1 From groups to graphs

Setting: G, H, X. G a group, H a subgroup; X a set of generators for H. Often
we assume X is symmetric: 1 € X, X = X L.

We have an equivalence relation H, the (left) coset equivalence relation; and
a graph X, the Cayley graph. H is generated by X.

Transpose to: G a set; H an equivalence relation. X C G? a generating
set. Symmetric: the diagonal on G is contained in X; and X = X?. So
H=UXo---0X.

In both cases, an associated metric d = dx, generated by: d(z,y) < 1
if (xz,y) € X. If we are given a family X;, let d(z,y) < n iff there exist
T=21...2, =y with (zg, xp41) € UX,.

Definition 1.1. A symmetric X C G? is a k-approzimate equivalence
relation if the valency is of a fized order of magnitude | X (a)| < k|X (D)
for all a,b € G, and every 2-ball is a union of k 1-balls.

e Say two metrics d,d are k-commensurable at scale « if an a-ball of d' is
contained in < k balls of d-radius o, and vice versa.

e A melric space is k-doubling at scale o if d,(1/2)d are k-commensurable
at scale o.

o Thus: for a k- approximate equivalence relation X, dx is k-doubling at
scale 1.

e X is an approzimate subgroup of G iff X is an approximate equivalence
relation on G.

Theorem 1.2 (strong approximation: groups). Let F' = F,, p nonstandard.
Let G = GL,(F), and let X; be a family of definable subsets. Then there exists
a definable H such that:

1. H s a subgroup of G
2. HC< UX; >.
3. X;/H is finite (bounded.)

Moreover, ‘definable’ here can be made explicit as follows: there exists a homo-
morphism of algebraic groups (with bounded data), with finite kernel

h:H—G

such that H = h(H(F)).



Applied to the family of one-dimensional unipotent subgroups X; of an ar-
bitrary subgroup I' of G, this shows that I' contains a definable normal subgroup
H with T'/H Abelian-by-bounded. Thus the image of a Zariski dense subgroup
of SL,(F,) has bounded index, and is as above. ( Weisfeiler 1984, Nori 1987,
Gabber, precedents by Eichler 1938, Kneser 1966,...).

Theorem 1.3 (strong approximation: graphs). Let F' = F,, p nonstandard, G
definable over F. Let X C G? be definable. Then there exists m,m’ € N and a
0-definable H < G? such that:

1. H is an equivalence relation on G
2. If (a,b) € H then dx(a,b) < m.
3. X/H has valency (degree) < m/’.

Moreover, H is algebraic: (a,b) € H iff d(h=(a)) = ¢(h=1(b)) for some mor-
phism of varieties h : G — G with finite fibers, and regular functions ¢ on G,
with ¢ o h~1 well-defined.

If stated for standard primes: the bounds m, m’ on valency and on diameter
are independent of p; H varies through only finitely many possible definitions
(given G, X); and the complexity of h, G, ¢ is bounded independently of p.

Example 1.4. Fix an algebraic group Gy, e.g. Gog = SLg. let F = GF(p), let
Q1,2 be unipotent orbits in Go(F'), and make I' = 1 x 5 into a graph by
letting (a, b) be adjacent to (a,a”'ba) and to (b~'ab,b).

Invariants of the connected components:
the group < a, b > generated by (a,b). The fact that this is a definable invariant
is the strong approximation lemma for groups!

The trace tr(ab).

Further algebraic invariants.

For pairs (a,b) that generate SLg, I do not know if further invariants are
needed; Gamburd and Sarnak have results on related graphs.

2 Stabilizers

Theorem 2.1 (H. ,Sanders 2009). Let X be a k-approxzimate group. Then there
exists Y with Y8 C X%, X contained in boundedly many cosets of Y.



Theorem 2.2. Let X be a k- approzimate equivalence relation on G. Then
there exists S C G? such that S°® C X°*, and for all a € Q outside an e-slice
U, 15(a)| > Ox(1)|X (a)]-

Moreover S is 0-definable, uniformly in (Q, X), in an appropriate logic; in
particular Aut(Q, X) leaves U, S invariant.

The invariance implies the group-theoretic version.

The 0-definability of S will be essential, in moving from the approximate
symmetry of a graph to automorphisms of an associated locally compact space.

Closely related to Lovasz-Szegedy graphons in cases of bounded diameter at
least. However, to know that the definition of W o W agrees with the one we
give on elements, we need to know essentially the independence theorem; so it
does not appear to give a new proof of the stabilizer theorem.

3 Approximate symmetry

A distance between finite graphs: (Keisler-Hoover, Gromov (measured metric
spaes), Benjamini-Schramm)

Definition 3.1.
1 1
P, ) = sup{— : (AD)|T| = m, |Pr(T,0) — Pr(T, @) > —}
m m

Where Pr(T, ) = |[Hom(T, 2)|/Q™.
A similar definition applies to pointed graphs.

