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I. Introduction

Market crash is usually considered an indication that
the fundamentals of the economy have changed and
recession is around the corner. This, however, need
not be the case. For instance, in October 1987 Wall
Street lost over 20% of its value in one day, but this
was not followed by a recession. Moreover, in the days
preceding the crash, there were no significant external
events or “bad news” that could justify the dramatic
price fall.

We argue here that market crashes (and, similarly,
market bubbles) may well be the result of information
processing by the participants—and nothing else.
Moreover, in terms of market observables, it looks as
if nothing is really changing. Still, underneath the sur-
face, there is a gradual updating of information by the
participants. Then, at a certain point in time, this
causes a sudden change of behavior.

Specifically, the phenomenon we describe here has
to do with the step-by-step advance in levels of “mu-
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It is shown that market
crashes and bubbles can
arise without external
shocks. Sudden changes
in behavior coming after
a long period of station-
arity may be the result of
endogenous information
processing. Except for
the daily observation of
the market, there is no
new information, no
communication, and no
coordination among the
participants.
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tual knowledge” (what one knows about what the other knows, and so on).
Each trading day increases this level through the daily market observables—
prices, quantities traded, and so forth—which are common knowledge. How-
ever, the behavior does not necessarily change with the level of mutual knowl-
edge. The behavior may be constant for all levels up to a certain critical
level—where a jump occurs. Such a phenomenon has been exhibited by Gean-
akoplos and Polemarchakis (1982).1 In their article, two agents communicate
information to each other by repeatedly announcing and revising their pos-
teriors. It is shown there that the agents can repeat exactly the same opinions,
yet still manage to communicate relevant information. Here, we fit their ex-
ample to our model and show that there is no need for any direct commu-
nication between the traders; observing the market suffices.

We emphasize, first, that the phenomenon exhibited here is completely
endogenous. Except for the daily observation of the market, there is no new
information—whether pertinent or irrelevant (like “sunspots”); also, there is
no communication nor any coordination among the participants—whether
expressed or tacit. And second, the stationary unchanging behavior of the
market for arbitrarily long periods of time is no sign that nothing is happening.
Underneath the surface, completely unobservable, information is being pro-
cessed by the participants—which ultimately leads to a sudden change of
behavior.

The behavior of the agents in the example will turn out to resemble rules
actually used by traders in the market. For instance: “I am buying every day;
but, if others keep selling every day, then at some point I will start selling
too.” Some of the so-called technical analysis is indeed of this kind. Intuitively,
if others are willing to sell all the time, then the buyer will at some time have
to take this fact into account: perhaps his assessment is incorrect after all.
The framework of this article allows us to make such arguments precise.

Our analysis, in showing that there may be many periods of trade until the
participants’ information converges2—even when there is no new external
information—may perhaps help to interpret the large volume of trade in some
markets (like the global currency markets).

We present here a simple example. However, the phenomenon we highlight
is robust and general. One may change almost every feature of the example
(like the state space, the probabilities, the number of traders, the daily rules
of behavior, the prices, and so on), without qualitatively affecting the result.

To summarize, no exogenous “shocks” are needed to explain sudden de-
partures from stationary behavior; these may well be due to the participants
updating their information, based on the market observables. This information
processing is, however, not observable—there is no change in behavior—up
to the point where it generates an abrupt switch of behavior: a “crash.”

1. For other situations with similar behavior, see Geanakoplos and Sebenius (1983) and the
survey of Geanakoplos (1994).

2. See 2 in Sec. III.
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II. The Basic Example

There are two traders. Day after day they keep trading—one is selling and
the other is buying. Then, at some time, the updating of information leads
one of them to reverse his behavior—from buying to selling. This happens
in the absence of any exogenous influence.

Let Q be the set of all states of the world. Assume Q contains nine states,
say, . The prior probability assessments of the two tradersQ p {1, 2, … , 9}
are denoted and , respectively; that is, Alice believes that the state q inP PA B

Q has probability and similarly for Bob. For simplicity, we take a uniformP(q),A

probability distribution for both: for all q in Q. WeP(q) p P (q) p 1/9A B

emphasize that this “common prior” assumption plays no role in our analysis
(see a and b in Sec. IV).

