
1. Introduction

A collection of finite subsets Xi of groups Gi is a family of approximate subgroups if 1 ∈ Xi =
X−1i , and the products set XiXi is contained in a bounded number of translates of Xi. Freiman,
around 1960, classified the approximate subgroups of Z. After considerable activity in the last
few years, Breuillard, Green and Tao (BGT, [3]) showed that all approximate subgroups arise
from nilpotent groups, and gave a similar classification of approximate subgroups of nilpotent
groups. These notes were written for a class given in Jerusalem in Spring 2012, covering their
main results. We work entirely in a model-theoretic setting, deducing the finite consequences
at the very end.

The proof has three parts. The first is a basic connection between approximate subgroups and
locally compact groups. It appeared in [8] and will not be repeated here in detail, though we will
describe it and give other references. In class we described a more general connection between
approximate equivalence relations and locally compact spaces, that may be incorporated here
later.

The second part centers around the Gleason-Yamabe structure theory of locally compact
groups. These results were merely cited in [8]; in order to go further, [3] had to enter into
their methods and incorporate them in the pseudo-finite setting. A locally compact group
is said to be NSS (no small subgroups) if some neighborhood U of the identity contains no
nontrivial subgroups. Gleason showed that NSS groups are Lie groups. We will avoid using Lie
theory, but the proof of Gleason’s theorem, and especially the construction of tangent spaces,
will be essential. Gleason’s proof includes a notion of distance from the identity, with the
essential property that the commutator of two elements at very small distance from 1 becomes
yet much closer to 1. Equally important will be a related theorem of Yamabe, that connected
locally compact groups admit many homomorphisms to NSS groups. We will look at this in the
presentation of [13], who in turn largely follow [7]. This route goes through in the pseudo-finite
case with almost no change.
§3 contains the proof of nilpotence, and the generalized Freiman theorem. The ultraproduct

X of the Xi retains a memory of the finiteness of the Xi, hence must have a non-identity element
at minimal distance to 1 for the Gleason distance. It follows that this element commutes with
any element in a neighborhood of 1, i.e. is essentially central. This, along with an induction
on dimension of the associated NSS group, leads to the proof of nilpotence.

We place ourselves in a setting appropriate both for ultrapowers of locally compact groups
(the original setting of Hirschfeld), and for ultraproducts of finite approximate groups (yielding
the BGT results.)

This text was written for a seminar in Jerusalem on [3]; thanks to the audience, and also to
Immanuel Halupczok and Itay Kaplan for various corrections.

1.1. Groups with power maps. We work with a saturated structure, including a sort R∗
and N∗ ⊂ Z∗ ⊂ R∗ that can be taken to be ultrapower of (N,Z,R). Thus N∗ is definably
well-ordered, i.e. every nonempty definable set has a least element. st denotes the standard

part map; it is defined on the convex hull R̃ of R in R∗, and returns the nearest standard real.
For f ∈ Z∗, let O(f) = {n ∈ Z∗ : (∃e ∈ N)(|n| ≤ e|f |)}, and o(f) = {n ∈ Z∗ : (∀e ∈

N)(|n| ≤ |f |/e)}. Thus for a ∈ G, aZ
∗

is a definable subgroup of G, aO(f) is an Ind-definable
subgroup, while a≤f := {an : |n| ≤ f} is a definable subset, generating aO(f). We write x m y
if O(x) = O(y), i.e. x/m ≤ y ≤ mx for some m ∈ N.

We deal here with groups G with a power map; i.e. the map (x, n) 7→ xn, G × Z∗ → G, is
assumed to be given as a binary function of x, n.
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For a ∈ G, and U a definable subset of G, sU (a) is defined to be the smallest n ∈ N∗ (if any)
such that an+1 /∈ U . Such an n exists, by the definable well-ordering property of Z∗, unless
an ∈ U for all n ∈ N∗.

In fact we will make some use of powers of definable sets. For Q ⊂ G definable, and n ∈ Z∗,
we have Q·n, definable uniformly in n; Again we let sU (Q) be the least n ∈ N∗ (if any) such
that Qn+1 6⊆ U

In addition, our data includes a definably generated group G̃, and a normal,
∧

-definable

subgroup Γ of G̃, with G̃/Γ bounded in the model theoretic sense: passing to elementary

extensions does not increase it. This gives rise to a locally compact structure on G̃/Γ, so that

we have a continuous homomrphism π : G̃→ G̃/Γ in the sense of continuous logic (see below).

We now explain below how to obtain G̃,Γ in the two settings. The quotient map G̃→ G̃/Γ
will be denoted by π.

1.2. Ultrapowers of approximate groups. Let (G,X,Z∗) be an ultrapower of (Gi, Xi,Z)
with Xi a finite subset of Gi, and with ordinary Z-powers. Any definable function into R∗ may
be internally summed.

Thus we assume that G is equipped with a summation operator on definable functions into
R∗, taking R∗-valued function with support ⊂ X ·m (for some m) to their “sum” in R∗. To
enable us to treat the locally compact and pseudo-finite cases together, we denote the summation
operator as an integral.

