

Calibrated Forecasts and Game Dynamics

Sergiu Hart

May 2018

SERGIU HART ⓒ 2015 – p. 1

Calibrated Forecasts and Game Dynamics

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster

University of Pennsylvania & Amazon Research

- Dean P. Foster and Sergiu Hart Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics
 - **9** 2012
 - Games and Economic Behavior 2018

www.ma.huji.ac.il/hart/abs/calib-eq.html

- Dean P. Foster and Sergiu Hart Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics
 - **9** 2012
 - Games and Economic Behavior 2018

www.ma.huji.ac.il/hart/abs/calib-eq.html

- Dean P. Foster and Sergiu Hart An Integral Approach to Calibration
 - 2016 (in preparation)

Forecaster says: "The chance of rain tomorrow is p"

- Forecaster says: "The chance of rain tomorrow is p"
- Forecaster is CALIBRATED if for every p: the proportion of rainy days among those days when the forecast was p equals p (or is close to p in the long run)

CALIBRATION can be guaranteed

(no matter what the weather will be)

NON-Bayesian, NO statistical assumptions !

Foster and Vohra 1994 [publ 1998]

NON-Bayesian, NO statistical assumptions !

• Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)

Foster and Vohra 1994 [publ 1998]

NON-Bayesian, NO statistical assumptions !

• Forecaster uses *mixed* forecasting (e.g.: with probability 1/2, forecast = 25%with probability 1/2, forecast = 60%)

Foster and Vohra 1994 [publ 1998]
 Hart 1995: proof using Minimax Theorem

THEOREM (von Neumann 1928) IF

 $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ are compact convex sets, and $f: X \times Y \to \mathbb{R}$ is a continuous function that is convex-concave,

i.e., $f(\cdot, y) : X \to \mathbb{R}$ is convex for fixed y, and $f(x, \cdot) : Y \to \mathbb{R}$ is concave for fixed x, THEN

 $\min_{x\in X}\max_{y\in Y}f(x,y)=\max_{y\in Y}\min_{x\in X}f(x,y).$

THEOREM (von Neumann 1928)

THEOREM (von Neumann 1928)

🥒 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

THEOREM (von Neumann 1928)

🥒 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

THEOREM (von Neumann 1928)

🥒 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

finite game;

THEOREM (von Neumann 1928)

🧕 IF

For every strategy of the opponent I have a strategy such that my payoff is at least v

J THEN

I have a strategy that guarantees that my payoff is at least v (for every strategy of the opponent)

finite game; probabilistic (mixed) strategies

FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

● FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game

IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts

- FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE δ -calibrated forecasts (without knowing the rainmaker's strategy)

- FINITE δ -GRID, FINITE HORIZON ⇒ FINITE 2-person 0-sum game
- IF the strategy of the rainmaker IS KNOWN
 THEN the forecaster can get δ-calibrated forecasts
- MINIMAX THEOREM \Rightarrow the forecaster can GUARANTEE δ -calibrated forecasts (without knowing the rainmaker's strategy)

Foster and Vohra 1994 [publ 1998] Hart 1995: proof using Minimax Theorem

SERGIU HART ⓒ 2015 - p. 10

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: proof using Blackwell's Approachability

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2016: even simpler

CALIBRATION can be guaranteed

(no matter what the weather will be)

BACK-casting (not fore-casting!) ("Politicians' Lemma")

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof using Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: proof using Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2016: even simpler

CALIBRATION cannot be guaranteed when:

CALIBRATION cannot be guaranteed when:

Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")

CALIBRATION cannot be guaranteed when:

- Forecast is known before the rain/no-rain decision is made
 ("LEAKY FORECASTS")
- Forecaster uses a *deterministic* forecasting procedure

CALIBRATION cannot be guaranteed when:

- Forecast is known before the rain/no-rain decision is made ("LEAKY FORECASTS")
- Forecaster uses a *deterministic* forecasting procedure

Oakes 1985

• SMOOTH CALIBRATION: combine together the days when the forecast was close to p

SMOOTH CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

SMOOTH CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

Main Result:

There exists a *deterministic* procedure that is **SMOOTHLY CALIBRATED**.

