19 POLYTOPE SKELETONS AND PATHS
Gil Kalai

INTRODUCTION

The k-dimensional skeleton of a d-polytope P is the set of all faces of the polytope
of dimension at most k. The 1-skeleton of P is called the graph of P and denoted
by G(P). G(P) can be regarded as an abstract graph whose vertices are the vertices
of P, with two vertices adjacent if they form the endpoints of an edge of P.

In this chapter, we will describe results and problems concerning graphs and
skeletons of polytopes. In Section 19.1 we briefly describe the situation for 3-
polytopes. In Section 19.2 we consider general properties of polytopal graphs—
subgraphs and induced subgraphs, connectivity and separation, expansion, and
other properties. In Section 19.3 we discuss problems related to diameters of poly-
topal graphs in connection with the simplex algorithm and the Hirsch conjecture.
The short Section 19.4 is devoted to polytopal digraphs. Section 19.5 is devoted to
skeletons of polytopes, connectivity, collapsibility and shellability, empty faces and
polytopes with “few vertices,” and the reconstruction of polytopes from their low-
dimensional skeletons; finally we consider what can be said about the collections
of all k-faces of a d-polytope, first for £ = d — 1 and then when £ is fixed and d is
large compared to k.

19.1 THREE-DIMENSIONAL POLYTOPES

GLOSSARY

Convez polytopes and their faces (and, in particular their vertices, edges, and facets)
are defined in Chapter 15 of this Handbook.

A graph is d-polytopal if it is the graph of some d-polytope.
The following standard graph-theoretic concepts are used: subgraphs, induced sub-
graphs, the complete graph K, on n vertices, cycles, trees, a spanning tree of

a graph, valence (or degree) of a vertex in a graph, planar graphs, d-connected
graphs, coloring of a graph, subdivision of a graph, and Hamiltonian graphs.

We briefly discuss results on 3-polytopes. Some of the following theorems are
the starting points of much research, sometimes of an entire theory. Only in a few
cases are there high-dimensional analogues, and this remains an interesting goal for
further research.

THEOREM 19.1.1  Whitney [104] (1932)

Let G be the graph of a 3-polytope P. Then the graphs of faces of P are precisely
the induced cycles in G that do not separate G.
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THEOREM 19.1.2  Steinitz [96] (1916)
A graph G is a graph of a 3-polytope if and only if G is planar and 3-connected.

Steinitz’s theorem is the first of several theorems that describe the tame behav-
ior of 3-polytopes. These theorems fail already in dimension four; see Chapter 15.

The theory of planar graphs is a wide and rich theory. Let us quote here the
fundamental theorem of Kuratowski.

THEOREM 19.1.3 Kuratowski ([71, 98])
A graph G is planar if and only if G does not contain a subdivision of K5 or Ks 3.

THEOREM 19.1.4 Lipton and Tarjan [18] (1979), in a stronger form given
by Miller [83] (1986)

The graph of every 3-polytope with n vertices can be separated, by 2+/2n vertices
forming a circuit in the graph, into connected components of size at most 2n/3.

It is worth mentioning that the Koebe circle packing theorem gives a new
approach to both the Steinitz and Lipton-Tarjan theorems. (See [108, 88]).

Euler’s formula V — E + F = 2 has many applications concerning graphs of
3-polytopes; in higher dimensions, our knowledge of face numbers of polytopes (see
Chapter 17) applies to the study of their graphs and skeletons. Simple applications
of Euler’s theorem are:

THEOREM 19.1.5

Every 3-polytopal graph has a vertex of valence at most 5. (Equivalently, every
3-polytope has a face with at most five sides.)

THEOREM 19.1.6

Every 3-polytope has either a trivalent vertex or a triangular face.

A deeper application of Euler’s theorem is:

THEOREM 19.1.7 Kotzig [70] (1955)
Every 3-polytope has two adjacent vertices the sum of whose valences is at most 13.

For a simple 3-polytope P, let p;, = pi(P) be the number of k-sized faces of P.

THEOREM 19.1.8 Eberhard [29] (1891)

For every finite sequence (py) of nonnegative integers with Y ,~,(6 — k)pr = 12,
there exists a simple 3-polytope P with py(P) = py for every k # 6.

Eberhard’s theorem is the starting point of a large number of results and prob-
lems, see. e.g., [51, 46, 40]. While no high-dimensional direct analogues are known
or even conjectured, the results and problems on facet-forming polytopes and non-
facets mentioned below seem related.

THEOREM 19.1.9  Motzkin [85] (1964)

The graph of a simple 3-polytope whose facets have 0 (mod 3) wvertices has, all
together, an even number of edges.

THEOREM 19.1.10 Barnette [10] (1966)

Every 3-polytopal graph contains a spanning tree of mazimal valence 3.
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We will now describe some results and a conjecture on colorability and Hamil-
tonian circuits.

THEOREM 19.1.11 Four Color Theorem: Appel and Haken [}, 5, 92]
(1977)

The graph of every 3-polytope is 4-colorable.

THEOREM 19.1.12  Tutte [99] (1956)

4-connected planar graphs are Hamiltonian.

