A Colorful Urn

Sergiu Hart* Ron Peretz ${ }^{\dagger}$ Benjamin Weiss ${ }^{\ddagger}$

June 11, 2009

An urn has n balls, each one of a different color. Two balls are drawn at random from the urn, and the color of the second ball is changed to be the same as the color of the first ball; the two balls are then returned to the urn, and the process repeats. Let T denote the number of rounds until all balls are of the same color.

Question 1. What is $\mathbf{E}[T]$?
Question 2. Let T_{0} be the number of rounds up to T that the two chosen balls are of the same color, and let $T_{1}=T-T_{0}$ be the number of rounds that they are of different colors. What are $\mathbf{E}\left[T_{0}\right]$ and $\mathbf{E}\left[T_{1}\right]$?

Theorem 1

$$
\mathbf{E}[T]=(n-1)^{2},
$$

Theorem 2

$$
\mathbf{E}\left[T_{0}\right]=\frac{(n-1)(n-2)}{2} \quad \text { and } \quad \mathbf{E}\left[T_{1}\right]=\frac{n(n-1)}{2} .
$$

[^0]
1 Proof of Theorem 1

Number the colors $1,2, \ldots, n$. A composition of the urn is $K \equiv\left(k^{1}, \ldots, k^{n}\right)$ where k^{i} is the number of balls of color i (so $\sum_{i=1}^{n} k^{i}=n$). Let K_{t} be the composition of the urn at time t, so $K_{0}=(1,1, \ldots, 1)$ and, at the stopping time T when all the balls are of the same color, K_{T} is a permutation of $(n, 0, \ldots, 0)$.

For each color i, the sequence k_{t}^{i} is a random walk on $\{0,1,, \ldots, n\}$ with absorbing states 0 and n : letting

$$
p(k):=\frac{k(n-k)}{n(n-1)},
$$

we have $k_{t+1}^{i}=k_{t}^{i}+1$ with probability $p\left(k_{t}^{i}\right)$ (the first ball is of color i and the second of a different color $j \neq i), k_{t+1}^{i}=k_{t}^{i}-1$ with the same probability $p\left(k_{t}^{i}\right)$ (the second ball is of color i and the first of a different color), and $k_{t+1}^{i}=k_{t}^{i}$ with the remaining probability $1-2 p\left(k_{t}^{i}\right)$. The random walk is "symmetric" - the probabilities of increasing and decreasing by one unit are equal-and thus k_{t}^{i} is a martingale.

Let A^{i} be the event that one ends with all balls of color i, i.e., $k_{T}^{i}=n$, and put $T^{i}:=T \cdot \mathbf{1}_{A^{i}}$. Clearly the distribution of T^{i} depends only on the number of balls of color i (the partition into the other colors does not matter). For each $0 \leq k \leq n$ let

$$
\phi(k):=\mathbf{E}\left[T^{i} \mid k_{0}^{i}=k\right]
$$

be the expectation of T^{i} starting with k balls of color i (and $n-k$ of other colors). ${ }^{1}$ We have $\phi(0)=\phi(n)=0$, and for $1 \leq k \leq n$,

$$
\begin{equation*}
\phi(k)=(1-2 p(k)) \phi(k)+p(k) \phi(k+1)+p(k) \phi(k-1)+1 \cdot \mathbf{P}\left[A^{i} \mid k\right] \tag{1}
\end{equation*}
$$

Lemma 3 For each $0 \leq k \leq n$

$$
\mathbf{P}\left[A^{i} \mid k\right]=\frac{k}{n}
$$

[^1]Proof. Let U be the time that the bounded martingale k_{t}^{i} reaches either 0 or n, then $k_{0}^{i}=\mathbf{E}\left[k_{U}^{i}\right]=0 \cdot \mathbf{P}\left[k_{U}^{i}=0\right]+n \cdot \mathbf{P}\left[k_{U}^{i}=n\right]$, and so $\mathbf{P}\left[k_{U}^{i}=n\right]=k_{0}^{i} / n$.