SMOOTH CALIBRATION: combine together the days when the forecast was close to p (smooth out the calibration score)

Main Result:

There exists a *deterministic* procedure that is **SMOOTHLY CALIBRATED**.

Deterministic ⇒ result holds also when the forecasts are leaked

Calibration

• Set of ACTIONS: $A \subset \mathbb{R}^m$ (finite set)

- Set of FORECASTS: $C = \Delta(A)$
 - ${\scriptstyle
 m {\scriptsize S}}$ Example: $A=\{0,1\}$, C=[0,1]

Calibration

- Set of ACTIONS: $A \subset \mathbb{R}^m$ (finite set)
- Set of FORECASTS: $C = \Delta(A)$
 - Example: $A = \{0, 1\}, C = [0, 1]$
- CALIBRATION SCORE at time T for a sequence $(a_t, c_t)_{t=1,2,...}$ in $A \times C$:

Calibration

• Set of ACTIONS: $A \subset \mathbb{R}^m$ (finite set)

- Set of FORECASTS: $C = \Delta(A)$
 - Example: $A = \{0, 1\}, C = [0, 1]$
- CALIBRATION SCORE at time T for a sequence $(a_t, c_t)_{t=1,2,...}$ in A imes C:

$$K_T = rac{1}{T}\sum_{t=1}^T ||ar{a}_t - c_t||$$

where

$$ar{a}_t = rac{\sum_{s=1}^T \mathbf{1}_{c_s = c_t} a_s}{\sum_{s=1}^T \mathbf{1}_{c_s = c_t}}$$

• A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every c.

• A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every c.

• $\Lambda(x,c)$ = "weight" of x relative to c

- A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every *c*.
 - $\Lambda(x,c)$ = "weight" of x relative to c

Sergiu HART ⓒ 2015 – p. 15

Indicator and A Functions

• A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every c.

• $\Lambda(x,c)$ = "weight" of x relative to c

- A "smoothing function" is a Lipschitz function $\Lambda : C \times C \rightarrow [0, 1]$ with $\Lambda(c, c) = 1$ for every *c*.
 - $\Lambda(x,c)$ = "weight" of x relative to c
- Λ -CALIBRATION SCORE at time T:

- A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every c.
 - $\Lambda(x,c)$ = "weight" of x relative to c
- Λ -CALIBRATION SCORE at time T:

$$K_T^{\Lambda} = rac{1}{T}\sum_{t=1}^T ||ar{a}_t^{\Lambda} - c_t^{\Lambda}||$$

- A "smoothing function" is a Lipschitz function $\Lambda: C \times C \rightarrow [0,1]$ with $\Lambda(c,c) = 1$ for every *c*.
 - $\Lambda(x,c)$ = "weight" of x relative to c
- Λ -CALIBRATION SCORE at time T:

$$K_T^{\Lambda} = rac{1}{T}\sum_{t=1}^T ||ar{a}_t^{\Lambda} - c_t^{\Lambda}|| \ ar{a}_t^{\Lambda} = rac{\sum_{s=1}^T \Lambda(c_s,c_t) \, a_s}{\sum_{s=1}^T \Lambda(c_s,c_t)} \,, \ c_t^{\Lambda} = rac{\sum_{s=1}^T \Lambda(c_s,c_t) \, c_s}{\sum_{s=1}^T \Lambda(c_s,c_t)}$$

In each period
$$t = 1, 2, ...$$

- Player C ("forecaster") chooses $c_t \in C$
- Player A ("action") chooses $a_t \in A$

In each period
$$t = 1, 2, ...$$

- Player C ("forecaster") chooses $c_t \in C$
- Player A ("action") chooses $a_t \in A$
 - a_t and c_t chosen **simultaneously**: **REGULAR** setup

In each period
$$t = 1, 2, ...$$
 :

