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Abstract. We give an ergodic theoretic proof of a theorem of Duke about
equidistribution of closed geodesics on the modular surface. The proof is

closely related to the work of Yu. Linnik and B. Skubenko, who in partic-

ular proved this equidistribution under an additional congruence assumption
on the discriminant. We give a more conceptual treatment using entropy the-

ory, and show how to use positivity of the discriminant as a substitute for

Linnik’s congruence condition.
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1. Introduction

A non-zero integer d is called a discriminant if it can be represented in the form

d = b2 − 4ac, a, b, c ∈ Z,

or equivalently if d is the discriminant of the binary quadratic form with integral
entries

(1.1) q(x, y) = ax2 + bxy + cy2.
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It is easy to see that d is a discriminant if and only if d ≡ 0, 1(mod 4). A discriminant
d is fundamental if d is either square-free (in which case d is congruent to 1 modulo
4) or d/4 is a square-free integer congruent to 2, 3(mod 4). Equivalently: d is
fundamental if it is the discriminant of the ring of integers of a quadratic field.

The study of integral binary quadratic forms goes back at least to the Greeks.
Significant breakthroughs were accomplished by Gauss. In his Disquitiones arith-
meticae he studied the set of GL2(Z)-orbits of such forms, where GL2(Z) acts via

the linear change of variables: for γ =
(

u v
w z

)
∈ GL2(Z)

(1.2) γ.q(x, y) =
1

det(γ)
q((x, y)γ) =

1
det(γ)

q(ux+ wy, vx+ zy).

This action preserves the discriminant and Gauss proved that the set of GL2(Z)-
orbits of integral binary quadratic forms of a given discriminant is finite, see [7, pg.
128] for an accessible and more general treatment. Let

Rdisc(d) = {q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z, disc(q) = d, gcd(a, b, c) = 1}
' {(a, b, c) ∈ Z3, disc(a, b, c) = b2 − 4ac = d, gcd(a, b, c) = 1}

denote the set of forms of discriminant d with coprime coefficients, and let

[Rdisc(d)] = GL2(Z)\Rdisc(d)

be the set of orbits; its cardinality is the class number and is noted h(d). Gauss also
showed that the set [Rdisc(d)] could be given an additional structure of an abelian
group (the law of composition of quadratic forms), leading to the notion of class
group of quadratic forms of discriminant d. Nowadays these venerable and beautiful
results are usually interpreted in terms of the theory of quadratic fields and ideal
class groups. We will recall this connection below.

1.1. Linnik and Skubenko equidistribution theorems. In the late 50’s, Lin-
nik studied more refined properties of the set of representations Rdisc(d), in partic-
ular their distribution properties.

Let
Vdisc,±1(R) = {(a, b, c) ∈ R3, b2 − 4ac = ±1};

this is a one-sheeted hyperboloid in the +1 case and a two-sheeted hyperboloid
in the −1 case, and is identified with the set of real binary quadratic form with
discriminant ±1. In both cases Vdisc,±1(R) is invariant under the natural action of
GL2(R) extending (1.2) and has one orbit.

The set of representation Rdisc(d) projects on Vdisc,±1(R) (with ±1 = sign(d))
by a homothety

|d|−1/2Rdisc(d) ⊂ Vdisc,±1(R),

and Linnik studied how this set is distributed when d → ∞. These hyperboloids
carry a natural GL2(R)-invariant measure µdisc,±1 defined, for any open set Ω ⊂
Vdisc,±1(R), as the Lebesgue measure in R3 of the solid cone emanating from the
origin and ending at Ω, i.e.

µdisc,±(Ω) = µR3(C(Ω))

where
C(Ω) = {r.x, x ∈ Ω, r ∈ [0, 1]}.
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Using an original argument of ergodic theoretic flavor, Linnik [19, Chap. V]
established the following equidistribution statement for negative discriminants.

Theorem 1.1 (Linnik). Let p > 2 be a fixed prime. As d → −∞ amongst the

negative discriminants such that
(
d

p

)
= 1, the set

|d|−1/2Rdisc(d) ⊂ Vdisc,−1(R),

becomes equidistributed with respect to µdisc,−1, in the following sense: for any
two continuous compactly supported functions ϕ1, ϕ2 on Vdisc,−1(R) such that the
integral µdisc,−1(ϕ2) 6= 0 we have∑

x∈Rdisc(d) ϕ1(|d|−1/2x)∑
x∈Rdisc(d) ϕ2(|d|−1/2x)

→ µdisc,−1(ϕ1)
µdisc,−1(ϕ2)

as d→ −∞.

In particular,
∑
x∈Rdisc(d) ϕ2(|d|−1/2x) 6= 0 if d as above is large enough.

Building on Linnik’s ergodic method Skubenko [24] (see also [19, Chap. VI.])
proved the analogous statement for positive discriminants:

Theorem 1.2 (Skubenko). Let p > 2 be a fixed prime. As d → +∞ amongst the

positive discriminants such that
(
d

p

)
= 1, the set

|d|−1/2Rdisc(d) ⊂ Vdisc,+1(R),

becomes equidistributed with respect to µdisc,+1, in the following sense: for any
two continuous compactly supported functions ϕ1, ϕ2 on Vdisc,+1(R) such that the
integral µdisc,+1(ϕ2) 6= 0 we have∑

x∈Rdisc(d) ϕ1(|d|−1/2x)∑
x∈Rdisc(d) ϕ2(|d|−1/2x)

→ µdisc,+1(ϕ1)
µdisc,+1(ϕ2)

as d→ −∞.

In particular,
∑
x∈Rdisc(d) ϕ2(|d|−1/2x) 6= 0 if d as above is large enough.

We refer to Figure 1 for an illustration of the case d = 377.

The condition
(
d

p

)
= 1 for some fixed prime p is equivalent to the condition

that

the fixed prime p splits in the quadratic field Q(
√
d).

This condition (which we shall refer to as Linnik’s condition) was an essential input
for Linnik’s ergodic method but, as was pointed out by Linnik himself, it should
not be necessary for the equidistribution theorem to hold. It is only thirty years
later that this condition was removed in the beautiful work of Duke [9].

1.2. Duke’s theorem. A key point of Duke’s approach is to reformulate the prior
theorems in a dual form: in terms of equidistribution of “Heegner points” (for
negative d) or of closed geodesics (for positive d) on the modular surface Y0(1) :=
SL2(Z)\H.
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Figure 1. The distribution of 377−1/2Rdisc(377) viewed on the
one-sheeted hyperboloid, note that h(377) = 1.

Assuming that d is not a square, one associates to any (a, b, c) ∈ Rdisc(d) the
geodesic corresponding to the geodesic semi-circle in the upper half plane whose
end points are

(1.3) xa,b,c,± =
−b±

√
d

2a
.

We lift this geodesic in the obvious way to the unit tangent bundle of H and then
project it to a geodesic orbit on the unit tangent bundle T1(Y0(1)). This geodesic
orbit, which we denote by γ[a,b,c], is compact and depends only on the SL2(Z)-orbit
of (a, b, c). We obtain in this way a collection of h(d) closed geodesics

Gd =
⋃

[a,b,c]

γ[a,b,c] ⊂ T1(Y0(1)),

see Figure 2 for the case d = 377. This collection of compact orbits of the geodesic
flow then carries a natural probability measure invariant under the geodesic flow
which we denote by µd. Let µL be the Liouville (Haar) probability measure on
T1(Y0(1)), then Duke’s theorem (as extended by Chelluri [8] to the unit tangent
bundle) gives the following:

Theorem 1.3 (Duke). As d → +∞ amongst the positive fundamental discrimi-
nants, the set Gd becomes equidistributed on the unit tangent bundle T1(Y0(1)) with
respect to the measure µL: for any continuous compactly supported function ϕ on
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Figure 2. The distribution of G377 projected on the fundamental
domain of SL2(Z)\H, note that h(377) = 1.

T1(Y0(1)) ∫
Gd

ϕ(t)dµd(t)→
∫
T1(Y0(1))

ϕ(u)dµL(u).

The equivalence of the equidistribution statement in Theorem 1.2 and Theo-
rem 1.3 will be explained in §2.4.

The restriction to fundamental discriminants is not essential; indeed all the
proofs extend to the general case, including the one we present here. Duke’s proof
is fundamentally different from Linnik’s; it does not rely on ergodic theory but
on harmonic analysis of the modular surface SL2(Z)\H, that is on the theory of
automorphic forms supplemented by deep arguments from analytic number theory
and in particular a breakthrough of Iwaniec [17].

In this paper we give a new proof of Duke’s theorem in the case of positive
discriminant. Our proof is strongly influenced by Linnik’s ergodic method, and
may be seen as a modern incarnation of Linnik’s original ideas, and we use the
positivity of the discriminant as a substitute to Linnik’s condition that Skubenko
relied on in his work.

There are two main ingredients in the proof:
(1) Linnik’s Basic Lemma — An upper bound on the number of nearby pairs

of points in the projection of Rdisc(d) to Vdisc,−1(R) (as this set is infinite,
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the quantity to be bounded needs some additional interpretation), which
eventually reduces to an upper bound on the number of ways a given binary
quadratic form can be represented by a ternary quadratic form.

(2) The uniqueness of measure of maximal entropy for the flow corresponding

to the one parameter group at =
(
et

e−t

)
on SL2(Z)\SL2(R).

We have made an effort to present both of these main ingredients in a self-contained
way, as each relies on some well-known results that are unfortunately well-known
in essentially disjoint circles of mathematicians.

The second of these two ingredients replaces a more explicit but less conceptual
argument of Linnik and Skubenko. The uniqueness of the measure of maximal
entropy for this action is well-known (both in the cocompact and finite volume
case) and in the cocompact case dates back to work of R. Bowen [4]. However
the version we give here is new in that it allows us to control how much weight
Gd gives to small neighborhoods of the cusp in SL2(Z)\H: essentially, we give a
finitary version of the uniqueness of measure of maximal entropy in the noncompact
quotient SL2(Z)\SL2(R). This finitary version is the content of Theorem 4.2, and
involves a careful analysis of how much entropy can be carried by at-invariant
measures that give disproportionately high weight to the cusp. A cleaner version
of the relationship between entropy and mass in the cusp (although not directly
applicable for our main purposes) is given in Theorem 5.1. We believe these results
are of independent interest, and will likely have other applications; it also raises
some interesting new questions (see e.g. [11]).

We mention that another modern exposition of Linnik’s method in a similar
context (distribution of integer points on spheres) by J. Ellenberg and two of us
(Ph.M. and A.V.) has appeared already in [14]. In that work Linnik’s Basic Lemma
is again a central ingredient, complemented by a different argument to convert the
upper bounds provided by the Basic Lemma to equidistribution (i.e. both upper
and lower bounds on number of points in specified regions). The reader may wish
to compare these two complementary approaches.

1.3. Notation. We collect here some notation that is used throughout the paper:
The group SL2(R) acts transitively on the upper-half plane model H of the

hyperbolic plane by fractional linear transformations and the stabilizer of the point
i is the compact subgroup SO2(R). The resulting identification

H ' SL2(R)/SO2(R)

descends to an identification of H with PSL2(R)/PSO2(R); moreover the action of
PSL2(R) on the unit tangent bundle H is simply transitive. If we let p ∈ T 1(H) be
the tangent vector pointing up at i, then g 7→ gp gives an identification PSL2(R) '
T 1H. Taking the quotient by PSL2(Z) we obtain an identification with the unit
tangent bundle of the modular curve1 PSL2(Z)\PSL2(R) ' T 1(PSL2(Z)\H).

We shall make use of another identification of the quotient PSL2(Z)\PSL2(R),
namely with the space of lattices in R2 up to homothety. Indeed, the space of
lattices L2(R) is identified with GL2(Z)\GL2(R) via g 7→ Z2.g; the same map also
identifies the space [L2(R)] of lattices up to homothety with PGL2(Z)\PGL2(R)

1Actually the modular curve has singularities at the points i and j = 1+
√
−3

2
owing to the fact

that these points have non-trivial stabilizers in PSL2(Z), we will ignore this minor point.
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and the set L(1)
2 (R) = X of lattices of covolume one with SL2(Z)\SL2(R) =

PSL2(Z)\PSL2(R). Finally, the sets [L2(R)] and L(1)
2 (R) are also identified via

the map [L] 7→ vol(L)−1/2.L.
Thus the following spaces are identified:

X ' PSL2(Z)\PSL2(R) ' T 1(PSL2(Z)\H) ' [L2(R)] ' L(1)
2 (R).

When we speak of “the lattice corresponding to x ∈ X,” we have in mind always
the image of x under the isomorphism X ' L(1)

2 (R).
We take the following fundamental domain

S = {(z, v) ∈ H× S1, |<z| ≤ 1/2, |z| ≥ 1} ⊂ T 1(H) ' PSL2(R)

for PSL2(Z) = Γ.
Fix an arbitrary left-invariant Riemannian metric d on PSL2(R). It descends to

a metric on X, denoted dX or simply d for short. Explicitly we have

(1.4) dX(PSL2(Z)g1,PSL2(Z)g2) = min
γ∈PSL2(Z)

d(g1, γg2)

The geodesic curves on T 1(H) — which in the upper half-plane are circles and
lines intersecting the real axis in a normal angle — correspond to the orbits of the
right A-orbits in PSL2(R) where A = {at} is the diagonal subgroup of PSL2(R).
By a slight abuse, we shall use A to refer to the diagonal subgroup of all three
groups: GL2(R),PGL2(R) and SL2(R).

Acknowledgements: The authors would like to thank Peter Sarnak for encour-
agement and many helpful conversations. A.V. would also like to thank Jordan
Ellenberg for many discussions on the topic of quadratic forms. The authors also
thank Menny Aka, Asaf Katz, Ilya Khayutin, Lior Rosenzweig for carefully going
over a preliminary version of this paper.

2. Representations by the discriminant, orbits and quadratic fields

In this section we explain in greater detail the relationship between Skubenko’s
equidistribution theorem and Duke’s and connect these questions to the arithmetic
of real quadratic fields. Along the way we will find a few equivalent ways in which to
describe compact A-orbits in Gd. Building on that we prove in §2.4 the equivalence
between Skubenko’s and Duke’s formulations.

2.1. Overview of the bijections. Recall that we have previously associated to
any element of [Rdisc(d)] – i.e. to any GL2(Z) orbits in Rdisc(d) – a closed geodesic
on SL2(Z)\H. On the other hand, as discussed in §1.3, a closed geodesic in Gd
corresponds to a closed A-orbit on the space X.

Write Od := Z[d+
√
d

2 ] for the order of discriminant d.
We shall show below that the following sets are in natural bijection to each other:

i. [Rdisc(d)], the set of GL2(Z)-orbits of primitive representations in Rdisc(d).
ii. The set of GL2(Z)-conjugacy classes of ring embeddings ι : Od ↪→ M2(Z)

which are optimal, i.e. for which the embedding cannot be extended to an
embedding of a strictly bigger order O  Od with image in M2(Z).

iii. Cl(Od) = the set of K×-homothety classes of proper Od-ideals.
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In the case of a fundamental discriminant the above objects and their bijections
are a bit easier to explain. In fact, if d is a fundamental discriminant, then ev-
ery representation is primitive, every embedding is optimal, and every Od-ideal is
proper. In reading the remainder of the section the reader may first specialize to
this case, or even continue reading with Section 3 and only refer to the portions of
this section as needed for the remainder of the paper.

2.2. Discriminant and quadratic fields. We establish the bijections of §2.1.
Before beginning, we note that the sequence of maps

(2.1) ax2 + bxy + cy2 7→
(

a b/2
b/2 c

)
7→
(

b −2a
2c −b

)
defines an isometry between the spaces of (real) binary quadratic forms, symmetric
2×2 real matrices and trace zero 2×2 real matrices, where each of those is equipped
with a quadratic form:

(Q(R2),disc) ' (Sym2(R),−4 det) ' (M0
2 (R),−det).

The action of GL2(Z) in (1.2) is the restriction of the following action of GL2(R)
on Q(R2):

g.q(x, y) =
1

det(g)
q((x, y)g) =

1
det(g)

q(ux+ wy, vx+ zy), g =
(

u v
w z

)
,

which intertwines with the actions

g.(ax2 + bxy + cy2)←→ 1
det(g)

g

(
a b/2
b/2 c

)
tg ←→ g

(
b −2a
2c −b

)
g−1.

Observe that these actions factor through PGL2(R). They also induce an isomor-
phism between PGL2(Z) and the group of orthogonal transformations of (Q(R2),disc)
preserving the integral quadratic forms.

Let d be a discriminant which is not a perfect square; let (a, b, c) ∈ Rdisc(d) be
a representation, and let

(2.2) m = ma,b,c =
(

b −2a
2c −b

)
be the trace zero matrix associated to it via the map (2.1). Since

m2 = d · Id
this defines an embedding of the quadratic field (d is not a square) K = Q(

√
d)

into M2(Q)

ιm :
K 7→ M2(Q)

u+ v
√
d 7→ uId + v.m

2.2.1. Representations and optimal embedding. The integrality properties of this
embedding are measured by considering

Om := ι−1
m (M2(Z))

which is an order in K. Let us identify which order: Note that Oλ.m = Om for any
λ ∈ Q×. Hence if b2 − 4ac = d for a, b, c ∈ Z we may write

(a, b, c) = f(a′, b′, c′)

with f ∈ Z and a′, b′, c′ ∈ Z coprime integers satisfying

disc(a′, b′, c′) = d′ = d/f2.
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This reduces the discussion to the case where (a, b, c) is a primitive representation
of d (a representation with coprime entries).

