The Query Complexity of Correlated Equilibria

Sergiu Hart

September 2015

The Query Complexity of Correlated Equilibria

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem
hart@huji.ac.il
http://www.ma.huji.ac.il/hart

Paper

- Sergiu Hart and Noam Nisan The Query Complexity of Correlated Equilibria
- Center for Rationality 2013
- Revised September 2015
www.ma.huji.ac.il/hart/abs/qc-ce.html

Correlated Equilibria

Correlated Equilibria

- \boldsymbol{n}-person games

Correlated Equilibria

- n-person games
- Each player has 2 actions

Correlated Equilibria

- n-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM:

Correlated Equilibria

- n-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM:

- 2^{n} unknowns ≥ 0

Correlated Equilibria

- n-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM:

- 2^{n} unknowns ≥ 0
- $2 n+1$ linear inequalities

Correlated Equilibria

- n-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM:

- 2^{n} unknowns ≥ 0
- $2 n+1$ linear inequalities
\Rightarrow There is an algorithm for computing CORRELATED EQUILIBRIA with COMPLEXITY $=\operatorname{POLY}\left(2^{n}\right)=\operatorname{EXP}(n)$

Correlated Equilibria

Correlated Equilibria

BUT:

- Regret-based dynamics yield ϵ-Correlated equilibria with high probability (Hart \& Mas-Colell 2000, 2001; ...)

Correlated Equilibria

BUT:

- Regret-based dynamics yield ϵ-CORRELATED EQUILIBRIA with high probability (Hart \& Mas-Colell 2000, 2001; ...) in O $\left(\log (n) / \epsilon^{2}\right)$ steps (Cesa-Bianchi \& Lugosi 2003)

Correlated Equilibria

BUT:

- Regret-based dynamics yield ϵ-CORRELATED EQUILIBRIA with high probability (Hart \& Mas-Colell 2000, 2001; ...) in O $\left(\log (n) / \epsilon^{2}\right)$ steps (Cesa-Bianchi \& Lugosi 2003)
- Query Complexity (QC) := maximal number of pure payoff QUERIES (out of $n \cdot 2^{n}$)

Correlated Equilibria

BUT:

- Regret-based dynamics yield ϵ-CORRELATED EQUILIBRIA with high probability (Hart \& Mas-Colell 2000, 2001; ...) in $O\left(\log (n) / \epsilon^{2}\right)$ steps (Cesa-Bianchi \& Lugosi 2003)
- Query Complexity (QC) := maximal number of pure payoff QUERIES (out of $n \cdot 2^{n}$)
\Rightarrow There are randomized algorithms for computing ϵ-CORRELATED EQUILIBRIA with $\mathbf{Q C}=\operatorname{POLY}(n)$

Correlated Equilibria

Correlated Equilibria

Surprise?

Correlated Equilibria

Surprise ? ... perhaps not so much ...

Correlated Equilibria

Surprise? ... perhaps not so much ...

- There are correlated equilibria with support of size $2 n+1$
- basic solutions of Linear Programming

Correlated Equilibria

Surprise ? ... perhaps not so much ...

- There are correlated equilibria with support of size $2 n+1$
- basic solutions of Linear Programming
- There are ϵ-CORRELATED EQUILIBRIA with support of size $O\left(\log n / \epsilon^{2}\right)$

Correlated Equilibria

Surprise? ... perhaps not so much ...

- There are correlated equilibria with support of size $2 n+1$
- basic solutions of Linear Programming
- There are ϵ-CORRELATED EQUILIBRIA with support of size $O\left(\log n / \epsilon^{2}\right)$
- use Lipton and Young 1994
(support of approximate optimal strategies)

Correlated Equilibria

Surprise? ... perhaps not so much ...

- There are correlated equilibria with support of size $2 n+1$
- basic solutions of Linear Programming
- There are ϵ-correlated equilibria with support of size $O\left(\log n / \epsilon^{2}\right)$
- use Lipton and Young 1994
(support of approximate optimal strategies)
- regret-based dynamics: $O\left(\log n / \epsilon^{2}\right)$ steps

Correlated Equilibria

Surprise? ... perhaps not so much ...

