
Noise Sensitivity of Boolean FunctionsAnd Applications to PercolationItai Benjamini Gil Kalai Oded SchrammDecember 14, 1998AbstractIt is shown that a large class of events in a product probabilityspace are highly sensitive to noise, in the sense that with high prob-ability, the con�guration with an arbitrary small percent of randomerrors gives almost no prediction whether the event occurs. On theother hand, weighted majority functions are shown to be noise-stable.Several necessary and su�cient conditions for noise sensitivity andstability are given.Consider, for example, bond percolation on an n+ 1 by n grid. Acon�guration is a function that assigns to every edge the value 0 or 1.Let ! be a random con�guration, selected according to the uniformmeasure. A crossing is a path that joins the left and right sides of therectangle, and consists entirely of edges e with !(e) = 1. By duality,the probability for having a crossing is 1=2. Fix an � 2 (0; 1). For eachedge e, let !0(e) = !(e) with probability 1 � �, and !0(e) = 1 � !(e)with probability �, independently of the other edges. Let p(�) be theprobability for having a crossing in !, conditioned on !0 = � . Thenfor all n su�ciently large, P�� : jp(�)� 1=2j > �	 < �.
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1 Introduction1.1 Noise sensitivity | three examplesConsider the Hamming cube 
n = f0; 1gn endowed with the uniform prob-ability measure P. Let A � 
n be some event. Given a random x =(x1; : : : ; xn) 2 
n, suppose that y = (y1; : : : ; yn) is a random perturbationof x; that is, for every j 2 f1; : : : ; ng, yj = xj with probability 1 � �, inde-pendently for distinct j's. Here � 2 (0; 1) is some small �xed constant. Thisrandom perturbation of x will be denoted N�(x). We may think of N�(x) asx with some noise.Based on the knowledge of N�(x), we would like to predict the eventx 2 A. Since the joint distribution (x;N�(x)) is the same as that of (N�(x); x),an equivalent problem is to predict N�(x) 2 A knowing x. The event A isnoise sensitive if for all but a small set of x, knowing x does not signi�cantlyhelp in predicting the event N�(x) 2 A. More formally, A is noise sensitive,if for some small � > 0,
(A; �; �) := Pnx : ���P�N�(x) 2 A j x��P(A)��� > �o < � (1.1)Set �(A; �) = infn� > 0 : 
(A; �; �) < �o;which is the in�mum of all � > 0 such that (1.1) holds. This will be calledthe sensitivity gauge of A. A sequence of events Am � 
nm will be calledasymptotically noise sensitive iflimm!1�(Am; �) = 0; 8� 2 (0; 1=2):A simple example of a sequence of events which are not noise sensitive isdictatorship. The �rst bit dictator is the event Dn = n(x1; : : : ; xn) 2 
n :x1 = 1o. To verify that fDng is not asymptotically noise sensitive, considersome event A � 
n. Then for k > n we may obviously consider A as asubset of 
k, by ignoring the extra variables. Note that this does not changethe value of �(A; �). Consequently, �(Dn; �) = �(D1; �) 6= 0 for all n > 1.Let us examine now the example of majority. Pick some � 2 (0; 1=2). LetMn � 
n denote the majority event, that is,Mn = ((x1; : : : ; xn) 2 
n :Xj xj � n=2) :3



The probability that Pj xj � n=2 > pn is bounded from below as n ! 1.Given such an x, the probability that N�(x) 2 Mn is greater than P[Mn]+�1for some constant �1 > 0, depending on �. We conclude that majority is notasymptotically noise sensitive as n!1.Majority and dictatorship are not only noise insensitive, they are actually\noise stable", in a sense de�ned in Subsection 1.4 below.It turns out that the noise insensitivity of majority and dictatorship isatypical, and many natural and interesting events are asymptotically noisesensitive.Our third example is bond percolation on an m+1 by m rectangle in theordinary square grid Z2. A con�guration is an element in 
 = f0; 1gE, whereE is the set of edges in this rectangle. Let ! 2 
 be a random con�guration,selected according to the uniform measure. A crossing is a path that joinsthe left and right sides of the rectangle, and consists entirely of edges e with!(e) = 1. Let Cm be the event that there is some crossing of this rectangle.By duality, it is not hard to see that P[Cm] = 1=2.Theorem 1.1. The crossing events Cm are asymptotically noise sensitive;that is, �(Cm; �)! 0 as m!1.This theorem will appear as a corollary of a general result. To introducethe more general statement, we need the notion of in
uence.1.2 In
uences of variablesSet [n] = f1; : : : ; ng. Given x 2 
 and j 2 [n], let �jx = (x01; : : : ; x0n), wherex0k = xk when k 6= j and x0j = 1� xj. The in
uence of the k-th variable ona function f : 
! R is de�ned byIk(f) = kf(�kx)� f(x)k1 : (1.2)In other words, Ik(f) is the expected absolute value of the change in f whenthe k'th bit xk is 
ipped. We shall often not distinguish between an event Aand its indicator function �A. In particular, for events A, Ik(A) = Ik(�A).Note that Ik(A) is the probability that precisely one of the two elementsx; �kx is in A.This notion of in
uence was introduced by Ben-Or and Linial [3]. Kahn,Kalai and Linial [18] (see also, [8, 25]) showed that for every A � 
n withP[A] = 1=2 there is a j 2 [n] with Ij(A) � c logn=n, for some constant4



c > 0, and that there always exists a set S � [n] with jSj � c(�)n= lognwhose cumulative in
uence is > 1 � �; that is, the measure of the set ofinputs for variables in [n]� S which determine the value of f is less than �.Put I(f) = Xk Ik(f);II(f) = Xk Ik(f)2:Theorem 1.2. Let Am � 
nm be a sequence of events and suppose thatII(Am)! 0 as m!1. Then fAmg is asymptotically noise sensitive.Equivalently, there is some continuous function � satisfying �(0; �) = 0such that �(A; �) � ��II(A); �� for every event A in some 
n.On 
n, we use the usual lattice order: (x1; : : : ; xn) � (y1; : : : ; yn) i�xj � yj for all j 2 [n]. A function f : 
n ! R is monotone if f(x) � f(y)whenever x � y. An event A � 
n is monotone if its indicator function �Ais monotone.For monotone events, Theorem 1.2 has a converse:Proposition 1.3. Let Am � 
nm be a sequence of monotone events withinfm II(Am) > 0:Then fAmg is not asymptotically noise sensitive.The assumption that the events Am are monotone is necessary here. (Forexample, take Am to be a uniform random subset of 
m, or parity: Am :=fx 2 
m : kxk1 is oddg.)Suppose that A is a monotone event where the in
uences of all the vari-ables are the same. The in
uence I1(A) then measures the sensitivity of A to
ips of a single variable. Note that, quite paradoxically, A is least sensitiveto noise when I1(A) is largest.We now give a quantitative version of Theorem 1.2 under the assumptionthat II(Am) goes to zero fast enough.Theorem 1.4. Let A � 
n, and suppose that II(A) � n�a, where a 2(0; 1=2]. Then there exist c1; c2 > 0, depending only on a so that�(A; �) � c1n�c2� ; 8� 2 (0; 1=4) :5



Consequently, if Am � 
nm is a sequence of events satisfying II(Am) �(nm)�a and �m is a sequence in (0; 1=4) such that �m lognm ! 1, then�(Am; �m)! 0.1.3 Weighted majorityIt turns out that for monotone events noise insensitivity is also closely relatedto correlation with majority functions.Let K � [n] and de�ne the majority function on K by MK(x) =signPj2K(2xj � 1); that is,MK(x) = 8<: � 1 if Pj2K xj < jKj=2 ;0 if Pj2K xj = jKj=2 ;1 if Pj2K xj > jKj=2 : (1.3)For f : 
n ! R set �(f) = maxnjE(fMK)j : K � [n]o:Theorem 1.5. Let f : 
n ! [0; 1] be monotone. ThenII(f) � C�(f)2�1� log �(f)� logn;where C is some universal constant.Consequently, if Am � 
nm is a sequence of monotone events withlimm!1�(Am)2�1� log �(Am)� log nm = 0: (1.4)Then fAmg is asymptotically noise sensitive.One cannot get rid of the log nm factor (see Remark 3.10), except byusing weighted majority functions. For positive weights w = (w1; w2; : : : ; wn)consider a weighted majority function, which is de�ned byMw(x1; x2; : : : ; xn) = sign�X(2xj � 1)wj� :Finally write e�(A) = maxnjE(�AMw)j : w 2 [0; 1]no:6



Theorem 1.6. Let Am � 
nm be a sequence of monotone events. ThenfAmg is asymptotically noise sensitive if and only if limm!1 e�(Am) = 0.For a monotone event A � 
n, which is symmetric in the n variables,its correlation with unweighted majority is enough to determine if it is noisesensitive.1.4 StabilityWe now de�ne the notion of stability, which is the opposite of noise sensi-tivity. Suppose A � 
n, and let x 2 
n be random-uniform. For � > 0, letN�A denote the event N�(x) 2 A. It is then clear that P[A4N�A] ! 0 as� ! 0. (B4A denotes the symmetric di�erence, (B � A) [ (A � B).) Thefaster P[A4N�A] tends to zero, the more noise-stable A is. More precisely,let fAig be a collection of events, where Ai � 
ni . We say that fAig areuniformly stable if the limit lim�!0P[Ai4N�Ai] = 0 is uniform in i.For w 2 Rn and s 2 R, let Mw;s be the (generalized) weighted majorityevent Mw;s := (x 2 Rn : nXj=1(2xj � 1)wj > s) � 
n:Let M denote the collection of such events:M := �Mw;s : n = 1; 2; : : : ; w 2 Rn ; s 2 Ro:In Section 3 we show thatTheorem 1.7. M is uniformly stable. Moreover, for every M2MP[M�N�M] � C�1=4;where C is a universal constant independent of M.Note that an in�nite sequence fAig with P[Ai] bounded away from 0and 1 cannot be asymptotically noise sensitive and uniformly stable. Wealso observe (Lemma 3.7) that when fAig, (Ai � 
ni), is asymptoticallynoise sensitive and fBig, (Bi � 
ni), is uniformly stable, then Ai and Biare asymptotically uncorrelated. One can say, somewhat imprecisely, thatthe noise sensitive events are asymptotically in the orthocomplement of theuniformly stable events. 7