Tait conjectured in 1880, and Tutte disproved in 1946, that the graph of every
simple 3-polytope is Hamiltonian. This started a rich theory of trivalent planar
graphs without large paths.

CONJECTURE 19.1.13 Barnette

Every graph of a simple 3-polytope whose facets have an even number of vertices is
Hamiltonian.

Finally, there are several exact and asymptotic formulas for the numbers of
distinct graphs of 3-polytopes. A remarkable enumeration theory was developed by
Tutte and was further developed by several authors. We will quote one result.

THEOREM 19.1.14 Tutte [100] (1962)
The number of rooted simplicial 3-polytopes with v vertices is
2(4v — 11)!
(Bv—7)!(v—2)

Tutte’s theory provides also efficient algorithms to generate random planar
graphs of various types.

PROBLEM 19.1.15
How does a random 3-polytopal graph look like?

Motivation to study this problem (and high-dimensional extensions) comes also
from physics (specifically, “quantum gravity”). See [1, 3, 23]. One surprising prop-
erty of random planar maps of various kinds is that the expected number of vertices
of distance at most r from a given vertex behaves like r*. (Compared to r? for the
planar grid.)

19.2 GRAPHS OF d-POLYTOPES—GENERALITIES

GLOSSARY

For a graph G, TG denotes any subdivision of G, i.e., any graph obtained from
G by replacing the edges of G by paths with disjoint interiors.

A d-polytope P is simplicial if all its proper faces are simplices. P is simple if
every vertex belongs to d edges or, equivalently, if the polar of P is simplicial.
P is cubical if all its proper faces are cubes.
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A simplicial polytope P is stacked if it is obtained by the repeated operation of
gluing a simplex along a facet.

For the definition of the cyclic polytope C(d,n), see Chapter 15.

For two graphs G and H (considered as having disjoint sets V and V' of vertices),
G + H denotes the graph on VUV’ that contains all edges of G and H together
with all edges of the form {v,v'} for v € V and v' € V.

A graph G is d-connected if G remains connected after the deletion of any set of
at most d — 1 vertices.

An empty simplex of a polytope P is a set S of vertices such that S does not
form a face but every proper subset of S forms a face.

A graph G whose vertices are embedded in R? is rigid if every small perturbation
of the vertices of G that does not change the distance of adjacent vertices in G is
induced by an affine rigid motion of R?. G is generically d-rigid if it is rigid
with respect to “almost all” embeddings of its vertices into R?. (Generic rigidity
is thus a graph theoretic property, but no description of it in pure combinatorial
terms is known for d > 2; cf. Chapter 59.)

A set A of vertices of a graph G is totally separated by a set B of vertices, if A
and B are disjoint and every path between two distinct vertices in A meets B.

A graph G is an e-expander if, for every set A of at most half the vertices of G,
there are at least € - |A| vertices not in A that are adjacent to vertices in A.

Neighborly polytopes and (0, 1)-polytopes are defined in Chapter 15.
The polar dual P™ of a polytope P is defined in Chapter 15.

SUBGRAPHS AND INDUCED SUBGRAPHS

THEOREM 19.2.1 Grinbaum [35] (1965)
Every d-polytopal graph contains a TKgy1.

THEOREM 19.2.2 Kalai [53](1987)
The graph of a simplicial d-polytope P contains a TKqyo if and only if P is not
stacked.

One important difference between the situation for d = 3 and for d > 3 is
that K,, for every n > 4, is the graph of a 4-dimensional polytope (e.g., a cyclic
polytope). Simple manipulations on the cyclic 4-polytope with n vertices show:

PROPOSITION 19.2.3 Perles (unpublished)
(i) Every graph G is a spanning subgraph of the graph of a 4-polytope.
(ii) For every graph G, G + K, is a d-polytopal graph for some n and some d.

This proposition extends easily to higher-dimensional skeletons in place of
graphs. It is not known what the minimal dimension is for which G + K, is d-
polytopal, nor even whether G + K, (for some n = n(G)) can be realized in some
bounded dimension uniformly for all graphs G.
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CONNECTIVITY AND SEPARATION

THEOREM 19.2.4 Balinski [8](1961)

The graph of a d-polytope is d-connected.

A set S of d vertices that separates P must form an empty simplex; in this
case, P can be obtained by gluing two polytopes along a simplex facet of each.

THEOREM 19.2.5 Larman and Mani[73] (1970)

Let G be the graph of a d-polytope. Let e = |(d + 1)/3]. Then for every two
disjoint sequences (vi,va,...,v.) and (wi,ws,...w.) of vertices of G, there are e
vertex-disjoint paths connecting v; to w;, i = 1,2,...,e.

PROBLEM 19.2.6 Larman
Is the last theorem true for e = |d/2] ¢

THEOREM 19.2.7 Cauchy, Dehn, Alexandrov, Whiteley, ...

(i) For, d = 3: Cauchy’s theorem. If P is a simplicial d-polytope, d > 3, then
G(P) (with its embedding in R?) is rigid.

(ii) Whiteley’s theorem. For a general d-polytope P, let G' be a graph (embedded in
R?) obtained from G(P) by triangulating the 2-faces of P without introducing
new vertices. Then G' is rigid.

