On the Distance Distribution of Codes *

Gil Kalai Nathan Linial ¥

Abstract

The distance distribution of a binary code C is the sequence (G;)™, defined as follows: Let
G;(w) be the number of code words at distance 7 from the code word w, and let G; be the
average of G;(w) over all w in C.

In this paper we study the distance distribution for codes of length n and minimal distance
on, with 6 > 0 fixed and n — oo. Our main aim is to relate the size of the code with the
distribution of distances near the minimal distance.

This is an early version of the paper which appeared which contains some more material.
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1 Introduction

Let V), be the set of all 0-1 vectors of length n. The Hamming distance, d(u,v) of two vectors v, u
in V,, is the number of coordinates in which they differ. A binary code C of length n is a subset of
V., and elements in C' are also called code words. The minimum distance of C' is the least Hamming
distance between two distinct code words. One of the main open problems in coding theory is to
determine the largest cardinality, A(n,d) of a binary code of length n and minimal distance d. For
more information on coding theory see [13, 15, 14].

Our main concern is with the case where d is proportional to n. When n tends to infinity and
d/n tends to 6 < 1/2, then A(n,d) is exponential in n. The determination of the basis for this
exponential function is a difficult question of fundamental importance for coding theory.

We need some notation now: The rate R(C') of a code C'is R(C') = log(IC]), (Here and elsewhere

n

in the paper log x stands for log, #.) Let R(n,d) = log A(n,d)-n~" be the maximum rate of a code

of length n and minimal distance d. Next, for every real number 0 < ¢ < 1 let

R(9) = limsup R(n, d,),

n—oo
where d, = én(1 + o(1)). (Here and elsewhere in the paper all o(1) terms are taken for n — oc.)
As usual, the entropy function is H(z) = —xlogx — (1 — z)log(1 — ).
The best known lower bound for R(d) goes back to Gilbert [8]

R(8) > 1 — H(6). (1)

Gilbert’s proof of this bound is simply to "grow” a code, by always adding new code words subject
only to the constraint that no distances smaller than dn occur. Despite its extreme simplicity, this
argument has never been improved, and some researchers believe that no asymptotic improvement

is possible. Thus, one of the principal problems of coding theory is
Problem 1 Is it true that R(§) =1 — H(8)?

The best known upper bound on R(J) for binary codes was achieved by McEliece, Rodemich,
Rumsey and Welch (henceforth MRRW), [12] using Delsarte’s linear programming method (see
below). They showed:



R(5) < u(6) = H(1/2 — \[3(1 - 5)) (2)

Using more general inequalities by Delsarte for constant-weight codes the same authors proved
an even stronger upper bound for R(§), which applies for § < 0.273, see [12].

The number of code words at distance i from a code word w is denoted G;(w) and G;(= G;(C))
is the average of Gi(w) over all w in C. For 0 < s < 1 we write g,(= ¢,(C)) = n" ' log(G/,,;(C)).
We also define

R;(0) = limsup g, (C'),

n—oe

where 2z, = (s+0(1))-n and the supremum is taken over all codes of length n and minimal distance
d, = (0 +0(1)) - n.

It is of considerable interest to study the possible distance distributions of codes, and our paper
is a contribution to this area. Let us remark that if in the proof of Gilbert bound one selects the
next codeword at random, while maintaining a minimal distance of > dn, then the resulting code C
achieves the Gilbert bound and almost surely satisfies ¢g5(C) = H(s) — H(d) + o(1), for every s > 6,
see e.g. [7]. The same distance distribution is obtained (almost surely) if one selects at random
2" /(3 Zginl}*l () vectors in V,, and deletes all pairs of vectors of distance < [dn]. No family of codes
is known, which meets the Gilbert bound and has asymptotically a different distance distribution.

Our main result is that if C' is a code of length n and ¢s(C) < H(s) — H(d) + o(1) for every s
in a certain neighborhood [4, u(4d)) of §, then R(C) <1 — H(d) + o(1).

In other words, a family of codes, whose cardinalities exponentially exceed the Gilbert lower
bound must have “many” pairs of codewords whose distance is close to the minimum. Specifically,
the distance distribution of such codes must exceed those of the “random” Gilbert code in a certain
neighborhood of én.

The neighborhood of the minimal distance is given by the following function. Define

uy (8) = 26 — 262 (3)
ua(6) = p~ (1 — H(5)). @)
u(d) = min(uq (), uz(9)). (5)



The functions uy, us, u are tabulated in Table 1. wuy(x) is smaller than us(x) For x < 0.082...