- There are correlated equilibria with support of size $2 n+1$
- basic solutions of Linear Programming
- There are ϵ-correlated equilibria with support of size $O\left(\log n / \epsilon^{2}\right)$
- use Lipton and Young 1994
(support of approximate optimal strategies)
- regret-based dynamics: O($\left.\log n / \epsilon^{2}\right)$ steps

NOTE: Regret-based dynamics converge as fast as possible (up to a constant factor)

Correlated Equilibria (recall)

Correlated Equilibria (recall)

- There are randomized algorithms (regret-based dynamics) for computing approximate CORRELATED EQUILIBRIA with QC $=\operatorname{POLY}(n)$

Correlated Equilibria

- There are randomized algorithms (regret-based dynamics) for computing approximate CORRELATED EQUILIBRIA with QC $=\operatorname{POLY}(n)$
- exact CORRELATED EQUILIBRIA ?

Correlated Equilibria

- There are randomized algorithms (regret-based dynamics) for computing approximate CORRELATED EQUILIBRIA with QC $=\operatorname{POLY}(\boldsymbol{n})$
- exact CORRELATED EQUILIBRIA ?
- deterministic algorithms ?

Query Complexity of CE

Query Complexity of CE

Algorithm

	Randomized	Deterministic
$\varepsilon-C E$		
exact $C E$		

Query Complexity of CE

Algorithm

	Randomized	Deterministic
$\varepsilon-C E$	$\operatorname{POLY}(n)$	
exact $C E$	$[1]$	

[1] $=$ regret-based dynamics

Query Complexity of CE

Algorithm

	Randomized	Deterministic
$\varepsilon-C E$	$\operatorname{POLY}(n)$	
	$[1]$	
exact $C E$		$\operatorname{EXP}(n)$
		$[2]$

[1] $=$ regret-based dynamics
[2] = Babichenko and Barman 2013

Query Complexity of CE

Algorithm

	Randomized	Deterministic
$C E$	$\operatorname{POLY}(n)$	$\operatorname{EXP}(n)$
	$[1]$	$[3]$
exact CE		$\operatorname{EXP}(n)$
		$[2]$

[1] $=$ regret-based dynamics
[2] = Babichenko and Barman 2013
$[3]=$ this paper

Query Complexity of CE

Algorithm

	Algorithm	
	Randomized	Deterministic
CE	$\operatorname{POLY}(n)$	$\operatorname{EXP}(n)$
	$[1]$	$[3]$
exact $C E$	$\operatorname{EXP}(n)$	$\operatorname{EXP}(n)$
	$[3]$	$[2]$

[1] = regret-based dynamics
[2] = Babichenko and Barman 2013
$[3]=$ this paper

Query Complexity of CE

Query Complexity of CE

- Theorem A. Every deterministic algorithm that finds a 1/2-approximate correlated equilibrium in every n-person bi-strategy games with payoffs in $\{0,1\}$ requires $2^{\Omega(n)}$ QUERIES in the worst case.

Query Complexity of CE

- Theorem A. Every deterministic algorithm that finds a 1/2-approximate correlated equilibrium in every n-person bi-strategy games with payoffs in $\{0,1\}$ requires $2^{\Omega(n)}$ QUERIES in the worst case.
- Theorem B. Every algorithm (randomized or deterministic) that finds an EXACT correlated equilibrium in every n-person bi-strategy games with payoffs specified as b-bit integers with $b=\Omega(n)$ requires $2^{\Omega(n)}$ expected cost in the worst case.

Query Complexity of CE

- Theorem A. Every deterministic algorithm that finds a 1/2-approximate correlated equilibrium in every n-person bi-strategy games with payoffs in $\{0,1\}$ requires $2^{\Omega(n)}$ QUERIES in the worst case.
- Theorem B. Every algorithm (randomized or deterministic) that finds an EXACT correlated equilibrium in every n-person bi-strategy games with payoffs specified as b-bit integers with $b=\Omega(n)$ requires $2^{\Omega(n)}$ expected cost in the worst case.