Proposition 4 For each ${ }^{2} 0 \leq k \leq n$

$$
\phi(k)=(n-1)(n-k) \sum_{r=0}^{k-1} \frac{1}{n-r} .
$$

Proof. Rearranging equation (1) and using Lemma 3 yields

$$
\phi(k)=\frac{1}{2} \phi(k+1)+\frac{1}{2} \phi(k-1)+\frac{1}{2} \frac{n-1}{n-k} .
$$

Letting $\delta_{k}:=\phi(k)-\phi(k-1)$ and $a_{k}:=(n-1) /(n-k)$, this can be rewritten as

$$
\delta_{k+1}=\delta_{k}-a_{k} .
$$

Therefore $\delta_{k}=\delta_{1}-\sum_{r=1}^{k-1} a_{r}$ for $1 \leq k \leq n$ and so $\phi(k)=\sum_{r=1}^{k} \delta_{r}=$ $k \delta_{1}-\sum_{r=1}^{k-1}(k-r) a_{r}$ (recall that $\left.\phi(0)=0\right)$. Since $\phi(n)=0$ we get $n \delta_{1}=$ $\sum_{r=1}^{n-1}(n-r) a_{r}=\sum_{r=1}^{n-1}(n-1)=(n-1)^{2}$, or $\delta_{1}=(n-1)^{2} / n$. Therefore

$$
\begin{aligned}
\phi(k) & =k \delta_{1}-\sum_{r=1}^{k-1}(k-r) a_{r}=\frac{k(n-1)^{2}}{n}-\sum_{r=1}^{k-1} \frac{(k-r)(n-1)}{n-r} \\
& =(n-1)\left(k-\frac{k}{n}-\sum_{r=1}^{k-1}\left(1-\frac{n-k}{n-r}\right)\right)=(n-1) \sum_{r=0}^{k-1} \frac{n-k}{n-r}
\end{aligned}
$$

Proof of Theorem 1. We have $\mathbf{P}\left[\cup_{i=1}^{n} A^{i}\right]=1$ and $\phi(1)=(n-1)^{2} / n($ by Proposition 4), hence

$$
\mathbf{E}[T]=\sum_{i=1}^{n} \mathbf{E}\left[T \cdot \mathbf{1}_{A^{i}}\right]=\sum_{i=1}^{n} \phi(1)=(n-1)^{2}
$$

[^2]Remark. For each urn composition K put

$$
\Phi(K) \equiv \Phi\left(k^{1}, \ldots, k^{n}\right):=\sum_{i=1}^{n} \phi\left(k^{i}\right) .
$$

Since $\phi\left(k^{i}\right)=\mathbf{E}\left[T \cdot \mathbf{1}_{A^{i}} \mid k_{0}^{i}=k^{i}\right]$ we have

$$
\begin{aligned}
\Phi(K) & =\sum_{i=1}^{n} \mathbf{E}\left[T \cdot \mathbf{1}_{A^{i}} \mid k_{0}^{i}=k^{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[T \cdot \mathbf{1}_{A^{i}} \mid K_{0}=K\right] \\
& =\mathbf{E}\left[T \mid K_{0}=K\right] .
\end{aligned}
$$

This implies in particular that, if K_{t} is not a permutation of $(n, 0, \ldots, 0)$ (i.e., $t<T$), then

$$
\mathbf{E}\left[\Phi\left(K_{t+1}\right) \mid K_{t}\right]=\Phi\left(K_{t}\right)-1
$$

(since from t to $t+1$ one period has passed and so the remaining time to T has decreased by one). ${ }^{3}$

