

Forecast-Hedging and Calibration

Sergiu Hart

This version: March 2022

SERGIU HART © 2015 – p. 1

Forecast-Hedging and Calibration

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster

University of Pennsylvania & Amazon

SERGIU HART © 2015 - p. 3

- Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration"
 - Journal of Political Economy 2021

www.ma.huji.ac.il/hart/publ.html#calib-int

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021]

www.ma.huji.ac.il/hart/publ.html#calib-minmax

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021] www.ma.huji.ac.il/hart/publ.html#calib-minmax

Dean P. Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics" Games and Economic Behavior 2018

www.ma.huji.ac.il/hart/publ.html#calib-eq

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021] www.ma.huji.ac.il/hart/publ.html#calib-minmax

Dean P. Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics" Games and Economic Behavior 2018

www.ma.huji.ac.il/hart/publ.html#calib-eq

Dean P. Foster and Sergiu Hart " 'Calibeating': Beating Forecasters at Their Own Game", 2021

www.ma.huji.ac.il/hart/publ.html#calib-beat

Calibrated Forecasts

SERGIU HART (C) 2015 - p. 6

Forecaster says: "There is a 70% chance of rain tomorrow"

Forecaster says: "There is a p chance of rain tomorrow"

Forecaster says: "There is a p chance of rain tomorrow"

- Forecaster is CALIBRATED if
 - For every p: The proportion of rainy days among those days when the forecast was p equals p (or: is close to p in the long run)

Theorem:

CALIBRATION can be guaranteed

(no matter what the weather will be)

Theorem:

CALIBRATION *can be guaranteed* (no matter what the weather will be)

Theorem:

CALIBRATION *can be guaranteed* (no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

Foster and Vohra 1994 [publ 1998]

SERGIU HART © 2015 - p. 8

Theorem:

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)
- Foster and Vohra 1994 [publ 1998]

Theorem:

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)
- Foster and Vohra 1994 [publ 1998]
 Hart 1995: proof using Minimax Theorem

Theorem:

CALIBRATION *can be guaranteed* (no matter what the weather will be)

- Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)
- Foster and Vohra 1994 [publ 1998]
 Hart 1995: proof using Minimax Theorem

THEOREM (von Neumann 1928) IF

 $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ are compact convex sets, and $f: X \times Y \to \mathbb{R}$ is a continuous function that is convex-concave,

i.e., $f(\cdot, y) : X \to \mathbb{R}$ is convex for fixed y, and $f(x, \cdot) : Y \to \mathbb{R}$ is concave for fixed x, THEN

 $\min_{x\in X}\max_{y\in Y}f(x,y)=\max_{y\in Y}\min_{x\in X}f(x,y).$

THEOREM (von Neumann 1928)

THEOREM (von Neumann 1928)

IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

THEOREM (von Neumann 1928)

🧕 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

THEOREM (von Neumann 1928)

🧕 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

finite game;

THEOREM (von Neumann 1928)

🧕 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

finite game; probabilistic (mixed) strategies

FINITE ε-GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

FINITE ε-GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get ε-calibrated forecasts

- FINITE ε-GRID, FINITE HORIZON
 ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get ε-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE ε -calibrated forecasts (without knowing the rainmaker's strategy)

- FINITE ε-GRID, FINITE HORIZON
 ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get ε-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE ε -calibrated forecasts (without knowing the rainmaker's strategy)

Hart 1995: proof using Minimax Theorem

Hart and Mas-Colell 1996 [2000]: procedure by Blackwell's Approachability

- Hart and Mas-Colell 1996 [2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure

- Hart and Mas-Colell 1996 [2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2016 [2021]: even simpler

Forecast is known before the rain/no-rain decision is made ("LEAKY FORECASTS")

- Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")
- Forecaster uses a *deterministic* forecasting procedure

- Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")
- Forecaster uses a *deterministic* forecasting procedure

Oakes 1985

• CONTINUOUS CALIBRATION: combine the days when the forecast was close to p

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)

J Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)

J Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

 $\begin{array}{l} \textit{Deterministic} \Rightarrow \textit{ result holds also when} \\ \textit{the forecasts are } \textit{leaked} \end{array}$

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)

J Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

 $\begin{array}{l} \textit{Deterministic} \Rightarrow \textit{ result holds also when} \\ \textit{the forecasts are } \textit{leaked} \end{array}$