Assuming that (a, b, c) is primitive, one sees quickly that

(2.3) ι−1
m (Om) = Od = Z[

d+
√
d

2
]

is the order of discriminant d. If (2.3) holds, we say that ιm defines an optimal
embedding of Od into M2(Z). We obtain in that way a bijection between

the set of GL2(Z)-orbits of primitive representations [Rdisc(d)]

and

the set of GL2(Z)-conjugacy classes of optimal embeddings ι : Od ↪→M2(Z).

2.2.2. Embeddings and ideal classes. Let us recall, that a lattice I ⊂ K is a proper
Od-ideal, iff

OI := {λ ∈ K, λ.I ⊂ I} = Od.

Then there is a bijection between

the set of GL2(Z)-conjugacy classes of optimal embeddings of Od

and the set of proper ideal classes of Od

Cl(Od) = the set of K×-homothety classes of proper Od-ideals.

This bijection goes as follows [18]: Given a proper Od-ideal I ⊂ K, one may
choose a Z-basis I = Z.α+ Z.β which gives an identification

θ :
I 7→ Z2

uα+ vβ 7→ (u, v)

This identification induces the embedding

ι : K ↪→M2(Q)

defined by
ι(λ)(u, v) = θ(λ.(uα+ vβ)),

(or in other terms, such that θ(λ.x) = θ(x)ι(λ)).
Since Od.I ⊂ I, one has ι(Od)Z2 ⊂ Z2, that is ι(Od) ⊂M2(Z) and the fact that

I is a proper Od-ideal is equivalent to the fact that ι is an optimal embedding of
Od. If we replace the Z-basis (α, β) by another basis (α′, β′) then ι is replaced by
a GL2(Z)-conjugate. Finally if I is replaced by an ideal in the same class I ′ = λ.I
λ ∈ K×, then the corresponding GL2(Z)-conjugacy classes coincide: [ιI′ ] = [ιI ].

The inverse of the map
[I] 7→ [ιI ]

is as follows: given an optimal embedding ι : K 7→M2(Q) of Od, let e1 = (1, 0) ∈ Z2

be the first vector of the standard basis2 of Z2, then the map

θ :
K 7→ Q2

λ 7→ e1.ι(λ)

is an isomorphism of Q-vector spaces; next define the lattice I = θ−1(Z2) in K
which is invariant under multiplication by Od. In other words, I is an Od-ideal and
I being proper is equivalent to ι being optimal.

2We could have chosen any primitive vector in Z2.



10 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, AND A. VENKATESH

2.2.3. The Picard group of the order Od. We now recall the definition and basic
properties of the Picard group for an order Od in a quadratic field.

The product of two Od-ideals I and J gives another Od-ideal

I · J = {λλ′ : λ ∈ I, λ′ ∈ J} ;

and clearly this operation respects the equivalence relation introduced above on
Od-ideals. An Od-ideal I is invertible if there is some Od-ideal J so that I ·J = Od.
An Od-ideal I is locally principal if for any prime p,

Ip := I ⊗Z Zp = λp(Od)p,

where (Od)p = Od ⊗Z Zp and λp is an element of (K ⊗Q Qp)×. Both properties
depend only on the ideal class [I] and not on I itself.

For general orders O in number fields and O-ideals I, one has the following
implications

I is locally principal =⇒ I is invertible =⇒ I is proper.

We shall make use of the following property of orders in quadratic number fields:

Proposition 2.1. For the orders Od in quadratic number fields the inverse impli-
cation

I is proper =⇒ I is locally principal
holds for Od-ideals I. In particular, the set of proper ideal classes Cl(Od), endowed
with the composition law induced by forming the product of two lattices, has the
structure of an abelian group.

This nice special feature of quadratic orders comes from the fact that in the
quadratic case, orders are always monogenic (i.e. of the form O = Z[x]).

Proof. Recall that Od = Z[x] for x = d+
√
d

2 . Assume now that I is a proper Od-ideal
and consider the 2-dimensional Fp-vector space Ip/pIp ' I/pI. The natural map

(Od)p/p(Od)p 7→ EndFp(Ip/pIp)

is injective. To see this, suppose that λ ∈ (Od)p acts trivially on Ip/pIp. Then
λIp ⊂ pIp and λ

p Ip ⊂ Ip and so λ
p ∈ Op as required. It follows that x the image of x

in EndFp(Ip/pIp) has a minimal polynomial of degree 2 and that Ip/pIp is a cyclic
Fp[x]-module. So there exist λp ∈ Ip such that Ip = λp(Od)p + pIp which implies
that

Ip = λp(Od)p + p(λp(Od)p + pIp) =

= λp(Od)p + p2Ip = λp(Od)p + p3Ip = . . . = λp(Od)p.

�

2.3. Interpretation in terms of lattices. Let us verify that the various descrip-
tions of Gd are equivalent:

Given (a, b, c) ∈ Rdisc(d), put ha,b,c =
(
b+
√
d b−

√
d

2c 2c

)
and w =

(
0 −1
1 0

)
∈

SL2(Z). Then wha,b,c maps (∞, 0) to −b±
√
d

2a . Therefore, the geodesic γ[a,b,c] on
PSL2(Z)\H associated to (a, b, c) after equation (1.3) is:

γ[a,b,c] = wha,b,c.(0,∞),
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where (0,∞) is the geodesic on H joining 0 and ∞. Now (0,∞) corresponds, in
the realization T 1(H), to the A-orbit of the identity in SL2(R); therefore γ[a,b,c]

corresponds to SL2(Z) · wha,b,cA = SL2(Z) · ha,b,cA, or equivalently the lattices of
the form Z2 · ha,b,cat ⊂ L(1)

2 (at ∈ A). Now one calculates

1
det(ha,b,c)

ha,b,c

(
0 1

2
1
2 0

)t
ha,b,c =

1√
d

(
a b

2
b
2 c

)
,

which shows that in a particular basis of Z2ha,b,c the quadratic form q0(x, y) = xy
takes the shape as in (2.4).

Since A is the stabilizer subgroup of q0, we have verified that γ[a,b,c] corresponds
to:

The set of homothety classes of lattices L, such that the restriction
of the quadratic form q0(x, y) = xy to L, expressed in terms of a
basis α, β of L, take the form

(2.4) q0(uα+ vβ) = vol(L)
au2 + buv + cv2

d1/2
.

Note that the particular quadratic form au2+buv+cv2√
d

is not canonically attached
to the lattice L because of the different choices of a basis.

Set m0 =
(

1 0
0 −1

)
and ι0 to be the embedding ι0 : K ↪→ Diag2(R) ⊂ M2(R)

obtained by mapping
√
d to d1/2m0 and θ0 be the linear embedding θ0 : K ↪→ R2

given by

θ0(λ) = (1, 1)ι0(λ), i.e.. θ0(u+ v
√
d) = (u+ v|d|1/2, u− v|d|1/2).

Now let us verify, as asserted in §2.1, that the A-orbit of θ0(I) belongs to Gd,
for any proper Od-ideal I. (We don’t verify the more precise assertion that this
is exactly the element of Gd that corresponds to the class of I under the bijection
Cl(Od)↔ Rdisc). We need to verify (according to (2.4)) that λ ∈ I 7→ q0(θ0(λ))

vol(θ0(I))

√
d

is a quadratic form of discriminant d. But q0(θ0(λ)) = NK/Q(λ) is the norm; and
for any ideal I ⊂ K that vol(θ0(I)) = |d|1/2N(I). Here we have defined norm N(I)
of an ideal (relative to Od) by the ratio of indexes

N(I) =
(Od : Od ∩ I)
(I : Od ∩ I)

.

Now, for any ideal I, the map x ∈ I 7→ NK/Q(x)

N(I) is easily verified to be an integer
quadratic form of discriminant d, as desired.

2.4. A duality principle. Our goal now is to show that the equidistribution state-
ments of Skubenko’s theorem and of Duke’s theorem are equivalent.

The discussion which follows is valid in great generality; but we will consider
only G = PGL2(R), Γ = PGL2(Z), and the diagonal torus A in G.

Since PGL2(R) is identified with SOdisc(R), it acts transitively on Vdisc,+1(R) (by
Witt’s theorem) and equals the PGL2(R)-orbit of (say) q0(x, y) = xy; equivalently
Vdisc,+1(R) is identified with the PGL2(R)-conjugacy class of the matrix m0 which
has A as its stabilizer subgroup in G. Hence

Vdisc,+1(R) = PGL2(R).q0 ' PGL2(R).m0 ' PGL2(R)/A.
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2.4.1. Duality between orbits. It follows from the previous discussion that each rep-
resentation (a, b, c) ∈ Rdisc(d) is identified with some class ga,b,cA/A ∈ G/A or what
is the same to an orbit ga,b,cA ⊂ G for some ga,b,c ∈ G such that

ga,b,c.q0 = |d|−1/2(a, b, c), q0 = (0, 1, 0).

As we have seen Γ acts on Rdisc(d) and the latter decomposes into a finite disjoint
union of Γ-orbits, setting

[a, b, c] = Γ\Γ(a, b, c) ∈ [Rdisc(d)],

for the orbit of (a, b, c), one has

Rdisc(d) =
⊔

[a,b,c]∈[Rdisc(d)]

Γ.(a, b, c)

Hence |d|−1/2.Rdisc(d) is identified with the collection of Γ-orbits⊔
[a,b,c]∈[Rdisc(d)]

Γga,b,cA/A ⊂ G/A;

thus the problem of the distribution of |d|−1/2.Rdisc(d) inside Vdisc,+1(R) is a prob-
lem about the distribution of a collection of Γ-orbits inside the quotient space G/A.

There is an almost tautological equivalence between (left) Γ-orbits on G/A and
(right) A-orbits on Γ\G given by

(2.5) ΓgA/A←→ ΓgA←→ Γ\ΓgA.

This duality induces a close relationship between the study of the distribution of
|d|−1/2.Rdisc(d) inside Vdisc,+1(R) and the distribution of the collection of right-A
orbits

Gd =
⋃

[a,b,c]∈[Rdisc(d)]

x[a,b,c]A ⊂ Γ\G

inside the homogeneous space Γ\G, with

(2.6) x[a,b,c] = Γ\Γga,b,c.

This is the “duality principle” alluded to at the beginning of this section. Let us
make this principle a bit more precise by identifying the orbits in question:

Assuming that (a, b, c) ∈ Rdisc(d) is primitive; one has

x[a,b,c]A = Γ\Γga,b,cA = Γ\ΓAa,b,cga,b,c
where

Aa,b,c = ga,b,cHg
−1
a,b,c = stab(a,b,c)(G)

is the stabilizer of (a, b, c) in G. That group is the group of real points of a Q-
algebraic group, which we will denote by Ta,b,c, namely the image in PGL2 of the
centralizer Zm of

m = ma,b,c =
(

b 2c
−2a −b

)
.

In terms of the embedding ι = ιma,b,c : K ↪→M2(Q), one has

Zm(Q) = ι(K×),

and
T(Q) = ι(K×)/Q×Id, Aa,b,c = Ta,b,c(R) = ι(K ⊗ R)×/R×Id,
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and (since M2(Z) ∩ ι(K) = ι(Od)),

Γa,b,c := Γ ∩Aa,b,c = ι(O×d )/{±Id}.
Alternatively, let ι0 denote the (real) embedding

ι0 :
K 7→ M2(R)

u+ v
√
d 7→ uId + v.d1/2m0

obtained by conjugating ιm with g−1
a,b,c, we have

ι0(K ⊗Q R)×/R×Id = A

and
Γ′a,b,c := g−1

a,b,cΓga,b,c ∩A = ι0(O×d )/{±Id}
so that we have homeomorphisms

(2.7) x[a,b,c]A = Γ\ga,b,cA ' g−1
a,b,cΓga,b,c ∩A\A = ι0(K ⊗ R)×/R×ι0(O×d ).

By Dirichlet’s unit theorem, ι0(K ⊗ R)×/R×ι0(O×d ) is compact hence x[a,b,c]A is
compact and since [Rdisc(d)] is finite we obtain:

Theorem 2.2. The union of A-orbits Gd is compact.

2.4.2. Duality between measures. To consider equidistribution problems, one needs
to refine the correspondence (2.5) at the level of measures. Roughly speaking, the
choice of the counting measure µΓ on Γ and of left-invariant Haar measure µA on3

A define a measure theoretic version of the correspondence (2.5):

Fact. There exists homeomorphisms between the following spaces of Radon mea-
sures (relative to the weak-* topology):

(2.8)
left Γ-invariant
Radon measures
λ on G/A

←→
left Γ, right A-invariant

Radon measures
ρ on G

←→
right A-invariant
Radon measures
ν on Γ\G.

These homeomorphisms are characterized by the identities: for any ϕ ∈ Cc(G), one
has

λ(ϕA) = ρ(ϕ) = ν(ϕΓ)
where

ϕA(g) :=
∫
A

ϕ(gh)dµA(h), ϕΓ(g) =
∑
γ∈Γ

ϕ(γ.g).

See for instance [2, §8.1] for a proof of that fact. We work out this correspondence
in specific cases:
− ρ is a Haar measure µG on G, which is G-biinvariant as G is unimodular. The

correspondence (2.8) yield the quotient measures ν = µΓ\G on Γ\G, and λ =
µG/A ∝ µdisc,±1 on G/A. The former measure ν is finite (i.e. Γ is a lattice in G)
and we may adjust µG so that µΓ\G is a probability measure.

− The sum λd of Dirac measures on G/A given by

λd =
∑

(a,b,c)∈Rdisc(d)

δga,b,cA/A =
∑

[a,b,c]

∑
g∈Γ.ga,b,c

δgA/A

=
∑

[a,b,c]

∑
γ∈Γ/Γa,b,c

δγga,b,cA/A.

3Note that A is unimodular.
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Proposition. The measure νd on Γ\G corresponding to λd under (2.8) is the
sum of the push forwards of the Haar measure µA over the set of A-orbits
x[a,b,c]A, [a, b, c] ∈ [Rdisc(d)].

Indeed, set λ[a,b,c] =
∑
γ∈Γ/Γa,b,c

δγga,b,cA/A. Then if S denotes a fundamental
domain in A for Γ′a,b,c

λ[a,b,c](ϕA) =
∑

γ∈Γ/Γa,b,c

∫
A

ϕ(γga,b,ch)dh =
∑
γ∈Γ

∫
S

ϕ(γga,b,ch)dh

=
∫

Γ′a,b,c\A
ϕΓ(ga,b,ch)dh =

∫
x[a,b,c]A

ϕΓ(h)dh,

hence the measure on Γ\G corresponding to λ[a,b,c] is given by the push forwards of
the Haar measure µA to the periodic A-orbit x[a,b,c]A, and the proposition follows.

Let

vol(Gd) := νd(Gd) =
∑

[a,b,c]

vol(x[a,b,c]A),

denote the total volume of this (finite) collection of (compact) A-orbits. From (2.7)
we see that the various orbits associated to primitive representations of d have the
same volume, namely with the correct normalization of the Haar measure of A

vol(x[a,b,c]A) = vol(R×ι0(O×d )\A) = Reg(Od)

where Reg(Od) is the regulator of Od. Therefore,

vol(Gd) = |Pic(Od)|Reg(Od).

If d = disc(OK) is a fundamental discriminant, the Dirichlet class number formula
gives

vol(Gd) = |Pic(Od)|Reg(Od) = λ|d|1/2L
((d
·
)
, 1
)

where λ is some absolute constant, (d· ) is the Kronecker symbol and L((d· ), s) its
associated L-function. Then by Siegel’s theorem L((d· ), 1) = |d|o(1) as d → ∞ so
that

(2.9) vol(Gd) = |d|1/2+o(1).

If d = d′f2 with d′ a fundamental discriminant

|Pic(Od)|Reg(Od)
|Pic(Od′)|Reg(Od′)

= f
∏
p|f

(
1− p−1

(
d′

p

))

which shows again that |Pic(Od)|Reg(Od) = |d|1/2+o(1) and hence (2.9) holds in
general (c.f. e.g. [10, Sect. 9.6]). We let

µd :=
1

vol(Gd)
νd.

This is an A-invariant probability measure on Γ\G and the above discussion shows
that Skubenko’s Theorem on page 3 follows from the following:
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Theorem 2.3. As d→∞ amongst the non-square discriminants, the sequence of
measures µd weak-* converge to the probability measure µΓ\G, i.e. for any ϕΓ ∈
Cc(Γ\G), one has

µd(ϕΓ) =
1

vol(Gd)

∑
[a,b,c]

∫
x[a,b,c]A

ϕΓ(h)dh→ µΓ\G(ϕΓ).