Stability and sensitivity are two extremes. However, there are events thatare neither sensitive nor stable. For example, if C is the event of a percolationcrossing, as described above, and M is the majority event, then C \ M isneither asymptotically noise sensitive, nor uniformly stable.1.5 Fourier-Walsh expansionFor a boolean function f on f0; 1gn, consider the Fourier-Walsh expansionf = PS�[n] bf(S)uS; where, uS(T ) = (�1)jS\T j. Here and in the following,we identify any vector x 2 
n with the subset fj 2 [n] : xj = 1g, of [n] =f1; 2; : : : ; ng. Consequently, jxj denotes the cardinality of that set; that is,jxj = kxk1 for x 2 
n.Theorem 1.8. Let Am � 
nm be a sequence of events, and set gm = �Am .Then fAmg is asymptotically noise sensitive i� for every �nite klimm Xnbgm(S)2 : S � [n]; 1 � jSj � ko = 0: (1.5)fAmg is uniformly stable i�limk!1 supm Xnbgm(S)2 : S � [n]; jSj � ko = 0: (1.6)It can be easily shown that for f = �AI(f) = 4 XS�[n] bf(S)2jSj:(This follows from (2.5) below with p = 2.) We will introduce anotherquantity J(f) = X;6=S�[n] bf(S)2=jSj:Also set for A � 
n, n > 1,�(A) = log I(A)= logn;�(A) = � log J(A)= logn:For events A we clearly have 0 � �(A), and �(A) � �(A), provided thatP[A] = 1=2. When A is monotone �(A) � 1=2.8



Perhaps some words of explanation are needed. I(A) measures the sumof the in
uences of the variables. For monotone events it is maximal formajority, where I(A) ' pn and thus �(A)! 1=2. In the terminology usedin percolation theory, I(A) is the expected number of pivotal edges. For thecrossing events C of percolation (in arbitrary dimensions) it is conjecturedthat I(C) behaves like a certain fractional power (a critical exponent) ofn. It is conjectured that in dimension 2, as n tends to in�nity, �(C) tendsto 3/8. Thus, this critical exponent generalizes and has a Fourier-analysisinterpretation for arbitrary Boolean functions.�(A) is large if there are substantial Fourier coe�cients bf(S) for largejSj. In contrast, �(A) is large if there are no substantial Fourier coe�cientsbf(S) for S of small positive size. We conjecture that for the crossing eventsfor percolation, as n tends to in�nity �(C) tends to a positive limit which isstrictly smaller than the limit for �(C).1.6 Some related and future workThere are interesting connections between noise sensitivity and isoperimetricinequalities of the form described by Talagrand in [26]. These connectionsand applications for �rst passage percolation problems will be discussed in asubsequent paper.Our notion of noise sensitivity is related to the study of noises by Tsiler-son [28, 29]. \Noise", in Tsilerson's sense, is a type of �-�eld �ltration.Uniform stability seems to correspond, in the limit, to the noise being white,while asymptotic sensitivity seems to correspond to the noise being black.1.7 The structure of this paperTheorems 1.2, and 1.3 are proved in the next section. Our proofs combinescombinatorial reasonings with applying certain inequalities for the Fouriercoe�cients of Bonami and Beckner which were used already in [18]. However,to get the results in the sharpest forms we have to rely on a sophisticated\bootstrap" method of [27] and on the main results of that paper which relyon this method. Talagrand's remarkable paper [27] has thus much in
uenceon the present work.Weighted and unweighted majority functions are considered in Section 3.An applications to percolation is described in Section 4 followed by somerelated open problems in Section 5. In Section 6, we will work out two9



examples (due to Ben-Or and Linial). In one of these �(A)! 1� log2 3 and�(A)! 1� log2 3. In Section 7 we consider relations with complexity theory.A simple description of noise-sensitivity in terms of random walks is givenin Section 8. In Section 9 we consider perturbations with a di�erent sortof noise, where the number of bits that are changed is of a �xed size. Theconclusions are similar to those above, but there is an amusing and slightlyunexpected twist.For simplicity we consider here the uniform measure on 
n. More gener-ally, one may consider the product measure Pp, where Ppfx : xj = 1g = p.Our results and proof apply in this setting. (All that is needed is to replacethe Fourier-Walsh transform by its analog as given in Talagrand's paper [25]and the proofs go through without change.) However, the case when p itselfdepends on n is interesting, but will not be considered here.Acknowledgments.It is a pleasure to thank Noga Alon, Ehud Friedgut, Ravi Kannan, HarryKesten, Yuval Peres, Michel Talagrand and Avi Wigderson for helpful dis-cussions.2 Sensitivity to noiseWe now put the noise operatorN� de�ned in the introduction into a somewhatmore general framework. That will allow us to deal, for example, with thesituation where the 1 bits are immune to noise but the 0 bits are noise prone.Consider the following method for selecting a random point x 2 
n. Letq1; : : : ; qn be independent random variables in [0; 1], with Eqj = 1=2, forj = 1; : : : ; n, and let ! 2 [0; 1]n be random uniform. Setxj = � 1; if 1� !j < qj;0; otherwise:Then x is distributed according to the uniform measure of 
n; it will bedenoted by N(!; q).Let � be the measure on [0; 1]n such that �(X) = P�(q1; : : : ; qn) 2 X�.We think of x as being chosen in two stages. In the �rst stage, q = (q1; : : : ; qn)is selected according to �. This q gives a product measure Pq on f0; 1gn thatsatis�es Pqf� 2 
n : �(j) = 1g = qj. Then x is chosen according to themeasure Pq. 10



For example, suppose z 2 
n. De�ne q = q(z) 2 [0; 1]n by qj = 1 � � ifzj = 1 and qj = � if zj = 0. Then for every z 2 
n, the perturbation N�(z)has the same distribution as N(!; q(z)). The � giving this distribution of qwill be denoted ��.However, the construction N(!; q) is more general than that given by thenoise operator N�. As hinted above, one can create a situation where 1 bitsare robust, but 0 bits are prone to noise. More precisely, take qj = 1, withprobability 1=2� � and qj = �=(1=2 + �) with probability 1=2 + �.Another interesting example is obtained by taking each qj to be 1, withprobability (1� �)=2, 0, with probability (1� �)=2, and 1=2 with probability�. Let f : f0; 1gn ! R be some function. In the following, f will be takento be the characteristic function �A of some event A � f0; 1gn, or f = �A�P(A). What information does the �rst stage in the selection of x = N(!; q),namely the selection of q, give about the value of f(x)? If we know thatq = z, then our prediction for f(x) would beG(f; z) = E�f(x) j q = z�:The expected value of G(f; q) is obviously E(f). LetZ(f; �) = EqG(f; q)2 = Z G(f; z)2 d�(z):This is just the second moment of G(f; q). If Z(f; �)� (Ef)2 is small, thenfor \almost all" values of q there is no prediction for f(x) that is signi�cantlybetter than the a priori knowledge of Ef . We often write G(A; �) and Z(A; �)in place of G(�A; �) and Z(�A; �).Lemma 2.1. The number Z(f; �) depends only on f and the variances �j ofthe variables qj. Its expression in terms of the Fourier coe�cients is,Z(f; �) = XS2
n bf(S)2Yj2S 4�j:
11



Proof:G(f; z) = E�f(x) j q = z�= XT�[n] f(T )Yj2T zjYj =2T(1� zj)=XT XS bf(S)(�1)jT\SjYj2T zjYj =2T(1� zj)=XS bf(S)0@XT 0�S(�1)jT 0j Yj2T 0 zj Yj =2T 0(1� zj)1A �0@ XT 00�[n]�S Yj2T 00 zj Yj =2T 00(1� zj)1A=XS bf(S) Yj2S �(1� zj)� zj)!0@Yj =2S �(1� zj) + zj)1A=XS bf(S)Yj2S(1� 2zj)Therefore,Z(f; �) = EG(f; q)2= XS XS0 bf(S) bf(S 0)E Yj2S(1� 2qj)Yj2S0(1� 2qj)!= XS XS0 bf(S) bf(S 0) Yj2S\S0E(1� 2qj)2 Yj2S4S0E(1� 2qj):Since Eqj = 1=2, summands with S 6= S 0 vanish. The lemma follows.For every � 2 [0; 1], x 2 
m and f : 
n ! R setQ�f(x) = Ef(N�(x))(here the expectation is only with respect to the noise). Also letVAR(f; �) = var(Q�f) = Z�f; ���� (Ef)2 :Note that for singletons S = fig � [n], we have Q�uS = (1 � 2�)uS. IfS1; S2 � [n] are disjoint and x 2 
n is �xed, thenN�(x)\S1 and N�(x)\S2 are12



