect, JG(V ) = CG ⊗G V

Exercise 5.9. If G =
⋃

Ui then JG(V ) = lim
−→

JUi
(V ) and

V (G) = {v ∈ V |∃i such that
∫

g∈Ui
π(g)vdg = 0} where dg is a Haar

measure on Ui.

Proposition 5.10. P:J The Jacquet functor J has the following prop-
erties.



REPRESENTATIONS OF REDUCTIVE GROUPS 19

(1) J is right exact.
(2) If G is compact then J is exact.
(3) If G is a union of an increasing family of compact groups Ui,

then JG is exact.

Proof. (1) It is clear that for any vector space W the natural map

HomV ect(JG(V ),W )→ HomG(V,WG)

is a bijection. So the functor JG has a right adjoint. Therefore it is
right exact.

(2) We have an exact sequence

0→ V G → V → VG → 0.

When G is compact, this implies that eGV = V G = VG. But V G is
clearly left exact.

(3) As follows from (2) and the previous Exercise the functor J a
direct image of exact functors. But the direct image of exact functors
is exact. So (3) follows from (2). �

Remark. Another way to prove (3) is to construct explicitly a
functor α : V ect → ProM(G) which is right adjoint to JG. To do
this consider the representations ρi of G in the subspace Ri ⊂ G of
functions which are right Ui-invariant. If j > i then we have a natural
imbedding Rj →֒ Ri.

Exercise 5.11. JG(V ) = lim−→HomM(G)(Ri, V )

5.3. Unipotent groups.

Definition 5.12. D:un a) For any n > 0 we denote by Un ⊂ GLn the
subgroup of upper-triangular unipotent matricies.

b)If K is a local field we define for any r ≥ 0 a subgroup U r
n ⊂ Un :=

Un(K) the subset of matricies u = (uij), 1 ≤ i, j ≤ n such that

v(uij) ≥ r(i− j)

c) An algebraic K-group U is unipotent if U is isomorphic to a sub-
group of Un for some n > 0

Remark 5.13. If U is a topological group of the form U(K) where U
is a unipotent K-group we say that U is a unipotent group

Exercise 5.14. a) U r
n is a compact open subgroup of Un and Un is

equal to the union of its subgroups U r
n.

b) Any unipotent group can be written as a union of its subgroups
compact open subgroups
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We see that for any unipotent group U the functor of U -coinvariants
is exact.

Lecture 3.

6. Some Representation Theory

6.1. Jordan-Holder Content.

Definition 6.1. A representation (ρ, V ) is irreducible if it is alge-
braically irreducible, that is if it has no invariant subspaces.

(1) If G is an l-group, let IrrG be the set of equivalence classes of
irreducible representations G.

(2) If M ∈ M(G), then the Jordan-Holder content of M , JH(M),
is the subset of IrrG consisting of all irreducible subquotients
of M .

Lemma 6.2. L:JH If M 6= 0 then JH(M) 6= ∅ then .

Proof. Choose v ∈M{0} and denote by M̃ ⊂M the subrepresentation

generated by v. Since M̃ is generated by v it is clear that for any
increasing sequence Nj, j ∈ J of proper submodules of M̃ the union

∪jNj 6= M̃ . By the Zorn’s lemma there exists a submodule N ⊂ M̃

which a maximal proper submodule of M̃ . Then the quotient M̃/N is
irreducible. �

Exercise 6.3. a) If N is a subquotient of M , then JH(N) ⊂ JH(M).

b) If M =
∑

αMα then JH(M) =
⋃

α JH(Mα).

Examples 6.4. If G is a compact group then every smooth G-module
M is completely reducible, that is M ∼=

⊕

Wα where the Wα are
irreducible. Thus, the representation theory is entirely controlled by
the irreducibles and in a simple way.

6.2. Decomposing Categories. In this section we discuss categories
which satisfy enough conditions so that our definitions make sense
(called AB4, or something like that). We will only be interested in
categories of modules as we have been discussing.

Let M be a category. Then M = M1 ×M2 means that for any
object M ∈M, there exist subobjects Mi ∈Mi so that M = M1⊕M2.
Of course, if V ∈ IrrM = isomorphism classes of irreducible objects
inM, then this implies that either V ∈M1 or V ∈M2. This leads to
a decomposition

IrrM = IrrM1

∐

IrrM2.
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(Here
∐

means ‘disjoint union’.) Conversly, we will see that such a
decomposition on the level of sets completely determines the decompo-
sition on the level of categories.

Let S ⊂ IrrM. Denote byM(S) the full subcategory ofM consist-
ing of objects M with JH(M) ⊂ S.

Exercise 6.5. If S, S ′ ⊂ IrrM do not intersect, then the categories
M(S) and M(S ′) are orthogonal, i.e. M ∈ M(S) and M ′ ∈ M(S ′)
imply Hom(M,M ′) = 0.

Proof. Suppose α ∈ Hom(M,M ′). Set N = α(M). So, JH(N) ⊂
JH(M) ⊂ S and also JH(N) ⊂ JH(M ′) ⊂ S ′. But S ∩S ′ = ∅ so by the
last lemma, N = 0. �

If S ⊂ IrrM, M ∈ M, we will denote by M(S) the union of all
subobjects of M which lie inM(S). By the lemma, this is the maximal
submodule with Jordan-Holder content lying in S.

Definition 6.6. D:split Let S ⊂ IrrM and S ′ = IrrM\S. S is called
splitting if M = M(S)×M(S ′). That is, if M = M(S) ⊕M(S ′) for
each M ∈M. In this case we say that S splits M .

Exercise 6.7. A decomposition of categoriesM =M1×M2 is equiv-
alent to a decomposition of sets IrrM = S

∐

S ′ where S is a splitting
subset.

Proof. Obvious. �

Examples 6.8. G = F ∗ (This is “almost” compact.) Let π be a
generator for the maximal ideal in the ring of integers O ⊂ F . Then

F ∗ ∼= πZ ×O∗.

HereO∗ is compact andM(Z) coincides with the categoryM(C[t, t−1])
of sheaves on C∗. Thus,

M(G) ∼=
∏

irred
reps of
O∗

M(Z) =
∏

irred
reps of
O∗

M(C[t, t−1]).

The point here is that the structure of the representations is half dis-
creet and half continuous. Specifically, it is a discrete sum of the cat-
egory of sheaves on some space. We will see that this is a typical
situation.
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6.3. Results on Irreducible Modules.

Lemma 6.9 (Schur’s Lemma). Suppose G is countable at infinity. Let
(ρ, V ) be an irreducible representation of G. Then EndG V = C.

Proof. Since V is irreducible, A = End V is a skew-field. Moreover, A
has countable dimension over C. Indeed, by irreducibility, it is enough
to show that the dimension of V is countable. If ξ ∈ V , then V is
spanned by the ρ(g)ξ for g ∈ G. But since G is countable at infinity
and the function g 7→ ρ(g)ξ is locally constant (smoothness), we can
find a countable spanning set.

Thus we are reduced to proving

Lemma 6.10. If A is a skew-field of countable dimension over C, then
A = C.

Proof. Let a ∈ A. Suppose a − λ 6= 0 for any λ ∈ C. Since A has
only countable dimension, the elements (a − λ)−1 cannot be linearly
independent. Thus, there are ci ∈ C so that

k
∑

i=1

ci(a− λi)
−1 = 0.

Multiplying through by
∏

(a− λi), we get a non-zero polynomial over
C with a as a root. Factoring this polynomial, we see that there are
µj ∈ C so that

∏

j

(a− µj) = 0.

Now one of these factors must be zero because otherwise A would have
zero divisors. Hence a ∈ C. �

�

Remarks. 1. We will eventually show that the irreducible represe-
tations of any reductive p-adic group are admissible. Then we will
be able to stop worrying about technical conditions like “countable
dimension”.

2. One can show that the condition that G is countable at infinity
is necessary for the validity of the Schur’s Lemma.

The next proposition which we call the separation lemma shows that
our Hecke algebra resembles a semisimple algebra.

Proposition 6.11. P:Separation Suppose that G is countable at in-
finity. Let h ∈ H(G), h 6= 0. Then there exists an irreducible represen-
tation ρ such that ρ(h) 6= 0.
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Proof. We will give the proof for unimodular groups.

Choose an open comact subgroup K of G such that h is two-sided
K-invariant. Then we can consider th as an element of HK . We start
with the following result

Lemma 6.12. L:gh Let (ρ,W ) be an irreducible representation of G.
Then (ρ|HK

,WK) is either 0 of an irreducible representation of HK .
Every irreducible representation of HK appears this way.

Proof. Let w1, w2 ∈ W and denote by w̃1, w̃2 their images in WK .
There is a h ∈ H such that hw1 = w2. Then, eKheKw̃1 = w̃2. Thus,
WK is irreducible.

Let V ∈ M(HK) be irreducible. Set U = H ⊗HK
V ∈ M(H). It is

obvious that V ∈ JH(UK). Moreover, taking K-fixed vectors gives an
onto map JH(U)→ JH(UK). �

We see that it is sufficient to prove the existence of an irreducible
representation ρ of the HK such that ρ(h) 6= 0.

Assume first that h ∈ HK is not nilpotent. Then the following
general result implies the existence of ρ. f from the

Lemma 6.13. Let A be an algebra of countable dimension over C with
unit. Let a ∈ A be not nilpotent. Then there exists a simple A-module
M such that a|M 6= 0.

Proof. The proof is similar to that of Schur’s lemma. First show the
existence of λ ∈ C \ 0 such that a− λ is not invertible in A.

If a ∈ C, this is trivial. Otherwise, by countable-dimensionality, the
elements the (a−µ)−1 are linearly dependent. Thus there exists ci ∈ C
so that

k
∑

i=1

ci(a− µi)
−1 = 0.

Multiplying through by
∏

(a− µi), we get a non-zero polynomial over
C with a as a root. Thus, there are λj ∈ C \ 0 and integers nj ≥ 0 so
that

an0
∏

j

(a− λj)
nj = 0

As a is not nilpotent, the (a − λj) are zero divisors, and hence not
invertible.

So we may suppose that a− λ is not invertible for some λ ∈ C⋆. As
in the proof of Lemma 6.2 one can show the existence of an irreducible



24 REPRESENTATIONS OF REDUCTIVE GROUPS

quotient M ofA/(a−λ)A. Then (a−λ)1 = 0 inM and so a1 = λ1 6= 0.
Hence, a acts non-trivially on M . �

To finish the proof of the Proposition it is sufficient to show that
for any non-zero h ∈ HK there exists h+ ∈ HK such that the element
a := hh+ ∈ HK is not nilpotent. In the proof we use the notion of
positivity which is define for real-valued functions. One can give a
proof which works for the category of K-representations where K is an
arbitrary algebraically closed field of characteristic zero.

Consider the map inv : G→ G given by inv : g 7→ g−1. This induces
a map inv : H(G)→H(G). Set h+ = inv(h), and u = hh+.

Let h = ϕµG for some Haar measure µG and some ϕ ∈ S(G). Since

G is unimodular, h+ = ϕ+µG where ϕ+(g) = ϕ(g−1). Thus, u = hh+ =
ψµG for some ψ where

ψ(g) =

∫

r∈G

ϕ(r)ϕ(gr)dr.

Setting g = 1, it is obvious that this is not the zero function. What we
have shown is that h 6= 0 implies u 6= 0.

It is enough to find a representation ρ so that ρ(u) = ρ(h)ρ(h+) 6= 0.
Note that u+ = u. Thus, from the last paragraph it follows that
u2 = uu+ = (hh+)(hh+)+ 6= 0 and more generally that un 6= 0. Thus
we are reduced to proving the following result.