Indeed any continuous compactly supported function on G/A is of the form ϕA
for ϕ ∈ Cc(G), hence by Theorem 2.3

λd(ϕA) = νd(ϕΓ) = vol(Gd)µd(ϕΓ)

= vol(Gd)(µΓ\G(ϕΓ) + o(1)) = vol(Gd)(µG/A(ϕA) + o(1)).

3. Spacing properties of torus orbits

In this section, we show that the various distinct orbits x[a,b,c]A ⊂ Gd are in
a suitable sense well spaced from each other; the main result is Proposition 3.6.
Recall that

Gd =
⊔

[a,b,c]∈[R(d)]

x[a,b,c]A.

where x[a,b,c] is defined in (2.6).

3.1. Ideal classes are controlling the time spent near the cusp. The space
X is not compact and this is measured through a height function (normalized to
be invariant under scaling): given, for L = Z2.g ⊂ R2 a lattice, by

ht(L) =
(minx∈L−{0} ‖x‖

vol(L)1/2

)−1

=
(minx∈Z2−{0} ‖xg‖

|det(g)|1/2
)−1

.

where ‖.‖ denote the Euclidean norm. This continuous function is proper. Indeed,
if x ∈ X and (z, v) ∈ S any representative, then the height ht(x) and the imaginary
part =(z) satisfy =(z) = ht(x)2. For any H > 1 let X≥H denote the set of all x ∈ X
with ht(x) ≥ H.

In this section we evaluate explicitly how big the height of a lattice in Gd could
be.

Proposition 3.1. Suppose the proper integral ideal J ⊂ Od corresponds to [a, b, c] ∈
Rdisc(d) under the bijection of §2.1. Then x[a,b,c]A∩X≥H is nonempty if and only if
J−1 is equivalent to an ideal I ⊂ Od of norm ≤ 1

2H
−2d1/2. Moreover, this defines

a bijection between connected component Gd ∩X≥H and proper Od-ideal I ⊂ Od of
norm ≤ 1

2H
−2d1/2.

Even though the above does not control escape of mass for µd as d→∞ it does
give an upper bound for µd(X≥H), see Proposition 3.3, which we will use in our
proof of Duke’s theorem. Note that Proposition 2.1 guarantees that there is an
inverse J−1 to the proper ideal J .

Remark 3.2. Applying this result to H = d1/4 we see that Gd ∩X≥d1/4 is empty
(as there are no ideals of norm < 1). This implies that Gd is pre-compact.

Proof. Note that, if we identify x ∈ X with a lattice L of covolume 1, then xA∩X≥H
is nonempty if and only if there is some nonzero vector (u, v) ∈ L with |uv| ≤ 1

2H
−2.



16 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL, AND A. VENKATESH

Therefore (using the explicit bijection of §2.1) the A-orbit defined by J intersects
X≥H , if and only if J contains an element λ with

|N(λ)| ≤ 1
2
H−2N(J)d

1
2 .

Recall that N(J−1) = N(J)−1 by standard properties of the norm. It follows that
the A-orbit defined by J intersects X≥H if and only if N(λJ−1) ≤ 1

2H
−2d

1
2 for

some λ ∈ J (so that λJ−1 ⊂ Od).
Finally, notice that for H > 1 there is, in a lattice L′ ∈ X≥H , up to sign,

only one primitive nonzero vector of length ≤ H−1vol(L′)1/2 (which is a simple
volume computation). Therefore, fixing J , in the above argument, a connected
component of θ0(J).A ∩ X≥H corresponds to a unique primitive element λ ∈ J

with |N(λ)| ≤ 1
2H
−2N(J)d

1
2 (up to sign) and we can associate to this connected

component the ideal I = λJ−1 ⊂ Od of norm ≤ 1
2H
−2d

1
2 . �

Proposition 3.3. There is “not too much mass high in the cusp” in the sense that

µd(X≥H)�ε d
εH−2

for all ε > 0 and H ≥ 1.

Note that to make this estimate useful, we will set later H = dε for some ε > 0.

Proof. We note first that in any orbit in Gd the maximal height achieved is ≤ d 1
4 (see

Remark 3.2). This implies that for H > 1 any connected component of Gd ∩X≥H
has length� log(d). Indeed such a component corresponds (in the upper-half plane
model) to the segment of some oriented geodesic circle (i.e. a half circle centered
on the real line) made of whose points which have imaginary part between H and
d1/4: the hyperbolic length of such a segment is bounded by � log(d

1
4 /H).

Therefore, by Proposition 3.1

vol(Gd ∩X≥H)� log(d)N≤H(d)

where N≤H(d) is the number of proper ideals I ⊂ Od of norm N(I) ≤ 1
2H
−2d

1
2 .

Recall that for any n ∈ N the number of proper ideals in Od of norm equal to n
is bounded by the number of divisors of n and so by �ε n

ε. By summing over all
1 ≤ n ≤ 1

2H
−2d

1
2 we get that N≤H(d) �ε (H−2d

1
2 )1+ε. Together with (2.9) this

proves the proposition. �

3.2. Linnik’s basic lemma and representing binary quadratic forms by
ternary forms. Following Linnik we will derive the “basic lemma” from represen-
tation numbers of quadratic forms: Let q,Q be two integral non-degenerate qua-
dratic forms on Zm and Zn respectively. Assuming that m ≤ n, a representation
of q by Q is an isometric embedding of quadratic lattices

ι : (Zm, q) ↪→ (Zn, Q)

in other terms a Z-linear map ι : Zm → Zn such that for x ∈ Zm

Q(ι(x)) = q(x).

For instance a representation x ∈ Zn of an integer d ∈ Z by a quadratic form Q on
Zn may be viewed as the isometric embedding

ιx :
(Z, dx2) ↪→ (Zn, Q)

n → nx .
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Let RQ(q) be the set of such representations: The group Γ = SOQ(Z) acts on RQ(q)
(for γ ∈ Γ, γ.ι = γ ◦ ι) and the quotient Γ\RQ(q) is finite.

We are interested here in evaluating |Γ\RQ(q)| in the codimension one case (i.e..
when n−m = 1). More precisely, we will need to show that, in this case, |Γ\RQ(q)|
is rather small. The simplest evidence come from the case m = 1, n = 2 : the
representations of an integer by a binary quadratic form. For instance it is well
know that for d 6= 0 the number of integral solutions to xy = d (i.e. the number
of divisors of d) is bounded by Oε(dε). Similarly the number of representations of
an integer as a sum of two squares satisfies the same bound; indeed, for any binary
integral quadratic form Q one has |Γ\RQ(d)| �q |d|ε for any ε > 0. The following
is a version of this claim for m = 2, n = 3, where in the case of non-fundamental
discriminants the estimate is not as strong.

Proposition 3.4. Let Q be an integral ternary quadratic form, and let

q(x, y) = ax2 + bxy + cy2

an integral binary quadratic form, both non-degenerate. Assume that f2| gcd(a, b, c)
is the greatest common square divisor of a, b, c. Then the number N of embeddings
of (Z2, q) into (Z3, Q), modulo the action of SOQ(Z), is �Q,ε f max(|a|, |b|, |c|)ε.

When Q = x2 + y2 + z2 is the ”sum of three squares” quadratic form such a
bound is a consequence of an explicit formula on the number of representations due
to Venkov [26] (assuming a square-free). This bound was later generalized by Pall
[21, Thm. 5]. We provide a self-contained treatment in Appendix A.

Let

〈(a, b, c), (a′, b′, c′)〉disc = disc(a+ a′, b+ b′, c+ c′)− disc(a, b, c)− disc(a′, b′, c′)

= 2bb′ − 4ac′ − 4a′c

be the polarization inner product associated with the quadratic form disc. We will
apply Proposition 3.4 to the pair

Q = disc, q(x, y) = dx2 + `xy + dy2,

and note that q(x, y) is non-degenerate if an only if ` 6= ±2d. Hence we obtain:

Corollary 3.5. Let Γ = SOdisc(Z). Then for any two integers d, ` with ` 6= ±2d,
the number of Γ-orbits on pairs{

((a, b, c), (a′, b′, c′)) ∈ Z3 × Z3 :

disc(a, b, c) = disc(a′, b′, c′) = d, 〈(a, b, c), (a′, b′, c′)〉disc = `
}

is �ε f(max(|d|, |`|))ε, where f2 is the largest square factor of gcd(d, `).

We now translate the information obtained about quadratic forms above to Lin-
nik’s basic lemma, which we phrase in the geometric context. This falls short from
equidistribution but will suffice as the arithmetic input to the ergodic arguments
later.

Proposition 3.6 (Basic lemma). We have

µd × µd{(x, y) ∈ X2
≤H : dX(x, y) ≤ δ} �ε H

4δ3dε

whenever d−
1
4 ≤ δ ≤ 1

3H
−2 and ε > 0.
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Note that the exponent 3 of δ3 is optimal, and suggests that µd is 3-dimensional
in the appropriate scale. The trivial exponent is 1, which follows from A-invariance
of µd.

Proof. We start by indicating the relationship between δ-close tuples in (Gd∩X≤H)2

and the representation of the binary quadratic form q(x, y) = dx2 + `xy + dy2 by
the ternary quadratic form disc.

From (1.4), g1, g2 ∈ PSL2(R) are such that xi = Γgi ∈ Gd∩X≤H for i = 1, 2 and
dX(x1, x2) < δ, then we may assume

(3.1) g1 ∈ S , g2 ∈ S ′, Γg1 ∈ X≤H and d(g1, g2) < δ,

where S ′ is some slightly bigger set containing the fundamental domain S in its
interior. For concreteness we take

S ′ = {(z, v) ∈ H× S1, |<z| ≤ 1, =z ≥ 1/2}.
This clearly shows that the matrix entries of both gi are controlled, i.e. ‖gi‖ � H
where

‖g‖ = tr(gtg)1/2.

Moreover, we may associate to gi the primitive integral quadratic form,

qi(x, y) =
√
d[gi.q0](x, y) = aix

2 + bixy + ciy
2, b2i − 4aici = d, gcd(ai, bi, ci) = 1.

We have to consider two different possible cases. Either q1 = q2 (i.e. g2 ∈ g1A)
or q1 6= q2.

The total mass for the first case is easy to estimate by �ε d
1/2+εδ before nor-

malization by the total volume, which gives after the normalization that

µd × µd{(Γg1,Γg1h) ∈ X2
≤H : h ∈ A, d(Id, h) ≤ δ} �ε δd

−1/2dε ≤ δ3dε

since d−1/4 ≤ δ.
Henceforth we assume q1 6= q2. Since ‖gi‖ � H, we have

(3.2) max(|ai|, |bi|, |ci|)� d1/2H2.

Also by assumption g2 = g1h with d(h, Id) < δ. This shows that q2 =
√
dg1.(h.q0)

where ‖h.q0 − q0‖ � δ. Therefore,

(3.3) max(|a1 − a2|, |b1 − b2|, |c1 − c2|)� d1/2H2δ.

We now define

q(u, v) = disc(u(a1, b1, c1) + v(a2, b2, c2)) = du2 + `uv + dv2.

From the bound (3.3) on the difference of the vectors we know

|q(1,−1)| = |2d− `| � dH4δ2.

In order to apply Corollary 3.5 on q, we need to check that q is not degenerate,
i.e. that ` 6= ±2d. Indeed, if ` = ±2d then

d(a2 ∓ a1)2 = q(a2,−a1) = disc
(
a2(a1, b1, c1)− a1(a2, b2, c2)

)
= (a2b1 − a1b2)2,

which contradicts the assumption that d is not a perfect square. Therefore ` 6= ±2d.
In this case we may apply Corollary 3.5 to obtain the bound

N`,d =
∣∣SOdisc(Z)\{(Z2, dx2 + `xy + dy2) ↪→ (Z3,disc)}

∣∣� f max(d, `)ε

on the number N`,d of inequivalent ways in which the quadratic form dx2+`xy+dy2

can be represented, where f2| gcd(d, `) is the greatest square divisor. Note that the
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group SOdisc is rationally equivalent to PGL2, and so up to isogeny rationally
equivalent to SL2. Therefore, SOdisc(Z) is commensurable to the image of Γ =
SL2(Z) and we may also use Γ instead of SOdisc(Z) in the above estimate.

Let

Γ(q(1)
1 , q

(1)
2 ), . . . ,Γ(q(k)

1 , q
(k)
2 )

be a complete list of diagonal Γ-orbits of pairs of quadratic forms which can be
written as

q
(j)
i (x, y) =

√
dg

(j)
i .q0(x, y)

with g
(j)
1 , g

(j)
2 satisfying (3.1)

The number k of these diagonal Γ-orbits of quadratic forms is bounded by

k ≤
2d+L∑
`=2d−L

N`,d =
∑
f2|d

∑′

|2d−`|≤L
f2|`, ` 6=±2d

N`,d

�ε

∑
f2|d

∑′

|2d−`|≤L
f2|`, ` 6=±2d

fdε �ε

∑
f2|d

f
d1+εH4δ2

f2
�ε d

1+2εδ2H4.

where L� dH4δ2 and
∑′ denotes a sum over ` for which (d,`)

f2 is square-free.

We claim that for q(j)
1 6= q

(j)
2 we have

(3.4) d(g(j)
1 at, g

(j)
2 A)� d−1.

Indeed suppose d(g(j)
1 at, g

(j)
2 at′) ≤ cd−1 (for some constant c determined in a mo-

ment). Then we may find some γ ∈ Γ with γg
(j)
1 at ∈ S , which also implies

γg
(j)
2 at′ ∈ S ′. By Remark 3.2 we have Gd ⊂ X≤H′ for H ′ = d1/4. Hence by choos-

ing c appropriately the upper bound in (3.3) (applied for H ′ = d1/4 and δ = cd−1)
is less than one, which gives a contradiction.

Writing g2 = g1 exp v for some v = v−+v+ +vA ∈ sl2(R), with v−, v+, vA eigen-
vectors of Adat with eigenvalues e−t, et, 1 respectively, the estimate (3.4) implies
that both ‖v−‖, ‖v+‖ � d−1. It follows that for any j the inequality

(3.5) d(g(j)
1 at, g

(j)
2 A) < 1

can hold only for t in some interval Ij of length � log d.

Claim: For each pair (g(j)
1 , g

(j)
2 ) there is an interval Ij ⊂ R of length �ε d

ε with
the following property:

If (x1, x2) ∈ (Gd∩X≤H)2 with d(x1, x2) < δ have representatives (g1, g2) satisfy-
ing (3.1) for which the associated forms qi =

√
dgi.q0 are different, then x1 = Γg(j)

1 at
for some j and some t ∈ Ij .

Indeed, (γ.q1, γ.q2) = (q(j)
1 , q

(j)
2 ) for some γ ∈ Γ and some j ∈ [1, k] and so g1 =

γ−1g
(j)
i at resp. g2 ∈ γ−1g

(j)
2 A. By assumption on g1, g2 we have d(g(j)

1 at, g
(j)
2 A) < δ.

Using the claim and a fixed Haar measure of A (i.e. before normalization) we get
that the measure of the collection of points (x1, x2) ∈ (Gd ∩X≤H)2, which can be
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represented as xi = Γgi with gi as in (3.1) and for which the associated quadratic
forms are different, is

�
k∑
j=1

|Ij |δ �ε d
εδk �ε d

1+2εH4δ3.

Therefore, by dividing the above by the total volume of (Gd)2, the claim (together
with the analysis of the case q1 = q2) implies the proposition. �

4. An ergodic theoretic proof of Duke’s theorem

4.1. Entropy and the unique measure of maximal entropy. A basic under-
lying concept in our proof is that of entropy. We recall that if P is a partition of
the probability space (X, ν), the entropy of P is defined as

Hν(P) :=
∑
S∈P

−ν(S) log ν(S).

It is clear that Hν(P) = Hν(T−1P) if T : X → X preserves ν — below we will
use this fact without explicit reference. We note for future reference that entropy
is controlled by an L2-norm

(4.1) Hν(P) ≥ − log

(∑
S∈P

ν(S)2

)
as one easily sees from convexity of the logarithm map. Moreover, entropy has the
following basic subadditivity property: if P1,P2 are two partitions, then

(4.2) Hν(P1 ∨P2) ≤ Hν(P1) +Hν(P2),

where ∨ denotes common refinement.
If T is a measure-preserving transformation of (X, ν), then the measure theoretic

entropy of T is defined as:

(4.3) hν(T ) = sup
P

lim
n→∞

Hν(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)
n

where the supremum is taken over all finite partitions of X. We also note that the
limit in the definition exists and is equal to the infimum because the sequence

an = Hν(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)

is subadditive (i.e. an+m ≤ an + am).
A key role in our argument is played by the fact that the uniform measure on

Γ\SL2(R) for any lattice Γ can be distinguished using entropy, as it is the unique
measure of maximal entropy:

Theorem 4.1. Let X = Γ\SL2(R) be a quotient by a lattice Γ < SL2(R), and let
T denote the time-one-map of the geodesic flow, i.e. right translation

T (x) = x

(
e1/2 0

0 e−1/2

)
.

Then for any invariant measure ν the entropy satisfies hν(T ) ≤ 1 where equality
holds if and only if ν = µX is the SL2(R)-invariant probability measure on X.
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The inequality hν(T ) ≤ 1 is not hard and can be proved in many ways. Identi-
fying the uniform measure as the unique measure where this maximum is attained
is somewhat more delicate. We give a self-contained treatment in Appendix B.

