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Calibration

Forecaster says:
"There is a p chance of rain tomorrow"

Forecaster is CALIBRATED if

For every p:
The proportion of rainy days among those
days when the forecast was p equals p
(or: is close to p in the long run)
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The MINIMAX Theorem

THEOREM (von Neumann 1928)

IF

X ⊂ R
n, Y ⊂ R

m are compact convex sets,

and f : X × Y → R is a continuous function

that is convex-concave,

i.e., f(·, y) : X → R is convex for fixed y,

and f(x, ·) : Y → R is concave for fixed x,

THEN

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).
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such that my payoff is at least v

THEN

I have a strategy
that guarantees that my payoff is at least v
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Calibration

Theorem:

CALIBRATION can be guaranteed

(no matter what the weather will be)

Foster and Vohra 1994 [publ 1998]
Hart 1995: proof using Minimax Theorem
Hart and Mas-Colell 1996 [2000]: procedure
by Blackwell’s Approachability
Foster 1999: simple procedure
Foster and Hart 2016 [2021]: even simpler
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No Calibration

CALIBRATION cannot be guaranteed when:

Forecast is known before the rain/no-rain
decision is made
("LEAKY FORECASTS")

Forecaster uses a deterministic
forecasting procedure

Oakes 1985
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Continuous Calibration

CONTINUOUS CALIBRATION: combine the
days when the forecast was close to p
(smooth out the calibration score)

Theorem:

There exists a deterministic procedure

that is CONTINUOUSLY CALIBRATED.

Deterministic ⇒ result holds also when
the forecasts are leaked

Foster and Kakade (2004, 2006)
Foster and Hart (2018, 2021)
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Rain forecasting

At time = t, for each forecast p in [0, 1]:

n(p) := number of days that p has been
used in the past t − 1 days

r(p) := number of rainy days out of
those n(p) days

G(p) := r(p) − n(p) · p = gap at p
(excess rain)

S :=
∑

p G(p)2 = sum-of-squares score
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A Simple Illustration

At time t:

q = forecast (in [0, 1])

a = rain/no-rain (in {0, 1})

Change in S = (G(q) + a − q)2 − G(q)2

First-order approximation = 2∆, where

∆ := G(q) · (a − q)

G(p) := r(p) − n(p) · p = gap at p

S :=
∑

p G(p)2 = sum-of-squares score
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Forecast-Hedging (FH)

∆ := G(q) · (a − q)

DETERMINISTIC FORECAST-HEDGING:
Guarantee that

∆ ≤ 0 for all a

⇒ Choose q with G(q) = 0 if such q exists

STOCHASTIC FORECAST-HEDGING:
Guarantee that

Eq[∆] ≤ 0 for all a

⇒ How ?
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Stochastic Forecast-Hedging

STOCHASTIC FORECAST-HEDGING:

Eq[∆] = Eq[G(q) · (a − q)] ≤ 0 for all a

Forecast: q1 w/prob p1, q2 w/prob p2

E [∆] = p1G(q1) · (a − q1) + p2G(q2) · (a − q2)

= [p1G(q1) + p2G(q2)] · (a − q1)

+ p2G(q2) · (q1 − q2)

⇒ Choose the qi and pi such that:

p1G(q1) + p2G(q2) = 0

q1 − q2 is small
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Forecast-Hedging

Theorem: The above stochastic procedure is
δ-CALIBRATED, where δ is the mesh size

New simplest procedure

All randomizations are between two forecasts
that are δ-APART

⋆ ALMOST DETERMINISTIC CALIBRATION ⋆

When the function G is CONTINUOUS there
always exists a PURE q with G(q) = 0

⋆ DETERMINISTIC CONTINUOUS CALIBRATION ⋆
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Forecast-Hedging

In general (higher dimensions):

DETERMINISTIC FORECAST-HEDGING

G(q) · (a − q) ≤ 0 for all a

is obtained by continuous FIXEDPOINT

→ FP procedures

STOCHASTIC FORECAST-HEDGING

Eq[G(q) · (a − q)] ≤ δ for all a

is obtained by finite MINIMAX

→ MM procedures
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Forecast-Hedging

fore-casting ?

