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An urn has n balls, each one of a different color. Two balls are drawn at

random from the urn, and the color of the second ball is changed to be the

same as the color of the first ball; the two balls are then returned to the urn,

and the process repeats. Let T denote the number of rounds until all balls

are of the same color.

Question 1. What is E [T ] ?

Question 2. Let T0 be the number of rounds up to T that the two chosen

balls are of the same color, and let T1 = T − T0 be the number of rounds

that they are of different colors. What are E [T0] and E [T1] ?

Theorem 1

E [T ] = (n − 1)2,

Theorem 2

E [T0] =
(n − 1)(n − 2)

2
and E [T1] =

n(n − 1)

2
.
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1 Proof of Theorem 1

Number the colors 1, 2, ..., n. A composition of the urn is K ≡ (k1, ..., kn)

where ki is the number of balls of color i (so
∑n

i=1
ki = n). Let Kt be the

composition of the urn at time t, so K0 = (1, 1, ..., 1) and, at the stopping

time T when all the balls are of the same color, KT is a permutation of

(n, 0, ..., 0).

For each color i, the sequence ki
t is a random walk on {0, 1, , ..., n} with

absorbing states 0 and n: letting

p(k) :=
k(n − k)

n(n − 1)
,

we have ki
t+1 = ki

t + 1 with probability p(ki
t) (the first ball is of color i and

the second of a different color j 6= i), ki
t+1 = ki

t −1 with the same probability

p(ki
t) (the second ball is of color i and the first of a different color), and

ki
t+1 = ki

t with the remaining probability 1 − 2p(ki
t). The random walk is

“symmetric”—the probabilities of increasing and decreasing by one unit are

equal—and thus ki
t is a martingale.

Let Ai be the event that one ends with all balls of color i, i.e., ki
T = n, and

put T i := T · 1Ai . Clearly the distribution of T i depends only on the number

of balls of color i (the partition into the other colors does not matter). For

each 0 ≤ k ≤ n let

φ(k) := E
[

T i | ki
0 = k

]

be the expectation of T i starting with k balls of color i (and n − k of other

colors).1 We have φ(0) = φ(n) = 0, and for 1 ≤ k ≤ n,

φ(k) = (1 − 2p(k))φ(k) + p(k)φ(k + 1) + p(k)φ(k − 1) + 1 · P
[

Ai | k
]

(1)

Lemma 3 For each 0 ≤ k ≤ n

P
[

Ai | k
]

=
k

n
.

1φ does not have a superscript i since it is the same for any color i.
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Proof. Let U be the time that the bounded martingale ki
t reaches either 0 or

n, then ki
0 = E [ki

U ] = 0·P [ki
U = 0]+n·P [ki

U = n] , and so P [ki
U = n] = ki

0/n.

¤

Proposition 4 For each2 0 ≤ k ≤ n

φ(k) = (n − 1)(n − k)
k−1
∑

r=0

1

n − r
.

Proof. Rearranging equation (1) and using Lemma 3 yields

φ(k) =
1

2
φ(k + 1) +

1

2
φ(k − 1) +

1

2

n − 1

n − k
.

Letting δk := φ(k)−φ(k−1) and ak := (n−1)/(n−k), this can be rewritten

as

δk+1 = δk − ak.

Therefore δk = δ1 −
∑k−1

r=1
ar for 1 ≤ k ≤ n and so φ(k) =

∑k

r=1
δr =

kδ1 −
∑k−1

r=1
(k − r)ar (recall that φ(0) = 0). Since φ(n) = 0 we get nδ1 =

∑n−1

r=1
(n − r)ar =

∑n−1

r=1
(n − 1) = (n − 1)2, or δ1 = (n − 1)2/n. Therefore

φ(k) = kδ1 −
k−1
∑

r=1

(k − r)ar =
k(n − 1)2

n
−

k−1
∑

r=1

(k − r)(n − 1)

n − r

= (n − 1)

(

k −
k

n
−

k−1
∑

r=1

(

1 −
n − k

n − r

)

)

= (n − 1)
k−1
∑

r=0

n − k

n − r
.

¤

Proof of Theorem 1. We have P [∪n
i=1A

i] = 1 and φ(1) = (n − 1)2/n (by

Proposition 4), hence

E [T ] =
n

∑

i=1

E [T · 1Ai ] =
n

∑

i=1

φ(1) = (n − 1)2.

¤

2For k = 0 the empty sum is 0.
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Remark. For each urn composition K put

Φ(K) ≡ Φ(k1, ..., kn) :=
n

∑

i=1

φ(ki).

Since φ(ki) = E [T · 1Ai | ki
0 = ki] we have

Φ(K) =
n

∑

i=1

E
[

T · 1Ai | ki
0 = ki

]

=
n

∑

i=1

E [T · 1Ai |K0 = K]

= E [T |K0 = K] .

This implies in particular that, if Kt is not a permutation of (n, 0, ..., 0) (i.e.,

t < T ), then

E [Φ(Kt+1) |Kt] = Φ(Kt) − 1

(since from t to t + 1 one period has passed and so the remaining time to T

has decreased by one).3

2 Proof of Theorem 2

Consider T1; one may just as well assume that if the two chosen balls are of

the same color then they are returned to the urn, and the round does not

count. Denote the resulting process K̃t; thus K̃t+1 6= K̃t as long as K̃t is not

a permutation of (n, 0, ..., 0), and T1 is the resulting stopping time. Define:

Ψ(K) ≡ Ψ(k1, ..., kn) :=
n

∑

i=1

(ki)2.

Proposition 5 If K̃t is not a permutation of (n, 0, ..., 0), then

E
[

Ψ(K̃t+1) | K̃t

]

= Ψ(K̃t) + 2.

3This can also be shown directly by using either (1) or the formula of Proposition 4.
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Proof. If the color of the first ball is i and the color of the second ball is j

(with j 6= i), then

Ψ(K̃t+1) = Ψ(K̃t) + 2k̃i
t + 1 − 2k̃j

t + 1;

if the color of the first ball is j and that of the second is i, then

Ψ(K̃t+1) = Ψ(K̃t) − 2k̃i
t + 1 + 2k̃j

t + 1.

These two events are equally probable, and so

E
[

Ψ(K̃t+1) | K̃t, C
{i,j}
t+1

]

= Ψ(K̃t) + 2,

where C
{i,j}
t+1 denotes the event that the colors of the two balls chosen at time

t+1 are {i, j} (without specifiying which one is first and which one is second).

Now this holds for every i 6= j, yielding the result. ¤

Proof of Theorem 2. Proposition 5 implies that Ψ(K̃t) − 2t is a mar-

tingale, for t < T1. Therefore4 Ψ(K̃0) = E
[

Ψ(K̃T1
) − 2T1

]

and so 2E [T1] =

E
[

Ψ(K̃T1
)
]

−Ψ(K̃0) = n2−n·12 = n(n−1). Finally, E [T0] = E [T ]−E [T1] =

(n − 1)2 − n(n − 1)/2 = (n − 1)(n − 2)/2. ¤

4For each integer m we have E

[

Ψ(K̃T1∧m) + T1 ∧ m
]

= Ψ(K̃0). As m → ∞ the se-

quence Ψ(K̃T1∧m) is bounded and T1 ∧ m is monotonic, so one can take the limit.
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