2 Proof of Theorem 2

Consider T_{1}; one may just as well assume that if the two chosen balls are of the same color then they are returned to the urn, and the round does not count. Denote the resulting process \tilde{K}_{t}; thus $\tilde{K}_{t+1} \neq \tilde{K}_{t}$ as long as \tilde{K}_{t} is not a permutation of $(n, 0, \ldots, 0)$, and T_{1} is the resulting stopping time. Define:

$$
\Psi(K) \equiv \Psi\left(k^{1}, \ldots, k^{n}\right):=\sum_{i=1}^{n}\left(k^{i}\right)^{2} .
$$

Proposition 5 If \tilde{K}_{t} is not a permutation of $(n, 0, \ldots, 0)$, then

$$
\mathbf{E}\left[\Psi\left(\tilde{K}_{t+1}\right) \mid \tilde{K}_{t}\right]=\Psi\left(\tilde{K}_{t}\right)+2
$$

[^3]Proof. If the color of the first ball is i and the color of the second ball is j (with $j \neq i$), then

$$
\Psi\left(\tilde{K}_{t+1}\right)=\Psi\left(\tilde{K}_{t}\right)+2 \tilde{k}_{t}^{i}+1-2 \tilde{k}_{t}^{j}+1
$$

if the color of the first ball is j and that of the second is i, then

$$
\Psi\left(\tilde{K}_{t+1}\right)=\Psi\left(\tilde{K}_{t}\right)-2 \tilde{k}_{t}^{i}+1+2 \tilde{k}_{t}^{j}+1
$$

These two events are equally probable, and so

$$
\mathbf{E}\left[\Psi\left(\tilde{K}_{t+1}\right) \mid \tilde{K}_{t}, C_{t+1}^{\{i, j\}}\right]=\Psi\left(\tilde{K}_{t}\right)+2
$$

where $C_{t+1}^{\{i, j\}}$ denotes the event that the colors of the two balls chosen at time $t+1$ are $\{i, j\}$ (without specifiying which one is first and which one is second). Now this holds for every $i \neq j$, yielding the result.

Proof of Theorem 2. Proposition 5 implies that $\Psi\left(\tilde{K}_{t}\right)-2 t$ is a martingale, for $t<T_{1}$. Therefore ${ }^{4} \Psi\left(\tilde{K}_{0}\right)=\mathbf{E}\left[\Psi\left(\tilde{K}_{T_{1}}\right)-2 T_{1}\right]$ and so $2 \mathbf{E}\left[T_{1}\right]=$ $\mathbf{E}\left[\Psi\left(\tilde{K}_{T_{1}}\right)\right]-\Psi\left(\tilde{K}_{0}\right)=n^{2}-n \cdot 1^{2}=n(n-1)$. Finally, $\mathbf{E}\left[T_{0}\right]=\mathbf{E}[T]-\mathbf{E}\left[T_{1}\right]=$ $(n-1)^{2}-n(n-1) / 2=(n-1)(n-2) / 2$.

[^4]
[^0]: *Department of Mathematics, Department of Economics, and Center for the Study of Rationality, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. e-mail: hart@huji.ac.il web page: http://www.ma.huji.ac.il/hart
 ${ }^{\dagger}$ Department of Mathematics and Center for the Study of Rationality, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. e-mail: ronprtz@math.huji.ac.il
 ${ }^{\ddagger}$ Department of Mathematics and Center for the Study of Rationality, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. e-mail: weiss@math.huji.ac.il

[^1]: ${ }^{1} \phi$ does not have a superscript i since it is the same for any color i.

[^2]: ${ }^{2}$ For $k=0$ the empty sum is 0 .

[^3]: ${ }^{3}$ This can also be shown directly by using either (1) or the formula of Proposition 4.

[^4]: ${ }^{4}$ For each integer m we have $\mathbf{E}\left[\Psi\left(\tilde{K}_{T_{1} \wedge m}\right)+T_{1} \wedge m\right]=\Psi\left(\tilde{K}_{0}\right)$. As $m \rightarrow \infty$ the sequence $\Psi\left(\tilde{K}_{T_{1} \wedge m}\right)$ is bounded and $T_{1} \wedge m$ is monotonic, so one can take the limit.