Theorem 1.1 Let C be a binary code of length n and minimal distance dn, where 1/2 > ¢ > 0.
Then,
R(C) <1—H(6) +sup{gs(C) — (H(s) — H(9)) : 0 < s <u(d)} + o(1)

Corollary 1.2
R(§) — (1 — H()) <sup{Rs(d) —(H(s) — H(5)) : 0 < s<wu(d)}.
In particular,

Corollary 1.3 If Rs(0) < (H(s)—H(9)) for every s, § < s < u(s), then R(6) = 1—H(J). Namely,

Gilbert’s bound is tight for that 0.

Thus, in order to prove that R(0.01) =1 — H(0.01) it would suffice to prove that R,(0.01) <

H(s) — H(0.01) for s < 0.0198. The equality R(0.3) < 1 — H(0.3) would follow from R;(0.3)

H(s) — H(0.3) for s < 0.375.

Note that Theorem 1.1 sharpens the MRRW bound (2) which says:
o If g(C) =0 for every s < 6, then R(C') < u(d) + o(1).

Theorem 1.1 yields the same conclusion from weaker assumptions: Consider a code C of length
n and minimal distance Sn. Define 6 = us(3) whence 1 — H(3) = u(d). Apply Theorem 1.1
with (3 instead of 6. The maximum is taken over the interval [3,u(3)) C [B,u2(5)) = [5,0). If
gs(C) — (H(s) — H(6)) < 0 throughout this interval, the conclusion is R(C) < 1— H(3) + o(1) =

1(0) + o(1). So indeed the conclusion of MRRW is obtained from weaker assumptions:

Theorem 1.4 Let C be a code of length n and let 6 = us(3) be real. If gs(C) =0 for s < 3 and
9s(C) < H(s) — H(B) +o(1) for 3 < s <4 then R(C) < () + o(1).

The proof of Theorem 1.1 consists of two separate arguments, involving the functions wuq(J)
and us(0) respectively. The proof for uq(0) is based on a simple double counting argument, and is

given in Section 2. The proof for us(d) is based on a variant of the linear programming method



as applied in the proof of (2) and on some asymptotic analysis of Krawtchouk polynomials. This
is done in Sections 3 and 4. Both proofs give, in fact, a slightly stronger statement, namely, that
R(C) <1—H(d) + o(1) already follows if ¢g5(C') < H(s) — H(d) + ws(s) + o(1) for every s in the
interval [9, u(d)), where ws(s) is a certain nonnegative decreasing function of s. The actual function
ws as obtained in the two proofs is given in Sections 2 and 5 respectively. (The asymptotic analysis
of Krawtchouk polynomials in Section 5 may be of independent interest.)

Both arguments described here apply to other types of codes and give analogous results for
constant weight codes, for codes over larger alphabets and for spherical codes. These matters will
be pursued in a subsequent paper.

In Section 6 we discuss possible ways to get upper bounds on the individual G}s. We suggest a
method to derive such bounds using a hypercontractive inequality of Beckner. (This inequality was
first applied in extremal combinatorial problems by Kahn, Kalai and Linial [9, 10, 3].) Although
currently the consequences of this method for codes are inferior to known results we feel that it
may be found useful.

What remains a mystery is the behavior of the distance distribution of codes near the minimum.
We conjecture, for example, that Rs(d) = 0 for every 0. Several open problems on the behavior of

binary and spherical codes near the minimal distance are discussed in the final Section 7.

2 An averaging argument

Proposition 2.1 For every binary code C of length n and every s > 0

R(C) = (1 = H(s)) < max{g,(C) — (H(t) = H(s)) — ws(t) : 0 < < 25} + o(1). (6)

where wy(t) = H(s) — [sH (%) + (1 — S)H(Q(lt_s))] is always nonnegative.

Proof: Let S,(z) be the Hamming sphere with radius a centered at z. By Cauchy-Schwartz:

|C<n>zz|5a(z)00S\/ansa(z)ﬁCQZ 2t 2 |Salen) O Salza)]

a 2€Vn z1,22€C

If dist(xy, z2) = b, then |S,(z1) N Sa(xa)| = (b;’Q) (aﬁ;%) (In particular, b is even, or else the set is

empty). There are |C|-Gy(C') pairs of codewords (x1, x9) at distance b, and the inequality simplifies



to:

n ? b n—=at
) =25 () (o) oo
n ? b n—=at
|C<a> SZ”-n-mgxx (b/2> (a—b/Z) -Gp(O).