This ends the proof of Proposition 6.11 �

6.4. Schur’s Lemma Revisited. To see how Schur’s lemma can fail
(really the only way that it can fail), let K be a field properly con-
taining another field k. Consider the discreet group G = K∗ and its
representation in the k-vector space K. This representation is obvi-
ously irreducible, but Schur’s lemma fails: the intertwining operators
are K, strictly bigger than k.

We do, however, have the following extensions of Schur’s lemma.
The key point is that we need some sort of finite-type control to get
Schur’s lemma.

Lemma 6.14 (Quillen’s Lemma). Let K be an algebraically closed
field of characteristic 0, g a finite dimensional lie algebra over K with
U = U(g) its universal enveloping algebra. Then for any irreducible
U-module M , EndU(M) ∼= K.

Also, if G is a reductive p-adic group, H(G,K) the Hecke algebra
with coefficients in any algebraically closed field of characteristic 0,
then Schur’s lemma holds. Again, in this case we have some finite-type
control.
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Exercise 6.15. Prove the Separation Lemma without the assumption
that G is unimodular.

7. Compact Representations.

Our goal is to show that any irreducible representation is admissible
and to decompose the category M(G) into managable pieces, (some-
thing like for compact groups.)

Definition 1. Let (π, V ) be a smooth representation of G. For any

v ∈ V, ṽ ∈ Ṽ we consider a function mvṽ on G by mvṽ(g) := ṽ(π(g)(v)).
We say that a representation π is compact if for every v ∈ V, ṽ ∈ Ṽ the
function mvṽ on G has compact support.

Remarks. 1. Some say finite instead of compact.

2. We will see that compact representations are completely reducible
and so resemble representations of compact groups.

3. It is obvious that if π is compact then so is any subquotient of π.

Proposition 7.1. A representation (π, V ) is compact for any v ∈ V
and any compact open subgroup K ⊂ G the subset
C(v,K) := {g ∈ G|π(eK)π(g)(v) 6= 0} is compact.

Proof. It is easy to see that any representation (π, V ) satisfying the
condition of the Proposition is compact.

Conversely assume that (π, V ) is compact. We want to show that for
any v ∈ V and any compact open subgroup K ⊂ G the subset C(v,K)
is compact. If not then we can find a sequence gi ∈ G, i > 0 such that
π(eK)π(gi)(v) 6= 0 and the subset {gi} is not contained in any compact.
Choose a linear functional λ ∈ V ∨ such that λ(π(eK)π(gi)(v)) 6= 0 and

define ṽ ∈ Ṽ by

ṽ(v) :=

∫

k∈K

λ(π(k)v)

It is clear that mvṽ(gi) = λ(π(eK)π(gi)(v)) 6= 0. But this would con-
trudict the compactness of π. �

Exercise 7.2. E:com a) for any compact admissible representation

(π, V ) the dual representation (π̃, Ṽ )is compact.

b) Any finitely generated compact representation is admissible.

Remark. If ξ ∈ V , ξ̃ ∈ Ṽ then the function ϕξ̃,ξ(g) =< ξ̃, π(g−1)ξ >
is called a matrix coefficient.
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Exercise 7.3. Every compact representation has compactly supported
matrix coefficients. Conversly, if all matrix coefficients of π are com-
pactly supported, then π is compact.

We assume now that G is a unimodular group so that we may choose
a Haar measure µG and identify S(G) with H(G).

7.1. The Formal Dimension. Assume that G is unimodular and
choose a Haar measure µG. It defines an isomorphism S(G) ∼= H(G).
If (ρ,W ) is an irreducible compact representation then the last propo-
sition gives a map

ϕ : H(G)→W ⊗ W̃ .

On the other hand, there is a map in the other direction which assigns
to two vectors the associated matrix coefficient:

m : W ⊗ W̃ → S(G) ∼= H(G)

given by

(ξ, ξ̃) 7→ mξ,ξ̃(g) =< ρ(g−1)ξ, ξ̃ > .

It is natural to consider the composition ϕ ◦m : W ⊗ W̃ →W ⊗ W̃ .

Claim 1. Given G, ρ and W as above, there exists a nonzero number
d(ρ), called the formal dimension of (ρ,W ), such that ϕ ◦m = d(ρ) ·
Identity.

Proof. AsW⊗W̃ is an irreducible representation ofG×G, the existence
of the formal dimension follows from Schur’s lemma. We must show
that it is non-zero. Let e ∈ W ⊗ W̃ be so that h = m(e) is non-zero.
We will be finished if we show that ϕ(h) 6= 0. By the definition of
ϕ, it is enough to show prove that ρ(h) 6= 0. We will prove this be
showing that for any irreducible representation, (τ, V ), not equivalent
to ρ, τ(h) = 0. Then, by the separation lemma, ρ(h) 6= 0.

Lemma 7.4. L:tau Let (τ, V ) be any irreducible representation of G
not equivalent to ρ, then τ(h) = 0.

Proof. Let v ∈ V and consider the morphism ofG-modulesW⊗W̃ → V
given by ξ ⊗ ξ̃ 7→ τ(m(ξ ⊗ ξ̃))v. Here we have thought of m as a map

into H(G) and (τ, V ) as an H(G)-module. As a G-module, W ⊗ W̃ is
completely reducible and is a sum of copies of W . Thus, the same is
true of ℑW⊗W̃ . In particular, when V is irreducible and not equivalent
to W , ℑW ⊗ W̃ = 0. In particular, τ(h)v = 0 for all v ∈ V . Thus
τ(h) = 0. �

�
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Remarks. 1. d(ρ) depends on the choice of Haar measure.

2. If G is compact and we normalize so the measure of G is 1, then
the formal dimension is the reciprocal of the actual dimension of the
representation.

3. The formal dimension can be defined more generally for represen-
tations whose matrix coefficients are L2 but not necessarily compactly
supported.

4. If W is unitarizable, ξ ∈W and ξ̃ ∈ W̃ then it can be shown that
∫

G

|mξ,ξ̃|
2dµG = d(ρ).

This gives another proof that the formal dimension is non-zero.

7.2. The decomposition theorem.

Theorem 7.5. T:decomp Any irreducible compact representation (ρ,W )
of G splits M(G) [see Definition 6.6].

Proof. We start with the following result.

Exercise 7.6. Let A be a k-algebra, e ∈ A be a central idempotent
such that the A-module Ae ⊂ A is is a finete multiple of an irreducible
A-module W . Then for any A-module V there exists a decomposition
of V as the direct sum V = V0 ⊕ V1 of A-submodules such that V0 is a
direct sum of copies ofW and V1 does not have subquotients isomorphic
to W .

To prove the decomposition theorem it is sufficient to show that for
any open compact subgroup K of G there exists a decomposition of V K

as the direct sum V = V0 ⊕ V1 of subrepresentations of HK such that
V K

0 is a direct sum of copies of WK and V K
1 does not have subquotients

isomorphic to WK . Set

e = eW,K = d(ρ)−1m(ϕ(eK)) ∈ H(G)

Exercise 7.7. a) e ∈ HK is a central idempotent.

b) The map W ⊗ W̃K → HK given by v × ṽ → mvṽ defines an
isomorphism

W ⊗ W̃K →HKe

The decomposition theorem now follows. �

Corollary 7.8. Any compact representation (π, V ) ∈ M(G) is both
projective and injective.
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Exercise 7.9. E:decomp a) Any finite set S of irreducible compact
representations of G splits M(G).

b) Any compact representation is direct sum of irreducible ones.

8. The Geometry of reducive groups.

The results I’ll explain are true for an arbitrary split reductive group
G. I’ll illustrate the definitions for the case G = GL(n).

We consider various subgroups. Set K0 = G(O); this is a maximal
compact subgroup. For any i > 0 we denote byKi ⊂ K0 the congruence
subgroup which is equal to the kernel of the homomorphism G(O) →
G(O/πi) . The Ki are open compact normal subgroups ofK0 and shifts
of Ki form a basis of the topology on G.

If K is a congruence subgroup; we write a(g) = eK ∗Eg ∗eK ∈ HK(G)
for any g ∈ G where Eg is the δ-function at g.

We denote by T a split torus over O and by B = TU the Borel
subgroup of G. Then T c = T ∩K0 is the maximal compact subgroup
of T . Let Λ := X⋆(T ) be the group coroots- that is algebraic homo-
morphisms of F ⋆ = Gm(F ) to T . Then X⋆(T ) = T/T c ∼= Zn where
n = rank(G). The imbedding Z → F ⋆, r → πr defines an imbedding
Λ →֒ T . A choice of a Borel subgroup B = TU defines a subsemigroup
Λ+ ⊂ Λ of positive coroots.

Exercise 8.1. E:bl In the case G = GL(n) we have K0 = GL(n,O). If
Mn(O) designates the n×n matrices with entries in O and π generates
the maximal ideal in O, for each i > 0 we define Ki = {1 + πiMn(O)}.
T is the group of diagonal matrices, B is the group of upper-triangular
matrices, Λ = Zn and the subsemigroup Λ+ ⊂ Λ consists of non-
decreasing sequences (e1, . . . , en)|e1 ≤ e2 ≤ · · · ≤ en}. The imbedding
Λ →֒ T is given by

λ = (l1, . . . , ln) 7→





πl1

. . .

πln



 .

Under this imbedding.

Our goal is to describe HK(G). We start with some simple results.

Exercise 8.2. a) Given a double coset

c = KgK ⊂ G, a(g) = eK ∗ Eg ∗ eK
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is the uniqueK-left-and-right-invariant distribution supported on c and
with integral 1.

b) As g runs through a system of representatives for the double cosets
K\G/K, the a(g) form a basis for HK(G).

c) (KgK)(Kg′K) ⊃ Kgg′K.

d) (KgK)(Kg′K) = Kgg′K iff a(gg′) = a(g)a(g′)

A description of K\G/K is based on the Cartan decomposition G =
K0Λ

+K0.

Exercise 8.3. E:Car Prove the Cartan decomposition for G = GL(n)

Definition 8.4. D:Par Parabolic Subgroups. Let g ∈ G be a
semisimple element. Set

Pg = {x ∈ G|{Ad(gn)x;n ≥ 0} is relatively compact in G}

Ug = {x ∈ G| lim
n→∞

Ad(gn)x = 1}

a) A subgroup P ⊂ G is parabolic if it is equal to Pg for some semisimple
element g ∈ G. In this case we say that Ug is the unipotent radical of
P .

b) A Levi subgroup M of a parabolic P is a subgroup such that
P = M ⋉ U .

c) A parabolic subgroup is standard if it contains the group B of
upper triangular matricies.

d) A Levi subgroup M is standard if it contains T .

e) Two parabolic subgroups P = MU,P ′ = M ′U ′ are associated if
the Levi subgroups M,M ′ are conjugate.

Exercise 8.5. E:Iw Show that

a) For any semisimple element g ∈ G,Mg := Pg ∩ Pg−1 is a Levi
subgroup M of Pg.

b) If P = MUP is a parabolic subgroup andK0 is a maximal compact
subgroup of G, then G = K0P . In particular, G/P is compact.

d) For any parabolic subgroup P = MUP there eixsts unique para-
bolic subgroup P̄ of G such that P ∩ P̄ = M

e) Any semisimple element g ∈ G is conjugate to an element of the
form λc where λ ∈ Λ+λ and c commute and c is compact [ that is lies
in a compact subgroup of G]. In this case Pλc = Pλ.
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In particular any parabolic subgroup is conjugate to a standard one.

