

The Query Complexity of Correlated Equilibria

Sergiu Hart

September 2015

SERGIU HART ⓒ 2015 – p. 1

The Query Complexity of Correlated Equilibria

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

- Sergiu Hart and Noam Nisan The Query Complexity of Correlated Equilibria
 - Center for Rationality 2013
 - Revised September 2015

www.ma.huji.ac.il/hart/abs/qc-ce.html

- *n*-person games
- Each player has 2 actions

- *n*-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM:

- *n*-person games
- Each player has 2 actions
- CORRELATED EQUILIBRIUM :
- 2^n unknowns ≥ 0

- *n*-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM :

- ${\scriptstyle
 ightarrow }~2^{oldsymbol{n}}$ unknowns ≥ 0
- 2n + 1 linear inequalities

- *n*-person games
- Each player has 2 actions

CORRELATED EQUILIBRIUM :

- ${\scriptstyle
 ightarrow } 2^{{m n}}$ unknowns ≥ 0
- 2n + 1 linear inequalities
- $\Rightarrow \text{ There is an algorithm for computing} \\ CORRELATED EQUILIBRIA \\ with COMPLEXITY = POLY(2^n) = EXP(n)$

BUT:

Regret-based dynamics yield *ϵ*-CORRELATED EQUILIBRIA with high probability (Hart & Mas-Colell 2000, 2001; ...)

BUT:

• Regret-based dynamics yield ϵ -CORRELATED EQUILIBRIA with high probability (Hart & Mas-Colell 2000, 2001; ...) in $O(\log(n)/\epsilon^2)$ steps (Cesa-Bianchi & Lugosi 2003)

BUT:

- Regret-based dynamics yield ϵ -CORRELATED EQUILIBRIA with high probability (Hart & Mas-Colell 2000, 2001; ...) in O(log(n)/ ϵ^2) steps (Cesa-Bianchi & Lugosi 2003)
- QUERY COMPLEXITY (QC) := maximal number of pure payoff QUERIES (out of $n \cdot 2^n$)

BUT:

- Regret-based dynamics yield ϵ -CORRELATED EQUILIBRIA with high probability (Hart & Mas-Colell 2000, 2001; ...) in $O(\log(n)/\epsilon^2)$ steps (Cesa-Bianchi & Lugosi 2003)
- QUERY COMPLEXITY (QC) := maximal number of pure payoff QUERIES (out of $n \cdot 2^n$)
- $\Rightarrow \text{ There are randomized algorithms for} \\ \text{computing } \epsilon \text{-} \text{CORRELATED EQUILIBRIA} \\ \text{with } \text{QC} = \text{POLY}(n)$

Surprise ?

- There are **CORRELATED EQUILIBRIA** with support of size 2n + 1
 - basic solutions of Linear Programming

- There are **CORRELATED EQUILIBRIA** with support of size 2n + 1
 - basic solutions of Linear Programming
- There are ϵ -CORRELATED EQUILIBRIA with support of size $O(\log n/\epsilon^2)$

- There are **CORRELATED EQUILIBRIA** with support of size 2n + 1
 - basic solutions of Linear Programming
- There are ϵ -CORRELATED EQUILIBRIA with support of size $O(\log n/\epsilon^2)$
 - use Lipton and Young 1994 (support of approximate optimal strategies)

- There are **CORRELATED EQUILIBRIA** with support of size 2n + 1
 - basic solutions of Linear Programming
- There are ϵ -CORRELATED EQUILIBRIA with support of size $O(\log n/\epsilon^2)$
 - use Lipton and Young 1994 (support of approximate optimal strategies)
 - regret-based dynamics: $O(\log n/\epsilon^2)$ steps

- There are **CORRELATED EQUILIBRIA** with support of size 2n + 1
 - basic solutions of Linear Programming
- There are ϵ -CORRELATED EQUILIBRIA with support of size $O(\log n/\epsilon^2)$
 - use Lipton and Young 1994 (support of approximate optimal strategies)
 - regret-based dynamics: $O(\log n/\epsilon^2)$ steps NOTE: Regret-based dynamics converge as fast as possible (up to a constant factor)

Correlated Equilibria (recall)

Correlated Equilibria (recall)

• There are *randomized* algorithms (regret-based dynamics) for computing *approximate* CORRELATED EQUILIBRIA with QC = POLY(n)

- There are *randomized* algorithms (regret-based dynamics) for computing *approximate* CORRELATED EQUILIBRIA with QC = POLY(n)
- **exact** CORRELATED EQUILIBRIA ?

- There are *randomized* algorithms (regret-based dynamics) for computing *approximate* CORRELATED EQUILIBRIA with QC = POLY(n)
- **exact** CORRELATED EQUILIBRIA ?
- deterministic algorithms ?