It is easily verified that (b’/’Q) (a’i;f?) = (D (5) (430 / (), s0

lel <Z> 27" < n - max G“C)%%.

Taking logarithms and dividing by n, the proposition follows. To see that ws; > 0, observe that

Whence,

i (575 = (), so (,72) (55) < (7). Again the conclusion follows by taking logarithms and
dividing by n. Equality ws(t) = 0 holds for ¢t = 2s(1 — s) and only there.

We now strengthen Proposition 2.1, in that we replace the interval s < t < 2s on which
the maximum is taken, by a sub-interval s < t < wuy(s). Recall Markov’s inequality: if X is a
nonnegative random variable, then Pr(X < ¢- E(X)) > 1 — %, for every ¢ > 1. Our probability
space consists of all triples {x,y, 2} with z € V,,, z,y € C, and d(x, z) = d(y, z) = a. The random
variable X equals d(x,y) on this triple. In particular, as we saw,

b —b

(b2) (a5 2) - G(C)
Zj (j?Q) (ai;?Q) - G;(C)

Pr(X =b) =

We claim that F(X) < 2a — 2a?/n. In fact, this inequality holds even conditional on any fixed
2z € V,,. Having fixed z, all relevant code words form (a translation by z of) a code of constant

weight a and we need the following easy fact:

Proposition 2.2 Let T" be a code of length n and constant weight a. Then the average distance of

two codewords in T is at most 2a — 2a®/n.

Proof: Let p; be the fraction of code words w in I with w; = 1, then }_ p; = a. Therefore, two
randomly chosen code words in I differ in their i-th coordinate with probability 2p,(1—p;). It follows
that the expected Hamming distance between two randomly chosen code words is 23" p;(1 — p;) <

2a — 2a?/n, (since Y p; = a). O



Now X takes only integer values, and it is easy to observe that there is no integer between
2a — 2a*/n and (1 + 2)(2a — 2a®/n), so Pr(X < (14 2%)(2a — 24?/n)) = Pr(X < 2a — 2a?/n).
Apply Markov’s inequality with ¢ =1 + # to conclude:

J n—j 2 J n—j
. . -G;(C) < (n"+1) , . -G4(0).
;(]/2> (a_]/2> ’ j§2a§a2/n ]/2 a’_]/2 ’

Substituting s = § in Proposition 2.1 in its strong form we get
Theorem 2.3 For C a binary code of length n, and minimal distance (6 + o(1))n,
R(C) <1-H(0) + max{gs — (H(s) — H(0) + ws(s)) : 0 < s <u1(d)} + o(1)).

Remark: In order to replace the maximum over the interval [d, u1(d)] by the supremum over

[0,u1(8)), apply Theorem 2.3 for a sequence d,, /" 0.

3 MacWilliams-Delsartes relations

In 1972 Delsarte [4, 5] found (as part of a much more general theory of association schemes) a
system of linear inequalities satisfied by the distance distribution of every binary code. For linear
codes Delsarte’s inequalities reduce to identities which go back to MacWilliams.

Delsarte’s linear programming method calls for deriving an upper bound on the size of the
code, by maximizing the sum of the G;’s (which is the size of the code) subject to his system of
inequalities.

The Krawtchouk polynomials K,En) are defined as follows:

)

Whenever the value of n is clear from the context, we omit it and write Ky (z) for K,in)(x)
We identify 0-1 vectors of length n with subsets of [n] = {1,2,---,n} in the standard way. Let

f 'V, — R be a function and consider its Walsh-Fourier expansion

f=3{f(Sus: SCn]}, (8)



where, ug is the function defined by ug(T) = (=1)I5"TI, Note that if F; = S3{f(S) : |S| = i} then
S {f(S): S| Zk}ZQ"Z%Kk(i)Fi, (9)
im
where Kj(z) is the k — th Krawtchouk polynomial.

In the context of harmonic analysis, it is convenient to view V,, as a probability space, and so
given a function f : Vi, — R, its p-th norm is defined as |||, = (27" Xscv, |£(S)[P)/P. Parseval’s
identity asserts that ||f||3 = scv, F2(S). Also, the convolution h = f % g of two functions is given
by h(S) =2""Y 7 f(T)g(SAT), where SAT is the symmetric difference between S and T'. Recall
that h = f - §.

