# Single-Peakedness and Strict Concavity 

Sergiu Hart*

March 1, 2017


#### Abstract

In Hart, Kremer, and Perry (2017) we use the assumption that a collection of functions is single-peaked. It is shown here that this condition is essentially equivalent to applying a monotonic transformation to a collection of strictly concave functions.


A real function $f: \mathbb{R} \rightarrow \mathbb{R}$ is single-peaked if there is a point $v$ such that $f$ is increasing for $x \leq v$ and decreasing for $x \geq v$; thus, $f$ has a unique local maximum-which is therefore its global maximum-at $v$. The (slightly stronger, but more convenient) differentiable version requires that there is $v$ such that

$$
\begin{equation*}
f^{\prime}(v)=0 \text { and } f^{\prime \prime}(v)<0 \tag{1}
\end{equation*}
$$

because then $f^{\prime}(x)>0$ (and so $f$ is increasing) for $x<v$, and $f^{\prime}(x)<0$ (and so $f$ is decreasing) for $x>v$; in particular, it follows that $v$ is the unique point where $f^{\prime}$ vanishes. ${ }^{1}$

From now on we assume that all the functions are twice continuously differentiable, i.e., $C^{2}$, and use the differentiable version (1) of single-peakedness.

A finite set $\left(h_{t}\right)_{t \in T}$ of real functions (where $T$ is a finite index set) satisfies the single-peakedness condition (SP) if all weighted averages of the functions $h_{t}$, i.e., $h_{q}:=\sum_{t \in T} q_{t} h_{t}$ for $\operatorname{all}^{2} q \in \Delta(T)$, are single-peaked functions; see Hart, Kremer, and Perry (2017).

[^0]Remarks (cf. Hart, Kremer, and Perry 2017, Section III.A and Appendix C.3).
(a) All the functions $h_{t}$ being single-peaked does not imply that their averages must be single-peaked as well, and so is not sufficient for (SP).
(b) All the functions $h_{t}$ being strictly concave with a finite maximum implies that so are all their averages, and so (SP) holds.
(c) The condition (SP) is invariant to applying a strictly increasing transformation to the variable $x$ : If $\left(h_{t}\right)_{t \in T}$ satisfies (SP) then so does $\left(h_{t} \circ \psi\right)_{t \in T}$, for any $\psi: \mathbb{R} \rightarrow \mathbb{R}$ with $\psi^{\prime}(x)>0$ for all $x$. Indeed, $\left(h_{t}(\psi(x))^{\prime}=h_{t}^{\prime}(\psi(x)) \psi^{\prime}(x)\right.$ and $\left(h_{t}(\psi(x))^{\prime \prime}=h_{t}^{\prime \prime}(\psi(x))\left(\psi^{\prime}(x)\right)^{2}+h_{t}^{\prime}(\psi(x)) \psi^{\prime \prime}(x)\right.$, and therefore $\left(h_{t}(\psi(x))^{\prime}=0\right.$ if and only if $h_{t}^{\prime}(\psi(x))=0$, in which case $\left(h_{t}(\psi(x))^{\prime \prime}=h_{t}^{\prime \prime}(\psi(x))\left(\psi^{\prime}(x)\right)^{2}<0\right.$.
(d) One may allow the peak to be infinite (i.e., $v=+\infty$ or $v=-\infty$, which means that the function is monotonic), in which case everything (including the result below) goes through, except that the functions no longer need to have a finite maximum.

Combining (b) and (c) yields a sufficient condition for (SP). We now show that this condition is also necessary.

Theorem 1 The finite set of functions $\left(h_{t}\right)_{t \in T}$ satisfies (SP) if and only if there exists a monotonic transformation $\psi: \mathbb{R} \rightarrow \mathbb{R}$ with $\psi^{\prime}(x)>0$ for all $x$ such that $h_{t} \circ \psi$ is a strictly concave function with a finite maximum for every $t \in T$.

