
Three Envelopes∗

Sergiu Hart†

Spetember 12, 2006

Consider the variant of the so-called “secretary problem” where the real-

izations of the random variables—and not only their relative rankings—are

sequentially observed. This is sometimes called “googol”; see Ferguson (1989)

and Gnedin (1994) (whose general solution implies the result below). We will

provide here an elementary proof for n = 3.

Let x < y < z be the 3 numbers. Let W1,W2,W3 be the triple x, y, z in

a random order (thus P(W1 = x,W2 = y,W3 = z) = · · · = P(W1 = z,W2 =

y,W3 = x) = 1/6)).

A strategy σ consists of 2 functions:

α : R → [0, 1];

β : R × R → [0, 1],

where

α(w1) := Pσ(KEEP W1 |W1 = w1), and

β(w1, w2) := Pσ(KEEP W2 |W1 = w1 was not kept,W2 = w2).

∗Thanks to David Gilat for asking the question, and to Benjamin Weiss for helpful

discussions.
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Let W ∗ be the Wi that is eventually kept. A “WIN” is defined as the event

that W ∗ = max{W1,W2,W3}.

Proposition 1 Assume that σ = (α, β) satisfies Pσ(WIN) ≥ 1/2 for every

x < y < z. Then:

(i) α(w) = 0 for every w;

(ii) β(w1, w2) = 1 for all w2 > w1, and β(w1, w2) = 0 for all w2 < w1;

(iii) Pσ(WIN) = 1/2 for every x < y < z.

This shows that the best one can obtain uniformly is Pσ(WIN) = 1/2.

We now provide an elementary proof.

Lemma 2 Without loss of generality β(w1, w2) = 0 for all w2 < w1.

Proof. Decreasing β to 0 when w2 < w1 can only increase the probability

of WIN. ¤

Lemma 3 For every x < y < z :

3 ≤ (1 − α(x))(1 − β(x, y) + β(x, z)) (1)

+ (1 − α(y))(1 + β(y, z)) + 2α(z).

Proof. The right-hand side is 6P(WIN) (add the probability of WIN for

each one of the 6 orders); now use the assumption that Pσ(WIN) ≥ 1/2. ¤

Lemma 4 α(w) = 0 for every w.

Proof. Fix x. Let (yn)n=1,2,... be a strictly decreasing sequence (i.e., yn+1 < yn

for all n), with limit y > x. By taking a subsequence, assume that α(yn) → r

and β(x, yn) → s for some r, s. Consider the triple x < yn+1 < yn, then

Lemma 3 and β(y, z) ≤ 1 imply

3 ≤ (1 − α(x))(1 − β(x, yn+1) + β(x, yn)) + (1 − α(yn+1))(1 + 1) + 2α(yn)

→ (1 − α(x))(1 − s + s) + 2(1 − r) + 2r = 3 − α(x).
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Therefore α(x) ≤ 0. ¤

Lemma 5 β(w1, w2) = 1 for all w2 > w1.

Proof. Lemma 4 and (1) imply 3 ≤ 1 − β(x, y) + β(x, z) + 1 + β(y, z), or

β(x, z) − β(x, y) + β(y, z) ≥ 1, (2)

for every x < y < z. Since β(y, z) ≤ 1, it follows that β(x, z) − β(x, y) ≥ 0,

and so β(x, ·) is a monotonically nondecreasing function for every x.

Fix x < y. Let z → y+ (i.e., z decreases to y); from (2) we get

β(x, y+) − β(x, y) + β(y, y+) ≥ 1, (3)

where β(x, y+) := limz→y+ β(x, z) (recall that β(x, ·) is monotonic). Now

β(x, y) is bounded (in [0, 1]), so β(x, y+)− β(x, y) = 0 for all except at most

countably many y > x. Let A ≡ Ax be the set of all those y; then (3)

implies β(y, y+) = 1 for all y ∈ A, hence β(y, z) = 1 for all z > y ∈ A (by

monotonicity).

Let y and z be such that x < y < z. Then there exists y′ ∈ A with

x < y′ < y, and (2) for y′ < y < z yields 1 − 1 + β(y, z) ≥ 1, or β(y, z) = 1.

Now x was arbitrary. ¤
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