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1 Introduction
.

The study of large economic models, where agents are individually insignificant, has been a
most interesting and fruitful subject. In particular, the application of various game theoretic
solution concepts to these models has yielded important understandings. Most notably are
the two well-known "principles": the Core Equivalence and the Value Equivalence. They
show that Walrasian equilibria arise from comPletely new foundations.

The Core Equivalence Theorem states that in a perfectly competitive market, the core
coincides with the set of competitive allocations.

We will not prove but only use this theorem here.
The Value Equivalence Theorem states that in a sufficiently differentiable perfectly com-

petitive market, the set of value allocations coincides with the set of competitive allocations.
Originally defined for games with transferable utilities (TU) in coalitional (or charac-

teristic) function form, the Shapley value, Shapley [1953], assigns a payoff to each player in
each game. It turns out to equal the expected marginal contribution of the player to a ran-
domly formed coalition. Using an asymptotic. approach, Shapley [1964] showed that the set
of value allocations of a TU market game coincides with the s.et of core allocations, provided
that the coalitional function was assumed to be differentiable. Going directly to the case of
a continuum of players, Aumann-Shapley [1974] showed the same result. Champsaur [1975]
showed that in the asymptotic case every value allocation is in the core, without assuming
differentiability; Hart [1977] proved the same result for the case of a continuum.

Now, quite clearly, the TU case is not appropriate when we consider economies or
market games since it implies the possibility of interpersonal comparisons of utility. A
solution concept, similar to the Shapley value but for the case of ,non-transferable utility
(NTU) games, was provided by Harsanyi [1959, 1963]. The Harsanyi solution turned out to
be quite complex and Shapley [1969] proposed an alternative solution concept, the Shapley
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NTU value (or A-transfer value) which was easier to work with.
Assuming differentiability and a continuum of traders, Aumann [1975] showed that

the set of Shapley NTU value allocations coincides with the set of core allocations and
hence with the set of Walrasian allocations. Mas-Colell [1977] proved the same result in
the asymptotic case. Once again, Champsaur [1975] and Hart [1977] proved that without
differentiability the inclusion obtained in the TU case (every value allocation is also a core
allocation) continues to hold. Note that all the results require the consideration of perfectly
competitive economies, Le., a large number of agents.

Table 1 summarizes these results.

Table 1

Recently, the possibility of obtaining equivalence results for the Harsanyi solution has
been examined by Hart and Mas-Colell [1991a,b,c]. Using their potential function approach
(introduced in Hart and Mas-Colell [1989]), they are able to provide conditions under which
the Harsanyi solutions of large market games lie in the core (the case of "tight" Harsanyi
solutions). However, it turns out that in general the Harsanyi solution and the core may
yield completely different outcomes. For a discussion on this "non-equivalence", see Section
5 and Hart and Mas-Colell [1991c]. '

The rest of this chapter is organized as follows: In Section 2 we present our model and
basic assumptions. Section 3 is devoted to the case of TU games; Section 4 to the Shapley
NTU value; and Section 5 to the Harsanyi NTU value. It should be stressed that the
"proofs" and arguments brought here are informal, and meant only to suggest some of the
basic ideas. For a precise treatment see the referred papers.

2 The Model

As we saw in the Introduction, there are various ways to model "large markets". One is the
asymptotic approach - sequences of finite games with increasing number of players. The
other is to consider the limit game with a continuum of players. It turns out that the most
convenient model is that of a continuum game with finitely many types of players; some of
the more complex technical points are easily handled in this model, and the results are the
same.

The basic model consists of a non-transferable utility, NTU, economy with a continuum
of agents. There are finitely many types of agents. It will suffice to describe the resulting
(market) game.

Each coalition is characterized by its composition, namely how many players of each
type it contains. Let n be the number of types. The profile of a coalition is a vector
x = (Xl, ..., ~~) in R+, where Xi is the measure (or, ,mass) of players of type'i in the

coalition.
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The basic data consists of specifying the sets of feasible payoff vectors for all coalitions.
We consider only type-symmetric imputations, where all players of the same type get the
same payoff. For every profile x E R+.

'
let thus V (x) C Rn be the set of feasible per-capita

payoff vectors for a (coalition with) profile x. That is, a = (aI, ..., an) E Vex) whenever it is
feasible that each one of the Xi players of type i will get a payoff ai (simultaneously for all
i). We assume for convenience that the coordinates of a that correspond to types which are

.

not present in x are arbitrary; more precisely, if Xi = 0, a E Vex) and aj = aj for all j =1= i,
then a' E V (x) too. This (set-valued) function V is called the coalitional (or characteristic,
or worth) function of the game.