In the rest of this excersize we assume that G = GL(n).

f) Let λ = diag(πm1 , . . . , πmn) where the mi are nondecreasing. Say

m1 = m2 = · · · = mn1 > mn1+1 = · · · = mn1+n2 >

> · · · > mn1+···+nk−1+1 = · · · = mn1+···+nk

Then Pλ is the subgroup of upper-triangular block matricies corre-
sponding to the partition n =

∑k
i=1 ni, Mλ = ZG(λ) is the subgroup of

block diagonal matricie and Uλ ⊂ Pλ is the subgroup of matricies with
block diagonal entries equal to Idni

.

g) Describe Pλ and Uλ for arbitrary λ ∈ Λ.

Definition 8.6. D:Weyl a) For any standard Levi subgroup M we
define the Weyl group WM := NM(T )/T and write W := WG.

b) For any two parabolic subgroups P,Q of G we define a partial
order on the set CP,Q := P\G/Q by c′ ≤ c ↔ c′ ⊂ c̄ where c̄ is the
closure of c in G.

c) For any w ∈ W we define Xw := Uw̃B ⊂ G where w̃ ∈ NG(T ) is
a representative of w and define X̄w as the closure of Xw in G.

Exercise 8.7. Show that

a) The imbedding M →֒ G induces an imbedding WM →֒ WG = Sn.

b) G is a disjoint union of Xw, w ∈W .

So we can identify CB,B withW and the partial order on CB,B induces
a partial order on W .

c) There exists unique element w0 ∈ W such that w ≤ w), ∀w ∈ W
and w2

0 = e.

d) For any standard parabolic subgroup P of G, P̃ := w0P̄w0 is also
a standard parabolic subgroup.

In the rest of this excersize we assume that G = GL(n).

e) dim(X̄w) = l(w) where l(w) is the number of pairs (i, j)1 ≤ i <
j ≤ n such that w(i) > w(j).

f) If M is a standard Levi subgroup corresoponding to a partition

n =
∑k

i=1 ni then WM = Sn1 × · · · × Snk
is a product of symmetric

groups. In particualr W = Sn.

g) Express the condition w′ ≤ w in combinatorial terms.
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Let Q = NV and P = MU be standard parabolics in G. We define
a subset WP,Q of W by

WP,Q := {w ∈W |l(wMwwN) ≥ l(w), ∀wM ∈WN , wN ∈WN}

Exercise 8.8. E:rev a) For any w ∈W there exists unique w′ ∈WP,Q

such that WMwWN = WMw
′WN .

So we can identify the set WP,Q with the set of cosets WM\W/WN .

b) G is a disjoint union of Yw, w ∈WP,Q.

So we can identify the set P\G/Q with the set WM\W/WN and the
partial order on CP,Q induces a partial order on WM\W/WN .

c) For any w′, w′′ ∈ WP,Q we have Yw′ ⊂ Ȳw′′ ↔ Xw′ ⊂ X̄w′′ where
Ȳw is the closure of Yw ⊂ G.

The left multiplication by w0 indetifies the sets WM\W/WN and
w0WMw

−1
0 \W/WN .

d) Show that this map reverses the order of partially ordered sets
CP,Q = WM\W/WN and CP̃ ,Q = w0WMw

−1
0 \W/WN .

Choose a set of representatives x1, . . . , xr for K\K0. Let H0 =
HK(K0) ⊂ HK(G) be the finite-dimensional subalgebra spanned by
the a(xi) = eK ∗ Exi

∗ eK (notation from last lecture). Since K0

normalizes K, Kxi = xiK for all i. Therefore, for any g ∈ G, we
have (KxiK)(KgK) = KxiKgK = KxigK. Equivalently, a(xig) =
a(xi)a(g). In the same way, a(gxi) = a(g)a(xi).

Let C be the span of {a(λ)|λ ∈ Λ+}. The next proposition is very
important.

Proposition 8.9. P:com

(1) HK(G) = H0CH0.
(2) C is a commutative, finitely generated algebra.

Remark. This is saying that HK(G) is somehow of finite type but it
is neither generated over C on the left nor on the right but rather “in
the middle”.

Proof. (1). By the Cartan decomposition, G =
⋃

λ∈Λ+ K0λK0. More-
over, K0 =

⋃

iKxi =
⋃

i xiK. Therefore,

G =
⋃

λ∈Λ+

i,j

KxiλxjK.

This implies that the a(xiλxj) form a basis for HK(G). But we showed
above that a(xiλxj) = a(xi)a(λ)a(xj) which implies (1). �
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For the proof of part (2) of the proposition we must show that
(KλK)(KµK) = KλµK. This is not trivial because the elements
of Λ+ do not normalize K. The idea is to decompose K into parts that
can be moved right or left.

We will use the following notation. K is a congruence subgroup
(i.e. K = Ki for some i > 0), U is the standard maximal unipotent
(i.e. upper triangular matrices with 1’s on diagonal) and U is the lower
triangular unipotent group. Set K+ = K∩U and K− = K∩U . Finally,
T = diagonal matrices and KT = K ∩ T .

Claim 2. K = K+KTK−

Proof. Just do elementary row and column reductions on the elements
of K. These correspond to multiplying by K+ and K− on the right
and left, respectively. �

Corollary 8.10. K = K−KTK+

Proof. K = K−1 = K−1
− K−1

T K−1
+ = K−KTK+ �

Claim 3. If λ ∈ Λ+ then λK+λ
−1 ⊂ K+ and λ−1K−λ ⊂ K−.

Proof. Observe that ad(λ)|U is contracting. In fact, if λ = diag(λi),
then λ(ui,j)λ

−1 7→ (λiλ
−1
j ui,j). But for j > i, λiλ

−1
j ∈ O. This proves

the first statement. The proof of second is similar. �

We can now prove (2). Since λµ = µλ it is suffiicent to show that
KλKµK = KλµK. Now,

KλKµK = KλK+KTK−µK

= K(λK+λ
−1)λµ(µ−1K−µ)K ⊂ KλµK

by the last claim. The reverse inclusion always holds so (2) is proved.
Remark. This proof only works for congruence subgroups. For the
maximal compact, i.e. K = K0 we don’t have a decomposition K =
K+KTK− and a different proof is needed. In this case, a(λ)a(µ) =
∑

cνλ,µa(ν) where cνλ,µ is a polynomial in q = |O/p|; when q = 1 this
polynomial gives the Clebsch-Gordan coefficients.

8.1. Modules. We start with the following definition.
We have shown that HK = H0CH0 with C commutative and so,

in particular, a(λn) = a(λ)n. We want to use this equality to study
HK-modules. Let (π, V ) be a representation of G, πK the associated
representation of HK on V K . We will prove the following result.
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Proposition 8.11. P:j For any λ ∈ Λ+ we have
⋃

r

Ker a(λr) ∩ V K = V (Uλ) ∩ V
K

Proof. First a couple of simple results. Recall that for any compact
subgroup Γ ⊂ G, eΓ is the unique bi-Γ invariant distribution which is
supported on Γ with the integral equal to 1; i.e. just Haar measure.
Using this uniqueness of eΓ, it is easy to prove the following results

Exercise 8.12. (1) If Γ = Γ1Γ2, then eΓ = eΓ1 ∗ eΓ2 .
(2) egΓg−1 = Eg ∗ eΓ ∗ Eg−1.
(3)

eK = eK+ ∗ eKT
∗ eK−

and

Eλ ∗ eK+ ∗ Eλ−1 = eλK+λ−1

for λ ∈ Λ+

(4) eK ∗ eνK+ν−1 = eK

(5) eν−1K−ν ∗ eK = eK

(6) eK ∗ eKT
= eKT

∗ eK = eK .
(7) eνKT ν−1 = eν−1KT ν = eT

Lemma 8.13. L:Ker If ν ∈ Λ+, then Ker a(ν)|V K = Ker eν−1K+ν |V K .

Proof. Using the preceding formulas, we have

a(ν) = eK ∗ Eν ∗ eK =

= eK+ ∗ Eν ∗ eν−1KT ν ∗ eν−1K−ν ∗ eK = Eν ∗ eν−1K+ν ∗ eK

But on V K , eK acts as the identity. Moreover, Eν is invertible. It
follows that Ker a(ν)|V K = Ker eν−1K+ν |V K . �

Now we can prove Proposition 8.11.

Let λ = diag(πm1 , . . . , πmn) where m1 = m2 = · · · = mn1 > mn1+1 =
· · · = mn1+n2 > . . . . The ni’s give a partition of n.

Set KP
+ = K ∩Uλ, K

P
− = K ∩Uλ−1 and KP

M = K ∩Mλ (we will often
suppress the P and λ). Exactly as before, we can prove

Exercise 8.14. E:dec

(1) K = K+KMK−, λKP
+λ

−1 ⊂ KP
+

(2) λ−1KP
−λ ⊂ KP

−

(3) (Adλn)|K+ → 1 as n→∞, and (Adλ−n)|K−
→ 1 as n→∞

(4)
⋃

n Ad(λ−n)KP
+ = Uλ

(5)
⋃

n Ker a(λn) ∩ V K = V (Uλ) ∩ V
K .
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As follows form Lemma 8.13 applied to the case ν = λn we have
a(λr) = Eν ∗ eν−1K+λr ∗ eK and therefore

⋃

r

Ker a(λr) ∩ V K = V (Uλ) ∩ V
K

�

Definition 8.15. D:G a) Let G0 = {g ∈ G| det g ∈ O∗} and Z(G) be
the center of G.

Remark 8.16. a) Z(G)G0 ⊂ G is an open subgroup of finite index.

b) All unipotent radicals of parabolic subgroups of G belong to G0.

c) All definitions and results of this section are applicable if we re-
place G by G0.

Exercise 8.17. Let νi, i ∈ I be the set indecomposable elelemtns in the
semigroup Λ+(G0). Then Λ+(G0) is a free abelian semigroup generated
by νi, i ∈ I.

8.2. The Jacquet Functors. Let P = MU be a standard parabolic
subgroup of G.

If (π, V ) is a representation of G, the Jacquet module,
JU(V ) = V/V (UP ) is an M-module. This gives the Jacquet functor

rP,G :M(G)→M(M).

Remark 8.18. As follows from Proposition 5.10 (3) the functor rP,G

is exact.

Proposition 8.19. P:adj rP,G has the right adjoint functor, called
Jacquet’s induction functor, iG,P :M(M)→M(G), defined as follows:
if L is a representation of M , extend it trivially to P ; then iG,P (L) =
indG

P (L).

Remarks. The Iwasawa decomposition [Exercise 8.5 e)] implies that
indG

P = IndG
P .

Proof. Let L ∈ M(M), V ∈ M(G). We must show the existence
of a functorial isomorphism HomG(V, iG,P (L))→̃HomM(rP,GV, L). To
construct sucha morhism observe that

HomG(V, iG,P (L)) = HomG(V, IndG
P (L))

by Frobenious Reciprocity

= HomP (V, L)
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as U acts trivially

= HomP (V/V (U), L)

= HomP (rP,GV, L)

= HomM(rP,GV, L)

Exercise 8.20. The morphism HomG(V, iG,P (L))→̃HomM(rP,GV, L)
we constructed is an isomorphis.

�

Proposition 8.21. P:ri Let M be a Levi subgroup of G. Then, the
functors rP,G and iG,P satisfy the following properties.