COROLLARY 19.2.8

For a simplicial d-polytope P, G(P) is generically d-rigid. For a general d-polytope
P and a graph G' (considered as an abstract graph) as in the previous theorem, G'
is generically d-rigid.

The main combinatorial application of the above theorem is the Lower Bound
Theorem (see Chapter 17) and its extension to general polytopes.

Note that Corollary 19.2.8 can be regarded also as a strong form of Balin-
ski’s theorem. It is well known and easy to prove that a generic d-rigid graph
is d-connected. Therefore, for simplicial (or even 2-simplicial) polytopes Corol-
lary 19.2.8 implies directly that G(P) is d-connected.

For general polytopes we can derive Balinski’s theorem as follows. Suppose to
the contrary that the graph G of a general d-polytope P is not d-connected and
therefore its vertices can be separated into two parts (say, red vertices and blue
vertices) by deleting a set A of d— 1 vertices. It is easy to see that every 2-face of P
can be triangulated without introducing a blue-red edge. Therefore, the resulting
triangulation is not (d—1)-connected and hence it is not generically d-rigid. This
contradicts the assertion of Corollary 19.2.8.

Let u(n,d) = f4—1(C(d,n)) be the number of facets of a cyclic d-polytope with
n vertices, which, by the Upper Bound Theorem, is the maximal number of facets
possible for a d-polytope with n vertices.

THEOREM 19.2.9 Klee [63] (1964)

The number of vertices of a d-polytope that can be totally separated by n vertices is
at most u(n,d).

Klee also showed by considering cyclic polytopes with simplices stacked to each
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of their facets that this bound is sharp . It follows that there are graphs of simplicial
d-polytopes which are not graphs of (d — 1)-polytopes. (After realizing that the
complete graphs are 4-polytopal a naive thought would be that every d-polytopal
graph is 4-polytopal.)

EXPANSION

Expansion properties for the graph of the d-dimensional cube are known and im-
portant in various areas of combinatorics. By direct combinatorial methods, one
can obtain expansion properties of duals to cyclic polytopes. There are a few pos-
itive results and several interesting conjectures on expansion properties of graphs
of large families of polytopes.

THEOREM 19.2.10 Kalai [56](1992)

Graphs of duals to neighborly d-polytopes with n facets are e-expanders for ¢ =
O(n=%).

This result implies that the diameter of graphs of duals to neighborly d-polytopes
with n facets is O(d - n* - logn).

CONJECTURE 19.2.11 Mihail and Vazirani

Graphs of (0,1)-polytopes P have the following expansion property: For every set
A of at most half the vertices of P, the number of edges joining vertices in A to
vertices not in A is at least |A|.

The Mihail and Vazirani conjecture is from Feder and Mihail [30]; Recent ref-
erence: Kaibel [52]

It is also conjectured that graphs of polytopes cannot have very good expansion
properties:

CONJECTURE 19.2.12 Graphs of polytopes are not very good expanders,
[56]

Let d be fized. The graph of every simple d-polytope with n vertices can be separated
into two parts, each having at least n/3 vertices, by removing O(nl’l/(d’l)) vertices.

It is known that there are dual graphs to triangulations of S® which cannot be
separated even by O(n/logn) vertices [84]. Graphs of dual to cyclic 2k-polytopes
with n vertices when n is large looks somewhat like graphs of grids in Z* and, in
particular, we cannot find for them a separator of size o(n'~1/¥).

CONJECTURE 19.2.13 Expansion properties of random polytopes, [56]
A random simple d-polytope with n facets is an O(1/(n — d))-expander.

This conjecture is vaguely stated since there are various models for random
polytopes. There are models based on geometric notion on randomness. For exam-
ple consider polytopes (containing the origin) which are determined by n random
hyperplanes that are tangent to the unit sphere. There is much recent interest in
random gaussian perturbations of a fixed simple polytope [95]. We can also consider
a random combinatorial type.
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CONJECTURE 19.2.14 There are only a “few” graphs of polytopes

The number of distinct (isomorphism types) of graphs of simple d-polytopes with n
vertices is at most C}, where Cy is a constant depending on d.

It is even possible that the same constant applies for all dimensions and that
the conjecture holds even for graphs of general polytopes. This conjecture is of
interest also for dual graphs of triangulations of spheres. Conjecture 19.2.12 (and
even a much weaker seperation property) would imply Conjecture 19.2.14.

OTHER PROPERTIES

CONJECTURE 19.2.15 Barnette
Every graph of a simple d-polytope, d > 4, is Hamiltonian.

THEOREM 19.2.16 (1978)

For a simple d-polytope P, G(P) is 2-colorable if and only if G(P?) is d-colorable.
This theorem was proved in an equivalent form for d = 4 by Goodman and

Onishi [34]. (For d = 3 it is a classical theorem by Ore.) For the general case,

see Joswig [48]. This theorem is related to seeking two-dimensional analogs of
Hamiltonian cycles in skeletons of polytopes and manifolds, see [94].

19.3 DIAMETERS OF POLYTOPAL GRAPHS

GLOSSARY

A d-polyhedron is the intersection of a finite number of halfspaces in R?.