4.2. Proof of Duke’s theorem, an outline. Let T : X → X denote the time-
one-map of the geodesic flow as in Theorem 4.1. Recall that

U− =
{(

1 t
0 1

)
: t ∈ R

}
resp.

U+ =
{(

1 0
t 1

)
: t ∈ R

}
are the stable, resp. unstable horocycle subgroups. The orbits of these two sub-
groups give the foliation into stable and unstable manifolds in the following sense.
If u = u(t) ∈ U−, then the distance between Tn(x) and Tn(xu) converges rapidly
to zero:

d(Tn(x), Tn(xu)) = d

(
x

(
en/2 0

0 e−n/2

)
, xu

(
en/2 0

0 e−n/2

))
≤ d
((

1 0
0 1

)
,

(
e−n/2 0

0 en/2

)
u

(
en/2 0

0 e−n/2

))
= d

((
1 0
0 1

)
,

(
1 e−nt
0 1

))
.

To give an outline of our argument, it is perhaps preferable to simplify the
situation. In our proof, the noncompact nature of our space X is a significant
complication, so instead of considering the quotient SL2(R)\SL2(R) for the purposes
of this outline let us consider a compact quotient X̂ = Γ\SL2(R) on which we have
a sequence of T -invariant probability measures µd satisfying the following simplified
version of the conclusion of Corollary 3.6

(4.4) µd × µd{(x, y) ∈ X̂2 : dX̂(x, y) ≤ δ} �ε δ
3dε for δ > d−1/4.

Let r > 0 be an injectivity radius of X̂ so that for any x ∈ X̂ the map BGr (e)→ X̂
sending g to xg is injective (with G = SL2(R), and BGr denoting a ball of radius
r in G). Also assume η < 1

er is small enough so that BGη (e) is an injective image
under the exponential map of a neighborhood of 0 in the Lie algebra.

Let P be a finite measurable partition all of whose elements have “diameter
smaller than η”, i.e. if x and y = xg with g ∈ BGr belong to the same element
of P, then g ∈ BGη . Assume that the same holds as well for T i(x) and T i(y)
for i = −N, . . . , 0, 1, . . . , N . Then d(T (x), T (y)) < η and d(e, a−1ga) < r so that
a−1ga ∈ BGη (e). Repeating this implies that

g ∈ BN =
N⋂

n=−N

(
e1/2

e−1/2

)−n
BGη (e)

(
e1/2

e−1/2

)n
.

We define a Bowen N -ball to be the translate xBN for some x ∈ X.
Notice that the set BN is “tube-like”: it has width at most e−Nη along the stable

and unstable directions, but is of length η in the direction A of the geodesic flow.
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The above shows that every element of the partition

(4.5) P [−N,N ] =
N∨

n=−N
T−nP

is contained in a single Bowen N -ball. Together we conclude that⋃
S∈P[−N,N]

S × S ⊂
k⋃
i=1

{(x, yai) : d(x, y) < re−N}

where k � eN and a1, . . . , ak ∈ BAr (1) are chosen to be δ-dense – that is to say, the
union of the δ-neighbourhoods around ai cover BAr (1).

Together with (4.4) this shows that∑
S∈P[−N,N]

µd(S)2 �ε e
−2Ndε

whenever δ = ηe−N ≥ d−
1
4 or equivalently N ≤ 1

4 log d + log r. We choose N =
b 1

5 log dc (the “extra space” will be useful in supressing a dε). Using (4.1) we have

Hµd

(
P [−N,N ]

)
≥ (2− 6ε)N

for large enough d.
In this statement we cannot yet let d → ∞ to get a statement about a weak∗

limit µ, because N is a function of d, and so the size of P [−N,N ] increases with
d. Thus let N0 ≥ 1 be any fixed integer: [−N,N ] can be covered by d NN0

e many
translates of [−N0, N0]. This in turn shows that P [−N,N ] can be obtained as a
refinement of the d NN0

e partitions

P [−N,−N+2N0],P [−N+2N0,−N+4N0], . . .

(in the obvious generalization of the notation (4.5)). By subadditivity (4.2) (and
invariance) this implies

Hµd

(
P [−N0,N0]

)
≥ (2− 7ε)N0

for large enough d. By choosing the original partition P such that µ(∂S) = 0 for
all S ∈P and some weak∗ limit µ of the sequence µd we can now take the limit as
d→∞ to obtain

Hµ

(
P [−N0,N0]

)
≥ (2− 7ε)N0 for all ε > 0 and N0 ≥ 1,

i.e. that hµ(T ) ≥ 1. Theorem 4.1 can now be invoked to show that µ must be the
SL2(R)-invariant measure on X.

We remark that the analysis above works only in the cocompact case; for e.g.
Γ = SL2(Z), there is no global injectivity radius; and no matter how fine one takes
the partition P, to cover a single atom of the partition P [−N,N ] one typically needs
exponentially many Bowen N -balls.

4.3. Proof of Duke’s theorem, controlling the time spent near the cusp.
Passing from the cocompact to the nonuniform case raises two difficulties:

(i) Why is such a weak∗ limit a probability measure (indeed, why can’t such
a sequence of measures µd converge to the zero measure)?
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(ii) The proof outline presented in §4.2 used heavily the relation between Bowen
N -balls and atoms of the partition P [−N,N ] for a finite partition P. How
can we adapt this argument to the nonuniform situation where in general
many Bowen N -balls are needed to cover a partition element S ∈P [−N,N ]?

It turns out that these two difficulties are not unrelated, and to handle them
one needs to control the time an orbit spends in the neighborhood of the cusp, so
that this problem is related to controlling the escape of mass. What is needed is
the following finitary version of the uniqueness of measure of maximal entropy:

Theorem 4.2. Suppose µi is a sequence of A-invariant measures on X, and sup-
pose there is a a constant r > 0 and a sequence δi → 0 such that for all sufficiently
small ε > 0 the “heights” Hi = δ−εi satisfy

(1) µi(X≥Hi)→ 0, as i→∞;
(2) µi × µi({(x, y) ∈ X≤Hi ×X≤Hi : d(x, y) < δi} �ε δ

3−5ε
i .

Then µi → µX , the SL2(R)-invariant measure on X, as i→∞.

Clearly, this, Proposition 3.3, and Proposition 3.6 with δ = d−
1
4 are sufficient to

prove Duke’s theorem. Apart from the ideas already discussed in the last section,
the main additional step is:

Proposition 4.3. Fix a height M ≥ 1. Let N ≥ 1 and consider a subset V ⊂
[−N,N ]. Then the set

Z(V ) =
{
x ∈ TNX<M ∩ T−NX<M : for all n ∈ [−N,N ] we have

Tn(x) ∈ X≥M ⇔ n ∈ V
}

can be covered by �M e2N− 1
2 |V | Bowen N -balls. Moreover, Z(V ) is nonempty for

only �M e
2 log logM

logM N different sets V ⊂ [−N,N ].

In words, Z(V ) is the set of points x ∈ X so that their trajectory T−Nx, T−N+1x,
. . . , TNx between times −N and N begins and ends below height M and are above
height M precisely at the time specified by the set V . So the content of the
Proposition is that orbits that spend a lot of time in a neighborhood of the cusp
in fact can be covered by relatively few tube-like sets. Later we will turn this into
the statement that those orbits have relatively little mass.

Note that as the size of V grows the number of Bowen N -balls needed to cover
Z(V ) decreases, though even if V = [−N −1, N +1] it is still exponential — indeed
� eN , which is essentially the square root of the estimate we get for V = ∅ .

We defer the proof of the Proposition 4.3 to the next section. A purely ergodic
theoretic formulation of this phenomena is that a lot of mass near the cusp for an
invariant probability measure results in a significantly smaller entropy for the geo-
desic flow. We will give such a formulation in Theorem 5.1; it implies in particular
that:

Given a sequence T -invariant probability measures µi with en-
tropies hµi(T ) ≥ c, any weak weak∗ limit µ satisfies µ(X) ≥ 2c−1.

We will discuss in Remark 5.2 why c = 1/2 is the critical point for this phenom-
enon.
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4.4. Controlling escape of mass, and maximal entropy. We proceed to the
proof of Theorem 4.2, and start by showing that mass cannot escape, using assump-
tion (2). We will use (1) of that theorem which gives a mild control on how fast
mass could possibly escape to be able to apply the covering argument in Proposition
4.3. That (2) can replace entropy in that argument is not surprising since we have
already seen in Section 4.2 a relationship between this assumption and entropy.

Lemma 4.4. Let µi be a sequence of T -invariant measures as in Theorem 4.2. Let
µ be a weak∗ limit of any subsequence of µi. Then

µ(X<M ) ≥ 1− 2 log logM
logM

for every sufficiently large M , and so µ is a probability measure.

Proof. Fix some κ > 2 log logM
logM . We will show that µ(X<M ) ≥ 1− κ.

We set Ni = d− log δie and Hi = δ−εi for some ε > 0 determined below (more
precisely: before the final displayed equation of this proof) in terms of κ. Notice
that a geodesic trajectory of a point x ∈ X≤Hi will visit X<M in less than 2 logHi−
2 logM ≤ 2εNi steps either in the future or in the past. Hence

b2εNic⋃
n=−b2εNic

T−nX<M ⊃ X≤Hi

and so this union contains most of the µi-mass according to the assumption (1) of
Theorem 4.2.

Let N ′i = Ni+ b2εNic. Then TN
′
iX≤Hi ∩T−N

′
iX≤Hi is contained in the union of

� (εNi)2 many sets of the form TN
′
i+n−X<M ∩ T−N

′
i+n+X<M where |n−|, |n+| ≤

2εNi. We apply this to the set

Xκ =
{
x ∈ TN

′
iX≤Hi ∩ T−N

′
iX≤Hi :

1
2N ′i + 1

N ′i∑
n=−N ′i

1X≥M (Tnx) > κ

}
consisting of points that spend an unexpected high portion of [−N ′i , N ′i ] above M .

We wish to estimate µi(Xκ). Xκ is also a union of sets of the form

Z ′ = Xκ ∩ TN
′
i+n−X<M ∩ T−N

′
i+n+X<M

with n−, n+ as before. It suffices to estimate µi(Z ′) for some fixed n−, n+. Re-
placing Z ′ by an appropriate shift Z := T kZ ′ we may consider instead Z ⊂
TNX<M ∩ T−NX<M where N ∈ [Ni, Ni + 4εNi]. Adjusting the condition on
the “average time spent above M” appropriately,

Z ⊆
{
x ∈ TNX<M ∩ T−NX<M :

1
2N + 1

N∑
n=−N

1X≥M (Tnx) > κ−O(ε)
}
.

To the right-hand set we apply Proposition 4.3; which shows that Z is covered by

`�M e
2 log logM

logM Ne2N−(κ−O(ε))N ≤ e2Ni+
2 log logM

logM Ni−κNi+O(ε)Ni

many Bowen N -balls. Because N ≥ Ni, we may also cover Z by ` many Bowen
Ni-balls S1, . . . , S`.
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Since Bowen Ni-balls have thickness ≤ e−Ni ≤ δi along stable and unstable
horocycle directions and thickness � 1 along A, we get that⋃̀

j=1

Sj × Sj ⊂
k⋃
j=1

{(x, yaj) : d(x, y) < δi}

where k � eNi and aj ∈ BA1 are δi-dense. This remains true if we make the sets
Sj disjoint by replacing S2 by S′2 = S2 r S1, S3 by S′3 = S3 r (S1 ∪ S2), . . . . By
our assumption (2) we now get∑̀

j=1

µi(S′j)
2 �ε δ

3−5ε
i k � e−2Ni+5εNi .

Therefore, by Cauchy-Schwarz

µi(Z) ≤
∑̀
j=1

µi(S′j) ≤
(∑̀
j=1

µ(S′j)
2

)1/2

`1/2 �ε,M e
log logM

logM Ni− 1
2κNi+O(ε)Ni

Going through all possibilities for n−, n+ (of which there are � eεNi many) this
implies

µi(Xκ)�ε,M e

(
log logM

logM − 1
2κ+O(ε)

)
Ni .

Given that we assume κ > 2 log logM
logM we can choose ε > 0 small enough such that

the exponent in the above expression is negative so that the measure goes to zero
for i→∞ (since Ni →∞). By definition of Xκ we have

µi(X≥M ) =
∫

1X≥M dµi =
∫

1
2N ′i + 1

N ′i∑
n=−N ′i

1X≥M dµi ≤ κ+µi(Xκ)+2µi(X≥Hi),

which when i→∞ implies that µ(X<M ) ≥ 1−κ for any κ > 2 log logM
logM . This gives

the lemma. �

We indicated in Section 4.2 how the elements of the refinement
∨N
n=−N T

−nP
are related to Bowen N -ball; but that analysis fails in the noncompact case, when
trajectories visit the cusp. We now discuss the general case.

Lemma 4.5. For every M > 1 there exists a finite partition P of X such that for
every κ ∈ (0, 1) and every N , “most elements of the refinement

∨N
n=−N T

−nP are
controlled by Bowen N -balls”:

There exists a set X ′ ⊂ X so that:
- X ′ is a union of S1, . . . , S` ∈

∨N
n=−N T

−nP;
- Each such Sj is contained in a union of at most 3κ(2N+1) many Bowen
N -balls;

- µ(X ′) ≥ 1− 2µ(X≥M )κ−1 for every invariant probability measure µ;
For a given µ the choice of P can be made such that the boundaries of all sets of
P have zero measure.

Proof. We define P = {Q,P1, . . . , Pk} where Q = X≥M and {P1, . . . , Pk} is a
measurable partition of X<M whose elements have diameter less than η where η is
small enough in comparison to the injectivity radius of X<M (in the same sense as
in the discussion in Section 4.2).
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Note that the boundary of Q is a null set for every probability measure µ that
is invariant under the geodesic flow. This is because every trajectory hits the
boundary ofQ in a countable set. Also, given µ we can find for every point x ∈ X<M

an ε < η/2 so that the boundary has measure zero. Applying compactness we
construct P1, . . . , Pk from the algebra generated by finitely many such balls.

We claim that S ∈PN =
∨N
n=−N T

−nP has the property that any two points
x, y ∈ S satisfy

Tnx ∈ X<M ⇔ Tny ∈ X<M for n ∈ [−N,N ]

and
d(Tnx, Tny) < η whenever Tnx, Tny ∈ X<M and n ∈ [−N,N ].

Therefore, the average f(x) = 1
2N+1

∑N
n=−N 1X≥M (Tnx) is constant on sets of PN .

We define
X ′ = {x ∈ T−NX<M : f(x) ≤ κ}.

If µ is an invariant probability measure, invariance implies
∫
f(x) dµ = µ(X≥M )

and so µ({x : f(x) > κ}) ≤ µ(X≥M )κ−1. Therefore, X ′ has measure µ(X ′) ≥
1− µ(X≥M )− µ(X≥M )κ−1.

Consider now an element S ∈ PN with S ⊂ X ′. After taking the image of S
under TN we have for any x, y ∈ S′ = TNS that

x ∈ X<M ,
1

2N + 1

2N∑
n=0

1X≥M (Tnx) ≤ κ and

d(Tnx, Tny) < η whenever Tnx, Tny ∈ X<M and n ∈ [0, 2N ].

(4.6)

Let V = {n ∈ [0, 2N ] : TnS′ ⊂ X≥M}. We can now show inductively that for every
n ∈ [0, 2N ] the set S′ is contained in a union of 3|[0,n−1]∩V | many sets of the form

xBU
+

2ηe−nB
U−A
2η where x ∈ S′.

We will refer to these sets as forward Bowen n-balls and to x as its center. For
n = 0 we have nothing to show (for notice that we allowed a bigger radius in the
subgroups U+ and U−A). Suppose the claim holds for some n and let x ∈ S′ be
a center of one of the forward Bowen n-balls. If Tn+1x ∈ X<M then Tn+1S′ ⊂ Pi
for i ≥ 1 and it follows easily that any point y = xu+g ∈ S′ with u+ ∈ BU

+

2ηe−n

and g ∈ BU−A2η satisfies u+ ∈ BU+

2ηe−(n+1) (assuming again that η is small enough in
comparison with the injectivity radius). If Tn+1x ∈ X≥M then we can cover the
forward Bowen n-ball by 3 forward Bowen (n+ 1)-balls.

Recall that for S ⊂ X ′ we have |V | ≤ κN and so by taking the preimages of
S′ = TNS and the forward Bowen 2N -balls obtained the lemma follows.

�

To prove Theorem 4.2 it remains to establish the following lemma and combine
it with Lemma 4.4 and Theorem 4.1.

Lemma 4.6. A weak∗ limit µ of a subsequence of the invariant probability measures
µi as in Theorem 4.2 has maximal entropy hµ(T ) = 1.

Proof. Let P be as in Lemma 4.5. Set Ni = d− log δie and define

PNi =
Ni∨

n=−Ni

T−nP.
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We wish to show that Hµi(PNi) is large by using Lemma 4.5 and assumption (2).
Let κ = µ(X≥M )1/2 for some weak∗ limit µ and define Xi as in Lemma 4.5 using
N = Ni.