independent. Consequently, Q�(uS1uS2) = (Q�uS1)(Q�uS2). We may concludethat Q�uS = (1� 2�)jSjuS for every S � [n], and linearity givesQ�f = XS�[n] bf(S)(1� 2�)jSjuS : (2.1)One consequence of this, which can also be obtained from Lemma 2.1, isVAR(f; �) = X;6=S�[n] bf(S)2(1� 2�)2jSj: (2.2)Now we relate VAR(A; �) with the sensitivity gauge �(A; �):Proposition 2.2. For every A � 
n12VAR(A; �) � �(A; �) � VAR(A; �)1=3:Proof: Let � = �(A; �), and setY = (y 2 
n : ���Q��A(y)�P[A]��� � �):Then, by the de�nition of �, P[Y ] � �. Consequently,VAR(A; �) � �2P[Y ] � �3 = �(A; �)3:For the other direction setY 0 = (y 2 
n : ���Q��A(y)�P[A]��� > �):Then P[Y 0] � �. For y 2 Y 0, the trivial estimate ���Q��A � P[A]��� � 1 holds.Therefore, VAR(A; �) � P[Y 0] + �2 � 2�(A; �):Proof of 1.8: The �rst part is immediate from Prop. 2.2 and (2.2).For the proof of the second part, observe that (2.1) implies that (1.6) isequivalent to kgm � Q�gmk2 ! 0 uniformly as �! 0. Since jgmj and jQ�gmjare bounded, this is equivalent to kgm�Q�gmk1 ! 0 uniformly, which is thesame as uniform stability for fAmg. 13



Remark 2.3. Another consequence of 2.2 and (2.2) is that for constant �; �0 2(0; 1=2), we have �(Am; �)! 0 i� �(Am; �0)! 0. Consequently, to verify thatAm is asymptotically noise sensitive, it is enough to prove VAR(Am; �)! 0with any �xed � 2 (0; 1=2).By Theorem 1.8, to establish Theorem 1.2 we need to show that the L2weight of the Fourier coe�cients with jSj small is negligible. For a functiong =Pbg(S)uS let T�g = Q 1��2 g =Xbg(S)�jSjuS:Observe that T0(g) = Eg and T1g = g. Also note thatkT1�2�gk22 = VAR(g; �) + bg(;)2; (2.3)by (2.2).The following hyper-contractive inequality of Bonami and Beckner [5, 2],which was crucial in [18], will be useful.Lemma 2.4 (Bonami, Beckner). kT�fk2 � kfk1+�2 :The following is a slightly weaker version of Theorem 1.2, which is su�-cient for the applications to percolation. It is presented here, since we cangive an almost self-contained proof of it.Theorem 2.5. Suppose that Am � 
nm is a sequence of events andlimm!1 log II(Am)log log nm = �1 : (2.4)Then fAmg is asymptotically noise sensitive.Proof: Abbreviate A for Am and n for nm, and set f := �A. Let ef :=�A �P[A]. Thus, bef(;) = 0 and bef(S) = bf(S), when S 6= ;.Recall that �jx = (x01; : : : ; x0n), where x0i = xi if i 6= j and x0j = 1 � xj.Let fj(x) = f(x)� f(�jx); j = 1; 2; : : : ; n;and note that bfj(S) = � 0; if j =2 S;2 bf(S); if j 2 S:14



Since fj takes only the values �1; 0; 1, equation (1.2) gives for every p � 1,kfjkp = Ij(f)1=p : (2.5)We set � := 1� 2�, where � 2 (0; 1=2) andFA(�) := VAR(A; �) = kT� efk22 =XS 6=; bf(S)2�2jSj:By Remark 2.3 and Proposition 2.2, it is enough to prove that FA(1=2)! 0as m!1. We haveFA(�) � XS bf(S)2jSj�2jSj = 14 nXj=1 kT�fjk22� 14 nXj=1 kfjk21+�2 (by Lemma 2.4)� nXj=1 Ij(A)2=(1+�2) (by (2.5))� n�2=(1+�2)II(A)1=(1+�2) (by the means inequality): (2.6)Take some �1 2 (0; 1=2), to be later speci�ed, and set � := logFA(�1)= log �1.If � � �1, then FA(�) � X1�jSj��=2 bf(S)2�2jSj + ��XS bf(S)2� (�=�1)�FA(�1) + �� = 2�� : (2.7)Assume that II(A) 2 (0; e�2), and let a := minn� log II(A)= logn; 1=2o.We may choose �1 :=pa=2. Then II(A) � n�a, and therefore (2.6) and thede�nition of � give � � a log n3 log(1=a) : (2.8)The de�nition of a together with (2.4) and (2.8) show that �!1 as m!1. Hence (2.7) implies FAm(1=2) ! 0 as m ! 1, which completes theproof. 15



Proof of 1.4: The above calculations together with Prop. 2.2 show that�(A; �) � VAR(A; �)1=3 = FA(1� 2�)1=3 � 21=3�1� 2�� a logn9 log(1=a) ;for � 2 (0; 1=4), when we assume II(A) � n�a, a 2 (0; 1=2]. The theoremfollows immediately.For the proof of Theorem 1.2, we will need the following.Theorem 2.6. For each k = 1; 2; : : : , there is a constant Ck < 1 with thefollowing property. Let A � 
n be a monotone event and f = �A. ThenXjSj=k bf(S)2 � CkII(A)�� log II(A)�k�1 :This inequality was proved by Talagrand [27] for k = 2. (Talagrandconsiders an extension of this relation for two events, and our generalizationapplies for that extension as well.)Proof of 2.6: To prove the theorem one can follow Talagrand's proofalmost word-by-word. We will only describe the changes needed to adaptthe proof. One modi�cation required is that the inequalityP8<:S 0 : ������XjSj=k�SuS(S 0)������ � t9=; � e2 exp �t2=k�e2X�2S��1=k! (2.9)must be used in place of the sub-Gaussian estimate that appears as Prop. 2.1in [27]. Set q = t2=k= (e2P�2S)1=k. For q � 2 the inequality (2.9) is trivial,while for q > 2 it follows by substituting q into





XjSj=k�SuS





q � (q � 1)k=2 �X�2S�1=2 ; 8q � 2 ; (2.10)which appears in [25] as (2.4) and is a consequence of the dual version of theBonami-Beckner inequality.Set Ak := fx 2 A : �kx =2 Ag, and note that 2P[Ak] = Ik(A). In theproof for the case k = 2, Talagrand considers in Section 3 of [27] partitions16



I [ J = [n], and estimates PfIj(A)2 : j 2 L(s)g, where L(s) is the set ofj 2 J such that Xi2I  ZAj ufig(x)!2 � s2P[Aj]2 :To generalize Talagrand's argument for k > 2, one gives a similar estimateto PfIj(A)2 : j 2 Lk�1(s)g, where Lk�1(s) is the set of j 2 J such thatX8<: ZAj ui(x)!2 : i � I; jij = k � 19=; � s2P[Aj]2We omit the details, since from this point on only straightforward changes arerequired to adapt Talagrand's beautiful (but rather mysterious) argument.In the case of monotone events, Theorem 1.2 follows immediately fromTheorems 2.6 and 1.8. In order to get rid of the monotonicity assumption,we introduce the shifting operator.Let j 2 f1; : : : ; ng, and let f : 
n ! R. For x 2 
n, set�jf(x) := � maxff(x); f(�jx)g; if xj = 1;minff(x); f(�jx)g; if xj = 0:The operator �j is called the j-shift. The following lemma describes someuseful properties of shifts.Lemma 2.7 (Shifting). Let f : 
n ! R, and let j; i 2 f1; : : : ; ng. Then1. �1�2 : : : �nf is monotone.2. Ii(�jf) � Ii(f).3. VAR(�jf; �) � VAR(f; �) for each � 2 [0; 1].Proof: Suppose for the moment that i 6= j. For any a; b 2 f0; 1g andx 2 
n, let xa;b be x with the i'th coordinate set to a and the j'th coordinateset to b. Note that �jf is monotone nondecreasing in the variable xj. Hence�i�jf(x1;1) is the maximum of f on fx0;0; x0;1; x1;0; x1;1g and �i�jf(x0;0) isthe minimum. It follows that �i�jf = �j�i�jf . This relation easily impliesthe �rst claim of the lemma. 17



For the second part, we may assume with no loss of generality that j 6= i,because Ii(�if) = Ii(f). A case by case analysis shows thatjf(x0;0)� f(x1;0)j+ jf(x0;1)� f(x1;1)j� j�jf(x0;0)� �jf(x1;0)j+ j�jf(x0;1)� �jf(x1;1)j ;and the second part follows by summing over x 2 
n.For the last part, setg(y) = E[f(N�(x)) j x = y];eg(y) = E[�jf(N�(x)) j x = y]:Note that g(y) + g(�j(y)) = eg(y) + eg(�jy), but jg(y)� g(�j(y))j � jeg(y) �eg(�jy)j. This implies g(y)2 + g(�j(y))2 � eg(y)2 + eg(�jy)2. By summing overy, we obtain E(g2) � E(eg2). Since Eg = Eeg, the last claim of the lemmanow follows.Proof of 1.2: Let A � 
n. Set g = �1�2 : : : �n�A. Then by Lemma 2.7,g is monotone, II(g) � II(A) and for each � > 0 we have VAR(g; �) �VAR(A; �). Moreover, g takes only the values 0 and 1. By applying The-orem 2.6 for g, and using Proposition 2.2, Theorem 1.2 immediately fol-lows.Proof of 1.3: Observe that for a monotone f : 
n ! RIj(f) = 2j bf(fjg)j; (2.11)and therefore II(f) = 4Xj bf(fjg)2: (2.12)Hence 1.3 follows from Theorem 1.8.Note that (2.12) implies that II(A) � 4 (2.13)for monotone events A. 18