A(d,n) denotes the maximal diameter of the graphs of d-dimensional polyhedra P
with n facets.

Ap(d,n) denotes the maximal diameter of the graphs of d-polytopes with n vertices.

Given a d-polyhedron P and a linear functional ¢ on RY, we denote by G~ (P) the
directed graph obtained from G(P) by directing an edge {v,u} from v to w if
o(v) < d(u). v € Pis a top vertex if ¢ attains its maximum value in P on v.

Let H(d,n) be the maximum over all d-polyhedra with n facets and all linear
functionals on R? of the maximum length of a minimal monotone path from any
vertex to a top vertex.

Let M(d,n) be the maximal number of vertices in a monotone path over all d-
polyhedra with n facets and all linear functionals on R.

For the notions of simplicial complex, polyhedral complex, pure simplicial complex,
and the boundary complezx of a polytope, see Chapter 17.

Given a pure (d—1)-dimensional simplicial (or polyhedral) complex K, the dual
graph G*(K) of K is the graph whose vertices are the facets ((d—1)-faces) of
K, with two facets F, F' adjacent if dim (FNF') =d — 2.
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A pure simplicial complex K is vertex-decomposable if there is a vertex v of K
such that lk(v) = {S\{v} | S € K,v € S} and ast(v) = {S | S € K,v ¢ S} are
both vertex-decomposable. (The complex K = {(}} consisting of the empty face
alone is vertex-decomposable.)

It is a long-outstanding open problem to determine the behavior of the function
A(d,n). In 1957, Hirsch conjectured that A(d,n) < n —d. Klee and Walkup [67]
showed that the Hirsch conjecture is false for unbounded polyhedra. The Hirsch
conjecture for bounded polyhedra is still open. The special case asserting that
Ap(d,2d) = d is called the d-step conjecture, and it was shown by Klee and
Walkup to imply that Ay(d,n) < n —d. Another equivalent formulation is that
between any pair of vertices v and w of a polytope P there is a nonrevisiting path,
i.e., a path v = v1,v9, ..., v, = w such that for every facet F' of P, if v;,v; € F for
i < j then vy € F for every k, i <k < j.

THEOREM 19.3.1 Klee and Walkup (1967)
A(d,n) > n —d+ min{|d/4], [(n — d)/4]}.

Y

THEOREM 19.3.2 Holt and Klee [}3, 44, 45] (1998), Fritzsche and Holt
/33](2000)

Forn>d>8
Ap(d,n) >n —d.

THEOREM 19.3.3 Barnette[13] (1974)
A(d,n) < ; (n—d+5/2)-2972.

THEOREM 19.3.4 Kalai and Kleitman [60] (1992)
A(d,n) S n - <10g,’zi+ d) S nlogd+1.

The major open problem in this area is:

PROBLEM 19.3.5 Is there a polynomial upper bound for A(d,n)? Is there
a linear upper bound for A(d,n)?

Some special classes of polytopes are known to satisfy the Hirsch bound or to
have upper bounds for their diameters that are polynomial in d and n.

THEOREM 19.3.6 Provan and Billera [91] (1980)

Let G be the dual graph that corresponds to a vertex-decomposable (d—1)-dimensional
simplicial complex with n vertices. Then the diameter of G is at most n — d.

It is known that this theorem does not imply the Hirsch conjecture (for poly-
topes) since there are simplicial polytopes whose boundary complexes are not
vertex-decomposable. Yet, such examples are not so easy to come by.

THEOREM 19.3.7 Naddef [86] (1989)
The graph of every (0,1) d-polytope has diameter at most d.

Balinski [9] proved the Hirsch bound for dual transportation polytopes, Dyer
and Frieze [28] showed a polynomial upper bound for unimodular polyhedra, Kalai
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[57] observed that if the ratio between the number of facets and the dimension is
bounded above for the polytope and all its faces then the diameter is bounded above
by a polynomial in the dimension, Kleinschmidt and Onn [68] proved extensions of
Naddef’s results to integral polytopes, and Deza and Onn [27] found upper bounds
for the diameter in terms of lattice points in the polytope.

The value of A(d,n) is a lower bound for the number of iterations needed for
Dantzig’s simplex algorithm for linear programming with any pivot rule. However,
it is still an open problem to find pivot rules where each pivot step can be computed
with a polynomial number of arithmetic operations in d and n such that the number
of pivot steps needed comes close to the upper bounds for A(d,n) given above. See
Chapter 44.

The problem of routing in graphs of polytopes, namely finding a path between
two vertices is an interesting computational problem.

PROBLEM 19.3.8 Find an efficient routing algorithm for convez polytopes

Using linear programming it is possible to find a path in a polytope P between
two vertices that obeys the upper bounds given above such that the number of calls
to the linear programming subroutine is roughly the number of edges of the path.
Finding a routing algorithm for polytopes with a “small” number of arithmetic
operations as a function of d and n is an interesting challenge. The subexponential
simplex type algorithms (see Chapter 44) yield subexponential routing algorithm,
but improvement for routing beyond what is known for linear programming is
possible.