- Player C ("forecaster") chooses $c_t \in C$
- Player A ("action") chooses $a_t \in A$
 - a_t and c_t chosen **simultaneously**: **REGULAR** setup
 - a_t chosen after c_t is disclosed:

LEAKY setup

In each period
$$t = 1, 2, ...$$

- Player C ("forecaster") chooses $c_t \in C$
- Player A ("action") chooses $a_t \in A$
 - a_t and c_t chosen **simultaneously**: **REGULAR** setup
 - a_t chosen **after** c_t is disclosed: LEAKY setup
- Full monitoring, perfect recall

A strategy of Player C is

A strategy of Player C is

(arepsilon,L)-Smoothly Calibrated

A strategy of Player C is

(arepsilon,L)-Smoothly Calibrated

if there is T_0 such that $K_T^{\Lambda} \leq \varepsilon$ holds for:

$${\scriptstyle
ightarrow}$$
 every $T\geq T_{0}$,

- every strategy of Player A, and
- every smoothing function Λ with Lipschitz constant $\leq L$

Smooth Calibration: Result

1		

Smooth Calibration: Result

Smooth Calibration: Result

Smooth Calibration: Result

For every $\varepsilon > 0$ and $L < \infty$ there exists a procedure that is (ε, L) -SMOOTHLY CALIBRATED. Moreover: • it is *deterministic*, • it has *finite recall* (= finite window, stationary),

Smooth Calibration: Result

For every arepsilon > 0 and $L < \infty$ there exists a procedure that is (ε, L) -SMOOTHLY CALIBRATED. Moreover: • it is *deterministic*. • it has *finite recall* (= finite window, stationary), • it uses a fixed *finite grid*, and

Smooth Calibration: Result

For every arepsilon > 0 and $L < \infty$ there exists a procedure that is (ε, L) -SMOOTHLY CALIBRATED. Moreover: • it is *deterministic*, • it has *finite recall* (= finite window, stationary), • it uses a fixed *finite grid*, and forecasts may be *leaked*

For forecasting:

nothing good ... (easier to pass the test)

For forecasting:

nothing good ... (easier to pass the test)

For game dynamics:

For forecasting:

nothing good ... (easier to pass the test)

For game dynamics:
 Nash dynamics

 \frown

CALIBRATED LEARNING:

CALIBRATED LEARNING:

Foster and Vohra 1997

SERGIU HART (C) 2015 - p. 21

CALIBRATED LEARNING:

every player uses a calibrated forecast on the play of the other players

Foster and Vohra 1997

CALIBRATED LEARNING:

- every player uses a calibrated forecast on the play of the other players
- every player best replies to his forecast

Foster and Vohra 1997

CALIBRATED LEARNING:

- every player uses a *calibrated forecast* on the play of the other players
- every player best replies to his forecast
- time average of play (= empirical distribution of play) is an approximate CORRELATED EQUILIBRIUM

SMOOTH CALIBRATED LEARNING:

SMOOTH CALIBRATED LEARNING:

(F) A smoothly calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$

SMOOTH CALIBRATED LEARNING:

- (F) A smoothly calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$
- (P) A Lipschitz approximate best-reply mapping $g^i: \prod_{i \in N} \Delta(A^i) \to \Delta(A^i)$ for each player i

SMOOTH CALIBRATED LEARNING:

- (F) A smoothly calibrated deterministic procedure, which gives in each period t a "forecast" of play c_t in $\prod_{i \in N} \Delta(A^i)$
- (P) A Lipschitz *approximate best-reply* mapping $g^i: \prod_{i \in N} \Delta(A^i) \to \Delta(A^i)$ for each player i

In each period *t*, each player *i*:

- 1. runs the procedure (F) to get c_t
- 2. plays $g^i(c_t)$ given by (P)

SMOOTH CALIBRATED LEARNING (with appropriate parameters):
is a stochastic *uncoupled* dynamic

SMOOTH CALIBRATED LEARNING (with appropriate parameters):
is a stochastic *uncoupled* dynamic
has *finite* мемоку and is *stationary*