The private information of each trader is described as usual by a partition
of the state space:3 two states belong to the same cell of the partition if and
only if the trader cannot distinguish between them. Call the two traders Alice
and Bob. Alice’s partition is

A p {1, 2, 3}, A p {4, 5, 6}, A p {7, 8, 9},1 2 3

and Bob’s partition is

B p {1, 2, 3, 4}, B p {5, 6, 7, 8}, B p {9}.1 2 3

The interpretation is as follows: trader Bob, for example, cannot distinguish
between states 1, 2, 3, and 4, nor between 5, 6, 7, and 8. If state 9 is the true
state, then Bob will know that for sure. If, however, state 1 is the true state,
then Bob will only know that it is either 1 or 2 or 3 or 4 (but not 5, 6, 7, 8,
9).

Consider the event . For instance, assume that E is the eventE p {1, 5, 9}
of a “bad” outcome (e.g., the company earnings will go down). Suppose that
each one of the two traders behaves each day according to the following rule:

Sell, if the probability of E is 0.3 or more;{Buy, if the probability of E is less than 0.3.

Of course, the relevant probability is always computed given the current
information.

The manner in which the cutoff point of 0.3 (or, for that matter, the whole
policy) is determined is irrelevant to the analysis here; in particular, we abstract
away from the stock price and the quantities.4 Also, we note that it does not
matter whether both traders use the same behavior strategy.

Assume that the true state of the world is . Initially, Alice assessesq p 10

3. For a formal treatment, see Aumann (1999) and Aumann and Heifetz (2002).
4. For concreteness, one may assume that “sell” actually means “sell the quantity q for the

price p,” and “buy” means “buy the quantity q for the price p” (where q and p are the same for
both decisions). Since, as we will see below, every day (up to the “crash”) Alice will sell and
Bob will buy, the price need not change. See 1 in Sec. III for some explicit demand functions.
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TABLE 1 The Information, the Probability Assessments, and the Actions
(The States of the Event E Are Underlined)

Day

Common Infor-
mation (before

Day t)

Alice Bob

A1

1 2 3
A2

4 5 6
A3

7 8 9 Action
B1

1 2 3 4
B2

5 6 7 8
B3

9 Action

t p 1 1 2 3 4 5 6 7 8 9 1/3 1/3 1/3 Sell 1/4 1/4 1 Buy
t p 2 1 2 3 4 5 6 7 8 1/3 1/3 0 Sell 1/4 1/4 Buy
t p 3 1 2 3 4 5 6 1/3 1/3 Sell 1/4 1/2 Buy
t p 4 1 2 3 4 1/3 0 Sell 1/4 Buy
t p 5 1 2 3 1/3 Sell 1/3 Sell

the probability of E to be (since at she knows that the true state1/3 q p 10

is either 1 [which belongs to E ], or 2 or 3 [which do not belong to E ])—
therefore, she gives an order to sell; Bob assesses this probability to be 1/4
(he knows the state is 1, 2, 3, or 4)—therefore, he gives an order to buy. So
a transaction takes place.

We will show that this will happen not only on the first day, but also on
each one of the first 4 days: the assessments of the two traders for the prob-
ability of E remain and , respectively. On the fifth day, however, there1/3 1/4
is a sudden and major change: both assessments become , and both traders1/3
give orders to sell. So, a “crash” occurs after four seemingly “quiet and
normal” days.

Let us see this in detail (see table 1).
Let denote the “days,” and the common knowledge infor-tt p 1, 2, … Q

mation at time t, before the traders choose their actions.
On day , we have . The assessments of Alice are1t p 1 Q p Q

1P(E d A ∩ Q ) p P(E d A ) p 1/3, for i p 1, 2, 3,A i A i

and those of Bob are

1/4, if j p 1, 2,1P (E d B ∩ Q ) p P (E d B ) pB j B j {1, if j p 3.

Since , the current information is A1 for Alice and B1 for Bob, so Aliceq p 10

sells and Bob buys. Note that Bob only computes (he knows thatP (E d B )B 1

the true state is in B1). However, for the sequel, one also needs to know what
Bob would have computed—and done—in the other states as well.