Foster and Kakade (2004, 2006) Foster and Hart (2018, **2021**)

SERGIU HART ⓒ 2015 - p. 16

Rain forecasting

• At time = t, for each forecast p in [0, 1]:

- At time = t, for each forecast p in [0, 1]:
 - n(p) := number of days that p has been used in the past t 1 days

- At time = t, for each forecast p in [0, 1]:
 - n(p) := number of days that p has been used in the past t 1 days
 - r(p) := number of rainy days out of those n(p) days

- At time = t, for each forecast p in [0, 1]:
 - n(p) := number of days that p has been used in the past t-1 days
 - r(p) := number of rainy days out of those n(p) days

•
$$G(p) := r(p) - n(p) \cdot p =$$
 gap at p (excess rain)

- At time = t, for each forecast p in [0, 1]:
 - n(p) := number of days that p has been used in the past t 1 days
 - r(p) := number of rainy days out of those n(p) days
 - $G(p) := r(p) n(p) \cdot p = gap$ at p (excess rain)
 - $S:=\sum_p G(p)^2=$ sum-of-squares score

At time *t*:

At time *t*:

• q = forecast (in [0, 1])

At time *t*:

- q =forecast (in [0, 1])
- $a = \operatorname{rain/no-rain} (\operatorname{in} \{0, 1\})$

At time *t*:

- q =forecast (in [0, 1])
- $a = \operatorname{rain/no-rain} (\operatorname{in} \{0, 1\})$
- Change in S = (G(q) + a q)² G(q)²

At time *t*:

- q =forecast (in [0, 1])
- $a = \operatorname{rain/no-rain} (\operatorname{in} \{0, 1\})$
- Change in S = (G(q) + a q)² G(q)²

•
$$G(p) := r(p) - n(p) \cdot p = gap at p$$

• $S := \sum_{p} G(p)^2 =$ sum-of-squares score

At time *t*:

- q =forecast (in [0, 1])
- $a = \operatorname{rain/no-rain} (\operatorname{in} \{0, 1\})$
- Change in S = (G(q) + a q)² G(q)²
 - First-order approximation = 2Δ , where

$$\Delta:=G(q)\cdot(a-q)$$

• $G(p) := r(p) - n(p) \cdot p = gap at p$

• $S := \sum_p G(p)^2 =$ sum-of-squares score

 $\Delta := G(q) \cdot (a-q)$

 $\Delta := G(q) \cdot (a-q)$

. AIM1:

Guarantee that

$\Delta \leq 0 \;$ for all a

$$\Delta := G(q) \cdot (a-q)$$

9 AIM1:

Guarantee that

$\Delta \leq 0 \; \; { m for \; all} \; a$

\Rightarrow Choose q with G(q) = 0 if such q exists

$$\Delta:=G(q)\cdot(a-q)$$

AIM1:

Guarantee that

$\Delta \leq 0 \;$ for all a

- \Rightarrow Choose q with G(q) = 0 if such q exists
- **•** AIM2:

Guarantee that

$\mathbb{E}_q[\Delta] \leq 0 \; ext{ for all } a$

$$\Delta:=G(q)\cdot(a-q)$$

• AIM1:

Guarantee that

$\Delta \leq 0 \;$ for all a

- \Rightarrow Choose q with G(q) = 0 if such q exists
- **.** AIM2:

Guarantee that

$\mathbb{E}_q[\Delta] \leq 0 \; ext{ for all } a$

Forecast-Hedging (FH)

$$\Delta:=G(q)\cdot (a-q)$$

• AIM1:

Guarantee that

$\Delta \leq 0 \;$ for all a

- \Rightarrow Choose q with G(q) = 0 if such q exists
- **•** AIM2:

Guarantee that

$\mathbb{E}_q[\Delta] \leq 0 \; ext{ for all } a$

$$\Delta:=G(q)\cdot(a-q)$$

DETERMINISTIC FORECAST-HEDGING: Guarantee that

 $\Delta \leq 0 \; \; {
m for \; all} \; a$

- \Rightarrow Choose q with G(q) = 0 if such q exists
- STOCHASTIC FORECAST-HEDGING: Guarantee that

$\mathbb{E}_q[\Delta] \leq 0 \; ext{ for all } a$

SERGIU HART © 2015 – p. 20

STOCHASTIC FORECAST-HEDGING:

$\mathbb{E}_q[\Delta] \leq 0 \; ext{ for all } a$

STOCHASTIC FORECAST-HEDGING:

 $\mathbb{E}_q[\Delta] = \mathbb{E}_q[G(q) \cdot (a-q)] \leq 0 ~~ \mathsf{for~all}~ a$

STOCHASTIC FORECAST-HEDGING:

 $\mathbb{E}_q[\Delta] = \mathbb{E}_q[G(q) \cdot (a-q)] \leq 0 ~~ \mathsf{for~all}~ a$

Forecast: q_1 w/prob p_1 , q_2 w/prob p_2

• STOCHASTIC FORECAST-HEDGING: $\mathbb{E}_q[\Delta] = \mathbb{E}_q[G(q) \cdot (a - q)] \leq 0$ for all aForecast: q_1 w/prob p_1 , q_2 w/prob p_2 $\mathbb{E}[\Delta] = p_1 G(q_1) \cdot (a - q_1) + p_2 G(q_2) \cdot (a - q_2)$

• STOCHASTIC FORECAST-HEDGING: $\mathbb{E}_q[\Delta] = \mathbb{E}_q[G(q) \cdot (a - q)] \leq 0 \text{ for all } a$ Forecast: q_1 w/prob p_1 , q_2 w/prob p_2 $\mathbb{E}[\Delta] = p_1G(q_1) \cdot (a - q_1) + p_2G(q_2) \cdot (a - q_2)$ $= [p_1G(q_1) + p_2G(q_2)] \cdot (a - q_1)$ $+ p_2G(q_2) \cdot (q_1 - q_2)$

• STOCHASTIC FORECAST-HEDGING: $\mathbb{E}_q[\Delta] = \mathbb{E}_q[G(q) \cdot (a - q)] \leq 0 \text{ for all } a$ Forecast: q_1 w/prob p_1 , q_2 w/prob p_2 $\mathbb{E}[\Delta] = p_1G(q_1) \cdot (a - q_1) + p_2G(q_2) \cdot (a - q_2)$ $= [p_1G(q_1) + p_2G(q_2)] \cdot (a - q_1)$ $+ p_2G(q_2) \cdot (q_1 - q_2)$

 \Rightarrow **Choose** the q_i and p_i such that:

STOCHASTIC FORECAST-HEDGING: $\mathbb{E}_{q}[\Delta] = \mathbb{E}_{q}[G(q) \cdot (a-q)] < 0$ for all a Forecast: q_1 w/prob p_1 , q_2 w/prob p_2 $\mathbb{E}\left[\Delta
ight] \;=\; p_1 G(q_1) \cdot (a-q_1) + p_2 G(q_2) \cdot (a-q_2)$ $= [p_1G(q_1) + p_2G(q_2)] \cdot (a - q_1)$ $+ p_2 G(q_2) \cdot (q_1 - q_2)$ \Rightarrow **Choose** the q_i and p_i such that:

• $p_1G(q_1) + p_2G(q_2) = 0$

STOCHASTIC FORECAST-HEDGING: $\mathbb{E}_{q}[\Delta] = \mathbb{E}_{q}[G(q) \cdot (a-q)] < 0$ for all a Forecast: q_1 w/prob p_1 , q_2 w/prob p_2 $\mathbb{E}\left[\Delta
ight] \;=\; p_1 G(q_1) \cdot (a-q_1) + p_2 G(q_2) \cdot (a-q_2)$ $= [p_1G(q_1) + p_2G(q_2)] \cdot (a - q_1)$ $+ p_2 G(q_2) \cdot (q_1 - q_2)$ \Rightarrow **Choose** the q_i and p_i such that: $p_1G(q_1) + p_2G(q_2) = 0$

• $q_1 - q_2$ is small

 		 →
0		1

SERGIU HART ⓒ 2015 – p. 21

⊢ 0			 $\downarrow p$ 1

Deterministic FH

Deterministic FH

Deterministic FH

l		

SERGIU HART (C) 2015 – p. 24

New simplest procedure

- New simplest procedure
- All randomizations are between two forecasts that are δ -APART

- New simplest procedure
- All randomizations are between two forecasts that are δ -APART
 - ***** ALMOST DETERMINISTIC CALIBRATION *****