For any S ∈PNi with S ⊂ Xi there exists a cover of S consisting of ≤ 3κ(2Ni+1)

many Bowen Ni-balls; so there is a partition R(S) of S into ≤ 3κ(2Ni+1) sets, each
a subset of a Bowen Ni-ball. We define the partition Qi as the partition consisting
of all S ∈ PNi with S ⊂ X r Xi and all elements of R(S) for any S ⊂ Xi. It
follows that

(4.7) Hµi(Qi|PNi) =
∑

S∈PNi
,S⊂Xi

µi(S)Hµi|S (Qi) ≤ κ(2Ni + 1) log 3.

Also since Qi is a finer partition than PNi we have

(4.8) Hµi(Qi) = Hµi(Qi ∨PNi) = Hµi(PNi) +Hµi(Qi|PNi),

which together with (4.7) indicates that we wish to show that Hµi(Qi) is large.
Here we will use the assumption (2) from Theorem 4.2; but the elements of Qi

that lie outside Xi can be irregularly shaped, requiring a further estimate:

(4.9) Hµi(Qi) ≥ Hµi(Qi|{Xi, X rXi}) ≥ µi(Xi)Hµi|Xi (Qi).

Using (4.1) for the restriction µi|Xi we see that

(4.10) Hµi|Xi (Qi) ≥ − log
∑

S∈Qi,S⊂Xi

(
µ(S)
µ(Xi)

)2

.

By construction of Qi every S ∈ Qi with S ⊂ Xi is a subset of a Bowen Ni-ball.
Proceeding as in Section 4.2 it follows that⋃

S∈Qi,S⊂Xi

S × S ⊂
k⋃
i=1

{(x, yai) : d(x, y) < δi}

where k � eNi and a1, . . . , ak ∈ BAr (1) are chosen to be δi-dense. Together with
assumption (2) of Theorem 4.2 this shows∑

S∈Qi,S⊂Xi

µi(S)2 �ε δ
3−5ε
i eNi � e(−2+5ε)Ni .

Let Cε be the implicit constant here, that is to say,∑
S∈Qi,S⊂Xi

µi(S)2 ≤ Cεe−(2+5ε)Ni .

Then, taking into account (4.9)–(4.10),

Hµi(Qi) ≥ 2µi(Xi) logµi(Xi)− µi(Xi) logCε + µi(Xi)(2− 5ε)Ni.

Here the first two terms are bounded, so for large enough i

Hµi(Qi) ≥ µi(Xi)(2− 6ε)Ni
≥ (1− 2κ−1µi(X≥M ))(2− 6ε)Ni

where we also used the estimate for Xi in Lemma 4.5. Combining this with (4.8)
and (4.7) we get

Hµi

( Ni∨
n=−Ni

T−nP

)
≥ (1− 2κ−1µi(X≥M ))(2− 6ε)Ni −O(κNi).
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Now fix some integer N0 ≥ 1. Using subadditivity of entropy we have for any large
enough i that

Hµi

( N0∨
n=−N0

T−nP

)
≥ (1− 2κ−1µi(X≥M ))(2− 6ε)N0 −O(κN0)− εN0.

This is now a statement involving only finitely many test function, namely the char-
acteristic functions of all elements of

∨N0
n=−N0

T−nP and of X≥M . Since there is
no escape of mass by Lemma 4.4 and since we can assume without loss of generality
that all boundaries have zero measure for the weak∗ limit µ by Lemma 4.5, we get
the same estimate for µ. Dividing by 2N0 and letting N0 now go to infinity we
arrive at

hµ(T ) ≥ (1− 2µ(X≥M )1/2)(1− 3ε)−O(µ(X≥M )1/2)− ε

for any M ≥ 1 and ε > 0.
Since µ(X≥M ) can be made arbitrarily small, it follows that hµ(T ) ≥ 1, i.e. T

has maximal entropy. �

5. Trajectories spending time high in the cusp, and a proof of
Proposition 4.3.

Apart from the characterization of the Haar measure as the unique measure
of maximal entropy in Theorem 4.1 the main technical estimate needed to prove
Theorem 4.2 is Proposition 4.3. We recall that this proposition states that the set

Z(V ) =
{
x ∈ TNX<M ∩ T−NX<M : for all n ∈ [−N,N ] we have

Tn(x) ∈ X≥M ⇔ n ∈ V
}

can be covered by �M e2N− 1
2 |V | Bowen N -balls.

In addition to proving this, we shall also prove here the promised purely ergodic
formulation of “high entropy inhibits escape of mass,” namely:

Theorem 5.1. Let T be the time-one-map for the geodesic flow. There exists some
M0 with the property that

hµ(T ) ≤ 1 +
log logM

logM
− µ(X≥M )

2

for any invariant probability measure µ on X = SL(2,Z)\SL(2,R) for the geodesic
flow and any M ≥ M0. In particular, for a sequence of T -invariant probability
measures µi with entropies hµi(T ) ≥ c, any weak∗ limit µ satisfies µ(X) ≥ 2c− 1.

Remark 5.2. Roughly speaking 1/2 is the critical point for Theorem 5.1 because
the “upward” and “downward” parts of a trajectory, that goes high in the cusp, are
strongly related to each other. In fact, in the case of a p-adic flow this phenomenon
is easy to explain.

We consider another dynamical system of similar flavor: here the space will be4

Y = PGL2(Z[1/p])\PGL2(R)× PGL2(Qp)

4For technical reasons, it is preferable to use PGL2 here rather than SL2.
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and the action will be by multiplication on the right of the PGL2(Qp)-component

by ap =
(
p

1

)
. Let M < PGL2(R) × PGL2(Qp) be the product of PO2(R) and

the group of diagonal matrices in PGL2(Zp). There is a natural right M -invariant
projection π : Y → PSL2(Z)\H , and on this latter space we have the Hecke
correspondence which attaches to a point ż ∈ PSL2(Z)\H a set Tp(ż) of p+ 1 new
points, namely if z ∈ H is a representative of ż then

(5.1) Tp(ż) = PSL2(Z)\ {pz, z/p, (z + 1)/p, . . . , (z + p− 1)/p} .

The space Y/M can be identified with the set of infinite sequences . . . , y−1, y0, y1, . . .
with yi ∈ Tp(yi−1) r {yi−2}, and under this identification multiplication by ap in
the p-direction becomes simply the shift action. This in particular shows that mul-
tiplication by ap on Y/M (or, with a bit more effort on Y ) has entropy ≤ log p, and
just like in our case this maximum is attained for the Haar measure on Y . From
(5.1) it is clear that if y ∈ PSL(2,Z)\H is high up in the cusp, precisely 1 of its
Tp-points will be higher in the cusp, and p of these points would be lower then y
in the cusp. Therefore if . . . y−1, y0, y1, . . . are a sequence of points of PSL(2,Z)\H
as above and if yk are high up in the cusp for some contiguous range of k’s, say
n ≤ k ≤ m, then in this range given the value of yk there is only one possible way of
choosing yk+1 so that it is higher than yk, and since by assumption yk+2 6= yk once
yk+1 is lower than yk, the point yk+2 being in Tp(yk+1) but excluded from being
yk which is unique point in Tp(yk+1) higher than yk+1 must be lower than yk + 1.
Hence if yk+1 is lower than yk for some k in the above range, then yk′+1 must be
lower then yk′ for all k′ in the range k ≤ k′ ≤ m. From the above discussion it
follows that while the trajectory is high up in the cusp, we have a choice of which
subsequent point to choose only half of the time, hence the factor 1

2 .

5.1. Proof of Proposition 4.3: the number of possible sets V . The easiest
part of Proposition 4.3 is the final assertion, i.e. if we write

QM,N =
N∨

n=−N
T−n{X≥M , X<M}.

then the above partition QM,N has �M e
2 log logM

logM N many elements.
We make use of the fundamental domain S ⊂ PSL2(R) from §1.3; the geo-

desic flow X corresponds to following the geodesic determined by (z, v) until the
boundary of the fundamental region is reached, at which point one applies either(

1 ±1
1

)
to shift the geodesic horizontally or

(
−1

1

)
to reflect on the bottom

boundary of the fundamental region.
The basic point in the proof is that if x ∈ X satisfies ht(x) ≥M , then ht(Tnx) ≥

1 so long as n < b2 logMc, i.e. one needs at least b2 logMc steps to reach points
of height less than 1.

Therefore, in a time interval of length 2b2 logMc there can be only one stretch
of times for which the points on the orbit are of height at least M . In other words
the possible starting and end points of that time interval completely determine an
element of QM,b2 logMc which therefore has at most � log2M , say ≤ c0 log2M ,
many elements. To obtain the lemma we note that QM,N can be obtained by
taking refinements of b 2N+1

2b2 logMc+1c ≤
2N+1

4 logM−1 many images and pre-images of
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QM,b2 logMc and at most 2b2 logMc many of {X≥M , X<M}. We get that QM,N

has size �M (c0 log2M)
2N

4 logM−1 , which is at most e
2 log logM

logM N once M is large
enough.

5.2. Proof of Proposition 4.3: covering Z(V ) by Bowen balls. Write a =(
e

1
2 0

0 e−
1
2

)
, so that T (x) = xa. Since X<M has compact closure, it suffices to

restrict ourselves to a neighborhood O of a point x0 ∈ X<M . By taking the image
under TN it also suffices to study the forward orbit as follows. We will show that
for the set V ⊂ [0, N − 1] picked, the set

Z+
O =

{
x ∈ O ∩ T−NX<M :

for all n ∈ [0, N − 1] we have Tn(x) ∈ X≥M ⇔ n ∈ V
}

can be covered by �M 2N−
1
2 |V | forward-Bowen N -balls xB+

N where

B+
N =

N−1⋂
n=0

a−nBGη a
n.

We may assume that the neighborhood we will consider is of the form

O = x0B
U+

η/2B
U−A
η/2

where BHr denotes the r-ball of the identity in a subgroup H < SL2(R), A denotes
the diagonal subgroup, and U+ resp. U− denote the unstable and stable horocyclic
subgroups as in Section 4.2.

Notice that by applying Tn to O we get a neighborhood of Tn(x0) for which
the U+-part is en times as big while the second part is still contained BU

−A
η/2 . By

breaking the U+-part into dene sets of the form u+
i B

U+

η/2 for various u+
i ∈ U+ we

can write Tn2 (O) as a union of dene sets of the form

Tn(x0)u+
i B

U+

η/2a
−nBU

−A
η/2 an,

i.e. we obtain neighborhoods of similar shape. If we take the preimage under Tn of
this set, we obtain a set contained in the forward Bowen n-ball T−n(Tn(x0)u+

i )B+
n .

We will be iterating this procedure, but using the information that the orbit has to
stay above height M for a long time we will be able to cut down on the number of
u+
i ∈ U+ needed to cover Z+

O .
In the proof of the claim we will use a partition of [0, N ] into sub-intervals of

two types according to the set V . Notice that as in the proof of §5.1 we can assume
that V itself consists of intervals that are separated by 2b2 logMc. For otherwise
the set Z+

O is empty since no orbit under T can leave X≥M and return to it in a
shorter amount of time. We enlarge every such subinterval of V by b2 logMc on
both sides to obtain the first type of disjoint intervals I1, . . . , Ik. At the end points
0 and N we have required that x, TN (x) ∈ X<M for all x ∈ Z+

O . For this reason
we can assume without loss of generality that all of these intervals are contained
in [0, N ]. (If this is not the case, we can enlarge the interval [0, N ] accordingly
and absorb the change of the desired upper estimate in the multiplicative constant
that depends on M alone). The remainder of [0, N ] we collect into the intervals
J1, . . . ,J`.
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We will go through the time intervals Ii and Jj in their respective order inside
[0, N ]. At each stage we will divide any of the sets obtained earlier into de|Ii|e-
or de|Jj |e-many sets, and in the case of Ii show that we do not have to keep all
of them. More precisely, we assume inductively that for some K ≤ N we have
[0,K] = I1 ∪ . . . ∪ Ii ∪ J1 ∪ . . . ∪ Jj and that all points in Z+

O can be covered by

≤ 2e|J1|+···+|Jj |+ib2 log2Mc+ 1
2 (|I1|+···+|Ii|)

many preimages under TK of sets of the form

(5.2) TK2 (x0)u+BU
+

η/2a
−KBU

−A
η/2 aK .

Note that for K = N this gives the lemma since by construction |I1|+ · · ·+ |Ik| =
2kb2 logMc+ |V |.

For the inductive step it will be useful to assume a slightly stronger inductive
assumption, namely that the multiplicative factor 2 is only allowed if [0,K] ends
with the interval Jj . Therefore, notice that if the next interval is Jj+1 (i.e. [0,K]
ends with Ii) then there is not much to show. In that case we keep all of the
de|Jj+1|e ≤ 2e|Jj+1|-many Bowen balls constructed above and obtain the claim.

So assume now that the next time interval is Ii+1 = [K+1,K+S]. Here we will
make use of the geometry of geodesics that visits X≥M during that subinterval.
Pick one of the sets (5.2) obtained in the earlier step and denote it by Y . By
definition of Z+

O we are only interested in points y ∈ Y which satisfy

Tn(y) ∈ X≥M ⇔ K + n ∈ V,
or equivalently

ht(y),ht
(
T (y)

)
, . . . ,ht

(
T b2 logMc(y)

)
< M,

ht
(
T b2 logMc+1(y)

)
, . . . ,ht

(
TS−b2 logMc(y)

)
≥ M

ht
(
TS−b2 logMc+1(y)

)
, . . . , TS(y)) < M.

If there is no such point in Y there is nothing to show. So suppose y, y′ ∈ Y are
such points. We will use the above restrictions on the heights to show that if

(5.3) y = TK2 (x0)u+u+(t)v and y′ = TK2 (x0)u+u+(t′)v′

for u+(t), u+(t′) ∈ BU+

η/2 and v, v′ in the conjugate of BU
−A

η/2 , then |t− t′| � 2−S/2.
We can draw the geodesic orbits defined by y and y′ in the upper half model of the
hyperbolic plane and relate the conditions on y, y′ to geometric information about
these geodesics. We choose the lifting of the paths in such a way that the time
interval for which the height is above M becomes the part of the geodesic where
the imaginary part is above M2.

For the translation of the properties we will use the following observation: For
two points z1, z2 ∈ H on a geodesic line that are either both on the upwards part
or both on the downwards part of the corresponding semi-circle their hyperbolic
distance satisfies

(5.4) | log Im(z1)− log Im(z2)| ≤ d(z1, z2) ≤ | log Im(z1)− log Im(z2)|+ 1.

The lower bound actually gives the shortest distance between points with imaginary
part Im(z1) and points with imaginary part Im(z2). The upper bound gives the
length of a path that first connects the point lower down, say z1, to the point z′

immediately above with imaginary part Im(z2) and then moves horizontally to a
point that is Im(z2) far to the left or right of z′ towards z2. For two points z1, z2
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on the upwards or downwards part of a semi-circle this path actually goes through
z2.

Applying the lower bound in (5.4) to the points corresponding to

y and T
b2 logMc+1
2 (y)

whose hyperbolic distance is b2 logMc+1 we see that Im(y)� 1 (where in a slight
abuse of notation we identify y with the lifted point in H). Similarly, we get from
the upper bound for y and T b2 logMc

2 (y) that Im(y)� 1. Similar estimates hold for
TS2 (y), y′ and TS2 (y′).

We assume that the points y, y′ are lifted in such a way that Re(y) ∈ [−1/2, 1/2]
and such that y′ is close to y. Denote by α−, α+ ∈ R the backwards and forward
limit points of the geodesic defined by y on the boundary of H and similarly by
α′−, α

′
+ the endpoints of the geodesic for y′. Then |α−| < 2 + 1

2 since the lifting
of the point y was chosen such that the times of height ≥ M in X correspond to
imaginary part ≥M2. For y′ this implies for small enough η that |α′−| < 3.

Let R = 1
2 |α+ − α−| be the radius of the half circle defined by y and define R′

similarly for y′. Then the above shows R � |α+| � R once M and so R are large
enough to make α− negligible in comparison to α+. Similarly R′ � |α′+| � R′.

Applying (5.4) twice, once for y and the point z on the same geodesic with
imaginary part R, and once for z and TS2 (y) we get

(5.5) |S − 2 logR| � 1 and similarly |S − 2 logR′| � 1.

Therefore, R� R′ � R and so |α+| � |α′+| � |α+|.

Suppose g =
(
a b
c d

)
∈ SL(2,R) defines y = TK2 (x0)u+u+(t)v in the sense that

the natural action of g maps the upwards vector at i to the vector associated to
y for the lifting considered above. Then α+ = g(∞) = a

c and α− = g(0) = b
d .

Similarly, suppose g′ defines y′ = TK2 (x0)u+u+(t′)v′ such that α′+ = g′(∞). Using
this notation we summarize what we already know about these matrices

max(|a|, |b|, |c|, |d|)� 1,

R� |α+| = |
a

c
| � R,

R� |α′+| � R, and

|α−| = |
b

d
| � 1.