COST = \# of QUERIES + size of support of output

Query Complexity of CE

Query Complexity of CE

	Algorithm	
	Randomized	Deterministic
CE	$\operatorname{POLY}(n)$	$\operatorname{EXP}(n)$
	$[1]$	$[3]$
exact $C E$	$\operatorname{EXP}(n)$	$\operatorname{EXP}(n)$
	$[3]$	$[2]$

Query Complexity of COARSE CE

	Algorithm	
	Randomized	Deterministic
CE	$\operatorname{POLY}(n)$	$\operatorname{EXP}(n)$
	$[1]$	$[3]$
exact $C E$	$\operatorname{EXP}(n)$	$\operatorname{EXP}(n)$
	$[3]$	$[2]$

Query Complexity of COARSE CE

Algorithm

	Randomized	Deterministic
$\varepsilon-C E$	$\operatorname{POLY}(n)$	$\operatorname{EXP}(n)$
	$[1]$	$[3]$
exact $C E$	$E X P(n)$	$\operatorname{EXP}(n)$
	$[3]$	$[2]$

When every player has 2 strategies: COARSE CORRELATED EQUILIBRIUM = CORRELATED EQUILIBRIUM

Idea of Proof of Theorem A

Idea of Proof of Theorem A

- The set of strategy combinations = the n-dimensional hypercube

Idea of Proof of Theorem A

- The set of strategy combinations = the n-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes

Idea of Proof of Theorem A

- The set of strategy combinations = the n-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes
- A query at node v provides the n regrets of all edges adjacent to v

Idea of Proof of Theorem A

- The set of strategy combinations = the n-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes
- A query at node v provides the n regrets of all edges adjacent to v
- If the number of queries is $2^{\Omega(n)}$ then we can make the sum of the queried regrets high so that no $1 / 2$-approximate correlated equilibrium is found within the queried nodes (use the edge iso-perimetric inequality)

Idea of Proof of Theorem B

Idea of Proof of Theorem B

- Take a random path in the hypercube and define the regrets so that in order to get an exact correlated equilibrium one must find the endpoint of the path

Idea of Proof of Theorem B

- Take a random path in the hypercube and define the regrets so that in order to get an exact correlated equilibrium one must find the endpoint of the path
- To find the endpoint one must essentially follow the path (because every $n \log (n)$ steps there is "full mixing"), which requires $2^{\Omega(n)}$ queries

Complexity of CE

Complexity of CE

- VERIFICATION of CORRELATED EQUILIBRIUM with support of size $\operatorname{POLY}(n)$ is $\operatorname{POLY}(n)$

Complexity of CE

- VERIFICATION of CORRELATED EQUILIBRIUM with support of size $\operatorname{POLY}(n)$ is $\operatorname{POLY}(n)$
- QUERIES of mixed strategies: only $\operatorname{POLY}(n)$ are needed
- Papadimitriou and Roughgarden 2008
- Jing and Leyton-Brown 2011

Complexity of CE

Complexity of CE

- LP of the same size as CE:
randomized algorithms for approximate solutions

Complexity of CE

- LP of the same size as CE:
randomized algorithms for approximate solutions require EXP(n) QUERIES

Complexity of CE

- LP of the same size as CE:
randomized algorithms for approximate solutions require EXP (n) QUERIES
$\Rightarrow C E$ is a special LP

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP (n) QUERIES
$\Rightarrow C E$ is a special LP
- Dual of CE decomposes into n problems

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require $\operatorname{EXP}(n)$ QUERIES
$\Rightarrow C E$ is a special LP
- Dual of CE decomposes into n problems
- existence proof: Hart and Schmeidler 1989

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require $\operatorname{EXP}(n)$ QUERIES
$\Rightarrow C E$ is a special LP
- Dual of CE decomposes into n problems
- existence proof:

Hart and Schmeidler 1989

- uncoupled dynamics: Hart and Mas-Colell 2003

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require $\operatorname{EXP}(n)$ QUERIES
$\Rightarrow C E$ is a special LP
- Dual of CE decomposes into n problems
- existence proof:

Hart and Schmeidler 1989

- uncoupled dynamics:

Hart and Mas-Colell 2003

- algorithm:

Papadimitriou and Roughgarden 2008

Complexity of CE

- LP of the same size as CE:
randomized algorithms for approximate solutions require EXP (n) QUERIES
$\Rightarrow C E$ is a special LP

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP (n) QUERIES
$\Rightarrow C E$ is a special LP
- Question:

Why does this help ONLY for randomized algorithms for approximate CE ?

Complexity

- LP of the same size as CE: randomized algorithms for approximate solutions require $\operatorname{EXP}(n)$ QUERIES
\Rightarrow CE is a special LP
- Question:

Why does this help ONLY for randomized algorithms for approximate CE ?

- Question:

Complexity of approximate Nash Equilibria?

"Police brutality is a thing of the past, mate, these days we apply structured query language!" © вавт