- New simplest procedure
- All randomizations are between two forecasts that are δ -APART
 - ***** ALMOST DETERMINISTIC CALIBRATION *****
- When the function G is **CONTINUOUS** there always exists a **PURE** q with G(q) = 0

- New simplest procedure
- All randomizations are between two forecasts that are δ -APART
 - ***** ALMOST DETERMINISTIC CALIBRATION *****
- When the function G is CONTINUOUS there always exists a PURE q with G(q) = 0
 ★ DETERMINISTIC CONTINUOUS CALIBRATION ★

l		

SERGIU HART (C) 2015 – p. 25

Forecast-Hedging

In general (higher dimensions):

DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0 \quad \text{for all } a$

DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0 \quad \text{for all } a$ is obtained by continuous FIXEDPOINT

DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0 \quad \text{for all } a$ is obtained by continuous FIXEDPOINT

• STOCHASTIC FORECAST-HEDGING $\mathbb{E}_q[G(q) \cdot (a-q)] \leq \delta \,\,\, ext{for all}\,\, a$

DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0 \quad \text{for all } a$ is obtained by continuous FIXEDPOINT

• STOCHASTIC FORECAST-HEDGING $\mathbb{E}_q[G(q) \cdot (a-q)] \leq \delta$ for all a is obtained by finite MINIMAX

DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0 \quad \text{for all } a$ is obtained by continuous FIXEDPOINT

 \rightarrow **FP** procedures

• STOCHASTIC FORECAST-HEDGING $\mathbb{E}_q[G(q) \cdot (a-q)] \leq \delta$ for all a is obtained by finite **MINIMAX**

• DETERMINISTIC FORECAST-HEDGING $G(q) \cdot (a - q) \leq 0$ for all ais obtained by continuous FIXEDPOINT

 \rightarrow **FP** procedures

• STOCHASTIC FORECAST-HEDGING $\mathbb{E}_q[G(q) \cdot (a-q)] \leq \delta$ for all a

is obtained by finite MINIMAX

 \rightarrow **MM** procedures

l		

SERGIU HART (C) 2015 – p. 26

forecasting ?

Forecast-Hedging

fore-casting ?

BACK-CASTING ! ("Politicians' Lemma")

Calibration in Practice

-			

Calibration in Practice

What we forecasted

Calibration plots of FiveThirtyEight.com (as of June 2019)

Calibration in Practice

(2016 – 2018)

Forecast-Hedging

SERGIU HART (C) 2015 - p. 29

SERGIU HART ⓒ 2015 – p. 30

Binning

$$\checkmark$$
 BINS: $i=1,...,I$

$${}_{m{ heta}}$$
 bins: $i=1,...,I$

\blacksquare WEIGHT FUNCTIONS: $w_i: C ightarrow [0,1]$

$${}_{m heta}$$
 bins: $i=1,...,I$

- \blacksquare WEIGHT FUNCTIONS: $w_i: C
 ightarrow [0,1]$
 - $w_i(c)$ fraction of forecast c counted in bin i

$${old au} \, \sum_{i=1}^{I} w_i(c) = 1$$
 for every c

$${}$$
 BINS: $i=1,...,I$

- ${}$ WEIGHT FUNCTIONS: $w_i: C
 ightarrow [0,1]$
 - $w_i(c)$ fraction of forecast c counted in bin i $\sum_{i=1}^{I} w_i(c) = 1$ for every c

CLASSIC CALIBRATION:

9 BIN $i \leftrightarrow$ forecast i/I

$${}_{ullet}$$
 weight $w_i(c)={f 1}_{c=i/I}$

$${}_{m heta}$$
 bins: $i=1,...,I$

- ${}$ weight functions: $w_i: C
 ightarrow [0,1]$
 - $w_i(c)$ fraction of forecast c counted in bin i• $\sum_{i=1}^I w_i(c) = 1$ for every c

CLASSIC CALIBRATION:

- **9** BIN $i \leftrightarrow$ forecast i/I
- ${}_{{\scriptstyle ullet}}$ WEIGHT $w_i(c)={\sf 1}_{c=i/I}$

CONTINUOUS CALIBRATION:

• Each $w_i(c)$ is a continuous function of c ("continuous fractional binning")