The upper bounds for A(d,n) mentioned above apply even to H(d,n). Klee
and Minty considered a certain geometric realization of the d-cube to show that

THEOREM 19.3.9 Klee and Minty [66] (1972)
M(d,2d) > 27,

Recent far-reaching extensions of the Klee-Minty construction were found by
Amenta and Ziegler[2] . It is not known for d > 3 and n > d + 3 what is the
precise upper bound for M (d,n) and does it coincide with the maximum number of

vertices of a d-polytope with n facets given by the upper bound theorem (Chapter
17). See, Pfeifle [90].

19.4

POLYTOPAL DIGRAPHS

Given a d-polytope P and a linear objective function ¢ such that ¢ is not
constant on edges, direct every edge of G(P) towards the vertex with the higher
value of the objective function. A directed graph obtained in this way is called a
polytopal digraph.

The following basic result is fundamental for the simplex algorithm and also
has many applications for the combinatorial theory of polytopes.

THEOREM 19.4.1 Folklore, see, e.g., [105]

A polytopal digraph has one sink (and one source). Morover, every induced sub-
graphs on vertices of any face F of the polytope has one sink (and one source).
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An acyclic orientation of G(P) with the property that every face has a unique
sink is called an abstract objective function. Joswig, Kaibel and Korner [49]
showed that an acyclic orientation for which every 2-dimensional face has a unique
sink is already an abstract objective function.

The h-vector of a simplicial polytope P has a simple and important interpreta-
tion in terms of the directed graph that corresponds to the polar of P. The number
hi(P) is the number of vertices v of P? of outdegree k. (Recall that every vertex
in a simple polytope has exactly d neighboring vertices.) Switching from ¢ to —g,
one gets the Dehn-Sommerville relations hy = hg—j (including the Euler relation
for k = 0); see Chapter 17.

Studying polytopal digraphs and digraphs obtained by abstract objective func-
tions is very interesting in the three dimensional case and in high dimensions.

THEOREM 19.4.2 Mihalisin and Klee [82](2000)

Suppose that K is an orientation of a 3-polytopal graph G. Then the digraph K is
3-polytopal if and only if it is acyclic, has a unique source and a unique sink, and
admits three independent monotone paths from the source to the sink.

Mihalisin and Klee write in their article “we hope that the present article will

open the door to a broader study of polytopal digraphs”.

19.5 SKELETONS OF POLYTOPES

GLOSSARY

A pure polyhedral complex K is strongly connected if its dual graph is connected.

A shelling order of the facets of a polyhedral (d—1)-dimensional sphere is an
ordering of the set of facets Fi, Fs, ..., F, so that the simplicial complex K;

spanned by Fy U Fy U --- U Fj is a simplicial ball for every ¢ < n. A polyhedral
complex is shellable if there exists a shelling order of its facets.

A simplicial polytope is extendably shellable if any way to start a shelling can
be continued to a shelling.

An elementary collapse on a simplicial complex is the deletion of two faces F' and
G so that F' is maximal and G is a codimension-1 face of F' that is not included
in any other maximal face. A polyhedral complex is collapsible if it can be
reduced to the void complex by repeated applications of elementary collapses.

A d-dimensional polytope P is facet-forming if there is a (d+1)-dimensional poly-
tope @ such that all facets of () are combinatorially isomorphic to P. If no such
Q exists, P is called a nonfacet.

A rational polytope is a polytope whose vertices have rational coordinates. (Not
every polytope is combinatorially isomorphic to a rational polytope; see Chap-
ter 15.)

A d-polytope P is k-stmplicial if all its faces of dimension at most k are simplices.
P is k-simple if its polar dual P2 is k-simplicial.

Zonotopes are defined in Chapters 15 and 17.



Polytope skeletons and paths 341

Let K be a polyhedral complex. An empty simplex S of K is a minimal nonface
of K, i.e., a subset S of the vertices of K with S itself not in K, but every proper
subset of S in K.

Let K be a polyhedral complex and let U be a subset of its vertices. The induced
subcomplex of K on U, denoted by K[U], is the set of all faces in K whose
vertices belong to U. An empty face of K is an induced polyhedral subcomplex
of K that is homeomorphic to a polyhedral sphere. An empty 2-dimensional
face is called an empty polygon. An empty pyramid of K is an induced
subcomplex of K that consists of all the proper faces of a pyramid over a face
of K.

CONNECTIVITY AND SUBCOMPLEXES

THEOREM 19.5.1 Grinbaum [35] (1965)

The i-skeleton of every d-polytope contains a subdivision of skel;(A?), the i-skeleton
of a d-simplez.

THEOREM 19.5.2 Folklore

(i) For i > 0, skel;(P) is strongly connected.

(ii) For every face F, let U;(F') be the set of all i-faces of P containing F'. Then
if i >dim F, U;(F) is strongly connected.

Part (ii) follows at once from the fact that the faces of P containing F cor-
respond to faces of the quotient polytope P/F. However, properties (i) and (ii)
together are surprisingly strong, and all the known upper bounds for diameters of
graphs of polytopes rely only on properties (i) and (ii) for the dual polytope.

THEOREM 19.5.3 wvan Kampen and Flores [101, 32, 106](1935)

Fori > |d/2], skel;(A%*1) is not embeddable in S~ (and hence not in the bound-
ary complex of any d-polytope).
(This extends the fact that K5 is not planar.)