(1) rP,G is the right adjoint to iG,P .
(2) If N is a Levi subgroup of M , then rN,M ◦ rP,G = rN,G and

iG,P ◦ iM,N = iG,N .
(3) iG,P maps admissible to admissible.
(4) For any representation (π, V ) of G and a congruence subgroup

K of G such that V is generated by V K as a G-module the space
rP,G(V ) is generated by rP,G(V )KM as an M-module.

(5) iG,P and rP,G are exact and rP,G maps finitely generated to
finitely generated.

Remark 8.22. R:ri You can replace G by G0 in Proposition 8.21.

Proof. We have already proved (1) and (2) is a simple verification. (3)
follows from the compactness of G/P and (5) from Proposition 5.10.

Now we prove (4). Suppose V is generated by V K as a G-module.
Since K is a normal subgroup of K0 the subspace V K ⊂ V is K0-
invariant. Since G = PK0 we see that implies that V is generated by
V K as a P -module. Since U acts trivially on V/V (U) = rG,M(V ) we
see that rP,G(V ) is generated as an M-module by the image of V K in
rP,G(V ). But it is clear that the image of V K in rP,G(V ) is contained
in rP,G(V )KM .

�

8.3. Quasi-cuspidality.

Definition 8.23. A representation (π, V ) of G0 is called quasi-cuspidal
if JU(V ) = 0 for the unipotent radicals of any proper parabolic sub-
group of G.

Theorem 8.24. T:qua A representation (π, V ) of G0 is quasi-cuspidal
if and only if it is compact.
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Proof. We first show that any quasi-cuspidal representation is compact.
Assume that (π, V ) is a quasi-cuspidal representation, v ∈ V . We

may assume thatK is a congruence subgroup and, by choosing K small
enough, that v is K-invariant. Then, π(eK)π(g)v = π(eK)π(g)π(eK)v.

Let xi, i ∈ I be a system of representatives for K\K0 as before. We
have seen that and g ∈ G can be written in the form g = xiKλKxj , λ ∈
Λ+, i, j ∈ I. Thus, it is enough to prove that form any v ∈ V K the
function

λ 7→ π(xi)π(a(λ))π(xj)v

on G0 has compact support Λ+. In other words we have to show that
for any v ∈ V K the function λ 7→ π(a(λ))v has compact support on
Λ+.

Let νi, i ∈ I be the basis of Λ+ := Λ+(G0). To prove that (π, V )
is compact we have to show the existence of m ∈ Z such that for any
sequence m̄ = {mi} ∈ Z+, i ∈ I such that mi > m for some i ∈ I we
have π(a(λm̄))v = 0 where λm̄ :=

∑

i∈I miνi.

Since V is quasi-cuspidal, for each µ ∈ Λ+ we have

V K ∩
⋃

n

Ker a(µn) = V (Uµ) ∩ V K = V K .

Hence, for any i ∈ I we can find r(i) ∈ Z+ such that π(a(ν
r(k)
k ))v =

0. Since the operators π(a(νi) commute, we can find r so large that
π(a(λm̄)v = 0 if any mi ≥ r for some i ∈ I.

Conversely, suppose that (π, V ) is compact. By reversing the rea-
soning, we see that λ 7→ π(a(λ))v has compact-modulo-center support
in Λ+. But, for any non-zero λ ∈ Λ+ the sequence λn eventually leaves
all finite subsets of Λ+. That is, a(λn) eventually acts trivially, and so
Ker a(λn) = V K . However, we know that

V K ∩
⋃

n

Ker a(λn) = V (Uλ) ∩ V
K .

Therefore, V (Uλ) ∩ V
K = V K for all compact subgroups K. As our

representations are smooth, this implies that V/V (Uλ) = 0 whenever λ
is a non-central element of Λ+. Therefore, (π, V ) is quasi-cuspidal. �

Definition 8.25. a) A representation (π, V ) of G is called compact
modulo center if for any open compact subgroup K ⊂ G and ξ ∈ V ,

g 7→ π(eK)π(g)ξ

has compact support modulo center.
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b) A representation of G is quasi-cuspidal if it’s restriction to G0 is
quasi-cuspidal.

Exercise 8.26. E:qua a) A representation of G is quasi-cuspidal iff it
is compact modulo center.

b) Any cuspidal representation of G can be imbedded in an injective
cuspidal representation.

Corollary 8.27. C:qua For any parabolic subgroup P = LM ( G, ρ ∈
M(L) and a quasi-cuspidal representation π ∈M(G0) we have

HomG0(iG,P (ρ), π) = {0}

Proof. As follows from Exercise 7.9 we can assume that π is irreducible
and therefore is admissible. As follows from Exercise 13.4 the dual
representation π̃ is also compact. Since the quotient G/P is compact

can identify the smooth dual ˜iG,P (ρ) of iG,P (ρ) with iG,P (ρ̃). So it is
sufficient to show that

HomG0(π̃, ˜iG,P (ρ)) = {0}

But this follows immediately form the Remark 8.22. �

Let P be the set of standard parabolics of P 6= G of G. For any
representation (π, V ) of G and and P ∈ P we define πP := rP,G(π) and
denote by jP : V → iP,G(π)(πP ) the morphism corresponding to the
identity morphism Id : πP → πP under the adjunction. Let

j := ⊕P∈PjPV → ⊕P∈PiP,G(π)(πP )

Exercise 8.28. E:d The representation of G on Ker(j) is quasi-
cuspidal.

9. Irreducible Implies Admissible.

Definition 9.1. D:G a) For any representation (π, V ) of G0 and ḡ ∈
G/Z(G)G0 we denote by (πḡ, V ) a representation of of G given by
πḡ(g0) := π(gg0g

−1) where g ∈ G is a representative of the class ḡ ∈
G/Z(G)G0. It is clear that the equivalence class of πḡ does not depend
on a choice of a representative g of ḡ.

b) For any irreducible representation σ of G0 we denote by S(σ) the
set of equivalence classes of irreducible representations of G0 of the
form σḡ, ḡ ∈ G/Z(G)G0.

c) As all unipotent radicals of parabolic subgroups of G belong to G0,
we say that a representation (π, V ) ofG0 is quasi-cuspidal if JUP

(V ) = 0
for all proper parabolic subgroups P of G.
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Lemma 9.2. L:du For any proper parabolic subgroups P = MU of
G, ρ ∈ M(M) and any quasi-cuspidal representation (π, V ) of G we
have HomG(π, iG,P (ρ)) = {0}.

Proof. It is sufficient to show that HomG0(π, iG0,P∩G0(ρ)) = {0} for
and any quasi-cuspidal representation (π, V ) of G0 . As follows from
Exercise 7.9 we can assume that (π, V ) is compact. Since G0/P ∩ G0

is compact we have ˜iG0,P∩G0(ρ) = iG0,P∩G0(ρ̃). So it is sufficient to
show that HomG0(iG0,P∩G0(ρ̃), π̃)) = {0}. Since by Exercise 13.4 the
representation π̃ is compact it is quasi-caspidal and the last equality
follows from Proposition 8.21 (1).

�

Exercise 9.3. For any irreducible representation (π, V ) of G there
exists an irreducible representation σ of G0 such that the restriction
(πG0 , V ) is equivalent to ⊕π∈S(σ)π.

Definition 2. A representation is called cuspidal if it is both quasi-
cuspidal and finitely generated.

Lemma 9.4. Any irreducible cuspidal representation of G is admissi-
ble.

Proof. Let (ρ,W ) be the representation. First we show that W |G0 is
finitely generated. Let Z = Z(G). Because [G : ZG0] is finite, W |ZG0

is finitely generated. But by irreducibility, Z acts as a scaler. Hence
W is finitely generated as a G0-module, as claimed.

By Theorem 8.24, W |G0 is compact. Proposition 1 of lecture 3 says
that finitely generated compact representations are admissible. Thus,
W |G0 is admissible. As G0 contains all compact subgroups, the lemma
follows. �

This lemma is the first step toward our goal of proving

Theorem 9.5. T:adm Any irreducible representation of G is admis-
sible.

9.1. Proof of Theorem 9.5 .

Lemma 9.6. L:in Let (τ,W ) be an irreducible representation of G,
then there is a parabolic P = MU and an irreducible cuspidal repre-
sentation (ρ, L) of M , so that there is an embedding W →֒ iG,P (L).

Proof. Let M be a Levi subgroup, minimal subject to the condition
L′ = rP,G 6= 0. We claim that L′ is cuspidal. These follow from the last
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proposition. As follows from the part (2) of Proposition 8.21 for any
proper Levi subgroup N of M we have

rN,M(L′) = rN,M ◦ rP,G(W ) = rN,G(V ) = 0

. This proves L′ quasi-cuspidal. Also, W is irreducible and so cer-
tainly finitely generated. Thus, by Proposition 8.21 (4), L′ is finitely
generated.

Let L be an irreducible quotient of L′. L is an irreducible cuspidal
representation of M , as required. Moreover, there is a nonzero map
rP,G(W ) = L′ → L. By the adjunction property (i.e. adjointness), we
get a non-zero map W → iG,P (L). As W is irreducible, this must be
an embedding. �

Remark. This use of the adjunction property is typical. Namely,
we show that something is non-zero. It never gives more detailed in-
formation than that.

Theorem 9.5 now follows immediately. Really let (π, V ) be an irre-
ducible representation of G. Let W and L be as in the lemma. L is
irreducible cuspidal and therefore admissible (corollary 1). By part (3)
of proposition 3, iG,P (L) is also admissible. But W →֒ iG,P (L) so W is
admissible.�

Theorem 9.7. T:J [ Jacquet’s lemma]. Let (π, V ) be an admissible
representation of G and (ρ,W ) = rG,P (π, V ). Then for any parabolic
P = MU of G and a congruence subgroup K 6= K0 the map q : V → VU

induces a surjection qK : V K → V KM

U , KM =: K ∩M .

Proof. It is obvious that q(VK) ⊂ V KM

U . To prove the opposite inclusion
observe that as follows from the Iwasava decomposition we can assume
that P = MU is a standard parabolic subgroup Pλ of G, λ ∈ Λ+.
Let P− = MU− be the opposite parabolic. By Exercise 8.14 we have
K = K+KMK− where K+ = K ∩ U,K− = K ∩ U−.

We have to show that for any w ∈ V KM

U there exists v ∈ V K such
that q(v) = w. Choose any v′ ∈ V such that q(v′) = w and consider
the stabilizer K ′

− of v′ in U−. It is clear that for sufficiently big r ∈ Z+

we have λ−rK ′
−λ

r ⊃ K− and therefore K− ⊂ StG(λ−rv′). Let

v′′ :=

∫

k∈KMK+

π(k)π(λ−r)v′

Since K+ = K ∩ U,K− = K ∩ U− we see that v′′ ∈ V K . On the other
hand q(π(λ−r)v′) = ρ(λ−r)w. Since λ ∈ ZM and w ∈ V KM

U we have
q(v′′)) = ρ(λ−r)w. Let v = π(aλr)v′′ ∈ V K . The same arguments as in
the proof of Proposition 8.11 show that q(v) = w.
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�

Corollary 9.8. For any admissible representation π of G and a par-
abolic subgroup P = MU ⊂ G the representation rP,G(π) on M is
admissible.

9.2. Uniform Admissiblity. The theorem that we just proved says
the following: given an open compact subgroup K and an irreducible
representation V of G, then V K is finite dimensional. However, as far
as we know, dimV K may be arbitrarily large for a given V .

Theorem 9.9. T:un [Uniform Admissibility] Given an open com-
pact subgroup K ⊂ G, then there is an effectively computable constant,
c = c(G,K), so that whenever V is an irreducible representation of G,
dimV K ≤ c.

Reformulation. All irreducible representations of the algebraHK(G)
have dimension bounded by c(G,K).