GAP of w_i at time t

$$G_t(w_i):=\sum_{s=1}^t w_i(c_s)(a_s-c_s)$$

GAP of w_i at time t

$$G_t(w_i):=\sum_{s=1}^t w_i(c_s)(a_s-c_s)$$

Solution Score at time *t*:

GAP of w_i at time t

$$G_t(w_i):=\sum_{s=1}^t w_i(c_s)(a_s-c_s)$$

Solution Score at time t:

$$\mathcal{K}_t = \sum_{i=1}^I \left\|rac{1}{t}G_t(w_i)
ight\|^2$$

SERGIU HART (C) 2015 - p. 31

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2\gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2 + 2\sum_i w_i(c_t) G_{t-1}(w_i) \cdot (a_t - c_t)$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2 + 2\sum_i w_i(c_t) G_{t-1}(w_i) \cdot (a_t - c_t)$

FH: Choose c_t so that for any a_t $\sum_i w_i(c_t) \ G_{t-1}(w_i) \cdot (a_t - c_t) \le 0$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2$

FH: Choose c_t so that for any a_t $\sum_i w_i(c_t) \ G_{t-1}(w_i) \cdot (a_t - c_t) \le 0$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2$

$${old s} \, \sum_i \left\| G_t(w_i)
ight\|^2 \leq t \gamma^2$$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2$

•
$$\sum_i \left\|G_t(w_i)
ight\|^2 \leq t\gamma^2$$

• $\sum_i \left\|rac{1}{t}G_t(w_i)
ight\|^2 \leq rac{1}{t}\gamma^2$

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2$

•
$$\sum_i \|G_t(w_i)\|^2 \leq t\gamma^2$$

• $\sum_i \left\|rac{1}{t}G_t(w_i)
ight\|^2 \leq rac{1}{t}\gamma^2 o 0$ as $t o \infty$

SERGIU HART (C) 2015 - p. 32

Deterministic Calibration

•
$$G_t(w_i) = G_{t-1}(w_i) + w_i(c_t)(a_t - c_t)$$

• $\|G_t(w_i)\|^2 \le \|G_{t-1}(w_i)\|^2 + w_i(c_t)^2 \gamma^2 + 2w_i(c_t)G_{t-1}(w_i) \cdot (a_t - c_t)$
• $\sum_i \|G_t(w_i)\|^2 \le \sum_i \|G_{t-1}(w_i)\|^2 + \gamma^2$

•
$$\sum_{i} \left\|G_t(w_i)\right\|^2 \leq t\gamma^2$$

• $\sum_{i} \left\|\frac{1}{t}G_t(w_i)\right\|^2 \leq \frac{1}{t}\gamma^2 \to 0$ as $t \to \infty$

 \Rightarrow **Deterministic continuous** calibration

Solution Continuous weight functions w_i

- Solution Continuous weight functions w_i
- Choose the forecast c_t at time t such that

$$\sum_{i=1}^{I} w_i(oldsymbol{c_t}) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c_t}) \; \leq 0$$

for every $a_t \in A$

- Solution Continuous weight functions w_i
- Shoose the forecast c_t at time t such that

$$\sum_{i=1}^{I} w_i(oldsymbol{c_t}) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c_t}) \; \leq 0$$

for every $a_t \in A$

Existence of such a c_t is guaranteed by a
 Fixed Point Theorem (Brouwer)

SERGIU HART © 2015 – p. 34

• Choose the **distribution** of the forecast c_t s.t.

$$\mathbb{E}_{oldsymbol{c}_t}\left[\sum_i w_i(oldsymbol{c}_t) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c}_t)
ight] \leq arepsilon$$

for every $a_t \in A$

• Choose the **distribution** of the forecast c_t s.t.

$$\mathbb{E}_{oldsymbol{c}_t}\left[\sum_i w_i(oldsymbol{c}_t) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c}_t)
ight] \leq arepsilon$$

for every $a_t \in A$

 Existence of such a distribution is guaranteed by a Minimax Theorem

• Choose the **distribution** of the forecast c_t s.t.

$$\mathbb{E}_{oldsymbol{c}_t}\left[\sum_i w_i(oldsymbol{c}_t) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c}_t)
ight] \leq arepsilon$$

for every $a_t \in A$

- Existence of such a distribution is guaranteed by a Minimax Theorem
- (as in the previous proof ...)

