Choice Games*

November 4, 2013

Consider the following two-person game GAME1:¹

- Player 1 chooses a countably infinite sequence $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ of real numbers, and puts them in boxes labeled 1, 2, ...
- Player 2 opens all the boxes except one, in some order, and reads the numbers there; then he writes down a real number ξ .
- The unopened box, say box number *i*, is opened; if $x_i = \xi$ then Player 2 wins, and if $x_i \neq \xi$ then Player 1 wins.

Theorem 1 For every $\varepsilon > 0$ Player 2 has a mixed strategy in GAME1 guaranteeing him a win with probability at least $1 - \varepsilon$.

Remark. The proof uses the Axiom of Choice.

Proof. Fix an integer K. We will construct K pure strategies of Player 2 such that against every sequence \mathbf{x} of Player 1 at least K-1 of these strategies yield a win for Player 2. The mixed strategy that puts probability 1/K on each one of these pure strategies thus guarantees a probability of at least 1 - 1/K of winning.

Let $X = \mathbb{R}^{\mathbb{N}}$ be the set of countable infinite sequences of real numbers. Consider the equivalence relation on X where $\mathbf{x} \sim \mathbf{x}'$ if and only if there is N such that $x_n = x'_n$ for all $n \geq N$ (i.e., \mathbf{x} and \mathbf{x}' coincide except for finitely many coordinates). Apply the Axiom of Choice to choose an element in each equivalence class; let $F(\mathbf{x})$ denote the chosen element in the equivalence class of \mathbf{x} (thus $F: X \to X$ satisfies $\mathbf{x} \sim \mathbf{x}'$ iff $F(\mathbf{x}) = F(\mathbf{x}')$).

For every sequence $\mathbf{x} \in X$ and k = 1, ..., K, let \mathbf{y}^k denote the subsequence of \mathbf{x} consisting of all coordinates x_n with indices $n \equiv k$ (thus $y_m^k = x_{k+(m-1)K}$), and let $\mathbf{z}^k := F(\mathbf{y}^k)$. Since $\mathbf{y}^k \sim \mathbf{z}^k$, let R^k be the minimal index r such that $y_m^k = z_m^k$ for all $m \geq r$ (thus the last coordinate where \mathbf{y}^k and \mathbf{z}^k differ is coordinate $R^k - 1$), and let $R^{-j} := \max_{k \neq j} R^k$.

For each j = 1, 2, ..., K we define a pure strategy σ_j of Player 2 as follows:

^{*}Written by Sergiu Hart (*email:* hart@huji.ac.il, *url:* www://ma.huji.ac.il/hart).

¹Source unknown. I heard it from Benjy Weiss, who heard it from ..., who heard it from ... For a related problem, see http://xorshammer.com/2008/08/23/set-theory-and-weather-prediction/

- Open all boxes belonging to the sequences \mathbf{y}^k for all $k \neq j$.
- Determine $\mathbf{z}^k = F(\mathbf{y}^k)$, and thus R^k for each $k \neq j$.
- Compute $R^{-j} = \max_{k \neq j} R^k$.
- Open all boxes belonging to the sequence \mathbf{y}^{j} except for the R^{-j} -th box.
- Determine $\mathbf{z}^j = F(\mathbf{y}^j)$.
- Guess that the number in the unopened box, $y_{R^{-j}}^j$, equals $z_{R^{-j}}^j$.

The strategy σ_j wins against the sequence **x** that has $y_{R^{-j}}^j = z_{R^{-j}}^j$, which is implied by $R^j \leq R^{-j}$. Thus, if σ_j loses against **x** then necessarily $R^j > R^{-j}$, i.e., $R^j > R^k$ for all $k \neq j$, which means that R^j is the unique maximizer among all the R^k . Therefore, against any **x**, at most one σ_j can lose.

A similar result, but now without using the Axiom of Choice.² Consider the following two-person game GAME2:

- Player 1 chooses a rational number in the interval [0, 1] and writes down its infinite decimal expansion³ $0.x_1x_2...x_n...$, with all $x_n \in \{0, 1, ..., 9\}$.
- Player 2 asks (in some order) what are the digits x_n except one, say x_i ; then he writes down a digit $\xi \in \{0, 1, ..., 9\}$.
- If $x_i = \xi$ then Player 2 wins, and if $x_i \neq \xi$ then Player 1 wins.

By choosing *i* arbitrarily and ξ uniformly in $\{0, 1, ..., 9\}$, Player 2 can guarantee a win with probability 1/10. However, we have:

Theorem 2 For every $\varepsilon > 0$ Player 2 has a mixed strategy in GAME2 guaranteeing him a win with probability at least $1 - \varepsilon$.

Proof. The proof is the same as for Theorem 1, except that here we do not use the Axiom of Choice. Because there are only countably many sequences $\mathbf{x} \in \{0, ..., 9\}^{\mathbb{N}}$ that Player 1 may choose (namely, those \mathbf{x} that become eventually periodic), we can order them—say $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)}, ...$ —and then choose in each equivalence class the element with minimal index (thus $F(\mathbf{x}) = \mathbf{x}^{(m)}$ iff m is the minimal natural number such that $\mathbf{x} \sim \mathbf{x}^{(m)}$).

Remark. When the number of boxes is *finite* Player 1 can guarantee a win with probability 1 in GAME1, and with probability 9/10 in GAME2, by choosing the x_i independently and uniformly on [0, 1] and $\{0, 1, ..., 9\}$, respectively.

²Due to Phil Reny.

 $^{^3}$ When there is more than one expansion, e.g., 0.1000000...=0.0999999..., Player 1 chooses which expansion to use.

⁴Explicit strategies σ^j may also be constructed, based on R^j being the index where the sequence \mathbf{y}^j becomes periodic.