As it has been for some time, our main tool is the decomposition
HK(G) = H0CH0. However, we first need some linear algebra. Con-
sider the following question: Give N ∼= Cm and C a commutative
subalgebra of EndN , what is the bound for dimC?

Conjecture. If C is generated by l elements, then dimC ≤ m+ l.

Bernstein does not know how to prove this. However, we do have

Proposition 1. If N ∼= Cn, C ⊂ EndN is commutative and generated
by l elements, then

dimC ≤ m2−1/2l−1

.

Proof. Omitted. �

We now prove the theorem.

Proof. Let (ρ, V ) be an irreducible representation of HK(G). Let k =
dimV . We want to find c = c(G,K) so that k ≤ c. We know that
k ≤ ∞. Moreover, it is a general algebraic result (Burnside’s Theorem)
that ρ : HK(G)→ EndV is surjective.

We may write HK = H0CH0 with C commutative and finitly gen-
erated (say l generators). Let d = dimH0. Clearly, k2 = dim End V =

dim ρ(HK) ≤ d2 dim ρ(C). But by the proposition, dim ρ(C) ≤ k2−1/2l−1
.

Thus,

k2 ≤ d2k2−1/2l−1

.

Therefore, if we set c(G,K) = d2l

, we have k ≤ c. �
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Consider G0 ⊂ G as before, and consider K ⊂ G0 compact. We
know that given any irreducible cuspidal representation (ρ,W ) of G0,
and ξ ∈W , then ρ(eK)ρ(g)ρ(eK)ξ has compact support in G0. We will
now show how the uniform admissibility theorem can strengthen this
result.

Proposition 2. Given K ⊂ G0 ⊂ G as above, there exists an open
compact subset Ω ⊂ Ω(G,K) ⊂ G0 such that Supp ρ(eK)ρ(g)ρ(eK)ξ ⊂
Ω for all (ρ,W ) irreducible cuspidal and ξ ∈W .

Proof. It follows from the proof of Harish-Chanda’s theorem (and in
fact, theorem 1 of the last lecture) that compact representations of
G0 are exactly those for which λ 7→ ρ(a(λ))ξ has finite (and hence
compact) support in Λ+0. This is in turn equivalent to the statement
that for any ν ∈ Λ+0\{1}, ξ ∈ WK there is a constant kν,ξ so that
ρ(νk)ξ = 0 whenever k ≥ kν,ξ. It is easy to see that our proposition
amounts to the statement that these constants can be chosen indepen-
dent of ξ and W . But this is obvious because we know that there is a
constant c = c(G,K) so that dimWK ≤ c. �

Corollary 1. Given K ⊂ G0, there are only finitly many equivalence
classes of irreducible cuspidal representations of HK(G0).

Proof. Since the support of the matrix coefficients of the irreducible
cuspidal representations must lie in Ω(G,K), the corollary follows from
the following general lemma.

Lemma 2. The matrix coefficients of any set of pairwise non-isomorphic
matrix coefficiets are linearly independent functions.

�

Remark. By working through the proofs in this section, this bound
can be made precise.

10. Integration

10.1. Smooth measures.

Definition 10.1. D:sm a) The category AF of analytic F -manifold
is defined exactly as the category of analytic C-manifold. By the def-
inition any point x ∈ X has an admits a neighborhood U ∋ x an an
bianalitic bijection φ : U → Od

F . We call such a pair (U, φ) a coordinate
system at x.

b) For any smooth algebraic F -variety X the set X := X(F ) has a
natural structure of an analytic F -manifold.
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c) A morhism f : X → Y in AF is smooth if for any point x ∈ the
differential dfx : TX(x)→ TY (y) is surjective.

d) A measure µ on an analytic F -manifold X is smooth for any point
x ∈ X and a coordinate system φ : U → Od

F the measure φ⋆(µ) on Od
F

has a form fdx where dx is a Haar measure on Od
F and f a locally

constant function on Od
F .

Exercise 10.2. E:int Let f : X → Y be a smooth morphism and µ a
smooth measure on X with compact support. Then the measure f⋆(µ)
on Y is smooth.

Let G′ ⊂ G be the set of regular simisimple elements. For any
x ∈ G′ we denote by Ωx ∈ G the conjugacy class of x. Let B ⊂ G be
the subgroup of upper-triangular matricies, Z := G/B and p : Ωx → Z
the natural projection.

Lemma 10.3. L:pr The morphism p is smooth.

Proof. Let fx : G → Z be given by fx(g) = p(gxg−1). It is sufficient
to show that the morphism fx is smooth.

Since fx(gg′) = f g′xg′−1

(g) it is sufficient to show that the differential
of fx at e is surjective. By the definition TG(e) = G and TZ(p(e)) = G/B
where G is the Lie algebra of G and B is the Lie algebra of B.

Let <,>: G × G → F be the bilinear form < a, b >:= Tr(ab). For
any subspace L of G we denote by L⊥ ⊂ G the orthogonal complement
to L in respect to <,>.

Since the map dfx
e : G → B is given by

a→ q(Ad(x−1)(a)− a)

where q : G → G/B is the natural projection the sujectivity of dfx
e

would follow from the sujectivity of the map G ⊕ B → G given by
(a, b)→ (Ad(x−1)− Id)(a) + b.

Since the form <,> is non-degenerate and Ag(G)-invariant it is suf-
ficient to show that

Im⊥(Ad(x)− Id) ∩ B⊥ = {0}

It is clear that Im⊥(Ad(x−1 − Id)) = Ker(Ad(x−1 − Id) does not
contain non-zero nilpotent elements. On the other hand the space B⊥ =
U consists of upper-triangular nilpotent matricies. So Im⊥(Ad(x) −
Id) ∩ B⊥ = {0}. �

Corollary 10.4. C:pr The morphism m : Ωx × B → G given by
(y, b)→ yb is smooth.
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10.2. Left and right invariant measures. Let H be an l-group.
Choose a right-invariant Haar measure µr on H .

For any h ∈ H we denote by ĥr, ĥl : H → H the right and left shifts
by h.

Exercise 10.5. E:mes a) For any automorphism α of H there exists
∆(α) ∈ R+ such that α⋆(µr) = ∆(α)(h)µr.

In other words for any open compact subset C of H we have

µr(α(C)) = ∆−1(α)µr(C)

For any h ∈ H we define ∆(h) := ∆(αh), αh(x) := hxh−1

b) The image µl of µr under the map h → h−1 is a left-invariant
Haar measure on H .

c) µl = ∆µr.

d) Assume that H = M ⋉ U where M and U are unimodular and
choose Haar measures dl on M and du on U . Let m : U ×M → H be
the product map. Then m⋆(dudl) is a right-invariant Haar measure on
H and ∆(mu) = ∆(α(m)) where α(m) is an automorphism of U given
by u→ mum−1.

e) Compute the function ∆ in the case when H is a standard para-
polic subgroup Pm̄ of GL(n, F ).

f) Let G be a unimodular l-group, H,K ⊂ G closed subgroups such
that K is compact and the product map m : K ×H → G is surjective.
Then m⋆(dkµr) is a Haar Measure on G.

10.3. Integration over the quotient spaces. Let X be a locally
compact space and H be a locally compact group acting continuously
and freely on X in such way that the quotient space X/H is an l-space
and the projection p : X → X/H is locally trivial. We will construct a
bijection between the space of M(X,H) smooth measures on µ on X
such that

ĥ⋆(µ) = ∆(h)µ, ĥ(x) = xh

and the spaceM(X/H) of smooth measures on X/G. Let µl be a left-
invariant measure on H . For any point x ∈ X the map rx : h → xh
identifies the group H with the fiber p−1(x̄), x̄ := p(x). It is clear that
the measure µx̄ := rx⋆(µl) on p−1(x̄) depends only on x̄ ∈ G/H .

We denote by I : S(X)→ S(X/H) the linear map given by

I(f)(x̄) =

∫

p−1(x̄)

fµx̄
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We denote by I∨ the dual map from measures on X/H to measures on
X.

Exercise 10.6. E:meas Show that

a) I∨M(X/H) ⊂M(X,H).

An explicit construction of the inverse of I∨ :M(X/H)→M(X,H)
requires some choices.

b) There exists a closed subset S of X such that the multiplication
m : S×H → X is a homeomorphism. The natural projection S×H →
S induces a bijection pS : S → X/H. We identify functions on X with
ones on S ×H .

Choose an open compact subset C of H such that
∫

C
µr = 1. For

any µ ∈ M(X,H) f on X we define a functional µ̄ on the space of
locally constant functions φ on G/H with compact support by

µ̄(φ) :=

∫

S×H

p⋆
S(φ)× chCm

−1
⋆ (µ)

where chC is the characteristic function of the set C.

c) The functional µ̄ does not depend on the choice of sets S and C
and the map µ→ µ̄ is the inverse of I∨.

Remark 10.7. If ν is a smooth H-invariant measure on X which is
not zero anywhere on X we can identify the space M(X,H) with the
space of of locally constant functions f on X such that

f(xh) = ∆f(x)

Definition 10.8. Let G be a unimodular l-group, H ⊂ G a closed
subgroup and (ρ, V ) a representation of H . We denote by ĩGH(V ) the
space of locally constant functions f : G→ V such that

f(gh) = ρ(h−1)f(g)∆1/2(h)

and g ∈ G acts on ĩGH(V ) by the left shift by g−1.

It is clear that for any f ∈ ĩGH(V ), f̃ ∈ ĩGH(Ṽ ) the function< f̃(g), f(g) >
dg belongs toM(X,H).

Exercise 10.9. E:un Let W = ĩGH(V ), W̃ = ĩGH(Ṽ ). We define a

pairing [, ] : W × W̃ → C by

[f, f̃ ] :=

∫

f̃(g)(f(g))

Show that
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a) The pairing [, ] is G-invariant.

b) For any unitary representation (ρ, V ) of H the representation
ĩGH(V ) of G has a natural unitary structure.

c) Generalize the definition of ĩGH(V ) to the case when G is not uni-
modular.

Assume now that G = GLn(F ), K0 = GLn(O) and P ⊂ G is a
parabolic subgroup. If m ∈ M is regular semisimple element then the
centralizer Z(m) of m in G lies in M . We fix a Haar measure dz on
Z. Since both group G,M and Z(m) are unimodular a choice of Haar
measures dg, dm, dz on G,M and Z defines G-invariant measure dx on
G/Z(m) and anM-invariant measure dy onM/Z(m). For any function
f ∈ S(G) we define a function fP om M by

fP (m) :=

∫

k∈K0,u∈U

f(k−1muk)dmdudk

Exercise 10.10. E:orb For any regular element m ∈M and f ∈ S(G)
we have

∫

x∈G/Z(m)

f(xmx−1)‖det(Ad(m)− Id)U‖ =

∫

y∈M/Z(m)

fM(ymy−1

where U is the Lie algebra of U .

11. Characters of representations

We start with the following result of Harish-Chandra. Let (π, V )
be an admissible finitely generated representation of G. Consider a
function T : G′ → End(V ) given by T (x) =

∫

k∈K0
π(kxk−1)dk where

dk is the Haar measure on K0. It is clear that operators Tx commute
with the action of K0.

Theorem 11.1. T:H a) For any x ∈ G′ we have Tx ∈ End(V )sm

b) The function T on G′ is locally constant.

Proof. We prove the part a). The proof of the part b) is completely
analogous.

