Three Envelopes*

Sergiu Hart ${ }^{\dagger}$

Spetember 12, 2006

Consider the variant of the so-called "secretary problem" where the realizations of the random variables - and not only their relative rankings - are sequentially observed. This is sometimes called "googol"; see Ferguson (1989) and Gnedin (1994) (whose general solution implies the result below). We will provide here an elementary proof for $n=3$.

Let $x<y<z$ be the 3 numbers. Let W_{1}, W_{2}, W_{3} be the triple x, y, z in a random order (thus $\mathbf{P}\left(W_{1}=x, W_{2}=y, W_{3}=z\right)=\cdots=\mathbf{P}\left(W_{1}=z, W_{2}=\right.$ $\left.\left.y, W_{3}=x\right)=1 / 6\right)$).

A strategy σ consists of 2 functions:

$$
\begin{aligned}
& \alpha: \mathbb{R} \rightarrow[0,1] \\
& \beta: \\
& \mathbb{R} \times \mathbb{R} \rightarrow[0,1]
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha\left(w_{1}\right) & :=\mathbf{P}_{\sigma}\left(\operatorname{KEEP} W_{1} \mid W_{1}=w_{1}\right), \text { and } \\
\beta\left(w_{1}, w_{2}\right) & :=\mathbf{P}_{\sigma}\left(\operatorname{KEEP} W_{2} \mid W_{1}=w_{1} \text { was not kept, } W_{2}=w_{2}\right) .
\end{aligned}
$$

[^0]Let W^{*} be the W_{i} that is eventually kept. A "WIN" is defined as the event that $W^{*}=\max \left\{W_{1}, W_{2}, W_{3}\right\}$.

Proposition 1 Assume that $\sigma=(\alpha, \beta)$ satisfies $\mathbf{P}_{\sigma}($ WIN $) \geq 1 / 2$ for every $x<y<z$. Then:
(i) $\alpha(w)=0$ for every w;
(ii) $\beta\left(w_{1}, w_{2}\right)=1$ for all $w_{2}>w_{1}$, and $\beta\left(w_{1}, w_{2}\right)=0$ for all $w_{2}<w_{1}$;
(iii) $\mathbf{P}_{\sigma}(W I N)=1 / 2$ for every $x<y<z$.

This shows that the best one can obtain uniformly is $\mathbf{P}_{\sigma}($ WIN $)=1 / 2$. We now provide an elementary proof.

Lemma 2 Without loss of generality $\beta\left(w_{1}, w_{2}\right)=0$ for all $w_{2}<w_{1}$.
Proof. Decreasing β to 0 when $w_{2}<w_{1}$ can only increase the probability of WIN.

Lemma 3 For every $x<y<z$:

$$
\begin{align*}
3 \leq & (1-\alpha(x))(1-\beta(x, y)+\beta(x, z)) \tag{1}\\
& +(1-\alpha(y))(1+\beta(y, z))+2 \alpha(z)
\end{align*}
$$

Proof. The right-hand side is $6 \mathbf{P}$ (WIN) (add the probability of WIN for each one of the 6 orders); now use the assumption that $\mathbf{P}_{\sigma}($ WIN $) \geq 1 / 2$.

Lemma $4 \alpha(w)=0$ for every w.
Proof. Fix x. Let $\left(y_{n}\right)_{n=1,2, \ldots}$ be a strictly decreasing sequence (i.e., $y_{n+1}<y_{n}$ for all n), with limit $y>x$. By taking a subsequence, assume that $\alpha\left(y_{n}\right) \rightarrow r$ and $\beta\left(x, y_{n}\right) \rightarrow s$ for some r, s. Consider the triple $x<y_{n+1}<y_{n}$, then Lemma 3 and $\beta(y, z) \leq 1$ imply

$$
\begin{aligned}
3 & \leq(1-\alpha(x))\left(1-\beta\left(x, y_{n+1}\right)+\beta\left(x, y_{n}\right)\right)+\left(1-\alpha\left(y_{n+1}\right)\right)(1+1)+2 \alpha\left(y_{n}\right) \\
& \rightarrow(1-\alpha(x))(1-s+s)+2(1-r)+2 r=3-\alpha(x) .
\end{aligned}
$$

Therefore $\alpha(x) \leq 0$.
Lemma $5 \beta\left(w_{1}, w_{2}\right)=1$ for all $w_{2}>w_{1}$.

Proof. Lemma 4 and (1) imply $3 \leq 1-\beta(x, y)+\beta(x, z)+1+\beta(y, z)$, or

$$
\begin{equation*}
\beta(x, z)-\beta(x, y)+\beta(y, z) \geq 1, \tag{2}
\end{equation*}
$$

for every $x<y<z$. Since $\beta(y, z) \leq 1$, it follows that $\beta(x, z)-\beta(x, y) \geq 0$, and so $\beta(x, \cdot)$ is a monotonically nondecreasing function for every x.

Fix $x<y$. Let $z \rightarrow y^{+}$(i.e., z decreases to y); from (2) we get

$$
\begin{equation*}
\beta\left(x, y^{+}\right)-\beta(x, y)+\beta\left(y, y^{+}\right) \geq 1, \tag{3}
\end{equation*}
$$

where $\beta\left(x, y^{+}\right):=\lim _{z \rightarrow y^{+}} \beta(x, z)$ (recall that $\beta(x, \cdot)$ is monotonic). Now $\beta(x, y)$ is bounded (in $[0,1]$), so $\beta\left(x, y^{+}\right)-\beta(x, y)=0$ for all except at most countably many $y>x$. Let $A \equiv A_{x}$ be the set of all those y; then (3) implies $\beta\left(y, y^{+}\right)=1$ for all $y \in A$, hence $\beta(y, z)=1$ for all $z>y \in A$ (by monotonicity).

Let y and z be such that $x<y<z$. Then there exists $y^{\prime} \in A$ with $x<y^{\prime}<y$, and (2) for $y^{\prime}<y<z$ yields $1-1+\beta(y, z) \geq 1$, or $\beta(y, z)=1$. Now x was arbitrary.

References

[1] Ferguson, T. S. (1989), "Who Solved the Secretary Problem," Statistical Science 4, 3, 282-296.
[2] Gnedin, A. V. (1994), "A Solution to the Game of Googol," The Annals of Probability 22, 3, 1588-1595.

[^0]: *Thanks to David Gilat for asking the question, and to Benjamin Weiss for helpful discussions.
 ${ }^{\dagger}$ Department of Mathematics, Department of Economics, and Center for the Study of Rationality, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. e-mail: hart@huji.ac.il web page: http://www.ma.huji.ac.il/hart