A non-transferable utility (NTU) game (x, V) is obtained by specifying, in addition to
its coalitional function V, also the grand coalitional profile x E R+.. We will assume without
loss of generality that Xi > 0 for all i = 1, ...,n (i.e. x E R+.+), since types whose total mass
is zero may obviously be dropped.

We will find it useful to consider also per-type payoffs. For z and w E Rn, let z
* w E Rn

denote the vector whose i-th coordinate is ZiWi. We then define' for every x E R+. the set of

feasible total per-type payoffs by Vex) := {x * a I a E Vex)}. Thus bE Vex) whenever, for
each i with Xi > 0, the total payoff of all Xi players of type i is hi; i.e., each one gets bi/Xi
(note that bi = 0 when Xi = 0).

The special case where utilities are actually transferable - the game is then called a
transferable utility (TU) game ~ corresponds to Vex) =={a I 2:i Xiai < vex)} and V = {b I

2:i bi < vex)}, where v : R+. ~ R is the TU coalitional function.
We make the following assumptions on the game (x, V):

AI. Basic: For every x E R+., the set Vex) is a strict subset of Rn, it
contains 0, it is closed, convex and comprehensive (the last one means that
if a E Vex) and a' < a, then a' E Vex) too).

A2. Super-additivity: Vex + y) :> Vex) + V(y) for every x, y E R+.. (Recall

that V(x) is the set of total per-type payoffs).

A3. Non-levelness: The feasible set Vex) of the grand coalition is non-level,
i.e. a, a' E bd Vex) and a < a' implies a = a'.

A4. Homogeneity: V is positively homogeneous of degree 0; i.e., V(tx) =
Vex) for every x E R+. and t > O. (Recall that Vex) is the set of feasible
per-capita payoff vectors; in terms of total payoff~, V(tx) = tV (x) ) .

Assumptions Al and A3 are standard (and mainly technical; see Hart & Mas-Colell
[1~91a] for an extensive discussion). Super-additivity A2, and in particular the homogenei~
A4, are the essential properties of market games. It is easy to check that a pure exchange
economy where, for each type i, the utility function Ui is concave and non-decreasing, with.
slope (i.e., any super-gradient) everywhere bounded away from 0 and infinity, and Ui(Wi) ". 0
(an irrelevant normalization; Wi is the initial endowment), will yield a market game such
that AI-A4 will be satisfied.

Note that some of the results discussed below may require further hypotheses.
We end this section with a well-known definition. The core of the game (x, V)consists

of all payoff vectors a E Rn such that:

a E bd Vex); and (1)
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a (j. int V(x) for all x < x. (2)

That is, a is feasible and efficient for the grand coalition, and it cannot be improved upon
by any coalition.

3 The TU Case

In this section we are going to prove the Value Equivalence Theorem in the TU case. As
defined above, (x, v) is a TU game with a continuum of players of n types. Conditions A2
and A4 become

(*) v is super-additive; i.e., v(x + y) > v(x) + v(y) for every x, y E IR.+.
(*) v is positively homogeneous of degree 1; i.e. v(tx) = tv(x) for every x E IR+ and

t > O.
Therefore v is concave. The graph of v(.) is composed of rays from the origin of IR.n+l

which lie in the non-negative orthant and are "patched" together so as to form a concave
surface.

Let a (E JRn) E core(x,v), then by efficiency L:f=l xiai = v(x). Moreover L:f=l xiai >
v(x) for every x <x. Thus an element of the core of (x, v) corresponds to a supporting
hyperplane to v(.) at X. If v is differentiable near X, then

I core 1= 1 and core = {vv(x)}.
We now turn to the Shapley value for the TU game. As indicated in the introduction,

the value can be interpreted as giving to each player the expected marginal contribution that
the player makes to randomly formed coalitions. With a 'continuum of players, a randomly
chosen coalition Q will, with high probability, look like the grand coalition rescaled by
the size of Q. Also, if v (x) is differentiable in a neighborhood of x, then the marginal
contribution of a player will be given by the derivative of the coalitional function which,
by positive linear homogeneity, is invariant to positive rescaling. It follows that vv(x) is
precisely the Aumann-Shapley [1974] TU value, i.e.,

cp(x,v) =\7v(x).
/(

/

So we have our equivalence result in the differentiable case (recall that, by the Core
Equivalence Theorem, the core coincides with the set of Walrasian allocations).