SMOOTH CALIBRATED LEARNING (with appropriate parameters):
is a stochastic *uncoupled* dynamic
has *finite* MEMORY and is *stationary*Nash ε-equilibria are played at least 1 – ε of the time in the long run (a.s.)

$$\mathsf{play}_t = \mathbf{g}(c_t)$$

SERGIU HART ⓒ 2015 – p. 24

• smooth calibration $\Rightarrow play_t = g(c_t) \approx c_t$

• smooth calibration \Rightarrow play_t = $g(c_t) \approx c_t$ • use: g is Lipschitz

smooth calibration

- $\Rightarrow \mathsf{play}_t = \mathbf{g}(c_t) \approx c_t$
- use: g is Lipschitz
- g approximate best reply \Rightarrow play_t is an approximate Nash equilibrium

smooth calibration

- $\Rightarrow \mathsf{play}_t = \mathbf{g}(c_t) \approx c_t$
- use: g is Lipschitz
- g approximate best reply $\Rightarrow play_t$ is an approximate Nash equilibrium • $g(play_t) = g(g(c_t)) \approx g(c_t) = play_t$

l i			

deterministic

- deterministic
 - \Rightarrow **same** forecast for **all** players

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast **equals** actions

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast **equals** actions
- \Rightarrow FIXED POINT

SMOOTH CALIBRATION

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions
- \Rightarrow FIXED POINT

SMOOTH BEST REPLY

- deterministic
 - \Rightarrow **same** forecast for **all** players
- Jeaky
 - \Rightarrow actions **depend** on forecast
- calibrated
 - \Rightarrow forecast *equals* actions
- \Rightarrow FIXED POINT
- SMOOTH BEST REPLY ⇒ fixed point = NASH EQUILIBRIUM

• Best reply to CALIBRATED forecasts: \rightarrow CORRELATED EQUILIBRIA

Best reply to CALIBRATED forecasts: \rightarrow CORRELATED EQUILIBRIA

Best reply to SMOOTHLY CALIBRATED forecasts: \rightarrow NASH EQUILIBRIA

"LAW OF CONSERVATION OF COORDINATION":

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion,

"LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion,

or in the **DYNAMIC**

LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the **DYNAMIC**

LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the DYNAMIC (NASH EQUILIBRIUM)

LAW OF CONSERVATION OF COORDINATION":

There must be some **COORDINATION** —

either in the EQUILIBRIUM notion, (CORRELATED EQUILIBRIUM)

or in the DYNAMIC (NASH EQUILIBRIUM)

(Hart and Mas-Colell 2003)

INTEGRAL CALIBRATION SCORE:

INTEGRAL CALIBRATION SCORE:

$$G^\Lambda_t(z) \;=\; rac{1}{t}\sum_{s=1}^t \Lambda(c_s,z)(a_s-c_s)$$

INTEGRAL CALIBRATION SCORE:

$$egin{array}{rll} G^{\Lambda}_t(z) &=& rac{1}{t} \sum_{s=1}^t \Lambda(c_s,z) (a_s-c_s) \ &||G^{\Lambda}_t||_2 &=& \left(\int_C ||G^{\Lambda}_t(z)||^2 \; d\zeta(z)
ight)^{1/2} \end{array}$$

INTEGRAL CALIBRATION SCORE:

$$egin{array}{rll} G^{\Lambda}_t(z) &=& rac{1}{t} \sum_{s=1}^t \Lambda(c_s,z) (a_s-c_s) \ &||G^{\Lambda}_t||_2 &=& \left(\int_C ||G^{\Lambda}_t(z)||^2 \; d\zeta(z)
ight)^{1/2} \end{array}$$

• INTEGRAL CALIBRATION: Guarantee that $||G_t^{\Lambda}||_2 \leq \varepsilon$

for all t large enough, uniformly

Subset the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^\Lambda_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

Choose the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^{\Lambda}_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

for every $a \in A$

Existence of such c_t is guaranteed by a
 Fixed Point Theorem

Subscript State Choose the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^\Lambda_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