Choose a congruence subgroup K such that V is generated by V K .
Since (π, V ) is an admissible dimV K <∞. Let B0 = B∩K. It is clear
that λbλ−1 ∈ B0 for all λ ∈ Λ+, b ∈ B0. Let αx be the K0×B0-invariant
measure on Ωx × B of volume 1 which is supported on Ax × B0, Ax =
{kxk−1}, k ∈ K0 ⊂ Ωx. As follows from Corollary 10.4 the morphism
m : Ωx ×B → G given by the multiplication is smooth. Therefore the
measure m⋆(αx) has a form fx(g)dg where dg is a Haar measure on G
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and fx(g) is a locally constant function of G′ × G such that for any
x ∈ G′ the function fx(g) has compact support.

Let K ′ be the congruence subgroup of G such that the function fx

is right K ′-invariant. It is sufficient to show that for any v ∈ V K and
g ∈ G we have Txπ(g)v ∈ V K ′

. Since the subspaces V K , V K ′

are K0-
invariant it follows from the Cartan decomposition that it is sufficient
to show that for any v ∈ V K , λ ∈ Λ+ we have Txπ(λ−1)v ∈ V K ′

. In
particular it is sufficient to show that for all λ ∈ Λ+ we have

Txπ(λ−1)v = π(fx)π(λ−1)v

For any λ ∈ Λ+, b ∈ B0, v ∈ V
K we have

π(bλ−1)v = π(λ−1)π(λbλ−1)v = π(λ−1)v

since λbλ−1 ∈ B0 ⊂ K for all λ ∈ Λ+, b ∈ B0. So

Txπ(λ−1)v =

∫

k∈K0,b∈B0

π(kxk−1b)v

By the definition the measure m⋆(αx)
∫

K0×B0

F (kxk−1)bdkdb =

∫

G

fx(g)F (g)dg

we have for any F ∈ L1
loc(G). Therefore

Txπ(λ−1)v = π(fx)π(λ−1)v

�

If (π, V ) is an admissible representation of G define the character χπ

of π as a linear functionl on H(G) given by

χπ(h) := Tr(π(h))

Remark 11.2. Characters χπ are functionals on the space of smooth
measures on G with compact support. So they are “generalized func-
tions” on G.

Exercise 11.3. C:H Let G′ ⊂ G be the set of regular semisimple
elements. Then for any irreducible representation (π, V ) of G the re-
striction of χπ on G′ is given by a locally constant function. [That
is there exists a locally constant function tπ on G′ such that for any
h ∈ H(G) supported on G′ we have χπ(h) =

∫

G
tπh].

Remark 11.4. R:H One can show that the function tπ belongs to
L1

loc(GL(n, F )) and for any h ∈ H(G) we have χπ(h) =
∫

G
tπh. For

other groups the analogous result is known only if F is a field of char-
acteristic zero.
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Lemma 11.5. L:Del Let (π, V ) be a cuspidal irreducible representation
of G and g ∈ G be a semisimple elelment such that Pg = MgUg 6= G.
Then χπ(ar(g)) = 0 for r >> 0 where ar(g) = eKr

∗Eg ∗ eKr
∈ HKr

(G).

Proof. The same arguments as in the proof of Proposition 8.9 show
that there exists r0 such that for any r > r0 and any k > 0 we have
ar(g

k) = ak
r(g). Since the representation (π, V ) is cuspidal it follows

from Proposition 8.11 that there exist k(r) ∈ Z such that a
k(r)
r (g) = 0.

But then a
k(r)
r (g). Therefore Tr(π(ar(g))) = 0. �

Exercise 11.6. E:del Let Gc ⊂ Gn be the set of elements such that
the image ḡ of g in PGL(n, F ) generates a compact subgroup. Show
that

a) Gc = {g ∈ Gn|Ug = {e}}.

b) If (π, V ) is a cuspidal irreducible representation of G then

supp(χπ) ⊂ Gc

c) For any regular semisimple g ∈ G we have χπ(g) = χJUg (π)(g).

11.1. Characters of square-integrable representations. For com-
pact groups one can write characters as averages of matrix coeffi-
cients. For locally compact groups such a construction exists for square-
integrable representations. Let G be a locally compact group and Z be
the center of G.

Definition 11.7. D:sq a) For a unitary character θ : Z → C⋆ we
denote by L2

θ(G) the space of complex-valued functions f on G such
that f(zg) = θ(z)f(g), g ∈ G, z ∈ Z and |f | ∈ L2(G/Z). The group G
acts naturally on L2

θ(G) by left shifts.

b) An irreducible representation (π, V ) is of a locally compact group
G is square-integrable if there exists an imbedding of (π, V ) into L2

θ(G)
for some unitary character θ.

Exercise 11.8. a) An irreducible representation (π, V ) of an l-group
is square-integrable iff for any pair v ∈ V, ṽ ∈ Ṽ we have

|mv,ṽ| ∈ L
2(G/Z)

b) If (π, V ) is an irreducible representation of an l-group such that

|mv,ṽ| ∈ L
2(G/Z) for some non-zero v ∈ V, ṽ ∈ Ṽ then (π, V ) is square-

integrable.

c) For any irreducible square-integrable representation (π, V ) there
exists unique (up to a scalar) Hermitian G-invariant form <,> on V
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d) If (π, V ) is an irreducible square-integrable representation and dḡ
a Haar measure on G/Z then there exists a constant dπ > 0 such that
for any v, v′, v′′ ∈W we have

∫

G/Z

< π(g)v, v′ >< v′′, π(g)v > dḡ = d(π) < v′′, v′ >

[ the Schur orthogonality relations].

Proposition 11.9. P:sq For any irreducible square-integrable repre-
sentation (π, V ) any f ∈ H(G) and v ∈ V the integral

∫

G/Z
{
∫

G
<

π(g−1hg)v, v > f(h)}dḡ is absolutely convergent and

(⋆)χπ(f) < v, v >= d(π)

∫

G/Z

{

∫

G

< π(g−1hg)v, v > f(h)}dḡ

Proof. Let vi be an orthonormal basis of V, qij :=< π(f)(vi), vj >.
Since the representation (π, V ) is unitary we have

< π(g−1)π(f)v, v >=< π(f)v, π(g)v >

Therefore the right side of (⋆) equals to
∑

i

< π(f)v, vi >< vi, π(g)v >

which in turn equals to
∑

ij

< π(g)v, vj > qji < vi, π(g)v >

Since the (π, V ) is admissible qij = 0 for almost all pairs i, j and both
series there is only a finite number of non-zero terms. So we have
∫

G/Z

{

∫

G

< π(g−1hg)v, v > f(h)}dḡ =
∑

ij

qji

∫

G/Z

< π(g)v, vj >< vi, π(g)v >

Applying the Schur orthogonality relations we see that the integral in
the right side of ⋆ is absolutely convergent and is equal to

1/d(π)
∑

ij

qij < vi, vj >= 1/d(π)
∑

i

qii = 1/d(π)Tr(π(f))

Since

< π(g−1)π(f)π(g) =

∫

G

π(g−1hg)v, v > f(h)

the Proposition follows. �
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11.2. Characters of induced representations. Let G be an uni-
modular l-group, P ⊂ G a closed cocompact subgroup. As follows
from Proposition 8.21 (4) for any admissible representation (ρ, V ) of P
the induced representations ĩGP (ρ) is also admissible. We show now how
to express the character ĩGH(ρ) in terms of χρ. We fix a Haar measure
dg on G and a right-invariant Haar measure drp on P .

Let (ρ, V ) be an admissible representation of P and

(π,W ) = (̃iGP (ρ), ĩGP (V ))

For any function a ∈ S(G) and a pair (x, g) ∈ G we define Aa
x,g ∈

End(V ) by

Aa
x,g :=

∫

p∈P

a(xpg−1)ρ(p)∆1/2(p)drp

Exercise 11.10. E:ind a) For any a ∈ S(G) we have

Aa
xp′,gp′′ = ∆1/2(p′p′′)ρ−1(p′)Aa

x,gρ(p
′′)

As follows from a) for any f ∈W,x ∈ G we have

Aa
x,gpf(gp) = ∆−1(p)Aa

x,gf(g), g ∈ G, p ∈ P

and therefore ( see Exercise 10.6) we can consider Aa
x,gf(g) as a V -

valued measure on G/P . Analogously we can consider Aa
x,x as as a

End(V )sm-valued measure on G/P .

b) For any h = adg ∈ H(G) we have

(π(h)f)(x) =

∫

G/P

Aa
x,gf(g)

c) For any h = adg ∈ H(G) we have

Tr(π(h)) =

∫

G/P

Tr(Aa
x,x)

Assume now that P is a semidirect product P = M⋉U where M and
U are unimodular and there exists a compact subgroup K0 of G such
that K0H = G. We choose a Haar measures dm on m and du on U .
We define dg := m⋆(dkdmdu) where dk is the Haar measure on K0 of
volume equal to 1 andm : K0×U×M → G is the product. By Exercise
10.5 f) dg is a Haar measure on G. As before for any representation ρ
of M we define ĩG,P (ρ) := ĩGP (ρ ◦ q) where q : P → M = P/U is the
canonical projection.
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d) For any h = fdg ∈ H(G) we define hM ∈ S(M) by hM = fMdm
where

fM(m) :=

∫

k∈K0,u∈U

f(k−1muk)dmdudk

we have
χπ(h) = χρ(hM)

Assume now that G = GLn(F ), K0 = GLn(O) and P ⊂ G is a
parabolic subgroup. If m ∈ M is regular semisimple element then the
centralizer Z(m) of m in G lies in M . We fix a Haar measure dz on Z.
It defines a G-invariant measure dx on G/Z(m) and an M-invariant
measure dy on M/Z(m).

Exercise 11.11. E:orb For any regular element m ∈M and f ∈ S(G)
we have

∫

x∈G/Z(m)

f(xmx−1)‖det(Ad(m)− Id)U‖ =

∫

y∈M/Z(m)

fM(ymy−1)

where U is the Lie algebra of U .

Corollary 11.12. If P = MU,P ′ = MU ′ are two parabolics with the
same Levi subgroup then for any admissible representation π of M the
characters of representations ĩG,P and ĩG,P ′ coinside on the set G′ ⊂ G
of regular elements.

12. The Geometric Lemma

12.1. The case G = GL(2, F ). Let G = SL(2, F ), B = TU ⊂ G
be the upper-triangular subgroup, where T is the group of diagonal
matricies and U is the group of unipotent upper-triangular matricies.
How to describe rB,G ◦ iG,B(C, χ) where χ : T → C⋆ is a character?

By the defintion, iG,B(C, χ) is the space of smooth functions f on G
such that

f(gtu) = χ(t−1)f(g), g ∈ G, t ∈ T, u ∈ U

For any f ∈ iG,B(C, χ) we denote by fB the restriction of f on B ⊂ G.
Let V0 = {f ∈ iG,B(C, χ)|fB ≡ 0}. Then V0 is aB-invariant subspace

of iG,B(C, χ).As follows from Exercise 3.3 we can identify V0 with the
space of functions f on G−B such that

f(gtu) = χ(t−1)f(g), g ∈ G− B, t ∈ T, u ∈ U

for which there exists a compact subset C of G−B such that
supp(f) ⊂ CB. It is clear that we can identify the quotient V1 =

iG,B(C, χ)/V0 with the space of functions h on B such that

f(xtu) = χ(t−1)f(x), x ∈ B, t ∈ T, u ∈ U
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In other words V1 = C and the group B acts by the character χ.

Since G−B = UwB,w =

(

0 1
−1 0

)

, the restriction to Uw identifies

the space V0 with the space of functions f with compact support on U .