Even if the coalitional function is not differentiable at x , the set of core allocations is still
given by the convex set of supporting normals to the graph of v(.) at X. For the value, one
computes the marginal contributions based on the appropriate hyperplane (corresponding
to the, random Q) and then takes the average. But since each of the points that we are
averaging is in the core (since each corresponds to a normal to a plane that supports the
graph of the function v(.) and therefore corresponds to a payoff vector in the core) the
average is also in the core (the set being convex). Therefore, we have shown that in the
non-differentiable case every value allocation is a core allocation.

Back to the differentiable case, we now provide an alternative proof of the TU value
equivalence theorem using the potential function approach of Hart and Mas-Colen [1989).
A potential for the game (x, v) is a differentiable function P : IR.+---7 IR.such that for any
x we have x . \7P(x) = v(x) and P(O) = O. It is shown that these conditions define a
unique potential for each game and that the gradient of the potential corresponds to the
Aumann-Shapley value. Since v is homogeneous of degree one, we have x. \7v(x) = v(x)

!"
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for all x (from Euler's theorem) so that our condition for a function to be the potential for
the game (x,v) - namely, x. \]P(x) = vex) - implies that P(x) = vex) for all x, so that
\] P (x) = \]v( x) and we have the result that every value allocation is a core allocation.

4 The NTU Case: Shapley Value

Let us consider the Shapley [1969] NTU value. It is defined as follows.
Given a vector of weights, A E R+.+, define a TU game by:

vA(x) := max{~Aixiai I a E Vex)}.

Find the Shapley TU-value of the game (x, vA)' If the resulting payoff vector is on the
boundary of Vex) resealed by A, then we have obtained a Shapley NTU-value. That is, a
payoff vector a E bd Vex) is a Shapley NTU-value if there exists a vector of weights A such
that Aiai = Shi(X, vA) for all i = 1, . . . ,n. The weights A are precisely the marginal rates
of efficient substitution between the payoff of the various (types of) players, at the solution
point a.

To show that every value allocation is a competitive allocation, let a: be a value allo-

cation. Without loss of generality, we assume A = (1, ...1); otherwise we may just rescale
all payoff vectors by A. Thus, a EbdV(x). We know that a is the Shapley value of the TU
game (x, v), where vex) = max{Li xiai I a E Vex)}. Hence by the proof in the TU case,

we have a = rp(x,v) E core(x, v) = \]*v(x) (where \]* is the Clarke [1983] generalized
gradient). Therefore x. a > vex) for all x E R+., implying that a rt intV(x), for all x E R+..
Therefore a E core(x, V), which implies that a is competitive.

5 NTU Case: Harsanyi Value

A Harsanyi value of a (finite) game is defined as a payoff vector which is simultaneously
"egalitarian" and "utilitarian". The former is a generalization to many players of the
"equal.,.split" allocation for two players; the latter means that the sum of the utilities is
maximized. In order for these to be both satisfied, one may (independently) rescale the
utility scales of the various players.

We define now these notions in our setup. First, to define an egalitarian allocation,
we use the notion of a potential function, introduced in Hart & Mas-Colell [1989] and
studied extensively for games with a continuum of players in Hart & Mas-Colen [1991a]. A
real-valued function P = PV : R+. ., + R is the (smooth) potential function of V if

P(O)-O; (3)

(4)

(5)

P is continuously differentiable (01) on R+. \ {O} and continuous at 0;

\] P(x) E bd Vex) for every x E R+. \ {O}.

The payoff vector a E Rn is egalitarian for the game (x, V) if

the potential P of V exists and a = \] P (x). (6)
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As we see in (5), an egalitarian solution is obtained from a solution to the partial
differential equation (PDE) \7P(x) E bd V(x), which is usually nonlinear (the linear case
corresponds to a transferable utility game, and the theory there is indeed relatively simple
and coincides with Aumann-Shapley [1974]).

Unfortunately, even for V extremely well behaved, the P DE equation may have no so-
lution. One is therefore led to consider generalized (Lipschitz) solutions, i.e., functions
P that are Lipschitz (thus differentiable almost everywhere - by Rademacher's Theorem)
and satisfy the P D E almost everywhere:

\7 P(x) E bd V(x) for almost every x E IR++. (7)

As we will see below, generalized solutions do indeed exist. However, there may be many
such solutions, and we would like to be able to select the "right one".

To do so, one needs to recall that these continuous games and economies are actually an
idealization of situations with finitely many participants, each one individually insignificant.
Therefore, the question of which generalized P DE solution is the right one can only be
settled by considering sequences of finite approximations.

We corne now to the informal statement of our main results. For ease of exposition we
skip the statement of the assumptions (see Hart and Mas-Colell [1991a]).