CONJECTURE 19.5.4 Lockeberg

For every partition of d = dy + dy + - - di, and two vertices v and w of P, there
are k disjoint paths between v and w such that the i th path is a path of d;-faces in
which any two consecutive faces have (d;—1)-dimensional intersection.

SHELLABILITY AND COLLAPSIBILITY

THEOREM 19.5.5 Bruggesser and Mani [22](1970)
Boundary complezxes of polytopes are shellable.

The proof of Bruggesser and Mani is based on starting with a point near the
center of a facet and moving from this point to infinity, and back from the other
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direction, keeping track of the order in which facets are seen. This proves a stronger
form of shellability, in which each K; is the complex spanned by all the facets that
can be seen from a particular point in R?. It follows from shellability that

THEOREM 19.5.6
Polytopes are collapsible.

THEOREM 19.5.7 Ziegler [107] (1992)

There are d-polytopes, d > 4, whose boundary complexes are not extendably shellable.

THEOREM 19.5.8 There are triangulations of the (d—1)-sphere which are
not shellable.

Lickorish [77] produced explicit examples of nonshellable triangulations of S3.
His result was that a triangulation containing a sufficiently complicated knotted tri-
angle was not shellable. Hachimori and Ziegler [42] produced simple examples and
showed that a triangulation containing any knotted triangle is not “constructible”,
constructibility being a strictly weaker notion than shellability. For more on shella-
bility, see [25] [19].

FACET-FORMING POLYTOPES AND SMALL LOW-DIMENSIONAL FACES

THEOREM 19.5.9 Perles and Shephard [89](1967)

Let P be a d-polytope such that the mazimum number of k-faces of P on any (d—2)-
sphere in the skeleton of P is at most (d—1—k)/(d+1—k)fr(P). Then P is a
nonfacet.

An example of a nonfacet which is simple was found by Barnette [11]. . Some
of the proofs of Perles and Shaphard uses metric properties of polytopes and for a
few of the results alternatives proofs using shellability were found by Barnette [11].

THEOREM 19.5.10 Schulte [93] (1985)

The cuboctahedron and the icosidodecahedron are nonfacets.

PROBLEM 19.5.11
Is the icosahedron facet-forming?

For all other regular polytopes the situation is known. The simplices and cubes
in any dimension and the 3-dimensional octahedron are facet-forming. All other
regular polytopes with the exception of the icosahedron are known to be nonfacets.

It is very interesting to find what can be said on metrical properties of facets
(or low dimensional faces) of a convex polytope.

THEOREM 19.5.12 Barany (unpublished)

There exist € > 0 such that every d-polytope, d > 2, has a facet F' such that there
is no ball By of radius R and a ball By of radius (1 + €)R such that By C F C Bs.

The stronger statement where balls are replaced by elipses is open.
Next, we try to understand if it is possible for all the k-faces of a d-polytope
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to be isomorphic to a given polytope P. The following conjecture asserts that if d
is large with respect to k, this can happen only if P is either a simplex or a cube.

CONJECTURE 19.5.13 Kalai

For every k there is a d(k) such that every d-polytope with d > d(k) has a k-face
that is either a simplex or combinatorially isomorphic to a k-dimensional cube.

Recently, Julian Pfeifle showed based on the Wythoff construction (see Chapter
18) that d(k) > (2k — 1)(k — 1), for k > 3.

For simple polytopes, it follows from the next theorem that if d > ck? then
every d-polytope has a k-face F' such that f.(F) < f,.(Cy). (Here, C) denotes the
k-dimensional cube.)

THEOREM 19.5.14 Nikulin [87] (1981)

The average number of r-dimensional faces of a k-dimensional face of a simple
d-dimensional polytope is at most

(i) () () J007) + ()

Nikulin’s theorem appeared in his study of reflection groups in hyperbolic
spaces. The existence of reflection groups of certain types implies some combina-
torial conditions on their fundamental regions (which are polytopes) and Vinberg,
Nikulin, Khovanski [102, 87, 62] and others showed that in high dimensions these
combinatorial conditions lead to a contradiction. There are still many open prob-
lems in this direction. In particular, to narrow the gap between the dimensions
above which those reflection groups cannot exists and the dimensions for which
such groups can be constructed.

THEOREM 19.5.15 Kalai [55] (1989)
Every d-polytope for d > 5 has a 2-face with at most 4 vertices.

THEOREM 19.5.16 Meisinger, Kalai and Kleinschmidt [80] (2000)
Every rational d-polytope for d > 9 has a 3-face with at most 150 vertices.

The last two theorems and the next one are proved using the linear inequalities
for flag numbers that are known via intersection homology of toric varieties; see
Chapter 17. One can also study, in a similar fashion, quotients of polytopes.

CONJECTURE 19.5.17 Perles

For every k there is a d'(k) such that every d-polytope with d > d'(k) has a k-
dimensional quotient that is a simplez.

As was mentioned in the first section, d'(2) = 3. The 24-cell, which is a regular
4-polytope all whose faces are octahedra, shows that d'(3) > 4.