We will use
∫

directly in the Gleason-Yamabe lemmas. We can also coarsen it to obtain

a real-valued (rather than R∗)-valued measure. Let G̃ be the subgroup of G generated by

X, and normalize
∫

so that
∫

(1X) is finite. For a definable Y ⊂ G̃, let µ(Y ) = st(
∫

(1Y )).
When (Xi) is a family of approximate subgroups. turns X into a near-subgroup, meaning that
0 < µ(X), µ(X ·3) <∞.

We need this special case of Theorem 3.1 of [8]. It follows a sequence of similar results in
model theory, called ”stabilizer theorems”. We say that a subset X of a group is symmetric if
X = X−1, and that two symmetric subsets X,Y are commensurable if each is contained in the
union of finitely many cosets of the other.

Theorem 1.3. Let (G,µ,X) be a near-subgroup. Then there exist a normal,
∧

-definable

subgroup Γ of G, Γ ⊂ X ·4. Any definable D with Γ ⊂ D ⊂ G̃ is commensurable with X ·2. 1

Note, by compactness:

Corollary 1.4. Let (G,µ,X) be a near-subgroup. Then there exist a µ-wide definable set Y
with Y 8 ⊂ X4.

Proof. Say Γ = ∩Sn, with Sn definable; then ∩S8
n ⊂ S ⊂ X4, so for some n, S8

n ⊂ X4. �

The corollary is in fact easily seen to be equivalent to Theorem 1.3: inductively define Yn
with Y 8

n+1 ⊂ Y 4
n , and let Γ = ∩nY 4

n .
For finite approximate subgroups, it was given an independent, direct proof by Sanders [10],

following a line in combinatorics starting from Balog-Szemeredi. See [3] , Theorem 5.3 for a self-
contained proof in about one page, for ultraproducts of (general) finite approximate subgroups.
We will use Theorem 1.3 directly, referring the reader to either [8] or [3] for the proof. (The
combinatorial proof appears on the fact of it to be second-order, so does not give definability
of Y in a specified language.)

1(Moreover there exists a definable Z, µ(Z) = 0 with Γ ⊂ X·2 ∪ Z.)
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We also quote from [8]: H = G̃/Γ admits a natural locally compact topology. It is charac-
terized by: (*) If F ⊆ F ′ ⊆ H with F compact and F ′ open, then there exists a definable D

with π−1(F ) ⊂ D ⊂ π−1(F ′). Conversely, the image of a definable subset of G̃ is compact.

Using Theorem 2.13, we can (easily) improve our (G̃,Γ) as follows:

Theorem 1.5. There exist an Ind-definable subgroup G̃′ of G̃, and a
∧

-definable subgroup

Γ′ ⊃ Γ, normal in G̃′, such that G̃′/Γ′ is a connected NSS group with no normal compact

subgroups. (*) above holds; any definable D with Γ′ ⊂ D ⊂ G̃′ is commensurable with X−1X.

Our main goal is to show, in this situation, that G̃′/Γ′ is nilpotent.

1.6. Locally compact groups. If G0 is a locally compact group, let G = G∗0 be an ultrapower;

let G̃ = ∪U∗, as U runs over compact subsets of G; let Γ = ∩U∗, as U runs over neighborhoods
of 1 in G. This is the setting of [7], [13]. The integral operator on definable functions, in this
case is the ultrapower of the Haar integral.

We may remark that the locally compact group obtained above from an ultraproduct of
approximate subgroups comes automatically equipped with a left-invariant real-valued integral
on Borel functions (ultimately induced from counting); so we do not require Haar’s theorem for
the results of §3.

The one non-elementary fact we will use is the Peter-Weyl theorem for compact groups, or
rather the following consequence: for any neighborhood U of the identity, there exists a normal
subgroup N ⊂ U such that G/N is NSS. It seems that the only known proof of this result relies
on spectral theory for (self-adjoint, compact) operators on L2.

2. Gleason-Yamabe structure theory (following Hirschfeld, Goldbring-Van
den Dries)

The setting is either an ultrapower of a locally compact group, if the goal is the Gleason -
Yamabe structure theory of locally compact groups; or an ultraproduct of finite approximate
subgroups, when the goal is the structure of these. We follow [13] ( §5, 5.1-5.8) with very minor
variations; in particular we will work in the ultraproduct all along, while [13] work briefly in the
ultrafactors (5.1-5.2). The main technical improvement in [13] over [7], is that their treatment
essentially covers Yamabe’s theorem; we will make this explicit. I had to write the notes to
make sure that [13] goes through for the pseudofinite setting, but the reader may prefer to read
the well-written notes by Goldbring and Van den Dries and make the necessary transpositions
him or herself.

For α ∈ N∗, let

G(α) = {a ∈ Γ : ai ∈ Γ for all i ∈ o(α)}

g(α) = {a ∈ Γ : ai ∈ Γ for all i ∈ O(α)}
Note that G(α), g(α) depend only on the archimedean class α/ m.

Our goal is Theorem 2.11: G(α) and g(α) are normal subgroups of G̃; Lα := G(α)/g(α) is
commutative, and in fact Γ acts trivially on Lα by conjugation; and if β = [α/m] , m ∈ N∗,
then m : x 7→ xm induces a well-defined, injective map Lα → Lβ .