The relevance of convolution in our work is that if f is the characteristic function of a binary
code C, and if g = f * f, then ¢g(Z) is 27" times the number of pairs of codewords S,T € C with
SAT = Z. We recall that for a code word w, G;(w) is the number of code words of distance i
from w and G is the average of G;(w) over all w in C. In other words, G; = % > {g(S) : |S| =i}
Delsarte’s inequalities, which for the special case of linear codes go back to MacWilliams, can be
derived as follows: Since g = f * f, it follows that §(S) = f2(S) > 0. Together with equation (9)
we obtain:

n 92n 92n .
;Kk(i) G = il > {9(8):[S| =k} = el > ASHS)[S| =k} > 0. (10)
The MacWilliams-Delsartes system of inequalities for binary codes of length n and minimal distance

d is thus:

Go=1 (11)
Gi=0, fori=1,2,...d—1
Gi>0, fori=dd+1...n
iGiK,?(i) >0fork=0,1,...,n
i=0

Delsarte’s linear programming method is to derive an upper bound on the size of the code, by

maximizing the sum of the G;’s (which is the size of the code) subject to this system of inequalities.



It is convenient to work with the dual linear program which has the following simple form.

Theorem 3.1 For every polynomial 3(x) =14 3 Bp Ky (x) with B > 0 for 1 < k < n, such that
ﬂ(]) < OfOT'j :dad+1a"'an7
> G < B(0). (12)
i=0

Kk
1713

functions f on V,, such that f * f is non-negative and f * f(S) = 0 for 0 < |S| < d. The fact that f

over all real

Remarks: 1. The optimum of this linear program equals the maximum of

itself, being a characteristic function of a code is non-negative, and even a 0-1 function is not used.
2. Tt was pointed out by Levenshtein that the MRRW bounds for R(§) cannot be improved by
selecting a function ((z) which is non-positive for the entire interval [d, n]. (Levenshtein identified
explicitly the best such §(x). This led to improved bounds for A(d,n) but not for R(4).)
It may still be possible to get an improvement by choosing a function 3 which is non-positive

on {d,d + 1,...,n} but takes positive values elsewhere in the interval [d, n].

4 A variant of the linear programming bound

In this section we discuss the effect of adding to the Delsarte’s inequalities, upper bounds for the

individual G%s and derive our main Theorem for us(9).

Proposition 4.1 For codes C' of length n and minimal distance d and for every polynomial 3(x) =
Bo + > BrKy(x) with B, >0 for 1 < k <n, such that 3(j) <0 forj=m,m+1,---,n,
n m—1
ZGi < (Bo)™"- [5(0) +) Gzﬂ@)] - (13)
i=0 i=d
Proof: The coefficients [ are a feasible solution to the dual of the linear program: max ) G; under
Delsarte’s inequalities. This is an instance of the fact that any dual feasible solution provides an
upper bound to the optimum of the primal LP. O
Now define

k(a,b) = lim sup{% log |} ()] : j = (a+o(1))n and x = (b + o(1))n}. (14)



(Note that k(a,0) = H(a).)
Let x(lm) denote the first zero of the Krawtchouk polynomial Kr(y?)(x). It is known [12] that if

m = (s 4 o(1))n for some 0 < s < 1/2, then 2™ = (a(s) + o(1))n where a(s) = L — /s{T = s).
Proposition 4.2 For binary codes of length n, minimal distance dn and for every s,
R(C) < max{H(a(s)), max{g,(C)+2k(a(s).z) - H(a(s)): 6 <z < s}}+o(l).  (15)
Proof: Apply the previous proposition with a choice of 3(x) much like that of MRRW, namely,

Bla) = (a — ) (Ki(a) K (2) = K (a) Ko (@)™, (16)

(t)

However, here ¢t and a are selected as follows: ¢ is the largest integer for which 2}’ < sn, and a is
the (unique) point in the interval (ac(ltﬂ),xgt)) for which K;(a) = —K;41(a). As observed in [12],
B(x) is a nonnegative combination of Krawtchouk polynomials.

Now, apply the previous Proposition for m = sn. With this choice t = (a(s) + o(1))n. As
before, it suffices to consider the largest term on right hand side of (13), which we proceed to do.