(5.6)

Here the first estimate follows since we know roughly the position of the lift cor-
responding to y which means that g belongs to a compact subset of SL(2,R). We
claim the above implies that

(5.7) 1� |d|, 1� |a|, and |c| � |a|R−1 � R−1.

The first estimate follows since |b| � |d| by the last estimate in (5.6) and since
g ∈ SL(2,R) belongs to a compact subset so that not both b and d are small. The
second claim follows similarly from the second estimate in (5.6).

To simplify the following calculation we would like to remove the elements v, v′

(as in (5.3)) from our consideration — but to do this we need to see how this affects
the above statements. Recall first that v, v′ ∈ BU−Aη and so v(∞) = v′(∞) = ∞.
Therefore, the first three estimates above remain unaffected when changing g resp.
g′ on the right by v−1, (v′)−1. Moreover, we have |v−1(0)| � η and so for small
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enough η that 1� |d| � |cv−1(0)+d| which implies |gv−1(0)| � 1. In other words,
none of the estimates in (5.6) are affected (apart from possibly the values of the
implicit constants) by the proposed transition from g to gv−1 resp. g′ to g′(v′)−1

and we can assume v = v′ = e.
Comparing the definitions of y and y′ we get g′ = gu+(t)−1u+(t′). Therefore,

α′+ = g′(∞) =
(
gu+(t′ − t)

)
(∞) =

a
t′−t + b
c

t′−t + d
=
a+ b(t′ − t)
c+ d(t′ − t)

.

Since 1� |a|, u+(t), u+(t′) ∈ BU+

η/2, and so |t′−t| � η we can simplify the numerator
and obtain together with the third estimate in (5.6) that for small enough η > 0

R�
∣∣ a

c+ d(t′ − t)
∣∣� R,

or equivalently
R−1 � |c+ d(t′ − t)| � R−1.

Since |c| � R−1 and 1� |d| by (5.7) this implies the estimate |t′− t| � R−1. Now
recall from (5.5) that eS/2 � R, so that we get the desired |t′ − t| � e−S/2

Recall next that in the current time interval Ii+1 we divide BU
+

η/2 into deSe
balls of the form BU

+

e−Sη/2. Since all points y′ that belong to Y ∩ TK(Z+
O ) satisfy

the estimate |t′ − t| � e−S/2 we see that only � eSe−S/2 = eS/2 can (after the
correct thickening along AU−) contain an element of Y ∩ TK(Z+

O ). This implies
the inductive claim if we assume M is sufficiently large so that the upper bound
we got is strictly bounded from above by 1

2e
b2 logMc+S/2.

This concludes the proof of Proposition 4.3.

5.3. Entropy and covers; proof of Theorem 5.1. For the proof of Theorem 5.1
we need to relate entropy and covers via Bowen balls. For this we need the following
(well known) result, which is proved in Appendix B below (for cocompact Γ it
follows from Brin and A. Katok [5]).

Lemma 5.3. Let µ be an A-invariant measure on X = Γ\SL(2,R). For any N ≥ 1
and ε > 0 let BC(N, ε) be the minimal number of Bowen N -balls needed to cover
any subset of X of measure bigger than 1− ε. Then

hµ(T ) ≤ lim
ε→0

lim inf
N→∞

logBC(N, ε)
2N

where T is the time-one-map of the geodesic flow.

Proof of Theorem 5.1. Note first that it suffices to consider ergodic measures. For
if µ is not ergodic, we can write µ as an integral of its ergodic components µ =∫
µt dτ(t) for some probability space (T, τ). Therefore, µ(X≥M ) =

∫
µt(X≥M ) dτ(t)

but also hµ(T ) =
∫
hµt(T ) dτ(t) by [25, Thm. 8.4], so that the desired estimate fol-

lows from the ergodic case.
Suppose µ is ergodic. To apply Lemma 5.3 we need to show that most of X

can be covered by not too many Bowen N -balls. Once M > 3 we have that every
T -orbit visits X<M , and so µ(X<M ) > 0. By the ergodic theorem there exists for
every ε > 0 some K ≥ 1 such that

Y =
K−1⋃
k=0

T−kX<M satisfies µ(Y ) > 1− ε.
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Moreover, also by the ergodic theorem

1
2N + 1

N∑
n=−N

1X≥M (Tn(x))→ µ(X≥M )

as N → ∞ for a.e. x ∈ X. So for large enough N the average on the left will be
bigger than κ = µ(X≥M )− ε for any x ∈ X1 and some subset X1 ⊂ X of measure
µ(X1) > 1− ε. Clearly for any N the set

Z = X1 ∩ TNY ∩ T−NY

has measure bigger than 1 − 3ε. Recall that we are interested in the asymptotics
of the minimal number of Bowen N -balls needed to cover Z. Here N →∞ while ε
and so also K remain fixed. Since we can decompose Z into K2 many sets of the
form

Z ′ = X1 ∩ TN−k1X<M ∩ T−N−k2X<M ,

it suffices to cover these, and for simplicity of notation we assume k1 = k2 = 0.
Next we split Z ′ into the sets Z(V ) as in Proposition 4.3 for the various subsets
V ⊂ [−N,N ]. §5.1 shows that we need at most �M e

2 log logM
logM N many of these.

Moreover, by our assumption on X1 we only need to look at sets V ⊂ [−N,N ] with
|V | ≥ κ(2N + 1). Therefore, Proposition 4.3 gives that each of those sets Z(V ) can
be covered by �M e(1−κ2 )2N many Bowen N -balls. Together we see that Z can
be covered by �M,K e

2 log logM
logM N+(1−κ2 )2N Bowen N -balls. Applying Lemma 5.3 we

arrive at

hµ(T ) ≤ 1 +
log logM

logM
− µ(X≥M )− ε

2
for any ε > 0, which proves the theorem. �

Appendix A. Representations of binary quadratic forms by ternary
forms

In this section we establish Proposition 3.4:

Proposition. Let Q be an non-degenerate, integral5 ternary quadratic form on Z3,
and let

q(x, y) = a1x
2 + a2xy + a3y

2

be a non-degenerate binary quadratic form on Z2. Let f2 be the greatest square di-
viding gcd(a1, a2, a3). Then the number N(q) of embeddings of (Z2, q) into (Z3, Q),
modulo the action of SOQ(Z), is �Q,ε f max(|a1|, |a2|, |a3|)ε.

We recall that an embedding of (Z2, q) into (Z3, Q) is a linear map ι : Z2 → Z3

with the property that Q(ι(x)) = q(x). Such proposition was established for the
first time by Venkov for Q = x2 + y2 + z2 and extended by Pall to other quadratic
forms [26, 21]. The proposition can be deduced from Siegel’s mass formula; here we
present a direct and elementary argument inspired by the adelic proof of Siegel’s
mass formula as outlined by Tamagawa (cf. Weil’s paper [27]).

5I.e. Q(Z3) ⊂ Z.



DISTRIBUTION OF CLOSED GEODESICS 35

Remark A.1. - One may wonder what the dependency on Q in the above
bound looks like; this is for instance important to obtain equidistribution
results when Q is allowed to vary (see for instance [14, Thm. 1.8]). In
the case where Q is a multiple of the norm form on a lattice in the space
of trace zero elements of a quaternion algebra whose associated order is
an Eichler order, it can be shown that the dependency is of the shape
�ε |disc(Q)|1/2+ε . . . . It seem plausible that this holds in general.

- The argument provides, in fact, an upper bound for the the sum over a set
of representatives Qi, i = 1, . . . , g of the genus classes of Q, of the number
of embeddings of (Z2, q) into (Z3, Qi) modulo SOQi(Z).

- Finally it is easy to see that this argument carries over without significant
changes to quadratic forms defined over a general number field.

A.1. Reduction to local counting problems. Fix an embedding ι : (q,Z2) ↪→
(Z3, Q) and let

L := ι(Z2)

be its image (if no such embedding exists, we are obviously done.) Then any other
embedding ι′ is (by Witt’s theorem; see [22, IV.1.5, Theorem 3]) of the form g ◦ ι,
with g ∈ SOQ(Q). The stabilizer of ι inside SOQ(Q) is trivial, for any isometry
fixing L pointwise would need to map L⊥ to itself and so must be multiplication by
±1 on L⊥; the condition of determinant 1 forces it to be the identity. The number
of embeddings N(L) (up to the action of SOQ(Z)) is therefore precisely the number
of cosets ġ ∈ SOQ(Z)\SOQ(Q) so that gL ⊂ Z3.

Given a rational lattice Λ ⊂ Q3, for any prime p we denote by

Λp = Λ⊗Z Zp

its closure inside Q3
p. Let us recall that the map

Λ 7→ (Λp)p

is a bijection between the set of lattices in Q3 and the set of sequences of lattices
indexed by the primes (Λp)p, Λp ⊂ Q3

p such that Λp = Z3
p for a.e. p. Write

Kp = SOQ(Zp) for the stabilizer of Z3
p inside SOQ(Qp) and let

SOQ(Af ) = {gf = (gp)p, gp ∈ SOQ(Qp), gp ∈ SOQ(Zp) for a.e. p};

the above bijection induces an action of SOQ(Af ) on the set of rational lattices:

gf .Λ↔ gf .(Λp)p := (gpΛp)p.

Remark A.2. The group SOQ(Af ) is the group of finite adèles of SOQ. The
SOQ(Af )-orbit of a lattice Λ ∈ Q3 under this action is called the Q-genus of Λ.
We will not need much of this terminology or discuss further properties of adelic
groups here.

The group SOQ(Q) embeds diagonally into SOQ(Af ). Now the stabilizer of Z3 in
SOQ(Af ) isKf =

∏
p SOQ(Zp) and sinceKf∩SOQ(Q) = SOQ(Z), SOQ(Z)\SOQ(Q)

injects into Kf\SOQ(Af ).
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Consequently, letting Lp = L⊗Z Zp be the closure of L inside Z3
p, we have

N(L) ≤ |{gf ∈ Kf\SOQ(Af ) : gf .L ⊂ Z3}|

≤
∏
p

|{gp ∈ SOQ(Zp)\SOQ(Qp) : gp.Lp ⊂ Z3
p}|

=
∏
p

|{gp ∈ SOQ(Qp)/SOQ(Zp) : Lp ⊂ gpZ3
p}| =

∏
p

N(Lp).

with

N(Lp) = |{gp ∈ SOQ(Qp)/Kp : Lp ⊂ gpZ3
p}| = |{Λ ∈ SOQ(Qp).Z3

p : Lp ⊂ Λ}|

being the number of lattices in Q3
p, within the Q-isometry class of Z3

p that contain
Lp. We have proven that

N(L) ≤
∏
p

N(Lp)

and thus have reduced our counting problem to a collection of local counting prob-
lems (as we will see below N(Lp) = 1 for a.e. p); a more careful analysis of what
we have said so far is very closely related to the proof of the mass formula. In the
present paper, however, we need only upper bounds.

A.2. The anisotropic case and a reduction step. We first introduce some
notations. We denote by

〈x,x′〉 = Q(x + x′)−Q(x)−Q(x′)

the bilinear form associated with Q; so 〈x,x〉 = 2Q(x). The discriminant of Q is
set to be

disc(Q) = det(〈xi,xj〉)i,j≤3

for {x1, x2, x3} any basis of Z3. Since Q is integral 〈Z3,Z3〉 ⊂ Z, so disc(Q) is a
non-zero integer.

We notice first that if Q does not represent 0 nontrivially over Qp (i.e. is
anisotropic over Qp), then SOQ(Qp) is compact and

(A.1) N(Lp) ≤ [SOQ(Qp) : SOQ(Zp)]�Q 1

This (favorable) situation can occur only if p divides disc(Q).
We suppose now that Q is isotropic over Qp for some prime p | 2disc(Q), we will

reduce the problem of boundingN(Lp) to the case where the integral quadratic form
is given by Q(x, y, z) = xy + z2. We note that disc(xy + z2) = 2. This reduction
comes with the cost that we also have to replace q by a different quadratic form
q′ = upmpq with u ∈ Z∗p and mp ≥ 0. However, we only have to make this change
for p | 2disc(Q) and mp will only depend on Q. Using these facts we will see in
Subsection A.7 that the bound for the number of representations of q′ by xy + z2

will suffice for the proof of Proposition 3.4.
We claim that there exists a basis of Q3

p over Qp so that the quadratic form
Q with respect to the coordinates of this basis has the form up−`(xy + z2) for
some u ∈ Z∗p and ` ∈ {0, 1}. Indeed as Q is isotropic, there exists a hyperbolic
plane in Q3

p. Complementing the basis of the hyperbolic plane with a vector of the
orthogonal complement we arrive at a basis so that Q has the form xy + up−`z2

with u ∈ Z∗p and ` ∈ Z. If necessary we may replace the last basis vector by a
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multiple and can ensure that ` ∈ {0, 1}. Similarly we may divide the first basis
vector by up−` and arrive at the claim.

Let Λ be the Zp-lattice in Q3
p spanned by the above basis. There exists some k

(depending only on Λ) so that pkZ3
p ⊂ Λ. Let ι : (Z2

p, q)→ (Z3
p, Q) be an embedding

of q. Then pkι : (Z2
p, p

2kq)→ (Λ, Q) and finally

pkι : (Z2
p, u
−1p2k+`q)→ (Λ, u−1p`Q) ' (Z3

p, xy + z2)

are also embeddings of quadratic lattices. We set mp = 2k+` and q′ = u−1pmpq and
obtain that there is an injection from the set of embeddings ι : (Z2

p, q) → (Z3
p, Q)

to the embeddings ι′ : (Z2
p, q
′)→ (Z3

p, xy + z2).

A.3. The case of an unramified lattice. The previous section reduces the proof
of Proposition 3.4 to the problem of finding an upper bound for N(Lp) where we
may assume that either p - 2disc(Q) or that Q(x, y, z) = xy + z2. This will be
done in the following two local counting lemmas which depend on whether p = 2
or p > 2:

Recall that for p > 2 any quadratic form q on some rank two Zp-lattice L taking
value in Zp may be written, in a suitable basis, in the form

(A.2) q(xe1 + ye2) = upax2 + vpby2, u, v ∈ Z×p , 0 ≤ a ≤ b ∈ Z≥0.

To see this take an element e1 ∈ L such that the valuation of q(e1) is minimal
and then take the orthogonal complement of e1, cf. [7, Sect. 8.3]. We shall call the
integers a ≤ b the invariants of the quadratic form (e.g. the invariants of x2 + 5y2

over Z5 are (0, 1)). This is a kind of p-adic analogue of the notion of successive
minima. The invariants determine the quadratic form over Zp – up to isometry –
up to O(1) possibilities. We will prove the following lemma.

Lemma A.3. Let p > 2, let Q be an isotropic quadratic form over Q3
p so that

p - disc(Q). Let L ⊂ Λ be a rank 2-sublattice such that Q|L has invariants (a, b),
then

N(L; Λ) := |{Λ′ ∈ SOQ(Qp).Λ : L ⊂ Λ′}| � (b+ 1)2pba/2c

where the implied constant is absolute. Moreover, if (a, b) = (0, 0), N(L; Λ) = 1

In the 2-adic case, any quadratic form q on some rank 2 Z2-lattice L taking value
in Z2 may be written, in a suitable basis either (cf. [16, Lemma 2.1] and [7, Sect.
8.4]) in the form

(A.3) q(xe1 + ye2) = u2ax2 + v2by2, u, v ∈ Z×2 , 0 ≤ a ≤ b ∈ Z≥0,

or in the form

(A.4) q(xe1 + ye2) = u2bx2 + w2axy + v2by2, u, v, w ∈ Z×2 , 0 ≤ a ≤ b ∈ Z≥0.

In both cases we will refer to a ≤ b once more as the invariants of q. We have the
following lemma.

Lemma A.4. Consider Q(x, y, z) = xy + z2 as a quadratic form over Q3
2, let

Λ ⊂ Q3
2 be a lattice satisfying Q(Λ) ⊂ Z2 and which is maximal for this property.

Let L ⊂ Λ be a rank 2-sublattice such that Q|L has invariants (a, b), then

N(L; Λ)� (b+ 1)22ba/2c

where the implied constant is absolute.
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The proof of these two lemma will use a geometric interpretation of the quotient
SOQ(Q3

p)/SOQ(Λ).

A.4. The Bruhat-Tits tree. Let Q be an isotropic quadratic form such that
p - disc(Q) or Q(x, y, z) = xy + z2. Note that Λ0 = Z3

p has the property that
Q(Λ0) ⊂ Zp and that Λ0 is maximal for this property. We set

TQ = SOQ(Q3
p)Λ0 ' SOQ(Q3

p)/Kp.