In case G is an ultrapower, we will see that m is also surjective; the Lα are all isomorphic,
and we define the Lie algebra of G to be isomorphic to them. In case of an ultraproduct of
finite approximate subgroups, the same picture holds for sufficiently small infinite α. However
we will see that there exists a maximal λ/ m with G(λ) 6= 1. Then g(λ) = 1, and L(λ) is

discrete. The map m will yield a discrete subgroup of the Lie algebra of G̃/Γ. This discrete
structure will lead to nilpotence in the next section.
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We begin with the technical part.

2.1. An invariant integral. For definiteness we fix a definable U1 (with Γ ⊂ U1 ⊂ G̃) and
normalize the integral to give U ·61 measure 1:∫

f =
1

|U ·6|
∑
x∈U ·6

f(x)

2.2. Urysohnn’s lemma. We need a definable Urysohn function; i.e. a definable τ : G̃ →
[0, 1]∗ ⊂ R∗, inducing a continuous τ̄ : G̃/Γ→ R with τ̄(1) = 1, and supported on a prescribed
definable set containing Γ. The simplest way is to begin with τ̄ provided by Urysohn’s lemma,
then to produce τ . (Since τ̄ has compact support, τ will vanish outside a certain definable set.)
We could construct τ explicitly, but prefer to obtain it from Urysohn via the basic lemma of
nonstandard analysis, formulated below in the setting of ultraproducts M of finite structures.
We take the definable relations on M to be all ultraproducts of relations on the factors; we
could of course describe a countable sublanguage that also works.

Recall that a map from a first-order structure M into a compact space Y is continous if for
any compact K and open U with K ⊂ U ⊂ Y , there exists a definable D with f−1(K) ⊂ D ⊂
f−1(U).

Lemma 2.3. Let M = limi→uMi be an ultraproduct of finite structures. Let f̄ : M → Y be
a continuous map into a separable compact space. Then there exists a definable f : M → Y ∗

such that st(f(x)) = f̄(x).

Proof. Fix a metric on Y . For any ε > 0, find an ε-dense finite subset Fε ⊂ Y , and a definable
map fε : M → Fε with d(f, fε) < 2ε. So fε = limi→u fε,i, with fε,i : Mi → Fε. Write
Fi(n, x) = fn−1,i(x), and let F = limi→u Fi. Then d(F (n, x), F (n′, x)) < 2(n−1 + (n′)−1). For
standard n we have F (n, x) = fn−1(x). So stF (b, x) does not depend on b ∈ N∗ r N, and is
infinitely close to f̄ . Fix some b ∈ N∗ rN and let f(x) = F (b, x). �

We obtain, for any definable U1 ⊃ Γ, a definable τ : U ·21 → [0, 1]∗, with st ◦ τ = τ̄ . We have
stτ(1) = 1; replacing τ(x) by max(1, τ(x)/τ(1)), we may assume τ(1) = 1. We can extend τ

to G̃ by zero outside U ·21 ; we still have st ◦ τ = τ̄ . Note in particular that τ(x) > 1/2 on some
definable U2 containing Γ; so

(1) st(

∫
τ) > 0

Note that for b ∈ Γ, st(τ(bx) − τ(x)) = (τ̄(bx) − τ̄(x)) = 0; and similarly on the right for
τ(xb). Thus

(2) b ∈ Γ⇒ |τ(xb)− τ(x)| ∈ o(1)

2.4. Gleason-Yamabe lemmas. For a definable function f into R∗, ||f || denotes the supre-
mum of |f |.

We will consider definable functions φ : G̃ → R∗ with definable support. For such a φ and

for a ∈ G̃, let Daφ(x) = φ(a−1x) − φ(x). Also let |φ| = sup{|φ(x)| : x ∈ G̃. Since the support
is definable, the supremum is attained in the pseudo-finite case.

We write x ≤ o(1) to mean: |x| < 1/n, n = 1, 2, . . ..
Fix a definable set Q ⊆ Γ. The set Q will typically be a finite set {1, a, b, a−1, b−1}. Only

for Yamabe’s theorem 2.13 will we need an infinite definable set.
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Lemma 2.5. Let Q ⊂ Γ be definable, symmetric, e = sU (Q). There exists a definable φ : G∗ →
R∗ such that for a ∈ Q, b ∈ Γ we have:

(i) φ = 0 on G∗ r U ·3; 0 ≤ φ ≤ 1
(ii) φ(1) > 0, moreover φ(1) is not infinitesimal.