As shown in [12], (see also [15], p.67) By = —H_Ll(?)Kt(a)KtH(a). Therefore, 3(0)- 3, ' = 2(Z(Jtr}r)12) ('}

and n~Mlog(B(0)- By ') = H(t)+0(1) = H(a(s))+o(1). Denote i = z-n and calculate the i-th term

in the sum: n~'log(G,3(i) - B5") = ¢.(C) + 2k(a(s),x) — H(t) +o(1). By the previous proposition
Zn:Gi < n-max{(By) ! B(0), max{(By") - B(i) - G; : 6n < i < sn}}.
i=1
Taking log on both sides and dividing by n we get the statement of the proposition. O
Theorem 4.3 For C a binary code of length n, and minimal distance (6 + o(1))n,
R(C) <1 = H(0) +max{gs(C) = (H(s) — H(0) —ws(s)) : 6 < s <ua(d)} +0(1)),  (17)

where

ws(x) =2 — H(x) — H(8) — 2k(a(uz(0)), x) (18)

is a nonnegative function of s in the interval [5,uy(9)].



Proof: Apply the previous proposition with s = uy(d). With this choice, H(a(s)) =1 — H(9).
We get that
R(C) = (1 = H(0)) < max{0,9,(C) — (H(x) — H(5))+

+(H(x) = H(6)) — (1 = H(6)) + 2k(a(u2(9)). #) — H(a(uz(3))) : 6 < @ < up(0)}.
We get relation (17) with
ws(x) = —[(H(x) = H(9)) = (1 = H(0)) + 2k(a(uz(0)), x) — H((uz(9)))] =
1= H(z) + H(a(us(0))) — 2k(a(us(9)), 2),
which simplifies to relation (18). To show that @ is nonegative we need
Proposition 4.4 For every 0 < a,b <1,
1+ H(a) — H(b) — 2k(a,b) > 0.

Proof: This follows from the following orthogonality relation of Krawtchouk polynomials (see

e.g., [15])
§:<Ai"Rj»2(?):=2”-(Z).

5 Asymptotics of Krawtchouk polynomials

In this section we derive an explicit expression for k(a, b), hence also for ws(s).
In what follows we assume that both j and x grow linearly with n. To get the asymptotic

behavior of Krawtchouk polynomials, we recall the following identity (A.14 in [12]):
(n—a2)Kj(x+1)— (n—2j)K;(x) + 2K;(x —1) = 0. (19)

Recall also [12] that all j zeros of K; are in the interval

15— (oW jn = j) , 5+ (L+0(1)y/j(n - j)]

and that the leading coefficient in K is (E—Q,V Therefore, we may write

mw=§nm—w

10



where x; are the roots of K;. We’d like to compare the terms K}((,l&:)l) and Kf,((f']ff)l). The above
J J

expression for K; yields:

Ki(x +1)K;(x —=1) yp(@i—x—1)(x; —x+1)
K3 (x) -1 (2; — x)?

1
=1+0(—). 20
+o() (20)
This is because we get O(n) terms, each of which is 1 + O(n%)

Therefore, if we let z := % (whence

K(z) — (1

Kj(a—D) + O(%))z), we may rewrite the basic

identity (19) as a quadratic equation:
2 1 :
(n—x)z —(1+O(g))(n—2])z+x:0.

We still have to decide which of the two roots of the quadratic to select. Because of Equation (20)
the choice of the sign is uniform throughout the region where x is bounded away from §—+/j(n — j).
However, (equations A.8, A.9 in [12])

G0 =" K0

implies that the plus sign is the correct choice. Summing up, we already know that

I(j (.7,' + 1)
K;(x)

We also know, of course that K;(0) =

(n = 2)) + /(n = 2)" = 4o — )

= (1+0( 2(n —x)

) (21)

S|

7;) and by multiplying appropriate instances of Equation

P

(21) we get an approximate value for I{;(x). How good is this approximationI’ Our only inaccuracy
comes in from a product of O(n) terms each of which equals 1+ O(1/n), so we get an answer that
is correct up to a constant factor that is bounded away from zero. Our final goal is to obtain an
expression for L log Kj(z), so we'll get our answer with an additive error of O(1/n), which suits us

just fine.

We get, then

%long(x) =H(j/n)+ % Zlog

t<x

((n— 2j) + V(n —2j)? — 4t(n — t)
2(n —t)

>+O(1/n).

By Euler-McLauren, this sum may be approximated by the appropriate integral.

It follows that

b — Za — 2a — —
k(a,b)ZH(a)+/0 log<1 2 +\/(12(12_1)j 41 t))>dt‘

11



Define A = A(a,b) = /(1 —2a)? + (1 — 2b)?2 — 1. Integrating (using Mathematica) we obtain

that whenever A(a,b) > 0:

k(a,b) = H(a) + blog(1 + A(a,b) — 2a)+ (22)

0.5log(1 +2b(2 — 2b — A(a,b))/(1 + A(a,b) — 2a)) + alog((1 + A(a,b) —2b)/(2 — 2a)).