BACK-CASTING !
("Politicians’ Lemma")
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Calibration in Practice

Calibration plots of FiveThirtyEight.com
(as of June 2019)

SERGIU HART c© 2015 – p. 27



Calibration in Practice

Calibration plot of ElectionBettingOdds.com
(2016 – 2018)
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WEIGHT FUNCTIONS: wi : C → [0, 1]

wi(c) fraction of forecast c counted in bin i
∑I

i=1
wi(c) = 1 for every c

CLASSIC CALIBRATION:

BIN i ↔ forecast i/I

WEIGHT wi(c) = 1c=i/I
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Binning

BINS: i = 1, ..., I

WEIGHT FUNCTIONS: wi : C → [0, 1]

wi(c) fraction of forecast c counted in bin i
∑I

i=1
wi(c) = 1 for every c

CLASSIC CALIBRATION:

BIN i ↔ forecast i/I

WEIGHT wi(c) = 1c=i/I

CONTINUOUS CALIBRATION:

Each wi(c) is a continuous function of c
(“continuous fractional binning”)
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GAP of wi at time t

Gt(wi) :=
t

∑

s=1

wi(cs)(as − cs)
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Binning and Calibration

GAP of wi at time t

Gt(wi) :=
t

∑

s=1

wi(cs)(as − cs)

CALIBRATION score at time t:

Kt =
I

∑

i=1

∥

∥

∥

∥

1

t
Gt(wi)

∥

∥

∥

∥

2
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2 + γ2

+2
∑

i wi(ct) Gt−1(wi) · (at − ct)

SERGIU HART c© 2015 – p. 32



Deterministic Forecast-Hedging

Gt(wi) = Gt−1(wi) + wi(ct)(at − ct)
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2γ2

+ 2wi(ct)Gt−1(wi) · (at − ct)
∑

i ‖Gt(wi)‖
2 ≤

∑
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2 + γ2

+2
∑
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FH: Choose ct so that for any at
∑
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Deterministic Forecast-Hedging

Gt(wi) = Gt−1(wi) + wi(ct)(at − ct)

‖Gt(wi)‖
2 ≤ ‖Gt−1(wi)‖

2 + wi(ct)
2γ2

+ 2wi(ct)Gt−1(wi) · (at − ct)
∑

i ‖Gt(wi)‖
2 ≤

∑

i ‖Gt−1(wi)‖
2 + γ2

∑

i ‖Gt(wi)‖
2 ≤ tγ2
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Deterministic Forecast-Hedging

Gt(wi) = Gt−1(wi) + wi(ct)(at − ct)

‖Gt(wi)‖
2 ≤ ‖Gt−1(wi)‖

2 + wi(ct)
2γ2

+ 2wi(ct)Gt−1(wi) · (at − ct)
∑

i ‖Gt(wi)‖
2 ≤

∑

i ‖Gt−1(wi)‖
2 + γ2

∑

i ‖Gt(wi)‖
2 ≤ tγ2

∑

i

∥

∥

1

t
Gt(wi)

∥

∥

2

≤ 1

t
γ2
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Deterministic Forecast-Hedging

Gt(wi) = Gt−1(wi) + wi(ct)(at − ct)

‖Gt(wi)‖
2 ≤ ‖Gt−1(wi)‖

2 + wi(ct)
2γ2

+ 2wi(ct)Gt−1(wi) · (at − ct)
∑

i ‖Gt(wi)‖
2 ≤

∑

i ‖Gt−1(wi)‖
2 + γ2

∑

i ‖Gt(wi)‖
2 ≤ tγ2

∑

i

∥

∥

1

t
Gt(wi)

∥

∥

2

≤ 1

t
γ2 → 0 as t → ∞
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Deterministic Calibration

Gt(wi) = Gt−1(wi) + wi(ct)(at − ct)

‖Gt(wi)‖
2 ≤ ‖Gt−1(wi)‖

2 + wi(ct)
2γ2

+ 2wi(ct)Gt−1(wi) · (at − ct)
∑

i ‖Gt(wi)‖
2 ≤

∑

i ‖Gt−1(wi)‖
2 + γ2

∑

i ‖Gt(wi)‖
2 ≤ tγ2

∑

i

∥

∥

1

t
Gt(wi)

∥

∥

2

≤ 1

t
γ2 → 0 as t → ∞

⇒ Deterministic continuous calibration
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Deterministic Forecast-Hedging

Continuous weight functions wi
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Deterministic Forecast-Hedging

Continuous weight functions wi

Choose the forecast ct at time t such that

I
∑

i=1

wi(ct) Gt−1(wi) · (at − ct) ≤ 0

for every at ∈ A
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Deterministic Forecast-Hedging

Continuous weight functions wi

Choose the forecast ct at time t such that

I
∑

i=1

wi(ct) Gt−1(wi) · (at − ct) ≤ 0

for every at ∈ A

Existence of such a ct is guaranteed by a
Fixed Point Theorem (Brouwer)
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Stochastic Forecast-Hedging

Choose the distribution of the forecast ct s.t.