(iii) |Daφ| ≤ 1/e
(iv) |Dbφ| ≤ o(1)
(v) |DbDaφ| ≤ o(1)1/e

Proof. Let u(x) = 1
edQ(x, 1), i.e. for k ≤ e, u(x) = k

e if x ∈ DkrDk−1; and u(x) = 1 if x /∈ De

(in particular if x /∈ U .) Clearly:

0 ≤ u(x) ≤ 1,u(1) = 0

u = 1 outside U1, and |Dau| ≤ 1/e for a ∈ Q. Let u = 1− u. We have:

(3) u = 0 outside U1, 0 ≤ u ≤ 1, u(1) = 1

(4) |u(ya)− u(y)|, |u(ay)− u(y)| ≤ 1/e for a ∈ Q
Let

θ(x) = sup
y∈U1

u(y)τ(y−1x) = supy∈G̃u(y)τ(y−1x)

From the definition of θ and (4) we have:

θ(a−1x) = supya∈G̃u(ya)τ((ya)a−1x) = sup
y∈G̃

u(ya)τ(yx) ≤ 1/e+ sup
y∈G̃

u(y)τ(yx)

As u(y) = u(y−1), supy∈G̃ u(y)τ(yx) = supy∈G̃ u(y−1)τ(yx) = supy∈G̃ u(y)τ(y−1x) = θ(x).

Thus

(5) |θ(a−1x)− θ(x)| ≤ 1/e

Let φ be the convolution of θ with its symmetric dual θ̂ (i.e. θ̂(x) = θ(x−1). )

φ(x) = θ ∗ θ̂ =

∫
y

θ(xy)θ(y)

(i) φ(x) = 0 unless x is a product of an element of the support of u, with an element of supp(τ).
By (3), it follows that x ∈ U ·31 . Since 0 ≤ u, τ ≤ 1, and the integral is normalized, it is
clear that 0 ≤ φ ≤ 1.

(ii) We have θ ≥ τ , using (3). So φ(0) ≥
∫
τ(x)2 > 0, by (1).

(iii) |Daφ| ≤ |Daθ| from the definition, and using |θ| ≤ 1. By (5) we have |Daθ| ≤ 1/e.
(iv) Again it suffices to show |Dbθ| ≤ o(1). Now |θ(xb′)− θ(x)| ≤ |τ(xb′)− τ(x)| ∈ o(1) by (2).

As τ(bx) = τ(xb′) with b′ = x−1bx ∈ Γ, the statement follows.

(v) (cf. [13], Lemma 5.1). We have Da(θ ∗ θ̂) = Daθ ∗ θ̂, by an easy computation:

Daφ = φ(a−1x)− φ(x) =

=

∫
θ(a−1xy)θ(y)−

∫
θ(xy)θ(y)dy

=

∫
[θ(a−1xy)− θ(xy)]θ(y) = α ∗ θ̂(y)

where α = Daθ. By (5) we have |α| ≤ 1/e.



6

Now DbDaφ = Db(α ∗ θ̂), α ∗ θ̂(x) =
∫
α(xy)θ(y)dy, so

DbDaφ(x) =

∫
α(b−1xy)θ(y)dy −

∫
α(xy)θ(y)dy

=

∫
α(xu)θ(x−1bxu)du−

∫
α(xu)θ(u)du

=

∫
α(xu)[θ(x−1bxu)− θ(u)]du

=

∫
α(xu)Dx−1bxθ(u)du

Now the set bU
·3

of U ·3-conjugates of b is a definable set, contained in Γ. Since |Dcθ| ≤
o(1) by (iii), this for each c ∈ bU

·3
, by compactness there exists ε0 ≤ o(1) such that

|Dcθ| ≤ ε0 for each c ∈ bU ·3 . We have already seen that |α| ≤ 1/e, so

|DbDaφ| ≤ |
∫

(1/e)ε0 = ε0/e ≤ o(1/e)

�

Fix φ for a moment. We will use the map a 7→ Daφ, viewing it in a certain sense as an
approximate homomorphism into the additive group of definable functions G→ R∗. We have:

(6) Dabφ = Daφ+Dbφ+DaDbφ

Define:

|a| = ||Da(φ)||

Note:

(7) |ab| ≤ |a|+ |b|, |1| = 0

Lemma 2.6. Let m ∈ N∗, and let a, b : {1, . . . ,m} → G, i 7→ ai be definable maps, with ai ∈ Q,
bi = bi−1ai, b0 = 1. Assume each bi ∈ Γ. Then

||Dbmφ− Σi≤mDaiφ|| ∈ (m/e)o(1)

In particular, if a ∈ Q ∩ g(m) then

||Damφ−mDaφ|| ∈ (m/e)o(1)

So (1/m)|am| − |a| ∈ (1/e)o(1).

Proof. We have, using (6) and induction on n,

Dbnφ− Σi≤nDaiφ = Σi<nDbi+1Daiφ

By Lemma 2.5 (v), ||Dbi+1Daiφ|| ∈ 1/eo(1). Let f = maxi<m ||Dbi+1Daiφ||; then f ∈
1/eo(1). So ||Dbmφ− Σi≤mDaiφ|| ≤ mf ∈ (m/e)o(1). �

The above lemma provides the critical connection between the norm ||Daφ||, with its natural
submultiplicative property, and the exit norm sU (g). To use it well, we need sU (g) to be
independent of U , in order of magnitude. In the NSS case, this holds automatically. In general,
we can still arrange the weaker statement needed in practice, with a call to Peter-Weyl to handle
the compact case.