Remark 2.8. It is tempting to look for a simpler proof of Theorem 1.2, alongthe following lines. Using (2.5) with p = 2, we �nd thatII(f) = nXj=10@XS�fjg 4 bf(S)21A2 = 16XS;S0 bf(S)2 bf(S 0)2jS \ S 0j; (2.14)where f = �A for some event A � 
n. This expression is more complicatedthan (2.12), but is still valid when A is not monotone. The fact that f isthe indicator function of an event is summarized by the equation f 2 = f . Interms of the Fourier transform, this translates to a convolution equationbf � bf = bf: (2.15)(By replacing f with 2f � 1, this transforms to the simpler looking bf � bf =�f;g.) One may suspect that there should be a direct argument that usesonly (2.15) and (2.14) to prove that for every k = 1; 2; : : :XjSj=k bf(S)2 ! 0when II(f)! 0. Then Theorem 1.2 would follow from Theorem 1.8.3 Correlation with majority3.1 Uniform weightsFix some n 2 N . Recall the de�nition (1.3) of the majority function MK ,and set M = Mn =M[n].Theorem 3.1. Let f : 
n ! [0; 1] be monotone. ThenI(f) � CpnE(fM) �1 +p� logE(fM)� ;where C is some universal constant.Proof: Write f(k) for the average of f on the set nx :Pj xj = ko:f(k) = �nk��1 Xjxj=k f(x) :19



Then E(fM) = 2�nXk>n2 �nk��f(k)� f(n� k)� : (3.1)Recall that sjx = (y1; : : : yn) where yj = 1� xj and yi = xi for i 6= j. ThenI(f) = 2�nXx Xj jf(x)� f(sjx)j:Since f is monotone, f(x)� f(sjx) � 0 when xj = 1 and f(x)� f(sjx) � 0when xj = 0. Hence the expression for I(f) simpli�es,I(f) = 2�nXx f(x)�2jxj � n�= 2�nXk �nk�f(k)(2k � n)= 2�nXk>n2 �nk��f(k)� f(n� k)� (2k � n): (3.2)For any � � 0 write k(�) = (n+ �pn)=2. Since 0 � f(k) � 1, by comparing(3.2) and (3.1), we obtain the following estimate.I(f) � (2k(�)� n)E(fM) + 2�n Xk>k(�)�nk��f(k)� f(n� k)� (2k � n)� �pnE(fM) + 2�n Xk>k(�)�nk�(2k � n): (3.3)Because there are constants C1; C2 > 0 such that2�n�nk�(2k � n) � C1 exp��(2k � n)2C2n � (3.4)holds for every n and k, by choosing � = C3p� logE(fM), where C3 is asu�ciently large constant, we get2�n Xk>k(�)�nk�(2k � n) � C4pnE(fM);20



and the theorem follows from (3.3).Given a set K � [n], let MK denote the majority function on the set K;that is, MK(x) = 8<: � 1 if Pj2K xj < jKj=2 ;0 if Pj2K xj = jKj=2 ;1 if Pj2K xj > jKj=2 ;Also set, IK(f) =Xk2K Ik(f):Corollary 3.2. Let K � [n] and suppose that f : 
n ! [0; 1] is monotone.Then IK(f) � CpjKjE(fMK) �1 +p� logE(fMK)� ;where C is some universal constant.Proof: Set m = jKj, and assume, that K = f1; : : : ; mg. Given z 2 
m, setfK(z) = 2m�n Xy2
n�m f(z; y):Then fK is monotone and I(fK) = IK(f). Consequently, the corollary followsfrom Theorem 3.1.Proof of 1.5: Assume, with no loss of generality, thatIj+1(f) � Ij(f) (3.5)for all j 2 f1; : : : ; n� 1g. Cor. 3.2 implies thatkXj=1 Ij(f) � C1�(f)�1 +p� log �(f)�pk (3.6)for some constant C1 and every k 2 [n]. Subject to these constraintsand (3.5), II(f) is maximized if equality occurs in (3.6) for every k. There-fore, II(f) � C21�(f)2 �1 +p� log �(f)�2 nXk=1 �pk �pk � 1�2= O(1)�(f)2�1� log �(f)� nXk=1 k�1= O(1)�(f)2�1� log �(f)� log n:21



This proves the �rst part of Theorem 1.5. The second part now follows fromTheorem 1.2.Theorem 1.5 tells us that if �(Am)! 0 fast enough for monotone eventsAm, then they are asymptotically noise sensitive. Conversely, if a sequenceof (not necessarily monotone) events satis�es infm �(Am) > 0, then it is notasymptotically noise sensitive. This can be proven directly, and also followsfrom Lemma 3.7 below.It is interesting to note thatTheorem 3.3. Majority maximizes I among monotone events A � 
n.Although this follows from [10], the explicit statement does not appearthere. See also Lem. 6.1 of Friedgut and Kalai [13].3.2 General weightsWe will investigate now some relations between noise-sensitivity and weightedmajority functions. Several of the properties we need for weighted majorityfunctions are easy to establish if the distribution of weights allows us to usea normal approximation for f(x) = Pj wjxj. But, as it turns out, workingwith arbitrary weights is harder.Our �rst goal is to show that weighted majority functions are uniformlynoise stable. This will imply the \only if" part of Theorem 1.6. For this, thefollowing easy (and quite standard) lemma will be needed.Lemma 3.4. Let w = (w1; : : : ; wn) 6= 0 and f(x) =Pj wj(2xj � 1). ThenP[jf j � tkwk2] � 3t�4 ; (3.7)and P[jf j � 0:3kwk2] � 0:92 : (3.8)A much stronger estimate than (3.7) is known (see [22]).Proof: Without loss of generality, we assume that kwk2 = 1. Then E[f 4] =3kwk42 � 2kwk44 � 3. Hence (3.7) follows:P[jf j � t] = P[f 4 � t4] � t�4E[f 4] = 3t�4:22



This impliesE[1ff2>tgf 2] = P[f 2 > t] + Zs�tP[f 2 > s] ds � 3t�2 + t�3 :Hence E[1ff2�tgf 2] = E[f 2]� E[f 21ff2>tg] � 1� 3t�2 � t�3 :We choose t = 10, and obtain10� 9:9P[f 2 � 1=10] = 10P[f 2 > 1=10] +P[f 2 � 1=10]=10� E[1ff2�10gf 2] � 9=10 ;which gives (3.8).Lemma 3.5. Let b > 0, let v1; : : : ; vd � b, and let g = Pdj=1 zjvj, whereP[zj = 1] = P[zj = �1] = 1=2, and the zj are independent. Then for everyt � 1 and every s 2 R, P�jg � sj � tb� � c � t=pd ; (3.9)where c is some universal constant.This lemma is a consequence of Theorem 2.14 in [22], for example. How-ever, since the proof of that theorem is arduous, we now present a simplecombinatorial proof.Proof: Let x be a random uniform element in 
d, and let � be a randomuniform permutation of f1; 2; : : : ; dg. Let C be the collection of sets S thathave the form S = fj : �(j) < rg for some r 2 R. Then there is a uniquey 2 C with jyj = jxj. Observe that y is a random uniform element of
d. Consequently, the distribution of g is the same as the distribution ofh(y) :=Pdj=1(1�2yj)vj, where yj is 1 or 0 when j 2 y or j =2 y, respectively.Since C is totally ordered by inclusion, there is at most one S 2 C such thatjh(S)� sj < b=2. So when � is �xed, the probability that jh(S) � sj � b=3is at most maxnP�jxj = r� : r 2 Ro = O(1)=pd. This establishes (3.9)for t = 1=3. The result for general t � 1 follows by applying the result fort = 1=3 for an appropriate succession of values of s.Proof of 1.7: Let w = (w1; : : : ; wn) 6= 0 and s0 2 R. Let f(x) :=Pnj=1wj(2xj � 1), and consider the event M := �x 2 
 : f(x) > s0	. Take23