Query Complexity of CE

	Algorithm	
	Randomized	Deterministic
ε -CE		
exact CE		

SERGIU HART ⓒ 2015 – p. 8

	Algorithm	
	Randomized	Deterministic
ε -CE	POLY(n)	
	[1]	
exact CE		

[1] = regret-based dynamics

SERGIU HART ⓒ 2015 – p. 8

	Algorithm	
	Randomized	Deterministic
ε -CE	POLY(n)	
	[1]	
exact CE		EXP(n)
		[2]

- [1] = regret-based dynamics
- [2] = Babichenko and Barman 2013

	Algorithm	
	Randomized	Deterministic
ε -CE	POLY(n)	EXP(n)
	[1]	[3]
exact CE		EXP(n)
		[2]

- [1] = regret-based dynamics
- [2] = Babichenko and Barman 2013
- [3] =this paper

	Algorithm	
	Randomized	Deterministic
ε -CE	POLY(n)	EXP(n)
	[1]	[3]
exact CE	EXP(n)	EXP(n)
	[3]	[2]

- [1] = regret-based dynamics
- [2] = Babichenko and Barman 2013
- [3] =this paper

Query Complexity of CE

Query Complexity of CE

Theorem A. Every DETERMINISTIC algorithm that finds a 1/2–approximate correlated equilibrium in every n-person bi-strategy games with payoffs in {0,1} requires 2^{Ω(n)} QUERIES in the worst case.

- Theorem A. Every DETERMINISTIC algorithm that finds a 1/2–approximate correlated equilibrium in every *n*-person bi-strategy games with payoffs in {0,1} requires 2^{Ω(n)} QUERIES in the worst case.
- Theorem B. Every algorithm (randomized or deterministic) that finds an EXACT correlated equilibrium in every *n*-person bi-strategy games with payoffs specified as b-bit integers with $b = \Omega(n)$ requires $2^{\Omega(n)}$ expected COST in the worst case.

- Theorem A. Every DETERMINISTIC algorithm that finds a 1/2–approximate correlated equilibrium in every *n*-person bi-strategy games with payoffs in {0,1} requires 2^{Ω(n)} QUERIES in the worst case.
- Theorem B. Every algorithm (randomized or deterministic) that finds an EXACT correlated equilibrium in every *n*-person bi-strategy games with payoffs specified as b-bit integers with $b = \Omega(n)$ requires $2^{\Omega(n)}$ expected COST in the worst case.

COST = # of **QUERIES** + size of support of output

	Algorithm		
	Randomized	Deterministic	
ε -CE	POLY(n)	EXP(n)	
	[1]	[3]	
exact CE	EXP(n)	EXP(n)	
	[3]	[2]	

Query Complexity of COARSE CE

	Algorithm		
	Randomized	Deterministic	
ε -CE	POLY(n)	EXP(n)	
	[1]	[3]	
exact CE	EXP(n)	EXP(n)	
	[3]	[2]	

SERGIU HART ⓒ 2015 – p. 10

Query Complexity of COARSE CE

	Algorithm		
	Randomized	Deterministic	
ε -CE	POLY(n)	EXP(n)	
	[1]	[3]	
exact CE	EXP(n)	EXP(n)	
	[3]	[2]	

When every player has 2 strategies: **COARSE CORRELATED EQUILIBRIUM** = **CORRELATED EQUILIBRIUM**

The set of strategy combinations = the *n*-dimensional hypercube

- The set of strategy combinations = the *n*-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes

- The set of strategy combinations = the *n*-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes
- A query at node v provides the n regrets of all edges adjacent to v

- The set of strategy combinations = the *n*-dimensional hypercube
- Each edge is labelled with the regret of the player whose strategy changes
- A query at node v provides the n regrets of all edges adjacent to v
- If the number of queries is 2^{Ω(n)} then we can make the sum of the queried regrets high so that no 1/2-approximate correlated equilibrium is found within the queried nodes (use the edge iso-perimetric inequality)

Take a random path in the hypercube and define the regrets so that in order to get an exact correlated equilibrium one must find the endpoint of the path

- Take a random path in the hypercube and define the regrets so that in order to get an exact correlated equilibrium one must find the endpoint of the path
- To find the endpoint one must essentially follow the path (because every $n \log(n)$ steps there is "full mixing"), which requires $2^{\Omega(n)}$ queries

Complexity of CE

• VERIFICATION of CORRELATED EQUILIBRIUM with support of size POLY(n) is POLY(n)

Complexity of CE

- VERIFICATION of CORRELATED EQUILIBRIUM with support of size POLY(n) is POLY(n)
- QUERIES of *mixed* strategies: only POLY(*n*) are needed
 - Papadimitriou and Roughgarden 2008
 - Jing and Leyton-Brown 2011

Complexity of CE

LP of the same size as CE: randomized algorithms for approximate solutions

Complexity of CE

LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES

Complexity of CE

LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES

 \Rightarrow CE is a special LP

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a *special* LP
 - Dual of CE decomposes into n problems

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a special LP
 - **Dual** of **CE** decomposes into *n* problems
 - existence proof:

Hart and Schmeidler 1989

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a special LP
 - Dual of CE decomposes into n problems
 - existence proof:

Hart and Schmeidler 1989

 uncoupled dynamics: Hart and Mas-Colell 2003

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a special LP
 - Dual of CE decomposes into n problems
 - existence proof:

Hart and Schmeidler 1989

- uncoupled dynamics: Hart and Mas-Colell 2003
- *algorithm*:

Papadimitriou and Roughgarden 2008

Complexity of CE

LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES

 \Rightarrow CE is a special LP

Complexity of CE

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a special LP
 - **QUESTION**:

Why does this help **ONLY** for *randomized* algorithms for *approximate* **CE** ?

- LP of the same size as CE: randomized algorithms for approximate solutions require EXP(n) QUERIES
- \Rightarrow CE is a special LP
 - **QUESTION**:

Why does this help **ONLY** for *randomized* algorithms for *approximate* **CE** ?

QUESTION:

Complexity of approximate Nash Equilibria ?

"Police brutality is a thing of the past, mate, these days we apply structured query language!" © BART