7

Let Qo(e) = ∪γ∈o(e)Qγ , QO(e) = ∪γ∈O(e)Q
γ . Call (N,O) a Yamabe pair in a locally compact

group L if N is a compact normal subgroup of L, and O is an open subset containing N , such
that any subgroup of O is contained in N .

Lemma 2.7. Let Q be a definable subset of Γ, and let (N,O) be a Yamabe pair of some closed

subgroup H ≤ G̃/Γ. Let U ⊂ U ′ be two definable subsets of G̃ with π−1N ⊂ U ⊂ U ′, while

U ′ ∩ π−1H ⊂ π−1O. If e = sU (Q), e′ = sU ′(Q) and πQe
′ ⊂ H, then sU (Q) m sU ′(Q). (I.e. if

one of the two quantities are defined, then both are, and are commensurable.)

Proof. Suppose not; then e = sU (Q) << e′ = sU ′(Q) (and in particular e ∈ R∗.) By definition
there exist a ∈ Q and b ∈ Qe ⊆ U with ab /∈ U . It follows that π(ab) /∈ N (since π−1N ⊂ U).

So π(b) = π(ab) /∈ N . Let H = Qo(e
′). Then π(H) is a subgroup of H, containing an element

π(b) not in N ; a contradiction. �

We could quote Theorem 2.13 for the existence of Yamabe pairs; but since we wish to prove
this theorem, we arrange to quote it only in the compact case.

Proposition 2.8. Let Q be a definable subset of Γ, and let V be a definable set with Γ ⊂ V ⊂ G̃.
Then there exists a definable U , Γ ⊂ U ⊂ V , such that sU (Q) m sU ·4(Q).

Proof. If sV (Q) = ∞, or sV (Q) m sV ·4(Q), we can take V = U . Otherwise, sV (Q) << e′′ =

sV ·4(Q). Let H = Qo(e
′′), and let H = π(H). Since H ⊂ V ·4, H is compact. By the compact

case of Theorem 2.13, there exists a Yamabe pair for H. The statement now easily follows from
Lemma 2.7. �

Fix a definable Q (it may as well be G(α)) and assume U has been chosen so that e :=
sU (Q) m sU ·4(Q). We obtain:

Corollary 2.9. If Q ⊂ g(α), then sV (Q) >> α, i.e. QO(α) ⊂ Γ.
If Q ⊂ G(α), it is not the case that α << sV (Q)

Proof. Choose U as in Proposition 2.8. So e := sU (Q) m sU ·4(Q). Construct φ as in Lemma 2.5,
for Q,U, e. If e >> α we are done (since e ≤ sV (Q).) Otherwise, by Lemma 2.6, for a ∈ Q ,

||1
e
Daeφ−Daφ|| ≤ (1/e)o(1)

But also, as ae ∈ Γ, ||Daeφ|| ≤ o(1). So ||Daφ|| ≤ 1/eo(1). It follows inductively from (7)
that ||Dbφ|| ≤ n/eo(1) for b ∈ Qn; in particular if n ≤ O(e), we have ||Dbφ|| ≤ o(1). As φ is
supported on U ·4 and stφ(1) > 0, it follows that stφ(b) > 0, so b ∈ U ·4. Thus QO(e) ⊂ U ·4, so
sU ·4(b) >> e; contradiction.

Since this holds for any V ⊃ Γ, we have QO(α) ⊂ Γ.
If Q ⊂ G(α), then Q ⊂ g(β) for β << α, so QO(β) ⊂ Γ for β << α, thus sQ(V )/ m is no

smaller than α/ m.
�

As a special case, a, b ∈ g(α), then (ab)α/2 ∈ Γ, so ab ∈ g(α/2) = g(α). Thus g(α) is a
subgroup.

Corollary 2.10. G(α) and g(α) are normal subgroups of G̃.

Proof. We have just seen that g(α) is a subgroup; it is obviously normal, since Γ and the power

map are G̃- conjugation invariant. As G(α) = ∩β<<αg(β), it is also a normal subgroup of

G̃. �

Now consider α ∈ N∗, β = [α/m] , m ∈ N∗,m << α.
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Theorem 2.11. Let α ∈ N∗. Then:

(1) Let Lα = G(α)/g(α). If β = [α/m] , m ∈ N∗, then x 7→ xm induces a well-defined map
m : Lα → Lβ, with m−1(1) = {1}.

(2) m is a group homomorphism.
(3) m is injective.
(4) Γ acts trivially on Lα by conjugation. In particular, Lα is commutative. If a ∈ G(α)

and b ∈ Γ, then [a, b] ∈ g(α).

Proof. (1) If x ∈ G(α), it is clear that xm ∈ G(β); and xm ∈ g(β) iff xmβ ∈ Γ iff xα ∈ Γ.
We have to show that if c ∈ g(α) and a ∈ G(α), then (ca)ma−m ∈ g(β). Now (ca)ma−m =
c1c2 · · · cm, where ci = aica−i ∈ g(α). By Corollary 2.9, (c1c2 · · · cm)β ∈ Γ. So c1c2 · · · cm ∈
g(β), as required.