Ect

[

∑

i

wi(ct) Gt−1(wi) · (at − ct)

]

≤ ε

for every at ∈ A
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Choose the distribution of the forecast ct s.t.

Ect

[

∑

i

wi(ct) Gt−1(wi) · (at − ct)

]

≤ ε

for every at ∈ A

Existence of such a distribution is
guaranteed by a Minimax Theorem
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Stochastic Forecast-Hedging

Choose the distribution of the forecast ct s.t.

Ect

[

∑

i

wi(ct) Gt−1(wi) · (at − ct)

]

≤ ε

for every at ∈ A

Existence of such a distribution is
guaranteed by a Minimax Theorem

⇒(as in the previous proof . . .)
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Stochastic Calibration

Choose the distribution of the forecast ct s.t.

Ect

[

∑

i

wi(ct) Gt−1(wi) · (at − ct)

]

≤ ε

for every at ∈ A

Existence of such a distribution is
guaranteed by a Minimax Theorem

⇒(as in the previous proof . . .)

⇒ Stochastic classic calibration
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Forecast-Hedging 7→ Calibration

Fixed Point 7→ deterministic calibration

MiniMax 7→ stochastic calibration
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Forecast-Hedging Tools
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Outgoing Fixed Point Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is continuous

then there exists y ∈ C

s.t. f(y) · (c − y) ≤ 0 for all c ∈ C
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Outgoing Fixed Point Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is continuous

then there exists y ∈ C

s.t. f(y) · (c − y) ≤ 0 for all c ∈ C

⇔ Brouwer’s fixed-point theorem
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Outgoing Minimax Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function
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m be a function

If f is bounded and ε > 0 then

there exists a probability measure η on C
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m be a function
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there exists a probability measure η on C

s.t. Ey∼η[f(y) · (c − y)] ≤ ε for all c ∈ C
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Outgoing Minimax Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is bounded and ε > 0 then

there exists a probability measure η on C

s.t. Ey∼η[f(y) · (c − y)] ≤ ε for all c ∈ C

⇔ Minimax theorem

support of η is at most m + 2 points
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Outgoing Minimax Theorem

Let C ⊂ R
m be a compact convex set 6= ∅

Let f : C → R
m be a function

If f is bounded and ε > 0 then

there exists a probability measure η on C

s.t. Ey∼η[f(y) · (c − y)] ≤ ε for all c ∈ C

⇔ Minimax theorem

support of η is at most m + 2 points

if f is continuous it holds also for ε = 0
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Outgoing Theorems

Outgoing FIXED POINT (FP):

f : C → R
m continuous function

⇒ ∃ POINT y ∈ C

s.t. f(y) · (c − y) ≤ 0 for all c ∈ C

Outgoing MINIMAX (MM):

f → R
m bounded function, ε > 0

⇒ ∃ PROBABILITY DISTRIBUTION η ∈ ∆(C)

s.t. Ey∼η[f(y) · (c − y)] ≤ ε for all c ∈ C
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∀ε > 0 : ∃ STOCHASTIC procedure

that is ε-CALIBRATED

Foster and Vohra 1998
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that is ε-CALIBRATED

Foster and Vohra 1998

∃ DETERMINISTIC procedure

that is CONTINUOUSLY CALIBRATED

(Foster and Kakade 2006, Foster and Hart 2018)
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Calibration: FH Results

∀ε > 0 : ∃ STOCHASTIC procedure

that is ε-CALIBRATED

Foster and Vohra 1998

∃ DETERMINISTIC procedure

that is CONTINUOUSLY CALIBRATED

(Foster and Kakade 2006, Foster and Hart 2018)

∀ε > 0, ρ > 0 : ∃ ρ-LOCAL STOCHASTIC

procedure that is ε-CALIBRATED

Foster 1999, Kakade and Foster 2004
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Players forecast the play in the next period

calibrated forecasts

Players choose their actions in response to
the forecasts
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Calibration and Game Dynamics

General n-person game

Players forecast the play in the next period

calibrated forecasts

Players choose their actions in response to
the forecasts

best response

⇒ Long-run play ?