For every x E IR++ and p E IRn, define the support function v(x,p) := sup{p'. a I aE
V(x)}. Consider the Variational Problem (where a.c. stands for absolutely continuous):

P(x) := inf {fa1 v(x(t), x(t)) dt
I

x: [0,1] -+ IR~+ U {O} a.c., x(O) = 0 and x(l) = x} (8)

Theorem 1 The function P in (8) is well defined. Moreover

1. P is a solution of (7);

2. P > Q for any solution Q of (7) with Q(O) = 0;

3. If (7) admits a differentiable (01) solution, then it must coincide with P; and

4. P fails to be differentiable at x if and only if problem (8) has more than one solution.

We will thus call the function P (given by (8)), the variational potential. It is
the maximal potential, and, in those cases where a differentiable potential exists, ,P is
that potential (hence, there may be at most one differentiable solution to (7)). We are
also able to show that for hyperplane games (i.e., games where v(x,p) < 00 for a single
p, which may vary with x) a differentiable solution exists with great generality. As a
matter of interpretation this means that the lack of differentiability of P, which is a robust
phenomenon, is essentially related to the NTU character of the game.

We corne now to the convergence results, that show that the variational potential is
indeed the right one. For every positive integer 1",we define Vr (the r-approximation of V)
by replacing each mass of 1/1" of each type with a single player. Let Pr denote the potential
for the finite game Vr and let P be the variational potential for V. The results are:

Theorem 2 ,::!Pr(X) ~ P(x)
r r-4OO

for every x E IR++.
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Theorem 3 If P is differentiable at X, then DPr ---+ VP(x) as r ---+ 00; otherwise

DPr ---+ (V* P(x) + IR+) n bd V(x). Here DPr stands for the vector of normalized fi-
nite (discrete) differences of Pr, and V* P(x) := convex hull { limm->oo VP(xm) : P is
differentiable at Xm and Xm --+ X } is the Clarke [1983J generalized gradient.

m->oo

Thus, when p is not differentiable, we obtain in the limit points that are > some generalized
gradient of P at x (and, of course, lie on the boundary bd V(x)).

We will therefore define the egalitarian solution of (x, V) as

Eg(x, V) := (\7*P(x) + IR~) n bd V(x),
~

where P is the potential function. Thus, if P is differentiable at X, then there will be just
one point in Eg(x, V), namely VP(x).

Next, a payoff vector a E IRn is utilitarian for the game (x, V) if it maximizes the sum
of the utilities over the feasible set V(x) of the grand coalitionj i.e.

a E V(x); and (9)
n n

:L xiai > :L'xia~
i=l . i=l

(recall that ai is the payoff of each player of type i, and there are Xi many of them).
Now let A = (A1, ..., An) E IR++ be a vector of weights. We denote by V,\ the A-

resealing of Vi i.e., V,\(x) := {A * a I a E V(x)}. A payoff vector a E IRn is A-egalitarian
(respectively, A-utilitarian) for the game (x, V) if it is egalitarian (respectively, utilitarian)
for the game (x, VA), This can be easily translated back to the original game, as follows:
P,\ - PV,\ : IR+ ---+ IR is the A-potential function of V if it satisfies:

for all a' E V(x). (10)

P,\ (0) = OJ

V P,\(x) E bd (A * V(x)) = A * bd V(x) for almost every x E IR~.

The payoff vector a E IRn is then A-egalitarian for the game (x, V) if

A * a = VP,\(x).

(11)

(12)

(13)

The payoff vector a E IRn is A-utilitarian if it satisfies: (9) a E V(x)j and
n n

:L Aixiai > :L Aixia~
i=l i=l

for all a' E V(x). (14)
i'

Finally, a payoff vector a E IRn is a Harsanyi value for the game (x, V) if there exists a
weight vector A E IR~+ such that a is both A-egalitarian and A-utilitarian for (x, V)j we will
refer to the A as the weight vector associated with a.

We will say that a Harsanyi value a is tight if the associated potential function is
differentiable at x (and thus a = \7 P,\ (x)).

Theorem 4 Let (x, V) be a market game. Every tight Harsanyi vdlue belongs to the core.

However, this result does not hold in general. In Hart and Mas-Colell [1991c] we provide
an example of a market game where there is a unique element in the core, which is not the
Harsanyi solution (of course, we are.in a non- "tight" case). Thus the Value Equivalence
Principle does not'-apply to the Harsanyi NTU -solution. For a comprehensive discussion
on these issues and their interpretations, see Hart and Mas-Colell [1991c].
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