(2) Let a, b ∈ G(α). We have to show that d := (ab)mb−ma−m ∈ g(β), i.e. that dβ ∈ Γ; i.e.
for any definable V ⊃ Γ, we have to show that dβ ∈ V .

Let Q = {1, a, b, a−1, b−1}. Let U be as in Proposition 2.8. Again, let e := sU (Q) m sU ·4(Q),
and construct φ as in Lemma 2.5, for Q,U, e. By Lemma 2.6, Ddφ ∈ o(4m/e) = o(m/e) (using
Daφ + D−aφ ∈ o(2/e), again by Lemma 2.6; so the additive expression cancels to 0 up to
o(8m/e).) We have e ≥m α m mβ. By (7), |dβ | ∈ o(1). As in Lemma 2.9 it follows that
dβ ∈ U ·4 ⊂ V .

(3) We saw in (1) that the kernel is (1).
(4) Let g ∈ Γ. Then g ∈ g(β) for some β ∈ N∗ r N, β < α. Let adg(x) = g−1xg. Then

adg acts trivially on Lβ . It respects the map x 7→ xm, and hence the injective induced map
m : Lα → Lβ ; thus adg must act trivially on Lα.

�

Lα can be viewed as a tangent space for G̃, whose addition approximates the multiplication

of G̃ at scale α. In the case of an ultrapower of an NSS group, all maps m are isomorphisms,
and we have essentially constructed the Lie algebra. At this point, Gleason’s theorem that the
group admits a Lie structure becomes readily accessible; for this, we refer the reader to [13].
As Yamabe’s theorem is essential for us, we pause to prove it.

2.12. Yamabe’s theorem. Let G be a locally compact group, G∗ an ultrapower, G̃,Γ as
above.

The proof of Theorem 2.13 relies on the compact case of the same statement, which can be
deduced from Peter-Weyl easily; see [13] 4.2.

Theorem 2.13 (Yamabe). If G is locally compact, for any neighborhood U of 1 there exists an
open subgroup H ≤ G and a normal compact K ≤ H, such that H/K is connected and NSS,
and U contains the pullback of a neighborhood of 1 in H/K.

Proof. The compact case follows from Peter-Weyl. We assume this, and prove the locally
compact case.

Find an open neighbhorhood U ′ of 1 such that U ′U ′ ⊂ U . If we arrange that N ⊂ U ′, then
NU ′ ⊂ U , and NU ′/N is a neighborhood of 1 in H/N . Thus, replacing U by U ′, it suffices to
find N ⊂ U ′, H/N connected Lie.
Claim. For any neighborhood V of 1 there exists a neighborhood U of 1 such that the group
generated by all subgroups contained in U is contained in C.

To see this, let Un be a compact neighborhood of 1 with U ·nn ⊂ V . We have to show -
for some n ∈ N - that if c1, . . . , cm are such that cZi ⊂ Un, then c1 · · · cm ∈ V . Otherwise,

we will have m ∈ N∗ and an internal sequence c1, . . . , cm, with cZ
∗

i ⊂ Γ , but c1 · · · cm /∈ V ;
contradicting Lemma 2.9.
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Applying the claim instead to some V ′ with cl(V ′) ⊂ V , and with cl(V ′) compact, we can
conclude that there exists a compact subgroup C with C ⊂ V , and a neighborhood U of C,
such that any group contained in U is contained in C.

Now we assume known the theorem for compact groups; applying it to C, we find an open
subgroup C ′ ≤ C and a normal compact K ≤ C ′, such that C ′/K is NSS, and U ∩ C contains
the pullback W of a neighborhood of 1 in C ′/K. This neighborhood of 1 may be taken to
contain no nontrivial subgroups. So W contains no subgroups bigger than K. As W ⊂ C ′, W
normalizes K, so every subgroup contained in W is contained in K.

From this it follows that the normalizer H of K is open, since H = {h : hK ⊂ W}. And
H/K clearly has NSS (the image of W contains no proper subgroups.)

By Lemma 2.17 below, H/K has a connected open subgroup; it has the form H ′/K for
an appropriate open H ′ ≤ H, K ≤ H. So replacing H by H ′, we can can take H/K to be
connected. �

Remark 2.14. If G is connected locally compact group, then in Theorem 2.13 we must have
H = G, so N is a normal co-Lie subgroup of G. Let P be the projective limit of G/N , over all
closed normal subgroups N such that G/N is Lie. Then Theorem 2.13 implies that the natural
map h : G→ P is an injective, continuous group homomorphism. In fact it is an isomorphism
of topological groups; [9], Theorem 18 contains a short and elementary proof, and refers to an
extension by Glushkov, which also follows readily.

We conclude this section with some facts concerning NSS groups that we will need; they
follow easily from the basic Lie theory or from the Pontrjagin structure theory of Abelian NSS
groups, but we give direct proofs.