SERGIU HART c© 2015 – p. 43



Calibrated Learning

SERGIU HART c© 2015 – p. 44



Calibrated Learning

Each player makes a δ-calibrated forecast
on the play of the other players in the next
period
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Calibrated Learning

Each player makes a δ-calibrated forecast
on the play of the other players in the next
period

Each player best replies to the forecast

⇒ TIME-AVERAGE OF PLAY

(= empirical distribution of play)
is a CORRELATED ε-EQUILIBRIUM

in the long run
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Calibrated Learning

Each player makes a δ-calibrated forecast
on the play of the other players in the next
period

Each player best replies to the forecast

⇒ TIME-AVERAGE OF PLAY

(= empirical distribution of play)
is a CORRELATED ε-EQUILIBRIUM

in the long run

Foster and Vohra 1997
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Continuously Calibrated Learning

All players make a deterministic
continuously calibrated forecast on the
play of all players in the next period
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Continuously Calibrated Learning

All players make a deterministic
continuously calibrated forecast on the
play of all players in the next period

Each player continuously δ-best replies to
the forecast
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Continuously Calibrated Learning

All players make a deterministic
continuously calibrated forecast on the
play of all players in the next period

Each player continuously δ-best replies to
the forecast

⇒ 1 − ε OF THE TIME the play
is a NASH ε-EQUILIBRIUM

in the long run (a.s.)
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Continuously Calibrated Learning

(F) A continuously calibrated deterministic
procedure, which gives in each period t a

"forecast" of play ct in Πi∈N∆(Ai)
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Continuously Calibrated Learning

(F) A continuously calibrated deterministic
procedure, which gives in each period t a

"forecast" of play ct in Πi∈N∆(Ai)

(P) A continuous δ-best reply mapping

gi : Πi∈N∆(Ai) → ∆(Ai) for each player i
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Continuously Calibrated Learning

(F) A continuously calibrated deterministic
procedure, which gives in each period t a

"forecast" of play ct in Πi∈N∆(Ai)

(P) A continuous δ-best reply mapping

gi : Πi∈N∆(Ai) → ∆(Ai) for each player i

In each period t, each player i:

1. runs the procedure (F) to get ct

2. plays gi(ct) given by (P)
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Continuously Calibrated Learning
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Continuously Calibrated Learning

CONTINUOUSLY CALIBRATED LEARNING:
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CONTINUOUSLY CALIBRATED LEARNING:

• is a stochastic uncoupled dynamic
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Continuously Calibrated Learning

CONTINUOUSLY CALIBRATED LEARNING:

• is a stochastic uncoupled dynamic

• Nash ε-equilibria are played

at least 1 − ε of the time

in the long run (a.s.)
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Continuously Calibrated Learning

Proof:
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Continuously Calibrated Learning

Proof:

playt = g(ct)
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Continuously Calibrated Learning

Proof:

continuous calibration
⇒ playt = g(ct) ≈ ct

use: g is continuous

g approximate best reply
⇒ playt is an approximate Nash equilibrium

g(playt) = g(g(ct)) ≈ g(ct) = playt
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Why Continuous ?

CONTINUOUS CALIBRATION

deterministic
⇒ same forecast for all players

leaky
⇒ actions depend on forecast

calibrated
⇒ forecast equals actions

⇒ FIXED POINT

CONTINUOUS BEST REPLY

⇒ fixed point = NASH EQUILIBRIUM
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Dynamics and Equilibrium

"LAW OF CONSERVATION OF COORDINATION":

There must be some COORDINATION —

either in the EQUILIBRIUM notion,
(CORRELATED EQUILIBRIUM)

or in the DYNAMIC

(NASH EQUILIBRIUM)

(Hart and Mas-Colell 2003)
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MINIMAX universe