� > 0, and let J � [n] be a random subset, where each j 2 [n] is in J withprobability �, independently. Set Y (J) := Pj2J wj(2xj � 1). Then 2Y (J)has the distribution of f �N�f . Let � 2 (0; 1) and seta := infnt > 0 : P�jY (J)j � t� � �o: (3.10)Our goal is to give an estimate from above to P �jf j < 2a� in terms of �and �, which will tend to zero when � is positive and �xed and �! 0.Set W (J) := Pj2J w2j . This is the variance of Y (J) conditioned on J .Note thatP�jY (J)j � a j J� = P�Y (J)2 > a2 j J� � E�Y (J)2 j J�=a2 = W (J)=a2:Therefore,� = P�jY (J)j > a� = XX�[n]P�jY (J)j > a j J = X�P[J = X]� XX�[n]min�1; a�2W (X)	P[J = X] = Ehmin�1; a�2W (J)	i ; (3.11)and we conclude that P�W (J) � �a2=2� � �=2 : (3.12)Now let z1; z2; : : : ; zn be independent variables that are uniform in [0; 1],and are independent from (x1; : : : ; xn). Let m be the largest integer suchthat m� � 1. Let I1; : : : ; Im be disjoint open intervals in [0; 1], each of length�. Let I0 := [0; 1]�[mk=1Ik. Let Jk (k = 0; 1; : : : ; m) be the set of i 2 [n] withzi 2 Ik. Then each Jk with k > 0 has the same distribution as J above. LetAk be the event that W (Jk) � �a2=2. Then from (3.12) with Jk in place ofJ we �nd that P[Ak] � �=2 for k = 1; 2; : : : ; m.We claim that for k 6= k0 the events Ak and Ak0 are negatively correlated.This can be established by proving by induction on n that the eventsW (Jk) �s1 and W (Jk0) � s2 are negatively correlated for each s1; s2 2 R (which isintuitively obvious, since the intervals Ik and Ik0 are disjoint). Let K be thenumber of k > 0 such that the event Ak occurs. ThenE[K] = mXk=1 P[Ak] � m�=2 ;24



and E[K2]�E[K]2 =Xk;k0 P[Ak \ Ak0]� Xk P[Ak]!2 � E[K];because the events Ak;Ak0 are negatively correlated when k 6= k0. ThereforeP[K < m�=4] � P �(K �EK)2 > (m�=4)2�� 4(m�)�2E �(K � EK)2� = 4(m�)�2 �E[K2]� (EK)2�� 4(m�)�2E[K] � 4m�1��2 : (3.13)Let L be the set of k 2 [m] such that jY (Jk)j > ap�=10. By (3.8), appliedto Y (Jk) in place of f , P[k 2 L j Ak] � 8=100:Moreover, conditioned on all the Jk, the events fk 2 Lg are independent.Consequently, a calculation similar to (3.13) givesP�jLj < m�=100 j K � m�=4� � O(1)m�1��2:When we use this and (3.13) together, we getP�jLj < m�=100� � O(1)m�1��2: (3.14)If we condition on L, on all Y (Jk) for k =2 L and on all jY (Jk)j for k 2 L,then what remains to determine f are only the signs of Y (Jk) with k 2 L.Moreover, these signs are independent, and are + or � with probability1=2. Hence we may apply Lemma 3.5 with b := ap�=10, d := jLj, s :=s0 �Pk=2L Y (Jk), g = Pk2L Y (Jk), and take v = (vk) to be the sequence�jY (Jk)j : k 2 L�. The conclusion is that for t � 1Phjf � s0j � tap�=10 ��� jLj � m�=100i � O(1)t=pm� :Together with (3.14), (and choosing t = 20=p�) this givesPhjf � s0j � 2ai � O(1) ����2 +p���1� : (3.15)25



We now come to analyze the e�ect of noise. Because 2Y (J) has the samedistribution as f �N�f , for every a > 0P�M4N�M� � P�jf � s0j � 2a�+P�jY (J)j � a�Choose � := �1=4 and, as before, use (3.10) to de�ne a. Then P�jf � s0j �2a� � O(1)�1=4 and P�jY (J)j � a� � �1=4. Consequently,P�M4N�M� � O(1)�1=4; (3.16)and the theorem immediately follows.Question 3.1. What is the best exponent possible on the right hand sideof (3.16)?Remarks 3.6. It follows from Theorems 1.7 and 1.2 that inf�II(M) : M 2M	 > 0. (A direct proof will follow.) We conjecture that II(M) is minimizedamong Mw;0 � 
n in M when all the weights are equal. It is a consequenceof Theorems 1.7 and 1.8 thatlimk!1 supM2MXjSj>k b�M(S)2 = 0:We actually expect that among weighted majority events in 
n, the one withequal weights is the least stable, and for every k > 1 maximizesPjSj>k b�M(S)2.For the proof of 1.6, the following will be needed.Lemma 3.7. Let Am;Bm � 
nm be two sequences of events. Suppose thatthe sequence fAmg is noise-sensitive, while the sequence fBmg is noise-stable.Then limm P[Am \ Bm]�P[Am]P[Bm] = 0:Proof: This can be proven directly, but since P[Am \ Bm] = E��Am�Bm�,the lemma is immediate from 1.8.Let the in
uence vector of an event A � 
n be the vector IA :=�I1(A); : : : ; In(A)� 2 Rn .Proof of 1.6: The \only if" direction follows from Theorem 1.7 andLemma 3.7.For the other direction, we need to show that monotone, noise-insensitiveevents A � 
n have a non-vanishing correlation with some weighted majority26



event Mw, w 2 [0; 1]n. Talagrand's Theorem 1.1 [27] gives a lower bound onthe correlation of monotone events. This theorem asserts, in particular, thatfor two monotone events, if the inner product of their in
uence vectors isbounded away from zero, then the correlation between them is also boundedaway from zero1.We know from Theorem 1.2 that for noise-insensitive events, 

IA

2 isbounded away from zero. It remains to show that for every v 2 [0; 1]n withkvk2 = 1, we can �nd a weighted majority function M = Mw, w 2 [0; 1]n,such that the inner product 
IM; v� is bounded away from zero. We willprove that this holds when one chooses w := v.Given any w 2 Rn , w 6= 0, let Iw 2 Rn denote the in
uence vector ofMw, Iwj := Ij(Mw).Proposition 3.8. There is an absolute constant c > 0 such that hw; Iwi � cfor every n = 1; 2; : : : and every w 2 Rn with nonnegative coordinates andkwk2 = 1.We �rst need:Lemma 3.9. Let v 2 Rn , v 6= 0, have nonegative coordinates, and let x 2 
nbe uniform-random. Set g(x) := Pnj=1(2xj � 1)vj, and let J be an intervalof the form [s; t) or (s; t] with t� s � 2kvk1 and maxf�s; tg � kvk2. ThenP�g(x) 2 J� � C(t� s)= kvk2 ;where C > 0 is an absolute constant independent of n, v and J.Proof: We assume, as we may, that t� s = 2kvk1, because J contains atleast (4kvk1)�1 � length(J) disjoint intervals of length 2kvk1. With no lossof generality, we also assume for convenience that v1 � v2 � � � � � vn.First, consider the case vn�1 � (t � s)=5. It will be shown that in thiscase the lemma holds even when the inequalitymaxf�s; tg � min�2kvk2; kvk1	; (3.17)replaces the requirement maxf�s; tg � kvk2. Note that kvk1 � kvk2,so (3.17) is weaker.1For uniformly stable events, it seems that also the converse is true: if the correlationis bounded away from zero, then so is the inner product of their in
uence vectors. Formonotone uniformly stable events, this follows from the two-event version of Theorem 2.6.27



Let � be a uniform-random permutation of [n], let h := kxk1, and lety = y(�; h) 2 
n be de�ned as in Lemma 3.5; that is, yj = 1 i� �(j) � h.From maxf�s; tg � kvk1 we get g�y(�; 0)� � s < t � g�y(�; n)�. As hincreases from k � 1 to k, g(y) increases by 2vk0 � t� s, where k0 = ��1(k).Hence, for every � there is some k� 2 f0; 1; : : : ; ng such that g�y(�; k�)� 2 J .We now estimate the probability that jk� � n=2j is large. Let m be theinteger part of n=2, and let a� := g�y(�;m)�. Since we are assuming that(t� s)=2 � vj for all j and vj � vn�1 � (t� s)=5 for all j 2 f1; 2; : : : ; n� 1g,it follows that the ratio pn(t� s)=kvk2 is bounded away from 0 and1, andjk� �mj � 2 + 5min�ja� � sj; ja� � tj	=(t� s)� 2 + 5ja�j=(t� s) + 5maxf�s; tg=(t� s)� 2 +O(1)ja�j=(t� s) +O(1)kvk2=(t� s)� O(1)ja�j=(t� s) +O(1)pn: (3.18)We now estimate the probability that a� is large. Note that when we con-dition on kxk1 = h = m, the bits xj and xi are negatively correlated wheni 6= j. Consequently,E�a2�� = E�g(x)2 j h = m� =Xj;i vjviE�(2xj � 1)(2xi � 1) j h = m� � kvk22;which implies P�ja�j � 2kvk2� � 1=2:By (3.18), when ja�j � 2kvk2, we have jk� � n=2j � O(1)pn. Since P[h =k] = 2�n�nk�, it follows thatP[g(x) 2 J ] = P[g(y) 2 J ] � P[h = k�]� Phh = k����ja�j � 2kvk2iPhja�j � 2kvk2i� c1=pn � c2(t� s)=kvk2;for some positive absolute constants c1; c2. This completes the argument forthe case vn�1 � (t� s)=5.We now work to reduce the case in which kvk2 � maxf�s; tg holds to thecase where vn�1 � (t� s)=5 and 3.17 hold. De�ne a sequence v0j as follows.Given any j 2 [n], let z(j) be the least j 0 2 fj + 1; j + 2; : : : ; ng such that����� j0Xi=j+1(2xi � 1)vi����� � (t� s)=5;28



and if such a j 0 does not exist, we set z(j) = n. Let j0 = 0 and inductivelyjk+1 = z(jk). Let r := inffk : jk = ng, and de�neuk := ������ jkXi=jk�1+1(2xi � 1)vi������ :Set u = (u1; u2; : : : ; ur). Note that when we condition on u, we have g(x) =Pi�r(2x0i � 1)ui, where x0 = (x01; : : : ; x0r) 2 
r is random-uniform; that is,g(x) is a sum of the ui with signs that are independent and have probability1=2 to be +. Note also that (t � s)=2 � uj � (t � s)=5, for j = 1; : : : ; r,except that at j = r the inequality uj � (t� s)=5 may fail.The di�culty in applying the above analysis with u (with the entriessorted by size) in place of v is that we have to verify the inequality (3.17) foru in place of v. Let A be the event �kuk22 � (9=10)kvk22	. We want to showthat P[A] is bounded away from zero. Note thatE[g(x)2 j u] = kuk22;and so E[kuk22] = E�E[g(x)2 j u]� = E[g(x)2] = kvk22: (3.19)As in Lemma 3.4, we use the identity E[g4] = 3kvk42 � 2kvk44 to computeEhkuk42i� Eh3kuk42 � 2kuk44i = EhE�g4 j u�i = 3kvk42 � 2kvk44 � 3kvk42:Together with (3.19) this easily implies that P[A] is bounded away from zero,by an argument similar to the one used in Lemma 3.4.Assume A. Then in order to verify (3.17), one only needs to show thatkuk1 � kvk2. We have,(9=10)kvk22 � kuk22 � kuk1kuk1 = kuk1(t� s)=2:So (3.17) with u in place of v follows if we have(5=16)(t� s)2 � kvk22:Since P[A] is bounded from below, it only remains to deal with the case(5=16)(t� s)2 > kvk22: (3.20)29