Even though this will not be used here, let us also mention that TQ is the set of all
lattices Λ in Q3

p such that
Q(Λ) ⊂ Zp

and which are maximal for this property (see [15, Cor. 4.17]).
We will need that TQ has the structure of a (p+1)-regular tree (see [6]) in which

Λ,Λ′ are adjacent if and only if Λ ∩ Λ′ has index p in Λ (or equivalently in Λ′).
More generally, the distance d(Λ,Λ′) between two vertices Λ,Λ′ satisfies

pd(Λ,Λ′) = [Λ : Λ ∩ Λ′] = [Λ′ : Λ ∩ Λ′].

and the geodesic between Λ and Λ′ consists of all Λ′′ ∈ TQ satisfying Λ ∩ Λ′ ⊂ Λ′′.
Let us describe the adjacency structure on TQ more explicitly using the quadratic

structure. Given any lattice Λ ∈ TQ, and any primitive v ∈ Λ (i.e. v /∈ pΛ) for
which v = v + pΛ ∈ Λ/(pΛ) is isotropic over Fp (i.e. p | Q(v)) we can define a
lattice Λv ∈ TQ, which only depends on the line through v, as follows. Since

(A.5) Q(av + z) = a2Q(v) +Q(z) + a〈z,v〉 ∈ Zp
and since the linear form 〈·,v〉 is not zero (even for p = 2), we may modify v by
some element pz0 ∈ pΛ to ensure that p2 | Q(v + pz0). Here the element z0 is
uniquely determined by v up to {z ∈ Λ : 〈z,v〉 ≡ 0 mod p}. Therefore, the lattice

Λv :=
1
p
Zp(v + pz0) + {z ∈ Λ : 〈z,v〉 ≡ 0 mod p}

depends only on v, indeed only on the line through v. Using (A.5) we see quickly
that Q(Λv) ⊂ Zp. Below we will always assume that p2 | Q(v) and set z0 = 0.

Under our assumptions on Q this lattice Λv ∈ TQ is a neighbor of Λ, and there
are exactly p+ 1 = |P1(Fp)| such lines, and thus every neighbor arises.

We will use also the following simple facts:
(1) For an isotropic v we have

Λ ∩ Λv = Zpv + {z ∈ Λ : 〈v, z〉 ≡ 0 mod p}.

(2) For v,v′ generating distinct isotropic lines the intersection

Λv ∩ Λv′ = {z ∈ Λ : 〈v, z〉 ≡ 〈v′, z〉 ≡ 0 mod p} = Zpw + pΛ

is the preimage in Λ of the orthogonal subspace (Fpv + Fpv′)⊥ ⊂ F3
p.

(3) Given three isotropic vectors v,v′,v′′ generating distinct lines and assum-
ing p > 2 we have

Λv ∩ Λv′ ∩ Λv′′ = pΛ.

One establishes also the following generalization:
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Proposition A.5. Let Λ lie at the mid-point of the geodesic between Λ′ and Λ′′

(i.e. there is n ≥ 1 such that d(Λ,Λ′) = d(Λ,Λ′′) = n, d(Λ′,Λ′′) = 2n). There
exists a primitive v ∈ Λ so that Q(v) ≡ 0(pn) and w ∈ Λ with Q(w) 6≡ 0(p) and
〈v,w〉 ≡ 0(pn) so that

Λ ∩ Λ′ = {z ∈ Λ, 〈z,v〉 ≡ 0(pn)} = Zpv + Zpw + pnΛ

and
Λ′ ∩ Λ′′ = Zpw + pnΛ

is the preimage of the non-isotropic line defined by w under the projection Λ 7→
Λ/pnΛ. Moreover, for m ≤ n, let Λ′m be the lattice on the segment [Λ,Λ′] at
distance m from Λ, then

Λ ∩ Λ′m = {z ∈ Λ, 〈z,v〉 ≡ 0(pm)} = Zpv + Zpw + pmΛ ⊃ Λ ∩ Λ′.

A.5. Proof of Lemma A.3. Let p > 2 and Q be as in the lemma. Define

R(L) := {Λ ∈ TQ, L ⊂ Λ} ⊂ TQ, N(L) = |R(L)|.

In the notation of Lemma A.3, N(L) = N(L; Λ) for any Λ ∈ TQ.
We start by remarking that R(L) is connected: if Λ,Λ′ both contain L, then

L ⊂ Λ ∩ Λ′ ⊂ Λ′′ for any Λ′′ on the geodesic path between Λ and Λ′.
Let q be as in (A.2). Suppose R(L) is non-empty and let ι : (Z2

p, q) ↪→ (Λ, Q) be
an isometric embedding with image L = ι(Z2

p) and let e1 = ι(1, 0), e2 = ι(0, 1) so

Q(e1) = upa, Q(e2) = vpb, 〈e1, e2〉 = 0.

A.5.1. The case (a, b) = (0, 0). We show R(L) = {Λ}. If not, L is also contained
in a neighbor Λv of Λ. However, the induced quadratic form on the span of ē1, ē2 is
nondegenerate, so this span cannot be v⊥ for an isotropic v ∈ Λ/pΛ. So N(L) = 1.

A.5.2. The case a = 0, b ≥ 1. Suppose that N(L) > 1. Then there is an isotropic
v so that e1 belongs to v⊥. This shows that e⊥1 is a hyperbolic plane (first modulo
p, and then since p 6= 2 also on Q3

p).
In other words, e⊥1 ∩ Λ is a rank two lattice generated by two isotropic vectors

v,v′ (which are liftings of isotropic vectors generating e1
⊥) and then, there are

exactly two neighboring lattices containing e1, namely Λv and Λv′ ; that there are
at most two follows from Fact (3). Pursuing this reasoning, we see that the only
lattices that can contain e1 are the lattices

Λn := Zpp−nv + Zpe1 + Zppnv′, n ∈ Z

(which is a geodesic in the tree determined by e1).
Let us now see that for n > b, Λ±2n does not contain e2, which will show that

N(L) ≤ 4b+ 3. Suppose e2 ∈ Λn, then

e2 ∈ Λ ∩ Λ2n = Zpe1 + pnΛn

write e2 = αe1 + z, α ∈ Zp, z ∈ pnΛn we obtain

〈e1, e2〉 = 0 ≡ α(mod pn), Q(e2) = vpb ≡ α2 ≡ 0(mod pn).

This is a contradiction for n > b.
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A.5.3. The case a = 1. We show N(L) ≤ 2: Suppose that L ⊂ Λv for some v. Since
e1 ∈ Λ/pΛ is a non-zero isotropic vector contained in v⊥ it has to be a multiple of
v. By symmetry between Λ and Λv, this also shows that Λ is the only neighbor of
Λv which contains L. Since R(L) is a connected subset of the tree, this shows that
N(L) ≤ 2 as claimed.

A.5.4. The case a ≥ 2. Let

L1 := Zpe′1 + Zpe2, L2 := Zpe1 + Zpe′2, e′i = ei/p, i = 1, 2, L1 + L2 =
1
p
L

these are rank 2 lattices containing L, on which Q is Zp-valued with respective
invariants (a−2, b), (a, b−2) and (a−2, b−2). We will show that either N(L) = 1
or

(A.6) R(L) ⊂ R(L1) ∪R(L2) ∪
⋃

Λ′∈R( 1
pL)

B(Λ′, 1)

where B(Λ′, d) = {Λ′′ ∈ TQ, d(Λ′,Λ′′) ≤ d} is the ball in the tree of radius d
centered at Λ′; it has cardinality 1 + (p+ 1)p

d−1
p−1 ≤ (1 + 3

p )pd.
Here is the proof of (A.6). Let Λ ∈ R(L). If e1 ∈ pΛ or e2 ∈ pΛ, then

Λ ∈ R(L1) ∪ R(L2). So suppose now e1, e2 ∈ Λ are both primitive vectors. By
assumption, we have for i = 1, 2 (since Q(ei) ≡ 0(mod p)) that ei is a non-zero
isotropic vector. Since 〈e1, e2〉 = 0, e1 and e2 have to be co-linear; otherwise the
induced form on the reduction Λ would be identically zero on a plane. Now Λe1
contains both L1 and L2; so it belongs to R( 1

pL). Thus Λ is at distance at most 1
from R( 1

pL).
Let us now see how to conclude the proof of Lemma A.3: for r, s ∈ N, let

Lr,s := Zpp−re1 + Zpp−se2.

Q takes integral values on Lr,s for r ≤ ba/2c, s ≤ bb/2c. In this notation (A.6)
states

R(L0,0) ⊂ R(L1,0) ∪R(L0,1) ∪
⋃

Λ′∈R(L1,1)

B(Λ′, 1)

We can now apply (A.6) again to each of the terms on the right. With each
application r or s or both increase by 1. In the latter case we obtain that the
previous lattice Λ′ ∈ R(Lr,s) (to which (A.6) was applied) is at distance 1 from the
new lattice Λ′′ ∈ R(Lr+1,s+1). Also note that in the latter case both a and b are
reduced by 2, so that this case can only happen ≤ ba/2c many times. Therefore,
induction on a+ b shows that

R(L) = R(L0,0) ⊂
⋃{

B(Lba/2c,s, ba/2c), B(Lr,bb/2c, ba/2c) : 0 ≤ r, s ≤ bb/2c
}
.

Each L′ = Lba/2c,s resp. L′ = Lr,bb/2c has invariants (0, b′) or (1, b′) with b′ ≤ b and
by the previous sections N(L′) = O(b+ 1) in all cases. Consequently

N(L)�
∑
L′

∑
Λ′∈R(L′)

|B(Λ′, ba/2c)| � (b+ 1)2p[a/2].

�
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A.6. Proof of Lemma A.4. Recall that we assume that Q(x, y, z) = xy + z2.
Note that (1, 0, 0), (0, 1, 0) and (−1, 1, 1) are three isotropic vectors that are linearly
independent modulo 2, which define the neighbors of Z3

2. For every pair f1, f2 of
these vectors we can find a third vector f3 ∈ Z3

2 so that Q(xf1+yf2+zf3) = xy+z2.
Of the four non-zero non-isotropic vectors modulo 2 the vector k = (0, 0, 1) is
special, it is the only element in the kernel of 〈·, ·〉 modulo 2 and also satisfies
k ≡ f3 modulo 2 for any basis (f1, f2, f3) as above. Below we will always use the
letter k to denote the corresponding element in the lattice Λ/2Λ.

A.6.1. The diagonal case (A.3). Suppose that in a suitable basis q takes the form
(A.3). This situation is similar to the proof of Lemma A.3. We only discuss the
details where the two proofs differ.

A.6.2. The case (a, b) = (0, 0). We claim that Λ ∈ R(L) has at most one neighbor
in R(L). If one of e1 or e2 is not equal to k, then we claim that R(L) contains at
most one neighbor of Λ. To see this suppose e1 6= k and L ⊂ Λv ∩ Λv′ . Then by
Fact (2) L is contained modulo 2 in the common kernel of 〈·, v〉 and 〈·, v′〉, which is
one-dimensional and actually equal to the span of k — a contradiction. Therefore,
L ⊂ Λ ∩ Λv for at most one neighbhor Λv as claimed.

So suppose e1 = e2 = k and w ∈ Λ is such that Q(xe1 + y(e1 + 2w)) = ux2 + vy2

as in (A.3). Since we also have

Q(xe1 + y(e1 + 2w)) = x2Q(e1) + y2Q(e1 + 2w) + xy(2Q(e1) + 2〈e1, w〉)

and 2 | 〈e1, w〉, it follows that Q(xe1 + y(e1 + 2w)) is not as in (A.3). So we have
seen that in all possible cases we have at most one neighbor of Λ in R(L). However,
this shows N(L) ≤ 2 for (a, b) = (0, 0).

A.6.3. The case a = 0 and b ≥ 1. We claim that the main difference between the
case of p = 2 and p > 2 lies in this case. Here we will see that R(L) is only
contained in the set of elements of distance one to points on a geodesic. This is
caused by the fact that if e1 = k and e2 = 0, then R(L) contains all neighbors of Λ
due to Fact (1) and since k is orthogonal to all three nonzero isotropic vectors in
Λ/2Λ.

On the other hand, we have already seen above (in the case a = 0, b = 0) that if
e1 6= k then only one neighbor of Λ can be in R(L). To prove that R(L) consists
of points of distance one from a geodesic we only have to show that if e1 = k,
then for at least one neighbor Λ′ of Λ we have e1 6= k′ where k′ ∈ Λ′/2Λ′ is the
corresponding special vector for Λ′. This follows if we can find some vector w ∈ Λ′

with 〈e1, w〉 6= 0.
To see this we simplify the notation and assume without loss of generality Λ = Z3

2.
Let e1 = (α, β, γ) so that 〈e1, (1, 0, 0)〉 = β, 〈e1, (0, 1, 0)〉 = α, and 〈e1, (0, 0, 1)〉 =
2γ. Since e1 6= 0, one quickly sees that one of these inner products is not divisible
by 4. Without loss of generality we may assume 4 - β. Now consider the neighbor
Λ′ = 1

2Z2 × 2Z2 ×Z2 of Λ. Then w = ( 1
2 , 0, 0) ∈ Λ′ satisfies 〈e1, w〉 = 1

2β 6≡ 0 (mod
2). Hence as claimed, e1 6= k′ and so only one neighbor of Λ′, namely Λ itself, can
belong to R(L).

It follows that there exists a line segment I ⊂ R(L) in a geodesic in T (Q) so that
R(L) ⊂

⋃
Λ∈I B(Λ, 1). Arguing as in Subsection A.5.2 we can bound the length of

I in terms of b and obtain N(L) ≤ 3(4b+ 3).
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A.6.4. The case a ≥ 1. The arguments for p > 2 carry over to the remaining cases.

A.6.5. The non-diagonal case (A.4). So supppose now q is represented by the lat-
tice L = Z2e1 + Z2e2 ⊂ Λ with

Q(e1) = u2b, Q(e2) = v2b, 〈e1, e2〉 = w2a, u, v, w ∈ Z×2 , 0 ≤ a ≤ b.

A.6.6. The case a = 0. If (a, b) = (0, 0), then e1 and e2 are linearly independent in
Λ/2Λ since otherwise w = 〈e1, e2〉 ≡ 0 (mod 2). Also note that the plane generated
by e1 and e2 does not contain any isotropic vector. However, this implies that
e1, e2 cannot be both contained in any Λv for then v⊥ would contain e1, e2,v three
linearly independent vectors.

If now (a, b) = (0, b ≥ 1), e1 and e2 are two linearly independent isotropic vectors
and so e1 can only be contained in Λe1 . Similarly, e2 is only contained in Λe2 . So
L cannot be contained in any neighbor of Λ.

In conclusion for a = 0 we have

N(L) = 1.

A.6.7. The case a = 1. In that case at least one of the vectors e1 and e2 must be a
non-zero isotropic vector, for otherwise a ≥ 2. Suppose e1 6= 0. Then e1 ∈ Λv only
for e1 = v. Therefore, L can only have one neighbor in R(L) and so N(L) ≤ 2.

A.6.8. The case a ≥ 2. We consider again the two rank 2 lattices

L1 := Z2e
′
1 + Z2e2, L2 := Z2e1 + Z2e

′
2, e

′
i = ei/2

which contain L and on which Q is Z2-valued:

Q(e′1) = u2b−2, Q(e′2) = v2b−2, 〈e′1, e2〉 = 〈e1, e
′
2〉 = w2a−1.

We describe now the type and the invariants of L1 — by symmetry L2 behaves
the same way.

If a = b we may solve the equation in β ∈ Z×2
0 = 〈e2 + βe′1, e

′
1〉 = w2a−1 + βu2b−1

and so Q|L1 is of diagonal form (A.3) in the basis {e2 +βe′1, e
′
1}. Furthermore, since

〈e2 + βe′1, e2 + βe′1〉 = 2Q(e2 + βe′1) = v2b+1 + βw2a−1

it has invariants (a− 2, b− 2).
If a < b, take β = 2b−a: in the basis {e2 + βe′1, e

′
1}, Q|L1 takes the non-diagonal

form (A.4) with (a′, b′) = (a − 1, b − 2). Finally Q|L1+L2 = Q|L/2 takes the form
(A.4) with (a′′, b′′) = (a− 2, b− 2).

We then conclude exactly as in §A.5.4 by proving that either N(L) = 1 or (A.6)
holds. This implies once more the desired bound.

A.7. Proof of Proposition 3.4. We now show how the previous subsections com-
bine to the proof of Proposition 3.4.

Recall that we are bounding the number of representations N(L) of the quadratic
form q(x, y) = a1x

2 + a2xy+ a3y
2 by the ternary quadratic form Q up to SOQ(Z).

For any p let us write ap and bp for the invariants of q over Zp as in Section A.3.
Let f2| gcd(a1, a2, a3) be the greatest common square divisor of the coefficients of
q. Then a = vp(f).
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By the discussion in Section A.1-A.2 we know that

N(L)�
∏
p

Q p−isotropic

N(Lp).

Also recall from Section A.2 that for bounding N(Lp) for p|disc(Q) we may replace
Q by xy+ z2 and q by a fixed multiple q′ of q, where the factor only depends on Q.
From this we see that Lemma A.3-A.4 also hold for p|disc(Q) for q and Q, except
that the implicit constant depends for those primes also on Q.

Notice that for any prime p > 2 we have ap + bp = vp(disc(q)) and ap =
vp(gcd(a1, a2, a3)). For p = 2 we have v2(disc(q)) = a + b + 2 in the diagonal
case and v2(disc(q)) = 2a in the non-diagonal case. Also let c ≥ 1 be the implied
constant in Lemmas A.3. Together with Lemma A.3-A.4 this gives

N(L)�
∏

p|2disc(q)

c(vp(disc(q)) + 1)2pvp(f) �ε f max(a1, a2, a3)ε,

as desired.