THEOREM 19.5.18 Meisinger, Kalai and Kleinschmidt [80] (2000)
Every d-polytope with d > 9 has a 3-dimensional quotient that is a simplex.

PROBLEM 19.5.19
For which values of k and r are there d-polytopes other than the d-simplex that are
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both k-simplicial and r-simple?

It is known that this can happen only when k+r < d. There are infinite families
of (d—2)-simplicial and 2-simple polytopes, and some examples of (d—3)-simplicial
and 3-simple d-polytopes.

Concerning this problem Peter McMullen recently noted that the polytopes
rst, discussed in Coxeter’s classic book on regular polytopes [24] in Sections 11.8,
11.x, are (r 4 2)-simplicial d — r — 2-simple, where d = r + s + ¢t + 1. These Gosset-
Elte polytopes arise by the so-called Wythoff construction from the finite reflection
groups (see Chapter 18); we obtain a finite polytope whenever the reflection group
generated by the Coxeter diagram with r,s,¢ nodes on the three arms are finite,
that is, when

1/r+1)+1/(s+1)+1/(t+1) > 1.

The largest exceptional example, 241, is related to the Weyl group Eg. The Gosset-
Elte polytope 241, is a 4-simple 4-simplicial 8-polytope with 2160 vertices. Are
there 5-simplicial 5-simple 10-polytopes?

THEOREM 19.5.20
For d > 2, there is no cubical d-polytope P whose dual is also cubical.

I am not aware of a reference for this result but it can easily be proved by
showing a covering map from the standard cubical complex realizing R4~! into K.

We talked about finding very special polytopes as “subobjects” (faces, quo-
tients) of arbitrary polytopes. What about realizing arbitrary polytopes as “sub-
objects” of very special polytopes? There is an old conjecture that every polytope
can be realized as a subpolytope (namely the convex hull of a subset of the vertices)
of a stacked polytope. Perles and Sturmfels asked if every simlpicial d-polytope can
be realized as the quotient of some neighborly even-dimensional polytope. (Recall
that a 2m-polytope is neighborly if every m vertices are the vertices of a (m — 1)-
dimensional face.) Kortenkamp [69] proved that this is the case for d-polytopes
with at most d + 4 vertices. For general polytopes “neighborly polytopes” should
be replaced here by “weakly-neighborly” polytopes, introduced by Bayer [15], which
are defined by the property that every set of k vertices is contained in a face of
dimension at most 2k — 1. The only theorem of this flavour I am aware of is by
Billera and Sarangarajan [17] who proved that every 0-1 polytope is a face of a
travelling salesman polytope.

RECONSTRUCTION

THEOREM 19.5.21 An extension of Whitney’s theorem, [36]
d-polytopes are determined by their (d—2)-skeletons.

THEOREM 19.5.22 Perles (1973) (unpublished)
Simplicial d-polytopes are determined by their |d/2]-skeletons.

This follows from the following theorem (here, ast(F, P) is the complex formed
by the faces of P that are disjoint to all vertices in F').

THEOREM 19.5.23 Perles (1973)
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Let P be a simplicial d-polytope.
(i) If F is a k-face of P, then skely_p_o(ast(F, P)) is contractible in
skely_r_1 (ast(F, P))
(ii) If F is an empty k-simplex, then ast(F,P) is homotopically equivalent to
Sa=k . hence, skely_p_o(ast(F, P)) is not contractible in skely_y_1 (ast(F, P)).

An extension of Perles’ theorem for manifolds with a vanishing middle homology
was proved by Dancis [26].

THEOREM 19.5.24 Blind and Mani [21] (1987)
Simple polytopes are determined by their graphs.

Blind and Mani described their theorem in a dual form and considered (d —1)-
dimensional “puzzles” whose pieces are simplices and we wish to solve the puzzle
based on the “local” information: which two simplices share a facet. Joswig ex-
tended their result to more genaral puzzles where the pieces are general (d — 1)-
dimensional polytopes and the way every two pieces which share a facet are con-
nected is also prescribed. A simple proof is given in [54]. This proofs also shows
that k-dimensional skeletons of simplicial polytopes are also determined by their
“puzzle”. Combined with Perles’ theorem it follows that:

THEOREM 19.5.25 Kalai and Perles (1988)

Simplicial d-polytopes are determined by the incidence relations between i- and
(i + 1)-faces for every i > |d/2].

CONJECTURE 19.5.26 Haase and Ziegler

Let G be a graph of a simple 4-polytope. Let H be an induced, non-separating,
3-regular, 3-connected planar subgraph of G. Then H is the graph of a facet of P.

Haase and Ziegler [41] showed that this is not the case if H is not planar. Their
proof touches on the issue of embedding knots in skelatons of 4-polytopes.

PROBLEM 19.5.27 Are simplicial spheres determined by the incidence

relation between facets and sub-facets?

THEOREM 19.5.28 Bjiorner, Edelman, and Ziegler [20] (1990)

Zonotopes are determined by their graphs.

THEOREM 19.5.29 Babson, Finschi and Fukuda [7] (2001)

Duals of cubical zonotopes are determined by their graphs.