Assume this inequality. Note that it implies that J occupies at least 2=p5of the interval h�kvk2; kvk2i. Recall that v1 = kvk1 = (t�s)=2. Then (3.20)impliesPj>1 v2j < (t�s)2=16. Set g1(x) =Pj>1(2xj�1)v2j . ThenE[g1(x)2] <(t� s)2=16. Consequently,P�jg1(x)j < (t� s)=2� � 1=2:When we condition on this event and on jg1(x)j, the sign of g1(x) and thesign of (2x1� 1) can take all four possibilities in (�;�) with probability 1=4each, and there is a choice of signs that gives �g1(x) � v1 2 J . ThereforeP [g(x) 2 J ] � 1=8 when (3.20) holds. This concludes the proof.Proof of 3.8: With no loss of generality, we assume that wj � wj+1 forall j = 1; : : : ; n� 1. Setf(x) := nXk=1(2xk � 1)wk; aj := j�1Xk=1 w2k:We shall show that when aj � 1=100, the ratio Iwj =wj is not too small. Thatwill imply the necessary inequality for hw; Iwi.Letfj(x) := j�1Xk=1(2xk � 1)wk; efj(x) := nXk=j+1(2xk � 1)wk:Note that E[f 2j ] = aj, and E[ ef 2j ] = 1� aj+1.Consider �rst the case j = 1. Set v := (w2; w3; : : : ; wn) and b :=min�w1; kvk2	. Note that b � kvk1. Hence Lemma 3.9 gives P[�b <ef1 � b] � 2Cb=kvk2. Recall that Iw1 is the probability that x1 is pivotal forthe event f > 0. HenceIw1 = P[�w1 < ef1 � w1] � P[�b < ef1 � b] � 2Cb=kvk2:If b = kvk2, this gives Iw1 � 2C, and otherwise it gives Iw1 � 2Cw1. So wehave veri�ed that Iw1 =w1 is bounded away from zero.Now suppose that j 2 f2; 3; : : : ; ng satis�es aj < 1=100. Set v :=(wj+1; wj+2; : : : ; wn) and note that paj � wj � kvk1. Since aj < 1=100 and30



aj + w2j + kvk22 = 1, this implies that 3paj + wj < kvk2. Hence Lemma 3.9implies that on the event jfjj � 3pajP[�wj � fj < efj � wj � fj j fj] � 2Cwj=kvk2 � 2Cwj:This givesIwj = P[�wj � fj < efj � wj � fj]� 2CwjP �jfjj � 3paj� = 2CwjP �f 2j � 9E(f 2j )� � (16=9)Cwj:We therefore conclude that Iwj � C 0wj for all j 2 [n] satisfying aj < 1=100,where C 0 > 0 is some absolute constant. This gives,hIw; wi �XnIwj wj : aj < 1=100o �XnC 0w2j : aj < 1=100o � C 0=100:This completes the proof of the proposition, and the proof of Theorem 1.6.Remark 3.10. We now show that one cannot remove the log in Theorem 1.5.Fix some k; n 2 Z with n � k > 0. Let wj = 1=pj log n for j = 1; : : : ; n, andlet uj = 1=pk for j � k and uj = 0 for j > k. Set fw(x) =Pnj=1(2xj � 1)wjand fu(x) = Pnj=1(2xj � 1)uj, where x 2 
n. Then the event fw � 0 isnoise stable, by 1.7. We show that P[fw � 0 j fu � 0] ! 1=2 as n ! 1,no matter how k = k(n) is chosen. Indeed, given any x 2 
, let s(x) :=pkfu(x) =Pj�k(2xj�1). If s(x) < 0, let x be obtained from x by replacing�s(x) of the 0 entries in x by 1's, where the set of entries replaced is chosenrandomly and uniformly among all possibilities, and if s(x) � 0, set x = x.Then P[fw(x) � 0 j fu(x) � 0] = P[fw(x) � 0]. Therefore, by Lemma 3.5applied to w, it is enough to show that fw(x)� fw(x)! 0 in probability asn!1. This follows fromE��fw(x)� fw(x)�� = (2=k)E�maxf0;�s(x)g� kXj=1 wj = O(1)=plogn:
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4 An application to percolationLet R be an (m+1)�m rectangle in the square grid Z2, and let 
 be the set ofall functions from E, the set of edges of R, to f0; 1g. We identify 
 with 
n;where n = nm = jEj = 2m2 � 1. A point x 2 
 is called a con�guration,and can be identi�ed with the subgraph consisting of all vertices of R andall edges e with x(e) = 1. A connected component of this graph is called apercolation cluster.Let C = Cm � 
 be the event that there is a left-right crossing of R; thatis, C is the set of all con�gurations that contain a path joining the left andright boundaries of R. An easy and well known application of duality showsthat P[C] = 1=2.Kesten [19] gives an estimate from above for the probability that an edgenear the middle of R is pivotal for C. Similar estimates for edges near theboundary can probably be extracted from Kesten's paper. These give aninequality of the form Ij(Cm) � m�1�c, c > 0, for each j. Then Theorem 2.5implies 1.1. However, we prefer to present another proof, based on Theo-rem 1.5.The only percolation background needed to understand the proof is thatin our situation the probability that a vertex in R is connected in the con�g-uration to some vertex at Euclidean distance r is at most Cr�1=�, for someconstants C; � > 0. This follows from the celebrated Russo-Seymour-WelshTheorem [23, 24] (see also [14]).Proof of 1.1: Let Er be the set of edges in the right half of R, with edgesexactly centered included. Let K � Er. We now estimate E(�CMK).Consider the following algorithmic method of randomly selecting a con-�guration. Let !K and b!K be two independent elements of 
jKj and 
n�jKj,respectively. Let V1 be the set of vertices on the left boundary of R, andset VISITED = ;. As long as there is some edge [v; u] =2 VISITED joininga vertex v 2 V1 to a vertex u =2 V1, choose some such edge e = [v; u], anddo the following. Append e to VISITED. If e 2 K, let y(e) be the �rstbit in the sequence !K that has not been previously used by the algorithm,while if e =2 K let y(e) be the �rst bit in the sequence b!K that has not beenpreviously used by the algorithm. If y(e) = 1, then adjoin to V1 the vertexu. This procedure de�nes y for all e 2 VISITED. Let z 2 
 be random,uniform, and independent of y, and let x = y on VISITED while x = z on32



E � VISITED. This de�nes a con�guration x 2 
.The following is obvious:Lemma 4.1. The con�guration x given by the above algorithm is uniformlydistributed in 
. The event x 2 C is equal to the event that at the end of thealgorithm V1 intersects the right boundary and is independent from z (can bedetermined by y).Let us estimate the probability that K \ VISITED is large. An edgee 2 K is in VISITED i� there is in x a path joining a vertex of e to the leftboundary of R. Since K � Er, it follows from the above stated consequenceof the Russo-Seymour-Welsh Theorem that the probability for the latterevent is bounded by Cm�1=�, for some constants C; � > 0. Consequently,EjK \ VISITEDj � CjKjm�1=�;which implies P[A1] � Cm�1=(3�);where A1 is the eventA1 := nx 2 
 : jK \ VISITEDj � jKjm�2=(3�)o:LetA2 be the event that there is an integer j in the range 1 � j � jKjm�2=(3�)such that �����j2 � jXi=1 !Ki ����� �qjKjm�2=(3�) logm:It is easy to see that the P[A2] decays super-polynomially in m; in particular,P[A2] � O(1)m�1=�:As P[A1 [ A2] � O(1)m�1=(3�), we haveE(�A1[A2�CMK) � O(1)m�1=(3�): (4.1)Now suppose that the algorithm produced a y such that A1 [ A2 does nothold. Then it follows that����� jVISITED \Kj2 � Xe2VISITED\K y(e)����� � O(1)qjKjm�2=(3�) logm:33