Definition 3.2. (Q, X) is e-homogeneous if ppea((2, a), (2,0)) <€ for all a,b €
Q.

Definition 3.3. 0, = Q if ppra(n, an), (2,a) — 0 for all a, € Ny, a € Q.

Of course, this only makes sense if the €2,, are increasingly e-homogeneous.

We will really have a stronger notion of convergence: there will be a metric
don Q,, dlz,y) = 1iff (z,y) € X, such that Gromov-Hausdorff convergence
holds with respect to the metrics.

A Riemannian homogeneous space is a Riemannian manifold, with transi-
tive isometry group (Classified by Wolf when the stabilizer acts irreducibly on
tangent space.)

A Riemannian model is a Riemannian homogeneous space, with compact
point stabilizer, and with the approximate equivalence relation: d(z,y) < 1.

Riemannian models have e-homogeneous approximations for any €. Let G/ K
be a Riemannian homogeneous space; G a Lie group, K compact. Let A be a
lattice of large covolume. Let n be large, and choose n points at random on

MG/K.



Theorem 3.4. Let (G,,X,) an approximately homogeneous sequence of ap-
proximate equivalence relations. Then some subsequence approaches a limit
(T, X), admitting a homomorphism to a vertex transtive graph B of bounded
degree, such that each fiber is commensurable to a Riemannian model.

4 Partial Bourgain systems

Theorem 4.1. Fiz k € N. Then there exists e* € N such that the following
holds: Let G be any group, X a finite subset, and assume | X X 1 X| < k| X]|.

Then there are 2 < e,c < €*, and N > 22266 subsets Xy C Xny_1 C --- C
X1 C X 'XX7'X such that X, X, are e-commensurable, and for 1 < m,n <
N we have:

1. X, = X!
2. Xn+1Xn+1 g Xn
3. X, is contained in the union of ¢ translates of X, 41.

4. [Xn, Xm) C Xy, whenever k < N and k <n+m.

Theorem 4.2. Fiz k € N. Then there exists e* € N and ¢ > 0 such that
the following holds: Let (G,X) be an e-homogeneous approzimate equivalence

relation. Then there are e,c < e* and N > 222“k , and a metric dy on X such
that:

X-balls are covered by < e dy-balls of radius 1, while dx-balls of radius 1
are contained in X -balls of radius 4. (and so in k* X-balls of radius 1); and
for 1 <m,n < N, dy is c- doubling at scale 27", i.e. dy-balls of radius 2" are
contained in c balls of radius 2"+1.

Problem 4.3. Complete this with an analogue of (4).

Problem 4.4. Exploit homogeneity on types to obtain a statement without the
approzimate homogeneity assumption. (embedding of sections into a Rieman-
nian homogeneous space.)

5 Proof of stablizer lemma
o xS,y iff p{z : [W(R(2)NR(2)) — p(R(y)NR(2))] > 27"} <27}

e At limit, N,S,: for almost all z, p(R(x)NR(z)) = p(R(y)NR(z)). It is
cobounded.



Snt+1 0 Sn4+1 C Sp. (Away from measure 0).
S,, C R°4, for large n.

Sy, is definable in terms of R using probability logic. This definability will
be essential, showing that (approximate) symmetries of the graph, are
(approximate) symmetries of the associated refining metric.

The proof uses stability: p(R(x)NR(z)) is a stable real-valued formula.
New proofs of this by Tao.

Approximately homogeneus approximate
equivalence relations (proof)

Ultraproduct. Obtain two equivalence relations: E = finite distance. T’ =
infinitesimal distance.

Let Q be a class of E; then Q/T is locally compact.

G = Aut(Q/T) acts transitively on €, by isometries of the fine metric.
Keisler,Gromov-Vershik,

A locally compact structure on G (compact-open topology.) The stabilizer
of a point is compact.

By Gleason-Yamabe, an open subgroup H, a small normal compact sub-
group N, with H/N a Lie group.

From Q to an H-orbit: locally bounded distortion. (R induces a graph of
bounded degree on Q/H.)

Factor out N. Obtain a coarser equivalence relation than the original
distance-zero, but still contained in dg < 4.

Now the Lie group H/N acts transitively on Q/T", compact point stabi-
lizer. Find an invariant Riemannian metric. This metric is doubling up
to distance 1, and the distance 1 relation is commensurable with dg.

For partial Bourgain systems: return information to finite factors, up to
scale ¥(c).



7 Comparison

Theorem 7.1 (Benjamini- Finucane-Tessera 2012). 1. Let (X,) be an
unbounded sequence of finite, connected, vertex transitive graphs with
bounded degree such that |X,| = o(diam(X,)?) for some q > 0. After
rescaling by the diameter, some subsequence converges in the Gromov
Hausdorff distance to a torus of dimension < q, with an invariant metric.

2. If q is close to 1, then the scaling limit of (X,,) is S', even if X,, is only
roughly transitive