Appendix B. Entropy, Bowen balls and uniqueness of measure of
maximal entropy

B.1. Statement of main results. We recall some notations: we work in the space
X = Γ\G with G = SL2(R), and let T denote the time-one-map of the geodesic
flow, i.e. the map

T : x 7→ xa with a =
(
e1/2 0

0 e−1/2

)
.

We define a Bowen (N, η)-ball in this space to be any set of the form xBN,η with
x ∈ X and

BN,η =
N⋂

n=−N
a−nBGη (e)an

(in the sections above η remained fixed and was omitted from the notations, but
here it will be convenient to be able to use Bowen balls of varying η).

If Γ is cocompact, for all η sufficiently small, the Bowen (N, η)-ball xBN,η coin-
cides with the set

xBN,η = {y : d(Tn(x), Tn(y)) < η for all −N ≤ n ≤ N} .

This is not true any more for noncompact quotients, where in general the right
hand side can be significantly bigger than the left hand side which is the source of
some complications.

The following theorem was proved for compact quotients by Bowen in [4]. It
is certainly well known also in the finite volume case, and proofs using leafwise
measures can be found e.g. [20, Prop. 9.6] and the more recent lecture notes [12,
Thm. 7.9]).

Theorem B.1. Let X = Γ\SL2(R) and T : X → X be as above. Then for any T -
invariant probability measure ν the entropy satisfies hν(T ) ≤ 1. Moreover, equality
holds if and only if ν = µX is the SL2(R)-invariant probability measure on X.
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We give here a direct proof not using leafwise measures, based on Lemma B.2
(which is identical to Lemma 5.3 and was needed for the proofs in §4), in the spirit
of Bowen’s proof (that in itself was inspired by a proof by Adler and Weiss [1] of
the uniqueness of measure of maximal entropy in irreducible shifts of finite type).

Lemma B.2. Let µ be an A-invariant measure on X = Γ\SL(2,R). Fix η > 0
and ε ∈ (0, 1). For any N ≥ 1 we let BCη(N, ε) be the minimal number of Bowen
(N, η)-balls needed to cover any subset of X of measure bigger than 1− ε. Then

(B.1) hµ(T ) ≤ lim
ε→0

lim inf
N→∞

logBCη(N, ε)
2N

.

It is easy to see that for any η, η′ > 0 a Bowen (N, η)-ball can be covered by� 1
Bowen (N, η′)-balls. Therefore,

(B.2) lim inf
N→∞

logBCη(N, ε)/2N

is independent of η. One can show that if µ is ergodic, equality holds in (B.1), and
moreover that the quantity in (B.2) is independent of ε. If µ is not ergodic, then
in general equality in (B.1) fails: in this case hµ(T ) is the average of the entropy
of the ergodic components of µ and the right hand side of (B.1) gives the essential
supremum of the entropies of the ergodic components of µ. We shall not need
either fact (nor will we prove them), but will use the following related estimates for
µ ergodic:

Lemma B.3. Assume that µ is in addition ergodic for T . Then for any suffi-
ciently small η (depending only on X) and for any ε ∈ (0, 1) and any large enough
N (depending on µ, ε), for any ε1 ∈ (0, ε), if k is sufficiently large (depending
on ε1, ε,N, µ, η) then

logBCη(kN, ε1) ≤ k(1− 2ε) logBCη(N, ε) + 4εNk + qk.

Here q is some absolute constant.

For our proof of Theorem B.1 it is crucial that the second error term (qk) does
not depend on N . Roughly speaking the lemma says, if we manage to cover some
set of measure bigger than 1− ε by relatively few Bowen (N, η)-balls, then a set of
size 1− ε′ can also be covered by relatively few Bowen (Nk, η)-balls.

The reader may wish to look now at the proof of Theorem B.1 in Subsection B.4
to see how the above two lemmas are used in combination to imply the uniqueness
of the measure of maximal entropy.

B.2. Proof of Lemma B.2. In the proof we will need the notion of relative entropy
for partitions: For two partitions P = {S1, . . . , S`} and Q = {Q1, . . . , Qm} of a
probability space (X,µ) the relative entropy of P given Q is defined by

Hµ(P|Q) = −
∑
i,j

µ(Si ∩Qj) log
µ(Si ∩Qj)
µ(Qj)

,

and it is easy to see that it gives the following additivity of entropy

(B.3) Hµ(P ∨Q) = Hµ(Q) +Hµ(P|Q).

We should also use the notation P(x) to denote the elements of the finite or count-
able partition P containing x.
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Proof. Let P = {Q,S1, . . . , S`} be a finite partition where Q is the only unbounded
set, all boundaries ∂Si are null sets which satisfy additionally

µ((∂Si)BGκ ) < Cκ

for some constant C > 0 and all κ > 0, and finally hµ(T,P) > hµ(T )− δ. Here

hµ(T,P) = lim
N→∞

Hµ(P [−N,N ])
2N + 1

is the expression over which one needs to takes the supremum to define hµ(T ).
Such a partition exists since (i) by the general theory of entropy hµ(T ) can be
approximated by hµ(T,P) once P is a sufficiently fine partition, and (ii) one can
find for every x ∈ X arbitrary small r > 0 for which µ

(
(∂Br(x))BGκ

)
< Cκ for all

κ > 0 (since for every x the function r 7→ µ(Br(x)) is monotone increasing hence
differentiable for a.e. r.)

We claim that for most points x ∈ X (we shall quantify this presently) it holds
that

(B.4) P [−N,N ](x) ⊃ xBN,2η′ for η′ = ηN−2,

hence if y ∈ xBN,η′ , then yBN,η′ ⊂ P [−N,N ](x). To show this, suppose y = xh 6∈
P [−N,N ](x) for h ∈ BN,η′ . Then for some n with |n| ≤ N the elements

xan and xhan

belong to different elements of P. It follows that at least one of the elements xan

belong to (∂P )BG2η′ for some P ∈P, |n| ≤ N . Therefore, x belongs to

(B.5)
N⋃

n=−N
Tn

⋃
S∈P

(∂S)BG2η′

which has measure less than 2(2N + 1)`CηN−2 � N−1. This proves the above
claim.

Roughly speaking BN,η has length η in the direction of A and ηe−N along stable
and unstable horocycle directions while BN,η′ has ηN−2 and ηN−2e−N instead.
From this one can easily deduce that one needs at most � N6 many translates
of BN,η′ to cover BN,η. Choose f > limε→0 lim infN→∞

logBC(N,ε)
2N . Then for any

ε > 0, there is some large N ≥ 1 depending on ε such that the measure of the set
in (B.5) is less than ε, and moreover such that 1− ε of the space can be covered by
less than e2Nf many translates of the set BN,η′ .

Say y1BN,η′ , . . . , ykBN,η′ (with k ≤ e2Nf ) cover X1 ⊂ X with µ(X1) ≥ 1− ε. If
x ∈ X1 is not in the union in (B.5). Since x ∈ yjBN,η′ for some j, it follows from
(B.4) that yjBN,η′ ⊂ P [−N,N ](yj). In other words, it follows that 1 − 2ε of the
space can be covered by e2Nf elements of the partition P [−N,N ].

Let P be the union of these partition elements and let P = {P,X rP} ⊂ σ(P)
be the associated partition. Write µB = (µ(B))−1µ|B for the normalized restriction
of the measure µ to a Borel set B. It follows now from (B.3) that

Hµ(P [−N,N ]) = Hµ(P) +Hµ(P [−N,N ]|P)

= Hµ(P) + µ(P )HµP (P [−N,N ]) + µ(X r P )HµXrP (P [−N,N ])
≤ log 2 + 2Nf + 4εN`
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since the entropy of a partition with K elements is at most logK. For N →∞ this
shows that

hµ(T )− δ < hµ(T,P) ≤ f + 2ε`,

which implies the lemma since δ and ε were arbitrary. (Note that ` depends on δ
but not on ε.) �

B.3. Proof of Lemma B.3. We shall say a Bowen ball yBN,η is injective if the
map g 7→ yg is injective on BN,η. Let η0 > 0 be such that 2η0 is smaller than
the length of any closed geodesic in X. An easy compactness argument shows that
if η ≤ η0 for any compact F ⊂ X there is a N0 so that if N > N0 and y ∈ F
the Bowen ball yBN,η is injective. In the proof we shall also make use of shifted
(s, t; η)-Bowen balls — sets of the form yBs,t;η where Bs,t;η :=

⋂t
i=s a

iBGη a
−i and

(s, t; η) sub-Bowen balls which are simply sets of the form yB for some B ⊂ Bs,t;η.
A shifted (s, t; η)-Bowen ball yBs,t;η (respectively, a (s, t; η) sub-Bowen ball yB) is
injective if the map g 7→ yg is injective on Bs,t;η (or B). We note the following
important properties of shifted Bowen balls:
(Bowen-1). For any s ≤ t ≤ r, the intersection of an injective (s, t; η) sub-Bowen

ball with an injective (t, r; η) sub-Bowen ball can be covered by at most
q injective (s, r; η) sub-Bowen balls;

(Bowen-2). For any s ≤ t ≤ r, an injective (s, t; η) sub-Bowen ball can be covered
by at most qer−t injective (s, r; η) sub-Bowen balls.

Proof of claims. Both claims can easily be reduced to their special cases where
t = 0 and where we only consider Bowen balls of the form gBs,r;η in G instead of
injective sub-Bowen balls in X.

For the proof of (Bowen-1) notice that there exists some C > 0 so that

(B.6) g1Bs,0;η ⊂ g1B
U+

Cη B
U−

CηesB
A
Cη,

where BHr denotes the r-ball around the identity in a subgroup H ⊂ SL2(R).
Similarly,

(B.7) g2B0,r;η ⊂ g2B
U+

Ce−rηB
U−

Cη B
A
Cη.

We can now decompose each of the balls appearing on the right hand side of (B.6)–
(B.7) into � 1 many balls with certain smaller radius and obtain that g1Bs,0;η ∩
g2B0,r;η is the union of � 1 many sets of the form

O = (g1u
+
1 B

U+

η/8u
−
1 B

U−

ηes/8a1B
A
η/8) ∩ (g2u

+
2 B

U+

ηe−r/8u
−
2 B

U−

η/8a2B
A
η/8).

where u+
1 ∈ BU

+

Cη , u
+
2 ∈ BU

+

Cηe−r , u
−
1 ∈ BU

−

Cηes , u
−
2 ∈ BU

−

Cη , a1, a2 ∈ BACη. If g ∈ O

and η0 is sufficiently small so that conjugation by an element of distance Cη0 does
not increase the distance to the identity significantly, it follows that O ⊂ gB(s,r;η)

which proves the first claim.
The second claim follows similarly by splitting the set Bs,0;η as in (B.6) into

� er many sets of the form

O = g1u
+
1 B

U+
ηe−r/8u

−
1 B

U−

ηes/8a1B
A
η/8

with u+ ∈ BU
+

�η and u− ∈ BU
−

�ηes , and showing that for g ∈ O we have O ⊂
gBs,r;η. �
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Proof of Lemma B.3. Let η ∈ (0, η0) where η0 is as defined above, and let M
be sufficiently large so that µ(X≤M ) > 1 − ε/2 and similarly choose M1 so that
µ(X≤M1) > 1 − ε1/2. We require that N be sufficiently large so that any (N, η)-
Bowen ball yBN,η intersecting X≤M is injective, and we choose k1 so that a similar
statement holds for any (k1N, η)-Bowen ball intersecting X≤M1 .

Let Ξ be a collection of (N, η)-Bowen balls of cardinality BCη(N, ε) covering a
subset of X with µ measure at least 1− ε. Then

Ξ′ = {B ∈ Ξ : B ∩X≤M 6= ∅}

has µ
(⋃

B∈Ξ′ B
)
≥ 1 − 3ε

2 . Let Y =
⋃
B∈Ξ′ B. By the pointwise ergodic theorem,

there is a k2 ≥ k1 and a subset Y1 ⊂ X≤M1 of µ-measure ≥ 1− 3ε1
4 so that points

in Y1 spend most of their time in Y in the following sense:

(B.8)
1

2n

n−1∑
s=−n

1Y (T s(y)) > 1− 2ε for all n ≥ k2N and y ∈ Y1..

To complete the proof of Lemma B.3 we will show that for any k ≥ k3 there is
a collection Ξ1 of (kN, η)-Bowen balls covering Y1 of cardinality

|Ξ1| � N(2q)kBCη(N, ε)k(1−2ε)e(4εk+4)N

Let c be the implied multiplicative constant. Then for large enough q′ (depending
only on q and some absolute constants above) we have cN(2q)ke4N ≤ eq

′k for all
sufficiently large k (where the bound is allowed to depend on N). Therefore, the
existence of Ξ1 as above will establish the lemma.

Fix k ≥ k2 and let y ∈ Y1. We partition the finite orbit {T−kN (y), . . . , T kN−1(y)}
into the 2N finite orbits of the form {T−kN+`(y), T (−k+2)N+`(y), . . . , T (k−2)N+`(y)}
for ` ∈ {0, . . . , 2N − 1}. By equation (B.8) there must for any y ∈ Y1 exist some
`(y) ∈ {0, . . . , 2N − 1} so that

1
k

k−1∑
s=0

1Y (T (−k+2s)N+`(y)(y)) ≥ 1− 2ε.

Let L = d(1− 2ε)ke. It follows that there are 0 ≤ t1 < t2 · · · < tL < k
with T (−k+2ti)N+`(y)(y) ∈ Y . Furthermore, there exist injective (N, η)-Bowen balls
B1, . . . , BL ∈ Ξ so that

y ∈
L⋂
i=1

T−(−k+2ti)N−`(y)Bi.

Recall that Ξ has BCη(N, ε) many elements. We now apply the properties (Bowen-
1) and (Bowen-2), and we conclude that the set of all y ∈ Y1 with a given value of
`(y) and t1, . . . , tL can be covered by

� BCη(N, ε)k(1−2ε)+1e4Nkε+2Nqk+1

injective (kN, η)-Bowen balls. Since there are at most 2N2k choices of `(y) and
t1, . . . , tL we are done. �
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B.4. Proof of Theorem B.1. We begin with the observation that the SL(2,R)-
invariant measure µX on X achieves the upper bounds stated on the entropy, and
moreover is ergodic under T . Let ν 6= µX be another T -invariant probability
measure and without loss of generality we may assume that ν is singular with
respect to µX (which is the case e.g. if ν is also ergodic), and let η0 be as in the
proof of Lemma B.3.

Let f be a nonnegative, continuous, compactly supported function so that

(B.9)
∫
f dµX <

∫ 1

0

dt

∫
f(xat) dν,

R some real number strictly between the left-hand side and right-hand side of (B.9)
and set

YT =

{
x :

1
T

∫ T

0

f(xat)dt > R

}
.

By construction YT is compact, and (for ε > 0 arbitrary) by the pointwise ergodic
theorem if T is large enough µX(YT ) < ε and ν(YT ) > 1 − ε. In fact, if T is large
enough, for any sufficiently large N it holds that

(B.10) µX(YTBN,η0) < 2ε.

Fix such a T , and chose N so that the (B.10) holds and moreover any (N, η0)-Bowen
ball intersecting YT is injective.

Now choose a maximal collection of disjoint (N, η0/2)-Bowen balls intersecting
YT . Each of these balls has µX volume�η0 e

−2N (the implicit constant is indepen-
dent of ε and N). In view of (B.10), it follows that the cardinality of this collection
is�η0 εe

2N , and by maximality the corresponding collection of (N, η0)-Bowen balls
covers YT . As ν(YT ) > 1 − ε we obtain BCη0(N, ε, ν) �η0 εe

2N (note that since
we are simultaneously discussing two measures we have added ν to the notation
BC(·)).

Roughly speaking the above upper bound should lead to hν(T ) < 1 by using
Lemma B.2: most of the space with respect to ν is covered by relatively few, namely
≤ Cεe2N , Bowen (N, η)-balls. However, as (B.1) first takes the limit as N → ∞
this inequality is not directly implying hν(T ) < 1. To overcome this we introduce
an ε′ ∈ (0, ε) and will use Lemma B.3 to obtain the bound on the covering number
for ε′ and kN . Indeed applying Lemma B.3 we conclude that for any ε′ ∈ (0, ε) if
k is sufficiently large

logBCη0(kN, ε′, ν) ≤ k(1− 2ε)(2N + log(Cε)) + 4εkN + qk

≤ k(1− 2ε)2N +
1
2
k log(Cε) + 4εkN + qk = 2Nk +

(
q +

1
2

log(Cε)
)
k,

where we also assumed ε < 1/4 and Cε < 1. Hence we obtain for any ε′ ∈ (0, ε)
that

lim inf
k→∞

1
2kN

logBCη0(kN, ε′, ν) ≤ 1 +
2q + log(Cε)

4N
.

However, for sufficiently small ε the right hand side is < 1. Hence by Lemma B.2
we get hν(T ) < 1. Therefore, mX is the only probability measure on X with
hmX (T ) ≥ 1.
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