Proof. We will construct the inverse $\varphi=\psi^{-1}$ of $\psi$. Assuming the conclusion holds, we have $g_{t}(\varphi(x))=h_{t}(x)$ and $\varphi^{\prime}(x)>0$ for all $x \in \mathbb{R}$ and $t \in T$, and so $g_{t}^{\prime}(\varphi(x))=h_{t}^{\prime}(x) / \varphi^{\prime}(x)$ and $g_{t}^{\prime \prime}(\varphi(x))=\left[h_{t}^{\prime \prime}(x) \varphi^{\prime}(x)-h_{t}^{\prime}(x) \varphi^{\prime \prime}(x)\right] /\left[\varphi^{\prime}(x)\right]^{3}$. To get $g_{t}^{\prime \prime}(y)<0$ for all $y$ we need $h_{t}^{\prime \prime}(x) \varphi^{\prime}(x)-h_{t}^{\prime}(x) \varphi^{\prime \prime}(x)<0$ for all $t$ and all $x$, i.e.,

$$
\begin{equation*}
h_{t}^{\prime \prime}(x)<h_{t}^{\prime}(x) \frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)} \tag{2}
\end{equation*}
$$

for all $t$ and all $x$.
We will show that for every $x$ there is a finite scalar $\lambda(x)$ such that for all $t$ we have

$$
\begin{equation*}
h_{t}^{\prime \prime}(x)<h_{t}^{\prime}(x) \lambda(x) . \tag{3}
\end{equation*}
$$

Putting $\varphi^{\prime \prime}(x) / \varphi^{\prime}(x)=\left(\ln \varphi^{\prime}(x)\right)^{\prime}=\lambda(x)$ yields $\ln \varphi^{\prime}(x)=\int_{0}^{x} \lambda(z) \mathrm{d} z$, hence $\varphi^{\prime}(x)=\exp \left(\int_{0}^{x} \lambda(z) \mathrm{d} z\right)>0$, and $\varphi(x)=\int_{0}^{x} \exp \left(\int_{0}^{y} \lambda(z) \mathrm{d} z\right) \mathrm{d} y$; then (2) holds, which gives $g_{t}^{\prime \prime}(y)<0$ for all $y$ (and we have $g_{t}^{\prime}\left(\varphi\left(v_{t}\right)\right)=0$ at that $v_{t}$ with $\left.h_{t}^{\prime}\left(v_{t}\right)=0\right)$.

To prove the claim of the previous paragraph, fix $x$. Let

$$
C:=\operatorname{conv}\left\{\left(h_{t}^{\prime}(x), h_{t}^{\prime \prime}(x)\right): t \in T\right\}=\left\{\left(h_{q}^{\prime}(x), h_{q}^{\prime \prime}(x)\right): q \in \Delta(T)\right\} \subset \mathbb{R}^{2}
$$

then the compact convex polygon $C$ is disjoint from the closed ray $D:=\{(0, w)$ : $w \geq 0\}$ (because $h_{q}$ is single-peaked and so $h_{q}^{\prime}(x)=0 \operatorname{implies} h_{q}^{\prime \prime}(x)<0$ ). Therefore one can separate them strictly: there is $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}$ such that

$$
\max _{t \in T} p_{1} h_{t}^{\prime}(x)+p_{2} h_{t}^{\prime \prime}(x)=\max _{c \in C} p \cdot c<\inf _{d \in D} p \cdot d=\inf _{w \geq 0} p_{2} w
$$

Therefore $p_{2} \geq 0$ (otherwise the right-hand side equals $-\infty$ ), the right-hand side equals 0 , and we can take $p_{2}>0$ (slightly increasing $p_{2}$ preserves the strict inequality, because $C$ is compact). Then $\lambda(x):=-p_{1} / p_{2}$ satisfies (3).

## References

Hart, S., I. Kremer, and M. Perry (2017), "Evidence Games: Truth and Commitment," American Economic Review (forthcoming).


[^0]:    *The Hebrew University of Jerusalem (Center for the Study of Rationality, Institute of Mathematics, and Department of Economics). E-mail: hart@huji.ac.il Web site: http://www.ma.huji.ac.il/hart
    ${ }^{1}$ An equivalent way to state the condition is that $f^{\prime}(x)=0$ implies $f^{\prime \prime}(x)<0$, and there is some $x$ with $f^{\prime}(x)=0$ (the uniqueness of such $x$ then follows since between any two local maxima $x \neq y$ there must be a local minimum $z$, where $f^{\prime}(z)=0$ and $\left.f^{\prime \prime}(z) \geq 0\right)$.
    ${ }^{2} \Delta(T)=\left\{q=\left(q_{t}\right)_{t \in T} \in \mathbb{R}_{+}^{T}: \sum_{t \in T} q_{t}=1\right\}$ denotes the unit simplex on $T$, i.e., the set of probability distributions on $T$.