6 Beckner’s hypercontractive estimates

This section concerns some possible ways to obtain upper bounds for individual G;’s. An obvious
upper bound on G;(C) for a code C of length n and minimal distance d is the maximal size A(n,d, 1),
of a code of length n, constant weight ¢ and minimal distance d. These bounds in conjunction with

our main theorem cannot yield improvements for A(n,d) since a theorem by Elias (proved by an

Z-.
()
G;(C) for codes of length n which go below A(n,d, i) may lead to improved upper bounds for R(4)

easy averaging argument) asserts that A(n,d) < A(n,d,1) (See e.g., [12].) Upper bounds on

via Theorem 1.1.

The following inequality may be useful in establishing upper bounds for G;(C).

Theorem 6.1 (Beckner [1]) For f: {0,1}" — {0,1}, define T.(f) = S{f(S)el®lug : S c [r]}.
Then

ITefll2 < 1 ll14e- (23)

Note that if [S| = k, then T.(1p)(S) = (155)F(1E)"*. Thus when f is the characteristic

function of a subset C' of V,,, inequality (23) reads:

S Gi(1 4+ 6" (1 — ) < |C|TF 2T, (24)
i=0

Still another form obtained by expanding the terms in (24) in powers of € is

S S GE (i)t < || 2T (25)

12



In the range of interest to us, a direct application of the Beckner inequality yields nothing useful.
Application of Equation (23) for functions of the form h = fxg, where f is the characteristic function
of a code and g is the characteristic function of a certain Hamming ball, do lead to nontrivial upper
bounds on the G’s. So far, all the upper bounds on individual Gis we managed to derive this
way, have been inferior to those obtained from the best known bounds for constant weight codes
together with Elias’ Lemma. It is possible that by applying Beckner’s or other hypercontractive
estimates to other functions related to the original codes, or by finding sharper forms of Beckner’s
inequality for characteristic functions of sets of size 5" for § < 2 some progress can be made.

Analogues of inequality (23) for subsets of the Johnson Scheme (constant weight codes) are
not known and are of interest. There is a vast literature on hypercontractive estimates for certain
operators on real functions on S”, (including the direct analogue of (23), see [2]). These may yield

upper bounds for the distance distribution of spherical codes.

7 Open problems on the distance distributions near the minimal

distance

In this paper we revealed relations between the distribution of distances at the vicinity of the least
distance and the size of the whole code. The distance distribution near the minimum remains a
great mystery. We list here several open problems on this terra incognita.

We start with a few problems on the number of occurrences of the minimal distance in a code

and the analogous problem for packing of spheres.

Conjecture 2 For every binary code of length n and minimal distance d, G4 is subexponential in
n. In other words, for every e there is N = N(e) so that for every code of length n > N and

minimal distance d, Gg < (14 €)™.
For linear codes Conjecture 2 simply reads

Conjecture 3 The number of codewords of minimal weight in a linear code of length n is subex-

ponential in n.

13



Remark: We cannot even show that for a binary linear code of exponential size, the number
of codewords of minimal weight is exponentially smaller than the size of the code.

Here is the analogous (more general) conjecture for sphere packing. Let m(n,t) be the smallest
integer so that in any packing of spherical caps of radius ¢ in the unit n-sphere there is a sphere

which touches at most m(n,t) other spheres.

Conjecture 4 For a fized t > 0, m(n,t) is subexponential as n tends to infinity.

By the results of this paper, slightly stronger forms of the above conjectures suffice to improve

the known upper bound for codes.

Conjecture 5 For every §, 0 < § <1, Rs(0) =0
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ul(é)

U2(5)

0.02

0.03920

0.04988

0.04

0.07680

0.08666

0.06

0.11280

0.11868

0.08

0.14720

0.14764

0.10

0.18000

0.17437

0.12

0.21120

0.19930

0.14

0.24080

0.22276

0.16

0.26880

0.24495

0.18

0.29520

0.26603

0.20

0.32000

0.28611

0.22

0.34320

0.30530

0.24

0.36480

0.32365

0.26

0.38480

0.34124

0.28

0.40320

0.35810

0.30

0.42000

0.37429

0.32

0.43520

0.38982

0.34

0.44880

0.40472

0.36

0.46080

0.41901

0.38

0.47120

0.43269

0.40

0.48000

0.44576

0.42

0.48720

0.45820

0.44

0.49280

0.46999

0.46

0.49680

0.48106

Table I
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