- Existence of such c_t is guaranteed by a Fixed Point Theorem
- $\blacksquare \Rightarrow$ **Deterministic Integral** Calibration

Subset the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^\Lambda_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

- Existence of such c_t is guaranteed by a Fixed Point Theorem
- $\blacksquare \Rightarrow$ **Deterministic Integral** Calibration
 - \square \Rightarrow **Deterministic Smooth** Calibration

Subscript State Choose the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^{\Lambda}_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

- Existence of such c_t is guaranteed by a Fixed Point Theorem
- $\blacksquare \Rightarrow$ **Deterministic Integral** Calibration
 - \square \Rightarrow **Deterministic Smooth** Calibration
 - \rightarrow **Deterministic Weak** Calibration

Subset the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^{\Lambda}_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

- Existence of such c_t is guaranteed by a Fixed Point Theorem
- $\blacksquare \Rightarrow$ **Deterministic Integral** Calibration
 - \square \Rightarrow **Deterministic Smooth** Calibration
 - $\square \Rightarrow$ **Deterministic Weak** Calibration
 - $\square \Rightarrow$ Almost Deterministic Calibration

Deterministic Nonlinear Calibration

Subset the forecast c_t such that

$$\int \Lambda(c_t,z) \; G^{\Lambda}_{t-1}(z) \, d\zeta(z) \cdot (a-c_t) \leq 0$$

- Existence of such c_t is guaranteed by a Fixed Point Theorem
- $\blacksquare \Rightarrow$ **Deterministic Integral** Calibration
 - \square \Rightarrow **Deterministic Smooth** Calibration
 - $\square \Rightarrow$ **Deterministic Weak** Calibration
 - $\bullet \Rightarrow \textbf{Almost Deterministic Calibration}$

• Choose the **distribution** of the forecast c_t s.t.

$$E\left[\int \Lambda(c_t,z)\;G^{\Lambda}_{t-1}(z)\,d\zeta(z)\cdot(a-c_t)
ight]\leq 0$$

• Choose the **distribution** of the forecast c_t s.t.

$$E\left[\int \Lambda(c_t,z)\;G^{\Lambda}_{t-1}(z)\,d\zeta(z)\cdot(a-c_t)
ight]\leq 0$$

for every $a \in A$

Existence of such distribution is guaranteed by a Separation / Minimax Theorem

• Choose the **distribution** of the forecast c_t s.t.

$$E\left[\int \Lambda(c_t,z)\;G^{\Lambda}_{t-1}(z)\,d\zeta(z)\cdot(a-c_t)
ight]\leq 0$$

- Existence of such distribution is guaranteed by a Separation / Minimax Theorem
- $\blacksquare \Rightarrow$ **Probabilistic** Calibration

Stochastic Linear Calibration

• Choose the **distribution** of the forecast c_t s.t.

$$E\left[\int \Lambda(c_t,z)\;G^{\Lambda}_{t-1}(z)\,d\zeta(z)\cdot(a-c_t)
ight]\leq 0$$

- Existence of such distribution is guaranteed by a Separation / Minimax Theorem
- $\blacksquare \Rightarrow$ **Probabilistic** Calibration

Integral Approach to Calibration

fixed point \mapsto **deterministic** calibration

Integral Approach to Calibration

fixed point \mapsto **deterministic** calibration

separation / minimax → **stochastic** calibration

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$ s.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$ s.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

 \blacksquare \Rightarrow Brouwer's fixed-point theorem

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded and $\varepsilon > 0$ then

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is bounded and $\varepsilon > 0$ then there exists a C-valued random variable Y

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

- $\blacksquare \Leftrightarrow$ Minimax theorem
- support of Y is at most m+2 points

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

- $\blacksquare \Leftrightarrow$ Minimax theorem
- support of Y is at most m+2 points
- If f is continuous it holds also for $\varepsilon = 0$

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

If f is continuous then there exists $y \in C$ s.t. $f(y) \cdot (c - y) \leq 0$ for all $c \in C$