This implies thatE[MK(x) j y] � O(1)m�1=(3�)logm; 8y =2 A1 [ A2:Since x 2 C can be determined from y, we getE�(1� �A1[A2)�CMK� � O(1)m�1=(3�)logm:In view of (4.1) this impliesE(�CMK) � O(1)m�1=(3�)logm;and Cor. 3.2 gives IK(C) � O(1)pjKjm�1=(3�)(logm)3=2 (4.2)for every K � Er, since C is monotone. By symmetry, this would also holdfor K � E �Er, and therefore for every K � E. Consequently, by the proofof Theorem 1.5 II(C) � O(1)m�2=(3�)(logm)4: (4.3)An appeal to Theorem 2.5 completes the proof.Remark 4.2. Since I(C) = Pe Ie(C) is also the expected number of pivotaledges for C, (4.2) shows that the expected number of pivotal edges is boundedby O(1)m1�1=(3�)(logm)3=2:Although this is better than the general bound of O(1)m that follows fromTheorem 3.3, a somewhat better bound can be extracted from Kesten's [19].Corollary 4.3. There is a constant c > 0 with the following property. If � =c= logm, then for large m, with probability at least 1=4, ���fx;N�(x)g\C��� = 1.That is, if each edge is switched with probability c= logm, independently, thenthe crossing is likely to be created or destroyed.The corollary follows from (4.3) and Theorem 1.4. The details are left tothe reader. 34



5 Some conjectures and problems concerningpercolation5.1 Other sensitivity conjecturesBy Theorem 1.1 and Section 2, from knowing which edges are open for all buta small random set of edges, we have almost no information whether crossingoccurs. This suggests that for some deterministic subsets of the rectangle R =Rm, knowing the con�guration restricted to that con�guration typically givesalmost no information whether crossing occurs. It follows from the Russo-Seymour-Welsh Theorem [23, 24] that Er, the set of edges in the right halfof the rectangle, is not such a subset. Yet we believe that all the horizontaledges (or all the vertical edges) is such subset. That is, let x; y 2 
 be twoindependent uniform-random con�gurations. Let z(e) = x(e) for horizontaledges e, and z(e) = y(e) for vertical edges. Let p(!) = P[z 2 Cjx = !].Conjecture 5.1. For any � > 0, for all su�ciently large m,Pn! 2 
 : jp(!)� 1=2j > �o < �:Here is a variant of this conjecture for Voronoi percolation. Fix asquare in R2 . Voronoi percolation is performed in two steps. First pick npoints in the square uniformly and independently. Second each cell in theVoronoi tessellation determined by the chosen points is declared open withprobability 1=2, and closed otherwise, independently of the other cells, (seeBenjamini and Schramm [4] for the exact de�nitions and a study of Voronoipercolation). By duality, the probability of open left-right open crossing is1=2. In the spirit of Theorem 1.1, we conjecture that typically, knowing theVoronoi tessellation (but not knowing which cells are open) gives almost noinformation whether an open left-right crossing exits.5.2 Dynamical percolationDynamical percolation was introduced by H�aggstr�om, Peres and Steif [15].Consider the following process. Let fXeg be independent Poisson pointprocesses in R indexed by the edges e 2 ER of the (m + 1) � m rectan-gle R = Rm in Z2. Let x0 : ER ! f0; 1g be random-uniform. For eacht > 0 set xt(e) := x0(e) if the number of points in (0; t] \ Xe is even, and35



xt(e) := 1�x0(e) if the number is odd. This gives a continuous time station-ary Markov chain xt in 
 = f0; 1gER. Write eP for the probability measuregoverning this process. For each �xed t, the random variable xt can bethought of as ordinary (Bernoulli(1=2)) percolation in Z2.An interesting problem raised by [15] is weather there are (exceptional,random) times t in which there is an in�nite percolation cluster in xt. Theresult described below might be relevant.As before, let Cm denote the set of con�gurations in 
 that have an openleft-right crossing of Rm. For all t, eP[xt 2 Cm] = 1=2. Let Sm be the setof switching times; that is, Sm is the boundary of ft � 0 : xt 2 Cmg. As acorollary of Theorem 1.1, we have,Corollary 5.1. ���Sm \ [0; 1]���!1 in probability.Proof: Suppose s > t � 0. Observe that the distribution of the pair (xt; xs)is the same as the distribution of the pair �x0; N�(x0)�, where � is a functionof s� t and � > 0 when s > t. (Actually, �=(s� t)! 1 as s� t! 0.)Let k be some positive integer, and set � = �(1=k). Let tj := j=k. Let Wbe the set of ! 2 
 such that ���P[N�(!) 2 C]� 1=2��� > 1=4. Then P[W]! 0as m ! 1, by Theorem 1.1. Let Z(a; b) be the event that S \ [a; b] = ;.Observe that for ! =2 W, we haveePhZ(tj; tj+1) j xtj = !i � 3=4 ;because Z(tj; tj+1) is disjoint from the event ���fxtj ; xtj+1g\ C��� = 1. Hence wecan make the following estimate,eP[Z(0; tj+1)] = eP[Z(0; tj) \ Z(tj; tj+1)]= X!2
 ePhZ(0; tj) \ Z(tj; tj+1) j xtj = !iPf!g= X!2
 ePhZ(0; tj) j xtj = !iePhZ(tj; tj+1) j xtj = !iPf!g(by the Markov property for xt)� P[W] + X!2
�W ePhZ(0; tj) j xtj = !iePhZ(tj; tj+1) j xtj = !iPf!g� P[W] + (3=4) X!2
�W ePhZ(0; tj) j xtj = !iPf!g36



� P[W] + (3=4)X!2
 ePhZ(0; tj) j xtj = !iPf!g= P[W] + (3=4)ePhZ(0; tj)i:Using this inequality and induction gives ePhZ(0; tj)i � 4P[W] + (3=4)j.By stationarity, for every t � 0, the same estimate for the probability ofZ(t; t + j=k) holds. Since k may be chosen arbitrarily large, and P[W]! 0as m!1, the corollary easily follows.5.3 Limits and conformal invarianceThe motivating questions behind this work were the limit conjectures andconformal invariance conjectures regarding percolation. See Langlands, Pouliotand Saint-Aubin [20].Consider a triple G = hG;A;Bi, where G = (V;E) is a �nite planar graphwith m edges, and A;B � V . Let pG be the probability that there is an opencrossing from A to B in a uniform-random con�guration x 2 
 = f0; 1gE.Let H = hH;A0; B0i be a triple obtained from G by the following oper-ation: for every edge e of G delete e with probability (1 � t)=2 contract ewith probability (1 � t)=2 and leave e unchanged with probability t, inde-pendently of the other edges. H is a random variable which takes values inplanar graphs with two distinguished vertex sets.Suppose that we take G to be the (m + 1) � m rectangle in Z2 and letA and B be its left and right boundaries. It then follows from Theorem 1.4and (4.3) that pH � pG ! 0 in probability, provided that t logm!1.This result enables one to relate the crossing probabilities of percolationon di�erent graphs. (Note that the result continues to hold even if t de-pends on the edge, provided that it is bounded from below by some t0 witht0 logm!1.) We hoped that such a result will be relevant to limit conjec-tures and to the conformal invariance conjecture. At present, however, suchapplications are beyond our reach. We do not have a good understandingof planar graphs which are obtained by random deletion/contraction of theform described above starting from the graph of a rectangle in the squaregrid.
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5.4 Fourier-Walsh coe�cients of percolationIt is a natural question to try to understand the Fourier-Walsh coe�cientsof boolean functions given by percolation problems. Consider (for example)the event C = Cm of a left-right crossing of an (m+1)�m rectangle R = Rmof the square grid, Z2, which was discussed in Section 4. Let fm := �Cm .The Fourier coe�cients of fm are indexed by subsets of ER, the edges in R.Given S � ER, we denote by diam(S) the diameter of S as a set in the plane.We conjecture that bf 2 is supported mostly on sets of small diameter; thatis,Conjecture 5.2. For every � > 0,limm!1Xnbf 2m(S) : diam(S) > �mo = 0:It would be interesting to formulate more precise conjectures regardingthe support of bf 2m.It follows from Theorem 1.4 and our estimates for II(C), where C is theevent of crossing for percolation, that all but a negligible part of the L2 weightof the Fourier coe�cients bf(S), where S is non-empty, is for jSj > c logm.We conjecture that, in fact, this is true for jSj > m� for some � > 0.Conjecture 5.1 is equivalent to the statement that for all but a negligiblepart of these Fourier coe�cients, the number of vertical edges in S tends toin�nity with m.5.5 Other models of statistical mechanicsIt would be of interest to extend the results of this paper as well as earlierresults on in
uence ([18, 13]) to other models of statistical mechanics, suchas the Ising and Potts models. Many of the results on in
uence and on noisesensitivity should be extendible to measures on 
n for which the coordinatevariables are positively associated, namely, measures for which every twomonotone real functions are positively correlated.6 Some further examplesWe will discuss now two examples, both �rst considered by Ben-Or and Linial[3]. 38



6.1 TribesConsider n boolean variables divided into t tribes T1; T2 : : : ; Tt of size s each,and let f be the boolean function which take the value 1 if for some j,1 � j � t, all variables of Tj equal 1. If s = logn� log log n+ log log 2, thenP[f = 1] � 12 . Also note that Ik(f) � log n=n for every k. It is easy to showdirectly that f will be immune to �-noise when � = o(1= logn) and will bedevastated by �-noise if � logn!1. Thus, J(f) � log n=n.6.2 Recursive majority on the ternary treeConsider n = 3t boolean variables which form the leaves of a rooted ternarytree of height t. A boolean function f is de�ned as follows: Given valuesfor the variable on the leaves compute for each other vertex its value as themajority of the values of its sons and set the value of f to be the value ofthe root.Ben Or and Linial showed that Ik(f) � n� log 2= log 3 for every k and thus�(f)! log 2= log 3 as t!1. It is easy to see that also �(f)! log 2= log 3.This follows at once from the following observation: for t = 1, if we switchthe value of each leaf with probability p independently, then for small p theprobability that the outcome will be switched is (3=2)p+ o(p).Conjecture 6.1. There is an absolute constant �0 < 1=2 (�nd it!) such thatfor every monotone Boolean function f , �(f) � �0.7 Relations with complexity theoryThere is an interesting connection between the complexity of boolean func-tions and the notions studied in this paper.7.1 AC0 and in
uencesAn important complexity class AC0 of Boolean functions are those whichcan be expressed by Boolean circuits of polynomial size (in the number ofvariables) and bounded depth. Boppana [7] proved that if f is expressed bya depth-c circuit of size N thenI(f) � C1 logc�1N: (7.1)39