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe FIXEDPOINT universe

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

FIXEDPOINT universe

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

FIXEDPOINT universe

deterministic
forecast-hedging

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

FIXEDPOINT universe

deterministic
forecast-hedging

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

continuous
calibration

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

correlated equilibria

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

continuous
calibration

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

correlated equilibria

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

continuous
calibration

Nash equilibria

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

correlated equilibria

time-average

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

continuous
calibration

Nash equilibria

SERGIU HART c© 2015 – p. 53



Calibration, Dynamics, Equilibria

MINIMAX universe

stochastic
forecast-hedging

MM-procedures

classic
calibration

correlated equilibria

time-average

FIXEDPOINT universe

deterministic
forecast-hedging

FP-procedures

continuous
calibration

Nash equilibria

period-by-period

SERGIU HART c© 2015 – p. 53



Perfect Hedging

SERGIU HART c© 2015 – p. 54



Perfect Hedging

SERGIU HART c© 2015 – p. 54



Perfect Hedging

SERGIU HART c© 2015 – p. 54



Perfect Hedging

Château de Villandry, 2005 SERGIU HART c© 2015 – p. 54


	 
	Paper
	Paper

	Other Papers
	Other Papers
	Other Papers
	Other Papers

	Calibration
	Calibration
	Calibration
	Calibration

	Calibration
	Calibration
	Calibration
	Calibration
	Calibration
	Calibration
	Calibration

	The MINIMAX Theorem
	The MINIMAX Theorem

	The MINIMAX Theorem
	The MINIMAX Theorem
	The MINIMAX Theorem
	The MINIMAX Theorem
	The MINIMAX Theorem
	The MINIMAX Theorem

	Calibration Proof: Minimax
	Calibration Proof: Minimax
	Calibration Proof: Minimax
	Calibration Proof: Minimax
	Calibration Proof: Minimax
	Calibration Proof: Minimax

	Calibration
	Calibration
	Calibration
	Calibration
	Calibration

	No Calibration
	No Calibration
	No Calibration
	No Calibration
	No Calibration

	Continuous Calibration
	Continuous Calibration
	Continuous Calibration
	Continuous Calibration
	Continuous Calibration
	Continuous Calibration

	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration

	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration
	A Simple Illustration

	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}
	untilSlide *{6}{A Simple Illustration}�romSlide *{7}{Forecast-Hedging (FH)}

	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging
	Stochastic Forecast-Hedging

	Stochastic FH
	Stochastic FH
	Stochastic FH
	Stochastic FH
	Stochastic FH
	Stochastic FH

	Deterministic FH
	Deterministic FH
	Deterministic FH

	Stochastic FH
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging

	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging

	Forecast-Hedging
	Forecast-Hedging
	Forecast-Hedging

	Calibration in Practice
	Calibration in Practice

	Calibration in Practice
	Binning
	Binning
	Binning
	Binning
	Binning
	Binning

	Binning and Calibration
	Binning and Calibration
	Binning and Calibration
	Binning and Calibration

	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}
	Deterministic untilSlide *{9}{Forecast-Hedging}�romSlide *{10}{Calibration}

	Deterministic Forecast-Hedging
	Deterministic Forecast-Hedging
	Deterministic Forecast-Hedging
	Deterministic Forecast-Hedging

	Stochastic untilSlide *{4}{Forecast-Hedging}�romSlide *{5}{Calibration}
	Stochastic untilSlide *{4}{Forecast-Hedging}�romSlide *{5}{Calibration}
	Stochastic untilSlide *{4}{Forecast-Hedging}�romSlide *{5}{Calibration}
	Stochastic untilSlide *{4}{Forecast-Hedging}�romSlide *{5}{Calibration}
	Stochastic untilSlide *{4}{Forecast-Hedging}�romSlide *{5}{Calibration}

	Forecast-Hedging ~$mapsto $~ Calibration
	Forecast-Hedging ~$mapsto $~ Calibration
	Forecast-Hedging ~$mapsto $~ Calibration

	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem
	Outgoing Fixed Point Theorem

	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem
	Outgoing Minimax Theorem

	Outgoing Theorems
	Calibration: FH Results
	Calibration: FH Results
	Calibration: FH Results
	Calibration: FH Results
	Calibration: FH Results

	Calibration and Game Dynamics
	Calibration and Game Dynamics
	Calibration and Game Dynamics
	Calibration and Game Dynamics
	Calibration and Game Dynamics
	Calibration and Game Dynamics
	Calibration and Game Dynamics

	Calibrated Learning
	Calibrated Learning
	Calibrated Learning
	Calibrated Learning
	Calibrated Learning

	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning

	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning

	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning

	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning
	Continuously Calibrated Learning

	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?
	Why Continuous ?

	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium
	Dynamics and Equilibrium

	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria
	Calibration, Dynamics, Equilibria

	Perfect Hedging
	Perfect Hedging
	Perfect Hedging
	Perfect Hedging