We identify F with U by u : x → u(x) :=

(

1 x
0 1

)

and F ⋆ with T by

d : (t)→ d(t, t−1) :=

(

t 0
0 t−1

)

The group B = TU acts on V0 by the representation ρw(χ) where

(ρw(χ)(d(t)u(x))f)(y) = χ(d(t−1))f(t2(y − x))

Let V̄0 := rB,G(V0) . Since the functor rB,G is exact V̄0 is a T -invariant
subspace of rB,G◦iG,Bχ and we can identify the quotient rB,G◦iG,Bχ/V̄0

with rB,G(V1). It is clear that V̄1 = (C, χ)

Exercise 12.1. Show that

a) The integration over U defines an equivalence V̄0 → (C, χ̃) where
χ̃(t) = χ−1(t) |t |−2.

b) The representation L(χ) := r̃B,G◦ĩG,B(C, χ) of T has a T -invariant
subspace isomorphic to (C, χ−1) and the quotient is isomorphic to
(C, χ).

c) If χ 6= χ−1 then the representation L(χ) of T is isomorphic to
χ⊕ χ−1.

d) If χ = χ−1 but χ 6= Id then L(χ) = χ⊕ χ.

e) If χ = Id then L(χ) 6= Id⊕ Id.

f) The representation ĩG,B(C, χ) of G is completely reducible iff χ =
χ−1 but χ 6= Id .

g) The representation ĩG,B(C, χ) of G is reducible but not completely
reducible iff χ(t) = |t |±1.

12.2. The case of the Borel subgroup. Let B = TU ⊂ G be the
Borel subgroup. How to describe r̃B,G ◦ ĩG,B(C, χ) where χ : T → C⋆

is a character?
By the defintion, ĩG,B(C, χ) is the space V of smooth functions f on

G such that

f(gtu) = χ(t−1)f(g)∆1/2(t), g ∈ G, t ∈ T, u ∈ U

For any w ∈ W we choose a representative w̃ ∈ NG(T ) and we define
Xw := UwB ⊂ G. It is clear that Xw does not depend on a choice of
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w̃. Let X̄w be the closure of Xw in G. We write w′ ≤ w for w′, w ∈W
if Xw′ ⊂ X̄w. For any w ∈W we define

Vw = {f ∈ V |fXw
≡ 0}

and define V +
w as the intersection of Vw′ for w′ < w.

Exercise 12.2. Show that

a)) V +
w ⊃ Vw.

b) r̃B,G(V +
w /Vw) = (C, χw).

12.3. The general case. Let Q = NV and P = MU be parabolics in
G containing T . We use the notations from Definition 8.6

For any w ∈W we consider subgroups

N ′
w = M ∩ w−1Nw ⊂ Q′

w = M ∩ w−1Qw ⊂M

and
M ′

w = N ∩ wMw−1 ⊂ P ′
w = N ∩ wPw−1 ⊂ N

Exercise 12.3. E:Basic a) For any w ∈ WP,Q subgroups

P ′
w = M ′

wU
′
w ⊂ N,Q′

w = N ′
wV

′
w ⊂M

are parabolic subgroups of N and M respectively, and Adw : N ′
w →

M ′
w is an isomorphism.

b) There is a finite filtration of the functor

F := r̃P,G ◦ ĩG,Q

fromM(N)→M(M) by subfunctions with quotients

Fw = ĩM,Q′
w
◦ w̃ ◦ r̃P ′

w,N , w ∈WP,Q

where w̃i : M(M ′
w) → M(N ′

w) is the equivalence of categories associ-
ated with the isomorphism Adwi : N

′
w → M ′

w.

Let P̄ = MŪ ⊂ G be the parabolic subgroup opposite to P [ so
P̄ contains the opposite Borel subgroup B̄]. Let Y := P P̄ ⊂ G and
V ′ ⊂ ĩGP̄ (ρ) be the subspace of functions f such that fG−Y ≡ 0.

c) Construct a functorial morphism βM(ρ) : ρ →֒ r̃PGĩGP̄ (ρ).

13. The second adjointness

If M is a Levi of G we denote by P = MU ⊂ G the parabolic
subgroup containing the Borel subgroup B and by P̄ = MŪ ⊂ G the
parabolic subgroup containing the Borel opposite subgroup B̄. For
simplicity we write iGM , rMG, iGM instead of ĩGP , r̃PG and ĩGP̄ . In this
section we prove the folowing result.
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Theorem 13.1. T:second The functor iGM is left adjoint to rMG.

The proof will be by induction on the semi-simple rank of G. To
prove the theorem we have to construct a functorial isomorphism

αρ,π HomG(iGM(ρ), π) ≃ HomM(ρ, rMG(π))

The proof consists of several steps:
Step 1: Construction of a morphism. For any φ : HomG(iGM(ρ), π) we
can define

αρ,π(φ) := rM,G(φ) ◦ βM(ρ)

We need to show that this morphism is an isomorphism.
We shall say that π is good if αρ,π is an isomorphism for all ρ. If in an

exact sequence {0} → π1 → π → π2 → {0} in M(G) representations
π1, π2 are good it follows from the exactness of functors r and i that π
is also good.

Any quasi-cuspidal representation π ofG is good since HomG(iGM(ρ), π) =
{0} [ see Corollary 8.27] and rMG(π)) = {0}.

As follows from Exercise 8.28 there exists a morphism

j : V → ⊕P∈PiG,P (πP )

such that the representation ofG onKer(j) is quasi-cuspidal and there-
fore is good. Moreover as follows from Theorem 9.9 it is sufficient to
show that Im(j) is good.

Step 2. We claim that it is enough to prove that for every π there
exists an imbedding π →֒ π′ where π′ is good. We first show that the
existence of such a morphism for all π ∈M(G) implies that αρ,π(φ) is
an imbedding for all π ∈M(G), ρ ∈M(M).

Let π̄ ⊂ π′ be the image of t. Consider the diagram

0→ HomG (iGM(ρ), π̄) −−−→ HomG (iGM(ρ), π′) −−−→ HomG (iGM(ρ), π′/π̄)




y





y





y

0→ HomM(ρ, rMG(π̄)) −−−→ HomM(ρ, rMG(π′)) −−−→ HomM(ρ, rMG(π′/π̄))
(1)

in which both rows are exact and the middle vertical arrow is an iso-
morphism. It shows immediately that the left vertical arrow αρ,π(φ̄) is
an embedding.
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Consider now the diagram

0→ HomG (iGM(ρ), π̄) −−−→ HomG (iGM(ρ), π′) −−−→ HomG (iGM(ρ), π′/π̄)




y





y





y

0→ HomM(ρ, rMG(π̄)) −−−→ HomM(ρ, rMG(π′)) −−−→ HomM(ρ, rMG(π′/π̄))
(2)

once more. Sinceαρ,π(φ) is an imbedding for all π ∈M(G), ρ ∈M(M)
the map αρ,π′/π̄(φ) is also an imbedding. This easily implies that the
left vertical arrow αρ,π(φ̄) is an isomorphism.

Step 3. We see that it is sufficient to show that for any proper
parabolic subgroups Q = NV of G and a representation σ of M the
representation iG,P (σ) is good. The same arguments as in the end of
the Step 1 show that we may assume that σ is quasi-cuspidal. As
follows from Exercise 8.26 we can also assume that σ is injective.

Step 4. As follows from Proposition 8.21 we can consider αρ,iG,N (σ) as

a morphism from HomN(rN,G ◦ iGM(ρ), σ) to HomM(ρ, rMG ◦ iG,N(σ)).

By Exercise 12.3 the representation rMG ◦ iG,N(σ) has a filtration by
subrepresentations

Fw(rMG ◦ iG,N(σ)) = ĩM,Q′
w
◦ w̃ ◦ r̃P ′

w,N(σ), w ∈ WP,Q

Since σ is injective all the factors Fw(rMG◦ iG,N(σ)) are injective and
therefore rMG ◦ iG,N(σ) is isomorphic to the direct sum

⊕w∈WP,Q
ĩM,Q′

w
◦ w̃ ◦ r̃P ′

w,N(σ)

So HomM(ρ, (rMG ◦ iG,N(σ)) has a filtration by subspaces

HomM(ρ, Fw(rMG ◦ iG,N(σ))), w ∈WP,Q

On the other hand as follows from Exercise 12.3 the representation
rN,G ◦ iGM(ρ) has a filtration by subrepresentations Fv(rN,G ◦ iGM(ρ))
with subquotients F̄v(rN,G ◦ iGM(ρ)) isomorphic to

ĩN,P ′
v
◦ ṽ ◦ r̃Q′

v,M(ρ), v ∈WQ,P̃

Since σ is injective the space HomN(rN,G ◦ iGM(ρ), σ) has a filtration
by subspaces

HomN(Fv(rN,G ◦ iGM(ρ), σ)), v ∈ W̄Q,P̃

where W̄Q,P̃ is a partially ordered set obtained from the the partially
ordered set WQ,P̃ by the reversal of the ordering.

Step 5. As follows from Exercise 8.8 WP,Q = WM\W/WN ,WQ,P̃ =

WN\W/Ww0Mw−1
0

and the bijection w → r(w) := w−1w0 from WP,Q to
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W̄Q,P̃ preserves the partial order. So the spaces HomN(rN,G◦iGM(ρ), σ)
and HomM(ρ, rMG ◦ iG,N (σ)) both have filtartions

Fw(HomN(rN,G ◦ iGM(ρ), σ)) ⊂ HomN (rN,G ◦ iGM(ρ), σ)

and

Fw(HomM(ρ, rMG ◦ iG,N(σ))) ⊂ HomM(ρ, rMG ◦ iG,N (σ))

parametrized by the partial ordered set WP,Q. Moreover the sub-

quotiets of the first filtration are isomorphic to HomN (̃iN,P ′

r(w)
◦ ṽ ◦

r̃Q′

r(w)
,M(ρ) and the subquotiets of the second filtration are isomorphic

to HomM(ρ, ĩM,Q′
w
◦ w̃ ◦ r̃P ′

w,N(σ). Since σ is cuspidal we can consider
only w ∈WP,Q such that N ⊂ wPw−1. In this case

F̄w(HomM(ρ, rMG ◦ iG,N(σ))) = HomM(ρ, iM,w−1Qw∩M(w̃ ◦ σ)

and
F̄w(HomN(rN,G ◦ iGM(ρ), σ)) = HomN (rQ,Q∩wMw−1, σ)

Exercise 13.2. a) The map αρ,iG,N (σ) is compatible with the filtrations.

b) The induced morphism

HomN(w̃ ◦ rw−1Qw∩M,M(ρ), σ)→ HomM(ρ, iw−1Qw∩M,M(w̃−1 ◦ (σ))

is given by the adjunction.

Theorem 13.1 is proven.

Corollary 13.3. C:ad a) The functor iG,P maps projective objects
into projective.

b) The functor rP,G commutes with infinite direct products.

Proof. a) Any functor which has a right adjoint maps projective objects
into projective.

b) Any functor which has a left adjoint commutes with infinite direct
products. �

Exercise 13.4. E:com Let M0 := M ∩G0. Then the functor rP 0,G0 :
M(G0) → M(M0) of U -coinvariants commutes with infinite direct
products.

14. Decomposition of the category M(G)

14.1. Uniform admissibility. By the definition for any admissible
compact representation of G0 a compact C ⊂ G0 such that any v ∈ V K

we have π(eK)π(g0)v = 0 for all g0 /∈ C. Now we can prove a stronger
result.
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Lemma 14.1. L:uad For any congruence subgroup K of G there exists
a compact C ⊂ G0 such that for any compact representation (π, V ) of
G0 and any v ∈ V K we have π(eK)π(g0)v = 0 for all g0 /∈ C.