Stochastic Calibration

• Choose the **distribution** of the forecast c_t s.t.

$$\mathbb{E}_{oldsymbol{c}_t}\left[\sum_i w_i(oldsymbol{c}_t) \; G_{t-1}(w_i) \cdot (a_t - oldsymbol{c}_t)
ight] \leq arepsilon$$

for every $a_t \in A$

- Existence of such a distribution is guaranteed by a Minimax Theorem
- (as in the previous proof ...)
- $\blacksquare \Rightarrow$ Stochastic classic calibration

Fixed Point → **deterministic** calibration

Fixed Point → **deterministic** calibration

MiniMax \mapsto **stochastic** calibration

SERGIU HART C 2015 - p. 35

Forecast-Hedging Tools

SERGIU HART © 2015 – p. 36

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$ s.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$ s.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

● ⇔ Brouwer's fixed-point theorem

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded and $\varepsilon > 0$ then

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded and $\varepsilon > 0$ then there exists a probability measure η on C

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

- $\blacksquare \Leftrightarrow$ Minimax theorem
- support of η is at most m+2 points

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

- $\bullet \Leftrightarrow$ Minimax theorem
- support of η is at most m+2 points
- ${}_{ullet}$ if f is continuous it holds also for arepsilon=0

Outgoing Theorems

Outgoing FIXED POINT (FP):

 $f: C \to \mathbb{R}^m$ continuous function $\Rightarrow \exists POINT \ y \in C$ S.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

Outgoing MINIMAX (MM):

 $f \to \mathbb{R}^m$ bounded function, $\varepsilon > 0$ $\Rightarrow \exists$ **PROBABILITY DISTRIBUTION** $\eta \in \Delta(C)$ s.t. $\mathbb{E}_{y \sim \eta}[f(y) \cdot (c - y)] \leq \varepsilon$ for all $c \in C$

Calibration: FH Results

Calibration: FH Results

$\forall \varepsilon > 0$: \exists **STOCHASTIC** procedure that is ε -CALIBRATED

Foster and Vohra 1998

Calibration: FH Results

$\forall \varepsilon > 0$: \exists **STOCHASTIC** procedure

that is ε -CALIBRATED

Foster and Vohra 1998

∃ **DETERMINISTIC** procedure

that is **CONTINUOUSLY CALIBRATED**

(Foster and Kakade 2006, Foster and Hart 2018)

Calibration: FH Results

$\forall \varepsilon > 0$: \exists **STOCHASTIC** procedure that is ε -CALIBRATED

Foster and Vohra 1998

∃ **DETERMINISTIC** procedure

that is **CONTINUOUSLY CALIBRATED**

(Foster and Kakade 2006, Foster and Hart 2018)

 $\forall \varepsilon > 0, \rho > 0: \exists \rho$ -local stochastic

procedure that is ε -CALIBRATED

Foster 1999, Kakade and Foster 2004

Game Dynamics

SERGIU HART (C) 2015 - p. 42

General *n*-person game

Players forecast the play in the next period

General *n*-person game

Players forecast the play in the next period

Players choose their actions in *response* to the forecasts

- Players *forecast* the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts

- Players *forecast* the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts
 - best response

- Players *forecast* the play in the next period
 calibrated forecasts
- Players choose their actions in *response* to the forecasts
 - best response
- \Rightarrow Long-run play ?

Calibrated Learning

Calibrated Learning

 Each player makes a δ-calibrated forecast on the play of the other players in the next period

Calibrated Learning

- Each player makes a δ-calibrated forecast on the play of the other players in the next period
- Each player best replies to the forecast
Calibrated Learning

- Each player makes a δ-calibrated forecast on the play of the other players in the next period
- Each player best replies to the forecast

⇒ TIME-AVERAGE OF PLAY (= empirical distribution of play) is a CORRELATED *ε*-EQUILIBRIUM in the long run

Calibrated Learning

- Each player makes a δ-calibrated forecast on the play of the other players in the next period
- Each player best replies to the forecast

⇒ TIME-AVERAGE OF PLAY (= empirical distribution of play) is a CORRELATED *ε*-EQUILIBRIUM in the long run

All players make a *deterministic* continuously calibrated forecast on the play of all players in the next period

- All players make a *deterministic* continuously calibrated forecast on the play of all players in the next period
- Each player continuously δ -best replies to the forecast

- All players make a *deterministic* continuously calibrated forecast on the play of all players in the next period
- Each player continuously δ -best replies to the forecast
- $\Rightarrow 1 \varepsilon \text{ of the time the play}$ is a **NASH** ε -EQUILIBRIUM in the long run (a.s.)