In all instances of the above theorems except the single case of the Blind-
Mani theorem, the proofs give reconstruction algorithms that are polynomial in
the data. It is an open question if a polynomial algorithm exists to determine a
simple polytope from its graph. A polynomial “certificate” for reconstruction was
recently found by Joswig, Kaibel and Korner [49].

An interesting problem was whether there is an e-dimensional polytope other
than the d-cube with the same graph as the d-cube?

THEOREM 19.5.30 Joswig and Ziegler [50] (2000)
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For every d > e > 4 there is an e-dimensional cubical polytopes with 2% vertices
whose |e/2] — 1-skeleton is combinatorially isomorphic to the |e/2| — 1-skeleton of
a d-dimensional cube.

Earlier Babson, Billera, and Chan [6] found such a construction for cubical
spheres.

Another issue of reconstruction for polytopes that was studied extensively is the
following: In which cases does the combinatorial structure of a polytope determine
its geometric structure (up to projective transformations)? Such polytopes are
called projectively unique, and the major unsolved problem is:

PROBLEM 19.5.31

Are there only finitely many projectively unique polytopes in each dimension?

McMullen [79] constructed projectively unique d-polytopes with 3%/3 vertices.

EMPTY FACES AND POLYTOPES WITH FEW VERTICES

THEOREM 19.5.32 Perles (unpublished manuscript) (1970)

Let f(d, k,b) be the number of combinatorial types of k-skeletons of d-polytopes with
d+ b+ 1 vertices. Then, for fized b and k, f(d,k,b) is bounded.

This follows from

THEOREM 19.5.33 Perles (1970)

The number of empty i-pyramids for d-polytopes with d + b vertices is bounded by
a function of i and b.

For another proof of this theorem see [58].
For a d-polytope P, let e;(P) denote the number of empty i-simplices of P.

PROBLEM 19.5.34

Characterize the sequence of numbers (e1(P),e2(P),...,eq(P)) arising from sim-
plicial d-polytopes and from general d-polytopes.

The following theorem motivated by commutative-algebraic problems confirmed
a conjecture by Kleinschmidt, Kalai and Lee.

THEOREM 19.5.35 Migliore and Nagel, [81] (2002)
For all simplicial d-polytopes with prescribed h-vector h = (ho,hi,...,hq), the

number of i-dimensional empty simplices is mazximized by the Billera-Lee polytopes
Pgr,(h).

Pgr,(h) is the polytope constructed by Billera and Lee [16] (see Chapter 17) in
their proof of the sufficiency part of the g-theorem. Migliore and Nagel proved that
for a prescribed f-vector, the Billera-Lee polytopes maximizes even more general
parameters that arise in commutative algebra: The sum of the i-th Betti numbers
of induced subcomplexes on j vertices for every i and j. (The case j = i+ 2 reduces
to counting missing faces.) It is quite possible that the theorem of Migliore and
Nagel extends to general simplicial spheres with prescribed h-vector and to general
polytopes with prescribed (toric) h-vector. (However, it is not yet known in these
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cases that the h-vectors are always those of Billera-Lee polytopes, see Chapter 17.)

19.6

CONCLUDING REMARKS AND EXTENSIONS TO
MORE GENERAL OBJECTS

The reader who compares this chapter with other chapters on convex polytopes
may notice the sporadic nature of the results and problems described here. In-
deed, it seems that our main limits in understanding the combinatorial structure of
polytopes still lie in our ability to raise the right questions. Another feature that
comes to mind (and is not unique to this area) is the lack of examples, methods of
constructing them, and means of classifying them.

We have considered mainly properties of general polytopes and of simple or
simplicial polytopes. There are many classes of polytopes that are either of intrinsic
interest from the combinatorial theory of polytopes, or that arise in various other
fields, for which the problems described in this chapter are interesting.

Most of the results of this chapter extend to much more general objects than
convex polytopes. Finding combinatorial settings for which these results hold is
an interesting and fruitful area. On the other hand, the results described here are
not sufficient to distinguish polytopes from larger classes of polyhedral spheres, and
finding delicate combinatorial properties that distinguish polytopes is an important
area of research. Few of the results on skeletons of polytopes extend to skeletons of
other convex bodies [74, 75, 76], and relating the combinatorial theory of polytopes
with other aspects of convexity is a great challenge.

19.7

SOURCES AND RELATED MATERIAL

FURTHER READING

Griinbaum [39] is a survey on polytopal graphs and many results and further refer-
ences can be found there). More material on the topic of this chapter and further
relevant references can also be found in [36], [108], [18], [65], and [14]. Martini’s
chapter in [18] is on the regularity properties of polytopes (a topic not covered
here; cf. Chapter 16), and contains further references on facet-forming polytopes
and nonfacets. The original papers on facet-forming polytopes and nonfacets con-
tain many more results, and describe relations to questions on tiling spaces with

polyhedra. Other chapters of [18] are also relevant to the topic of this section.

RELATED CHAPTERS

Chapter 15: Basic properties of convex polytopes

Chapter 17: Face numbers of polytopes and complexes

Chapter 44: Linear programming in low dimensions

Chapters 5,16,18,20,45 and 59 are also related to some parts of this chapter.
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