Earlier Linial, Mansour and Nisan [21] proved that the Fourier coe�cientsof functions which can be expressed by Boolean circuits of polynomial (orquasi-polynomial) size and bounded depth in AC0 decays exponentially abovepoly-logarithmic \frequencies". Both these results rely on the fundamentalH�astad Switching Lemma, see [16, 1].Recall that a monotone circuit is one where all the gates are monotoneincreasing in the inputs; i.e., there are no \not" gates. The H�astad lemmafor monotone boolean circuits is easier and was proved already by Boppana[6].We conjecture that a reverse relation to 7.1 also holds.Conjecture 7.1 (Reverse H�astad). For every � > 0 there is a K = K(�) > 0satisfying the following. For every monotone A � 
n, there is a B � 
n suchthat P[A4B] < � and B can be expressed as a Boolean circuit such that(logN)c�1 < KI(A);where c and N are the depth and size of the circuit, respectively.Monotone Boolean functions with bounded in
uence were characterizedby Friedgut [11, 12]. The results of [9] are also relevant to this conjecture.Ha Van Vu raised the question if there is a spectral way to distinguish be-tween bounded depth circuits of polynomial size and bounded depth circuitsof quasi-polynomial size. In particular, he was looking for a way to show thatthe graph property \having a clique of size log n" for graphs with n vertices,cannot be expressed by a bounded depth circuit of polynomial size. (Herethe set of variables correspond to the �n2� possible edges.)Conjecture 7.2. Let � > 0 be a �xed real number and c � 1 be a �xedinteger. Let A be a monotone property expressed by a depth-c circuit of sizeM and let f = �A. Then there is a set S of polynomial size in M (where thepolynomial depends on c and �) so thatXf bf 2(S) : S =2 Sg � �:This conjecture may also apply to TC0, see below. It would be of greatinterest to characterize Boolean functions for which most of the weight of theFourier coe�cients is concentrated on a set of polynomial size in n.
40



7.2 TC0 and noise sensitivityNoise sensitivity seems related to another class of boolean functions - thresh-old circuits of bounded depths see [30, 17]. In a threshold circuit each gateis a weighted majority function.Conjecture 7.3. Let f be a boolean function given by a monotone thresholdcircuit of depth c and size M . ThenJ(f) = O(1)(logM)c�1:Thus, for 1=� � O(1)(logM)c�1 we expect that VAR(f; �) is boundedaway from zero. Also here it is a tempting conjecture that a reverse relationholds.We conjecture further that all functions f that can be expressed by adepth-cmonotone threshold circuit where all the threshold gates are balancedare uniformly stable. (And in particular, J(f) = O(1).) Possibly, functionsin this class of functions approximate arbitrary well arbitrary uniform stablemonotone Boolean functions.Conjecture 7.3 implies theorems of Yau [30] and H�astad and Goldmann[17]. They proved that the and/or tree (or equivalently the example ofternary tree of Section 6) does not belong to monotone TC0; i.e., it can-not be expressed as a monotone bounded depth circuit of polynomial size.The results of Yau and H�astad are still open for the non-monotone case.This would follow from the following strong form of our conjecture: Let fbe a monotone boolean function given by a threshold circuit of depth c andsize M . Then J(f) = O(1)(logM)c�1:8 Random walksFor nonempty A � 
n, consider a random walk de�ned as follows: start witha point chosen at random uniformly from A, and at each step, stay whereyou are with probability 1=2, and with probability 1=(2n) move to any one ofthe neighboring vertices. Let PtA be the measure on 
n given by the locationof the walk after t steps, and setW (A; �) := inf�t : kPtA �Pk < �	:Here kPtA �Pk is the measure (L1) norm of the di�erence between PtA andthe uniform measure. 41



Theorem 8.1. Suppose that Am � 
nm is a sequence of events satisfyinginfmP[Am] > 0.1. fAmg are asymptotically noise sensitive i� limmW (A; �)=nm = 0 forevery �xed � > 0.2. If �(Am)! �, then W (Am; �) � n1���o(1).Proof: Set ft(x) := 2nmPtAm [fxg]. Note thatft+1 = (1=2)ft + (2nm)�1 nmXj=1 �jft:Consequently,bft(s) = �2nm � jsj2nm �t bf0(s) = P[Am]�1�2nm � jsj2nm �t b�Am(s):This gives for every k = 1; 2; : : :kPtAm �Pk2 � kft � 1k22 = P[Am]�1 X06=s2
nm �2nm � jsj2nm �2t b�Am(s)2� P[Am]�1�2nm � k2nm �2t + X0<jsj<k b�Am(s)2� P[Am]�1 exp(�tk=nm) + X0<jsj<k b�Am(s)2:The theorem follows.9 Changing a �xed size set of bitsThe noise operator N� changes every input variable independently of theothers, and the expected number of bits changed is �n, where n is the numberof variables. Understanding the e�ect of di�erent types of noise may be ofinterest. We consider a variant where a �xed number of bits are changed. Inother words, for x 2 
n and q 2 [n], let eNq(x) = x � s, where s is chosenrandomly uniformly among s 2 
n with cardinality q, independent from x.Here � is addition mod 2; that is, xor.42



The analysis of the noise eNq is similar to that of N�, but a little care isneeded. Consider the following example. Let P � 
n consist of those x 2 
nsuch that jxj is odd. This event P is called parity. Observe that for each�xed q, the conditioned probability P[ eNq(x) 2 Pjx = y] is either zero or 1.In other words, knowing x allows a perfect prediction for eNq(x) 2 P. Notethat b�P(S) is nonzero only when S 2 f;; [n]g. This means that the vanishingof the weight of the lower Fourier coe�cients does not imply sensitivity toeNq, as in Theorem 1.8.For f : 
n ! R and q 2 [n] set]VAR(f; q) = vary�E[f( eNq(x))jx = y]� = EyE�f( eNq(x))jx = y�2 � (Ef)2:We say that a sequence of events Am � 
nm is asymptotically noisesensitive with respect to eN if for every � 2 (0; 1) and every sequencefqmg with �nm � qm � (1� �)nm, we havelimm ]VAR(Am; qm) = 0:Note that this is equivalent to the straightforward analog of the de�nitionfor asymptotic noise sensitivity to our current setting.Theorem 9.1. Let Am � 
nm be a sequence of events, and set gm = �Am .1. This sequence is asymptotically noise sensitive with respect to eN i� forevery �nite klimm Xnbgm(S)2 : S � [n]; 1 � jSj � k or jSj � n� ko = 0:2. A su�cient condition for asymptotic noise sensitivity is II(Am)! 0.Proof: For f : 
n ! R seteTqf(y) = Ef( eNq(y)):
43



We now compute the Fourier coe�cients of eTqf . Take r 2 
n.E(eTqf � ur) = 2�nXx eTqf(x)(�1)jr\xj= 2�n�nq��1Xx Xjsj=q f(x� s)(�1)jr\xj= 2�n�nq��1Xy Xjsj=q f(y)(�1)jr\yj(�1)jr\sj= bf(r)�nq��1Xj (�1)j�jrjj ��n� jrjq � j �:Consequently, eTqf = Xr2
n c(n; q; jrj) bf(r)ur; (9.1)where c(n; q; k) = �nq��1Xj (�1)j�kj��n� kq � j�:Since c(n; q; 0) = 1, this gives,]VAR(f; q) = kTqfk22 � bf(;)2 = X;6=S�[n] c(n; q; jSj)2 bf(S)2: (9.2)Consequently, for 9.1.1 it is enough to understand the behavior of the coef-�cients c(n; q; k). For this, consider the sequenceaj = �kj��n� kq � j��nq��1:The sequence has a unique maximum, which occurs when j is an integer j 0close to qk=n. Consequently, c(n; q; k) � 2aj0. Now let n; k; q ! 1, andassume that �n � q � (1� �)n and n� k!1, where � > 0 is �xed. Thenlim c(n; q; k) = 0:This gives one direction in 9.1.1. 44



Also note that when q < n=(3k), jc(n; q; k)j is approximately a0. Thisgives lim inf jc(n; q; k)j > 0 when k is �xed, n ! 1 and q is about n=3k.Since c(n; q; k) = �c(n; q; n� k), we get the other direction of 1.Now assume that II(Am)! 0. From Theorem 1.8 we know thatlimm Xnbgm(S)2 : S � [n]; 1 � jSj � ko = 0for every �xed k. Equation (2.14) gives,II(Am) � nm2 Xnbgm(S)2bgm(S 0)2 : S; S 0 � [n]; jSj; jS 0j � 3nm=4o� 0@ XjSj�3nm=4 bgm(S)21A2 :Consequently, limm Xnbgm(S)2 : S � [n]; jSj � n� ko = 0and the proof is complete.References[1] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York(1992).[2] W. Beckner, Inequalities in Fourier analysis, Annals of Math. 102(1975), 159{182.[3] M. Ben-Or and N. Linial, Collective coin 
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