(F) A continuously calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$

- (F) A continuously calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$
- (P) A continuous δ -best reply mapping $g^i: \Pi_{i\in N}\Delta(A^i) \to \Delta(A^i)$ for each player i

- (F) A continuously calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$
- (P) A continuous δ -best reply mapping $g^i: \Pi_{i\in N}\Delta(A^i) \to \Delta(A^i)$ for each player i

In each period t, each player i:

- 1. runs the procedure (F) to get c_t
- 2. plays $g^i(c_t)$ given by (P)

SERGIU HART (C) 2015 - p. 47

CONTINUOUSLY CALIBRATED LEARNING:
is a stochastic *uncoupled* dynamic
Nash *ε*-equilibria are played at least 1 − *ε* of the time in the long run (a.s.)

Proof:

Proof:

$$\mathsf{play}_t = \boldsymbol{g}(\boldsymbol{c}_t)$$

SERGIU HART © 2015 – p. 48

Proof:

• continuous calibration $\Rightarrow play_t = g(c_t) \approx c_t$

Proof:

• continuous calibration \Rightarrow play_t = $g(c_t) \approx c_t$ • use: g is continuous

Proof:

- continuous calibration \Rightarrow play_t = $g(c_t) \approx c_t$ • use: g is continuous
- g approximate best reply $\Rightarrow play_t \text{ is an approximate Nash equilibrium}$

Proof:

- continuous calibration \Rightarrow play_t = $g(c_t) \approx c_t$ • use: g is continuous
- g approximate best reply $\Rightarrow play_t$ is an approximate Nash equilibrium • $g(play_t) = g(g(c_t)) \approx g(c_t) = play_t$

Why Continuous ?

Why Continuous ?

CONTINUOUS CALIBRATION

deterministic

Why Continuous ?

- deterministic
 - \Rightarrow **same** forecast for **all** players

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions
- \Rightarrow FIXED POINT

CONTINUOUS CALIBRATION

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions
- \Rightarrow FIXED POINT

CONTINUOUS BEST REPLY

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions
- \Rightarrow FIXED POINT
- CONTINUOUS BEST REPLY
 ⇒ fixed point = NASH EQUILIBRIUM

"LAW OF CONSERVATION OF COORDINATION":

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion,
"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion,

or in the **DYNAMIC**

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the **DYNAMIC**

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the DYNAMIC (NASH EQUILIBRIUM)

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the DYNAMIC (NASH EQUILIBRIUM)

(Hart and Mas-Colell 2003)

Summary

MINIMAX universe

MINIMAX universe

FIXEDPOINT universe

stochastic forecast-hedging

MINIMAX universe

stochastic forecast-hedging FIXEDPOINT universe

deterministic forecast-hedging

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures

FIXEDPOINT universe

deterministic forecast-hedging

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures

- deterministic forecast-hedging
- **FP**-procedures

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures
- classic calibration

- deterministic forecast-hedging
- **FP**-procedures

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures
- classic calibration

- deterministic forecast-hedging
- FP-procedures
- continuous
 calibration

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures
- classic calibration
- correlated equilibria

- deterministic forecast-hedging
- FP-procedures
- continuous
 calibration

MINIMAX universe

- stochastic forecast-hedging
- **MM**-procedures
- classic calibration
- *correlated* equilibria *Nash* equilibria

- ø deterministic forecast-hedging
- FP-procedures
- continuous calibration

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures
- classic calibration
- *correlated* equilibria
- time-average

- deterministic
 forecast-hedging
- FP-procedures
- continuous calibration
- Nash equilibria

MINIMAX universe

- stochastic forecast-hedging
- MM-procedures
- classic calibration
- *correlated* equilibria
- time-average

- deterministic
 forecast-hedging
- FP-procedures
- continuous
 calibration
- Nash equilibria
- period-by-period

I		

SERGIU HART ⓒ 2015 – p. 54

I		

SERGIU HART ⓒ 2015 – p. 54

Perfect Hedging

Perfect Hedging

Château de Villandry, 2005