On day , it is common knowledge that Bob bought on the previoust p 2
day; therefore, it is common knowledge that did not occur.5 There-B p {9}3

5. Note that, at , both traders initially knew that the state is not 9 (so this was mutuallyq p 10

known); however, it was not commonly known. To see why, let and letF p {1, 2, … , 8} K FA

be the event “Alice knows F.” Similarly, is the event “Bob knows that Alice knows F,”K K FB A

etc. Then , , , andK F p {1, 2, … , 6} K K F p {1, 2, 3, 4} K K K F p {1, 2, 3} K K K K F pA B A A B A B A B A

. Thus, it is never the case that Bob knows that Alice knows that Bob knows that Alice knowsf
that the state is not 9. Hence, in no state of the world—in particular, at —is F commonq p 10

knowledge.
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fore, the new common knowledge information is . The new2Q p {1, 2, … , 8}
assessments are

1/3, if i p 1, 2,2P(E d A ∩ Q ) pA i {0, if i p 3,

for Alice, and

2P (E d B ∩ Q ) p 1/4, for j p 1, 2,B j

for Bob. Again, at a transaction takes place: Alice sells and Bob buys.q p 10

The new common knowledge information on day is 3t p 3 Q p
(since Alice would not have sold at if the state were in{1, 2, … , 6} t p 2

A3), and we have on day 3:

3P(E d A ∩ Q ) p 1/3, for i p 1, 2,A i

and

1/4, if j p 1,3P (E d B ∩ Q ) pB j {1/2, if j p 2.

Thus, there is a transaction on day 3, and on day 4 it is common knowledge
that the state is in (since B2 is commonly ruled out), and4Q p {1, 2, 3, 4}
thus

1/3, if i p 1,4P(E d A ∩ Q ) pA i {0, if i p 2,

and

4P (E d B ∩ Q ) p 1/4, for j p 1.B j

Finally, on day 5 we get (since A2 is commonly ruled out),5Q p {1, 2, 3}

5P(E d A ∩ Q ) p 1/3, for i p 1,A i

and

5P (E d B ∩ Q ) p 1/3, for j p 1.B j

But now both Alice and Bob send orders to sell and a “crash” occurs.
What is happening in this example is the following. Initially, both Alice

and Bob know that the state is6 1, 2, 3, or 4. However, this fact is not common
knowledge between them. For example, from Bob’s point of view, the state
could well be 4, in which case Alice would have known that it is either 4,
5, or 6. So Bob does not know that Alice knows that it is 1, 2, 3, or 4. As
time goes by, the trading increases the common knowledge (see the second
column of table 1), until, on day 5, it reaches its conclusion: it is common
knowledge that .q p 1, 2, or 3

6. Alice knows even more: she knows that the state is not 4.
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III. Extensions and Modifications

We discuss now a number of extensions and generalizations of the basic
example.

1. For simplicity, we have abstracted away from prices and quantities. There
is, however, no difficulty in introducing them explicitly. For a specific example,
take the von Neumann–Morgenstern utility function of the traders to be

where x denotes monetary payoff and w initial “wealth.”u(x) p log (x � w),
Assume that the price of the share will be a if E occurs, and b otherwise
(with ). If the current price is p and the probability of E is then thea ! b p,
net quantity demanded is easily obtained:

Q(p; p) p arg max pu[q(a � p)] � (1 � p)u[q(b � p)]
q

w[pa � (1 � p)b � p]
p ;

(b � p)(p � a)

note that Q may well be negative—in which case the agent sells. For instance,
take7 , , and thena p 1 b p 25 w p 119;

119(19 � p)
Q(p; 1/4) p ,

(25 � p)(p � 1)

and

119(p � 17)
Q(p; 1/3) p � .

(25 � p)(p � 1)

Therefore, at all days t up to the last one, the equilibrium price8 is tp p
Bob buys one unit and Alice sells one unit ( andt18; q p Q(18; 1/4) p 1B

for ). On the last day the pricetq p Q(18; 1/3) p �1 t p 1, 2, 3, 4 t p 5,A

drops to (at the bottom of the trading range [17, 19]), and there is5p p 17
no trade ( ).5 5q p q p Q(17; 1/3) p 0A B

One may add to the model further economic elements, like varying prices
and quantities, “limit” orders, and so on. This will make the analysis more
complex, but—once the trading policies are appropriately defined (i.e., in such
a manner that the information deduced remains the same as in the basic
example)—it will not affect the phenomenon we exhibit.