2.15. The Lie algebra of an NSS group. Let G0 be an NSS locally compact group. Let G be

an ultrapower, and G̃,Γ as above. For any α ∈ N∗rN, the Abelian group Lα = G(α)/g(α) is in
natural bijection with the set L(G) one-parameter subgroups of G0; map c to the one-parameter
group t 7→ st(ctα). This shows that the natural maps Lα → Lβ are isomorphisms; and allows
defining addition on L(G), so as to be isomorphic to any Lα by the above correspondence.
It also shows that L(G) is an R-vector space. Now the map x 7→ xα induces an embedding

exp : Lα → G̃/Γ ∼= G0; by definition, (exp(x), exp(x/2), exp(x/4), . . .) is injective on Lα;
it follows that G(α)/g(α) is bounded (in the model theoretic sense), hence admits a locally
compact structure. It is known that a locally compact R-space L that it must have finite
dimension (indeed if U is a compact neighborhood of 1 and U ·2 ⊂ FU with F finite, then the
R-span RF must equal L; passing to the quotient we see that L/RF is compact, hence must be
trivial.)

In case G is Abelian, exp is a group homomorphism; if G is connected, it is surjective.

2.16. The dimension of an NSS group G. We define dim(G) = dim(L(G)). We will only
need to know that dim(G) > dim(G/N) if N ∼= R is a nontrivial connected central subgroup.
This follows easily from the definition, and the fact that L(N) 6= (0).

Lemma 2.17. An NSS group has a connected open subgroup.

Proof. Let H be NSS, and let H0 be the connected component of the identity in H. Then
G0 = H/H0 admits no one parameter subgroups (nontrivial homomorphisms from R.) Moving

to the ultraproduct G, G̃,Γ as above, it follows that Γ = 1, since any non-identity a ∈ Γ gives

rise to a 1-parameter subgroup st(aλn), for appropriate λ. Thus G0
∼= G̃/Γ is discrete. So H0

is open. �
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Lemma 2.18. Let H be an Abelian NSS group with no nontrivial compact connected subgroups.
Then H ∼= Rn ⊕B with B discrete.

Proof. First assume H is connected. Let G, G̃,Γ be an ultrapower as above, H ∼= G̃/Γ. We
have the groups L = Lα, for large α ∈ N∗. They are finite-dimensional R-spaces, and we can use
induction on their dimension. In particular, if dim(L) = m, it is clear that H contains no copy
of Rm+1. Let k be maximal such that Rk ∼= H1 ≤ H. If H = H1 we are done. Otherwise, by
connectedness, H1 cannot contain a neighborhood of 1; so arbitrarily small neighborhoods have
an element ai with ai not in H1; fix U containing no nontrivial subgroups; we have ani

i ∈ U ·2rU
for some ni; and ani

i /∈ H1 since H1 is divisible and H is torsion-free. Hence there exists a ∈ Γ
and an infinite α ∈ N∗ with aα /∈ H∗1 and aα ∈ U ·2rU . Now the corresponding one-parameter
subgroup st(sO(α) is a copy of R in H, not contained in H1, contradicting the maximality of
H1. (Here we use that H has no nontrivial compact connected subgroups. The image of the
homomotphism t 7→ st(stα), intersected with any compact set, must be compact, so the image
is a closed subgroup homeomorphic to R.)

Now in general, the result holds for the connected component H0, so H0 ∼= Rn. By
Lemma 2.17, H/H0 is discrete. Let B be a maximal subgroup of H disjoint from H0. We
claim that H = H0 ⊕ B. At any rate B is relatively divisible in H and as H0 is divisible,
H0 ⊕ B is relatively divisible too. Thus H/(H0 ⊕ B) is torsion-free. So if c ∈ H r (H0 ⊕ B),
then Zc ∩ (H0 ⊕B) = (0); but this contradicts the maximality of B. So H ∼= Rn ⊕B. �

Lemma 2.19. Let L be a connected NSS group. Assume L has no nontrivial compact Abelian
normal subgroups, and let Z be a central subgroup of L, with Z ∼= R. Then L/Z has no nontrivial
compact Abelian normal subgroups.

Proof. Suppose L/Z has a compact normal Abelian subgroup L′/Z. If L′ is not Abelian, let
c ∈ L′ be non-central; then [L′, c] is a nontrivial compact subgroup of Z, a contradiction. Thus
L′ is Abelian.

If L′ has a nontrivial compact connected subgroup C, then clearly C+C1+· · ·+Cn is compact
for any L-conjugates C1, . . . , Cn of C. Each Ci will contain a one-parameter subgroup, and as
above the dimension of an Lα will bound n. So the sum of all L-conjugates of C is a normal
compact subgroup C ′ of L′. But clearly C ′∩Z = (0), so C ′ is a subgroup of L, a contradiction.

By Lemma 2.18, L′ ∼= Rn + D with D discrete; so Rn−1 + D is compact; hence n = 1, and
D is finite. By divisibility of R, D is a subgroup of L, so D = (0). Hence L = L′. �

It is also easy to see that a connected NSS group has a maximal compact normal subgroup;
see [8], 4.1, paragraph 2.

3. Essential nilpotence of finite approximate subgroups, and Freiman’s
theorem.

We aim towards the main results2 of [3].
Let Xi be a k-approximate subgroup of a group Gi, and let (X,G,Z∗) be the ultraproduct.