- Brouwer's fixed-point theorem
- "variational inequalities"

Let $C \subset \mathbb{R}^m$ be a compact convex set $\neq \emptyset$ Let $f: C \to \mathbb{R}^m$ be a function

- $\blacksquare \Leftrightarrow$ Minimax theorem
- support of Y is at most m+2 points
- If f is continuous it holds also for $\varepsilon = 0$

$$extsf{CALIBRATION} = rac{1}{T} \sum_{t=1}^T ||ar{a}_t - c_t||^2$$

SERGIU HART ⓒ 2015 – p. 37

$$\mathsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

SERGIU HART (C) 2015 - p. 37

$$extsf{CALIBRATION} = rac{1}{T}\sum_{t=1}^T ||ar{a}_t - c_t||^2$$

$${ t REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

BRIER SCORE = **CALIBRATION** + **REFINEMENT**

SERGIU HART C 2015 - p. 37

$$\mathsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

$$extsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

$$=\sum_{c}rac{n(c)}{T}\left[rac{1}{n(c)}\sum_{t\leq T\,:\,c_{t}=c}||a_{t}-ar{a}_{t}||^{2}
ight]$$

$$extsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

$$=\sum_{c}rac{n(c)}{T}\left[rac{1}{n(c)}\sum_{t\leq T\,:\,c_t=c}||a_t-ar{a}_t||^2
ight]$$

$$n(c):=|\{t\leq T \ : \ c_t=c\}|$$

Sergiu HART ⓒ 2015 – p. 38

$$extsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

$$= \sum_{c} \frac{n(c)}{T} \left[\frac{1}{n(c)} \sum_{t \leq T : c_t = c} ||a_t - \bar{a}_t||^2 \right]$$
$$= \mathbb{E} \left[\mathbb{VAR} \left[\mathbf{a} \mid \mathbf{c} \right] \right]$$

$$n(c):=|\{t\leq T \ : \ c_t=c\}|$$

Sergiu HART ⓒ 2015 – p. 38

Refinement / Discrimination

$$\mathsf{REFINEMENT} = rac{1}{T}\sum_{t=1}^T ||a_t - ar{a}_t||^2$$

$$= \sum_{c} \frac{n(c)}{T} \left[\frac{1}{n(c)} \sum_{t \leq T: c_t = c} ||a_t - \bar{a}_t||^2 \right]$$
$$= \mathbb{E} \left[\mathbb{VAR} \left[\mathbf{a} \mid \mathbf{c} \right] \right]$$

$$n(c):=|\{t\leq T \ : \ c_t=c\}|$$

SERGIU HART (C) 2015 - p. 38

- Foster and Vohra 1998
- Foster and Vohra 1997
- Hart and Mas-Colell 2000, ...

- Foster and Vohra 1998
- Foster and Vohra 1997
- Hart and Mas-Colell 2000, ...
- Weak Calibration (deterministic):

Previous Work

- Foster and Vohra 1998
- Foster and Vohra 1997
- Hart and Mas-Colell 2000, ...
- Weak Calibration (deterministic):
 - Sakade and Foster 2004 / 2008
 - Foster and Kakade 2006

I		

Nash Dynamics:

Previous Work

Nash Dynamics:

- Foster and Young 2003
- Kakade and Foster 2004 / 2008
- Foster and Young 2006
- Hart and Mas-Colell 2006
- Germano and Lugosi 2007
- Young 2009
- Babichenko 2012

		_
•		

Online Regression Problem:

Previous Work

Online Regression Problem:

- Foster 1991
- J. Foster 1999
- Vovk 2001
- Azoury and Warmuth 2001
- Cesa-Bianchi and Lugosi 2006

Successful Economic Forecasting

Successful Economic Forecasting

correctly forecasting

SERGIU HART (C) 2015 – p. 42

Successful Economic Forecasting ...

correctly forecasting

8 of the last 5 recessions

SERGIU HART ⓒ 2015 – p. 42