2. For any positive integer n, a similar example consisting of 2(n � 1)
(instead of 9) states will yield 2n days where transactions occur, and a “crash”
on day (see Aumann’s example, at the bottom of p. 97 in Geanakoplos2n � 1
and Polemarchakis [1982]). So a “crash” can be preceded by arbitrarily many
periods where trading occurs normally and nothing seems to change.

7. The only reason for these numbers is that all prices and quantities come out integers. Also,
we assume for simplicity that the wealth of both traders is the same and does not change over
time.

8. Determined by the market-clearing condition, i.e., t tQ(p ; 1/4) � Q(p ; 1/3) p 0.
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3. We have assumed throughout that ; that is, a “bad” state (in E )q p 10

is the true state. In the end (day 5), both traders indeed want to sell (the two
traders, even by pooling their information, cannot distinguish between states
1, 2, and 3; they both sell since the probability assessment of E ends up being

). However, exactly the same behavior would have resulted if the true state1/3
were or —which are “good” states (not in E). Also, note thatq p 2 q p 30 0

if , then a “bubble” occurs (i.e., both buy) at .q p 4 t p 40

4. If the state space is finite (or, more precisely, if the two information
partitions are finite), then there can be only finitely many instances of infor-
mation updating (after which, under the common prior assumption, the two
assessments necessarily agree; this is the Agreement Theorem of Aumann
[1976]).

5. We have made the example as simple as possible; in particular, there are
only two traders. One may of course deal with more traders; one easy way
is to have two types of traders, A (like Alice) and B (like Bob).

IV. Discussion

We conclude with a number of general remarks.
a) Robustness. It is important to emphasize that, even though the example

seems to be very “special,” it is not. One may change almost every feature
without affecting the conclusion. For instance, it suffices for the prior prob-
abilities to satisfy and for all q inFP(q) � 1/9F ! 1/13 FP (q) � 1/9F ! 1/8A B

Q. In contrast, this is not the case with, say, the Geanakoplos and Polemar-
chakis (1982) setup: any small perturbation invalidates it (since their posteriors
need to be all equal, whereas ours need only satisfy an inequality: greater or
less than 0.3).

b) No “common prior.” A particular implication of the above robustness
is that one may make the two priors and different. Thus our conclusionP PA B

is independent of the “common prior” assumption, which underlies much of
the literature (see, in particular, Aumann 1976; Geanakoplos and Polemar-
chakis 1982; and Geanakoplos and Sebenius 1983).

c) More sophisticated players. Our two traders update their probability
assessments on the basis of the observed actions. Assume instead that they
could make more sophisticated inferences. For instance, they would realize
that the only way for an order to be executed in our example is for the two
traders to give opposite orders. When this is taken into account, the decisions
may be affected. For example, at , Bob reasons as follows: “The onlyt p 4
case where my ‘buy’ order will be executed is when Alice sells; but that
happens only when the state is 1, 2, or 3—and then I should sell, not buy!”
This may “unravel” the whole example; for related analyses, see Geanakoplos
and Sebenius (1983)9 and the surveys of Morris and Shin (1997, 2003) as
well as the references there.

9. Where it is shown that, under the common prior assumption, fully rational players will
never trade.
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Note that in our case the above reasoning applies when Alice and Bob are
the only two traders in the market. If, however, there are other traders in
addition to Alice and Bob (who are the two “major” informed traders), then
transactions do not necessarily take place between the two. Still, each one
observes the moves of the other (they are, after all, the major players in this
market). Then the phenomenon in the example works as presented.

Another issue is that, in our example, Alice is initially better informed at
than Bob: she knows that Bob’s information is B1. Therefore, sheq p 10

can construct ahead of time the whole process as in table 1. This can easily
be remedied by taking , or, if one wants the same number of periodsq p 50

before the crash, a bigger example as in 2 of Section III above.
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