Proof. Fix a congruence subgroup K and choose an increasing sequence
of open K-biinvariant subsets Cn of G0 such that ∪nCn = G0. We
have to show that existence of n such that for any irreducible cuspidal
representation (π, V ) of G and any v ∈ V K we have π(eK)π(g0)v = 0
for all g0 /∈ Cn.

Assume that this is false.
Then there exists a sequence of cuspidal representations (πn, Vn),

vectors vn ∈ V
K
n and elements gn /∈ Z(G)Cnsuch that πn(eK)π(gn)vn 6=

0 for all n > 0. Let (π, V ) =
∏

n(πn, Vn). As follows from Corollary
13.3 for any proper parabolic subgroup P of G we have rP,G(V ) =
{0}. Therefore by Theorem 8.24 the representation (π, V ) is compcat
modulo center.

On the other hand it is clear that for any n > 0 we have π(eK)π(gn)v 6=
0 where v =

∏

n vn ∈ V . This contrudiction proves the Lemma. �

Exercise 14.2. For any congruence subgroup K of G there exists a
compact C ⊂ G0 such that for any compcat representation (π, V ) of G
and any v ∈ V K we have π(eK)π(g)v = 0 for all g /∈ C.

Corollary 14.3. C:uad For any congruence subgroup K of G there
exists only a finite number of compact irreducible representations (π, V )
of G0 such that V K 6= {0}.

Proof. Suppose that there eixists a sequence an infinite sequence of
nonequivalent compcat representations (πn, Vn) of G0 such that V K

n 6=
{0}. Choose vn ∈ V K

n 6=, ṽn ∈ Ṽ K
n 6= such that < ṽn, vn > 6= 0

and consider functions fn :=< ṽn, πn(g)vn > on G0. Since represen-
tations (πn, Vn) are nonequivalent functions fn are linearly indepen-
dent. On the other hand there exists a compact C ⊂ G0 such that
π(eK)πn(g)vn = 0 for all g /∈ C, n > 0. We obtain a contradiction since
all the functions fn are right K-invariant. �

Exercise 14.4. E:uad a) For any pair K,K ′ of congruence subgroups
of G there exists a constant d(K,K ′) such that for any cuspidal ir-
reducible representation (π, V ) of G such that V K 6= {0} we have
dim(V K ′

) ≤ d(K,K ′).

b) One can omit the condition of the cuspidality in a)

14.2. The decomposition of the cuspidal part of M(G).



REPRESENTATIONS OF REDUCTIVE GROUPS 57

Theorem 14.5. T:dc The set Irrcomp ⊂ Irr(G0) of compact irre-
ducible representations of G0 splits M(G0) [see Definition 6.6].

Proof. For any congruence subgroup K ⊂ G0 we denote by S(K) the
set of compact irreducible representations which have a non-zero K-
invariant vector. As follows from Corollary 14.3 this set is finite.
Therefore by Theorem 7.5 it splits the category M(G0) and for any
representation V of G we have a decomposition V = V (K) ⊕ V (K⊥)
where VK is a direct sum of representation from S(K) and V ⊥

K does
not have subquotients from S(K).

Let K1 ⊃ K2 ⊃ . . .Kr ⊃ . . . be a sequence congruence subgroups
such that ∩rKr = {e}. For any representation V of G we define

Vc := ∪rV (Kr), V
⊥
c := ∩rV (Kr)

It is clear that all irreducible subquotients of Vc are compact and that
V ⊥

c does not have irreducible compact subquotients. So it only remains
to show that V = Vc ⊕ V

⊥
c . Fix v ∈ V . Then v ∈ V Kr for some r > 0

and we have
v = vc,K ⊕ v

⊥
c,K

. We will write v′ for v⊥c,K . It is obvious that vc,K ∈ Vc. We will be

done if we show that v′ ∈ V ⊥
c .

Let V ′ be the module generated by v′. We must show that JH(V ′)
does not contain any cuspidal components D. Since v is K-invariant,
any projection of v (and so, a fortiori, v′) onto a representation without
K-fixed vectors must be zero. Thus, JH(V ′) does not contain any D
without K-fixed vectors. On the other hand, v′ is, by definition, the
part of v which has zero projection onto the cuspidal components with
K-fixed vectors. Thus, JH(V ′) does not contain any D with K-fixed
vectors. This proves v′ ∈ V ⊥

c as needed. �

Let Irrcusp be the set of cuspidal irreducible representations of G.

Exercise 14.6. E:j a) A representation π ofG belongs toM(Irrcusp(G))
iff the restriction of π to G0 belongs to Mc(G

0).

b) The set Irrcusp of cuspidal irreducible representations of G splits
M(G).

For any (π, V ) ∈ M(G), P ∈ P we define πP := rP.G(π). As follows
from Proposition 8.21 the identity map Id : rP.G(π)→ rP.G(π) induces
a morphism jP : π → iG,P (πP ) and therefore a morphism

j : π → ⊕P∈PiG,P (πP )

c) Vc = Kerj and V ⊥
c = Im(j).
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Definition 14.7. For any representations (π, V ) of G we denote by
Vcusp the projection of V toM(Irrcusp(G)).

14.3. The decomposition of M(G).

Definition 14.8. a) We denote by L be the set of conjugacy classes
of Levi subgroups of G.

b) For any l ∈ L we denote by Pl the set of standard parabolic
subgroups P = MU such that U belongs to l.

c) For any l ∈ L we denote by Irrl(G) the set of irreducible represen-
tations of G which appear as subquotients of representations iG, P (σ)
for some P ∈ Pl for some cuspidal σ ∈ M(M) and define Ml(G) :=
M(Irrl(G)).

d) For any representations (π, V ) of G and P = MU ∈ P we de-
fine π0

P = (rG,P (V ))cusp, denote by j0
P : V → iG,P (π0

P induced by the
canonical mprphism jP [see Exercise 14.6] and denote by V 0

P the image
of j0

P .
d)For any P = MU ∈ P we define a functor r0

P,G : M(G) →
M(M)cusp by r0

P,G := rP,Gcusp and denote by j0
P : V → iG,P (π0

P ) the
induced by the canonical mprphism.

e) For any representations (π, V ) of G we define a functorial mor-
phism j0

l := ⊕j0
P : V → ⊕P∈Pl

and denote it’s image by Vl.

Example 14.9. If G = GL(n) then two the set L is the set of un-
ordered partitions of n.

Theorem 14.10. T:d a) For any representations (π, V ) of G we have
Vl ∈Ml(G) for any l ∈ L.

b) The map j0 := ⊕l∈Ljl : V → ⊕l∈LVl is an isomorphism.

Corollary 14.11. C:d The category M is the direct product of it
subcategories Ml(G), l ∈ L.

Proof. We start with the following useful results.

Lemma 14.12. A representation (π, V ) of G belongs toMl(G) iff for
any parabolic subgroup Q = MU /∈ Pl we have rQ,G(V )cusp = {0}.

Proof of the Lemma. If follows immediately from Exercise 12.3 and
the exactness of the functor rQ,G that for any (π, V ) ∈ Ob(Ml(G)) we
have rQ,G(V )cusp = {0} for all Q /∈ Pl.

Conversely let (π, V ) be a representation ofG such that rQ,G(V )cusp =

{0} for all Q /∈ Pl. Consider the morphism

jl := ⊕jP : V → ⊕P∈Pl
iG,P (πP ), P ∈ Pl, πP = rG,P (V )



REPRESENTATIONS OF REDUCTIVE GROUPS 59

as in Exercise 14.6. Since rQ,G(V )cusp = {0} for all Q ( P ∈ Pl we
see that the representations πP are all cuspidal. So ⊕P∈Pl

iG,P (πP ) ∈
Ob(Ml(G)).

Since the functors rQ,G and V → Vcusp are exact we see that for
any P ∈ P we have rQ,G(V ′)cusp = {0}, V ′ := Ker(jl). But then

V ′ = {0}.�
To show a) it is sufficient to show that iG,P ◦ rP,Gcusp ∈)b(Ml(G) for

any P ∈ Pl.But this follows immediately from Exercise 12.3.

The injectivity of j0 follows from Exercise 14.6.

Exercise 14.13. For any V ∈ (Ml(G) we have Vl = V and Vl′ = {0}
if l 6= l′; l, l′ ∈ L.

Lemma 14.14. Let (⋆){0} → V ′ → V → V ′′ → {0} be an exact
sequence such that V ′ ∈ Ob(Ml′(G), V ′′ ∈ Ob(Ml′′(G), l′, l′′ ∈ L. If
l′ 6= l′′ then (⋆) splits.

Proof of the Lemma. As we have seen V ′′
l′ = {0} and V ′

l′ = V ′.
Since the functor V → Vl′′ is exact the imbedding V ′ →֒ V induces an
isomorphism a : V ′ → Vl′ and we can define a spliting a−1 ◦ jl′ : V →
V ′.�

To finish the proof of b) we have to show the surjectivity of j0. Let
W = Im(j0). By the definition W is a subrepresentation in ⊕l∈LVl

such that projections of W on any summand Vl is surjective. It follows
now from the previos Lemma that W = ⊕l∈LVl. �

The following result is quite difficult and uses heavily the Harish-
Chandra’s analysis of representations induces from the tempered ones.

Theorem 14.15. For any l ∈ L and any (π, V ) in Ml(G) we have
rP,G(V ) 6= {0} for any P ∈ l.

Lemma 14.16. L:sub Let K 6= K0 be a congruence subgroup and
(π, V ) be a representation such that V is generated by V K. Then WK 6=
{0} for any irreducible subquotient W of V .

Proof. We first consider the case when the representation (ρ,W ) is
cuspidal. As follows from Theorem 14.10 we can write (π, V ) as a
direct sum (π′, V ′)⊕ (π′′, V ′′) where V (π′, V ′) ∈ Mρ and V ′′ does not
have subquotients of the form ρ ⊗ θ ◦ det where θ : F ⋆ → C⋆ is an
unramified character. Since V is generated by V K the representation
V ′ is generated by V K ′

. So we can assume that V ∈Mρ.
As follows from Theorem 8.24 πG0 of (π, V ) on the subgroup G0 ⊂ G

is a finite direct sum ⊕i∈IVi where (Vi, ρi), i ∈ I are non-isomorphic
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irreducible representations of G0 and the adjoint action of G on G0

induces a transitive action of G on I. As follows from the Theorem 7.5
the restriction πG0 of (π, V ) on G0 is a multiple of πG0 of (π, V ). Since
V K 6= {0} we see that WK 6= {0}.

Assume now that the representation (ρ,W ) is not cuspidal. As fol-
lows from Lemma 9.6 there exists a proper parabolic subgroup P =
MU of G such that rP,G(ρ) is a non-zero cuspidal representation. Since
the functor rP,G is exact the representation rP,G(ρ) is a subquotient of
rP,G(π). As follows from Proposition 8.21 the space rP,G(V ) is gener-
ated by the subspace rP,G(V )KM as an M-module. Since the represen-
tation rP,G(ρ) is cuspidal we conclude that rP,G(W )KM 6= 0. It follows
now from Theorem 9.7 that WKM 6= 0. �

Exercise 14.17. Let V be the space of measures on P1(F ), V0 ⊂ V the
subspace of measures µ such that

∫

P1(F )
µ = 0. The action of GL(2, F )

on P1(F ) induces representations of GL(2, F ) on on V and V0. Show
that the space Vsm is genrated by V K0 but V K0

0 = {0}.