We write Z∗ to indicate the power structure.

Let G̃0 be the
∨

-definable subgroup of G generated by X, and let Γ ⊂ X4 be a
∧

-definable

group, such that X is commensurable with any definable subset of G̃0 containing Γ.

Theorem 3.1. There exists a
∨

–definable subgroup G̃ of G̃0, containing Γ, and a definable

normal subgroup K of G̃, KZ∗ ⊂ K ≤ Γ, such that G̃/K is nilpotent. In fact G̃/K satisfies the
conclusion of Theorem 3.2.

2We will not consider local groups, and will omit one of the estimates on order of nilpotence, and the
applications.
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Proof. By Theorem 1.5 there exist an Ind-definable subgroup G̃ of G̃0, and a
∧

-definable

subgroup Γ ⊃ Γ0, normal in G̃, such that G̃/Γ is a connected NSS group with no normal

compact subgroups. Since G̃/Γ is NSS, there exists a definable U1 with Γ ⊂ U1 ⊂ G̃, and such
that the image of U1 modulo Γ does not contain any nontrivial subgroups.

Let K = {g : gZ
∗ ⊂ U1}. This is a definable set. If g ∈ K, the image modulo Γ of gZ

∗
is

a subgroup, hence trivial; so g ∈ Γ and indeed gZ
∗ ⊂ Γ; so K = {g : gZ

∗ ⊂ Γ} = ∩αg(α). By

Lemma 2.10, K is a subgroup of Γ; it is clearly normal in G̃, , and closed under Z∗-powers.

The normalizer H of K is a definable subgroup of G containing G̃. It is also clear that any

definable subgroup of Γ is contained in K. If we factor out K from H,G̃ and Γ, we have the

same situation but now K = (1). Thus the conditions of Theorem 3.2 holds. In particular G̃/K
is nilpotent. �

Theorem 3.2. Assume G̃/Γ is connected, NSS, with no compact normal Abelian subgroups.
Assume also that Γ contains no nontrivial definable subgroups.

Then G̃ is contained in a definable nilpotent group, of class ≤ dim(G̃/Γ). There exist ele-

ments a1, . . . , an and λ1 ≥ . . . ≥ λn ∈ Z∗, such that Ai := a
O(λ1)
1 · · · aO(λi)

n is a normal subgroup

of G̃, Ai+1/Ai is central in G̃/Ai, and we have:

G̃ = a
O(λ1)
1 · · · aO(λn)

i

Γ = a
o(λ1)
1 · · · ao(λn)

n

For any definable X containing Γ and contained in G̃, for some m ∈ N,

a
≤λ1/m
1 · · · a≤λn/m

n ⊂ X ⊂ a≤mλ1

1 · · · a≤mλn
n

and X m a≤λ1

1 · · · a≤λn
n .

Proof. Let π : G̃→ L := G̃/Γ be the natural map.

Let U be a definable set containing Γ, whose image in G̃/Γ contains no nontrivial subgroups.
Then definable subgroup of U is contained in Γ; so by assumption, any definable subgroup
contained in U is trivial.

Any definable U ′ containing Γ generates G̃: for π(U ′) contains an open set, and so generates

the connected group G̃/Γ.

Recall that for 1 6= a ∈ G̃, sU (a) is the least n ∈ N∗ such that an+1 /∈ U . This is well-defined
since U contains no nontrivial definable subgroups, and by the definable well-ordering property
of N∗. Moreover, if U ′ ⊂ U , then sU ′(a) ≤ sU (a), but sU ′(a) m sU (a) since otherwise there will

be x ∈ U rU ′ with xn ∈ U for all n ∈ N, contradicting the NSS assumption on G̃/Γ. Thus the
m-class of SU (a) does not depend on the choice of U .

Choose a1, a2, . . . inductively. Let λi = sU (ai), Ci = a
O(λi)
i , Ai = C1 · · ·Ci. Assume

inductively that a1, . . . , ai−1 have been chosen, and that Claims 0-3 below hold below i. If

G̃ = Ai−1, skip to the lines after Claim 3 for the end of the proof. Assume now that G̃ 6= Ai−1.
Choose an element d such that d ∈ U r Ai−1, and λ := sU (d) is as large as possible with

this constraint. This is possible with another use of the definable well-ordering property, as
U ∩Ai−1 is a definable (by Claim 3.)

Claim 0. λ ∈ N∗ rN; d ∈ Γ.

Proof. To see that λ ∈ N∗ r N, it suffices to show that λ ≥ m for any m ∈ N. Let Um be a
definable set containing Γ with U ·mm ⊂ U . If λ ≤ m then as sU (x) ≥ m for x ∈ Um, it follows

that Um ⊂ Ai−1. But Um generates G̃, so G̃ = Ai−1, contradicting out assumption.
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The fact that d ∈ Γ now follows, since the image of dZ in G̃/Γ is a subgroup of the image of
U , and so must be trivial. �

By induction, Ai−1 is a normal subgroup of G̃. As it is locally definable, the image πAi−1
is a closed subgroup of L = G̃/Γ. Let L = (G̃/Γ)/πAi−1, π̄ : G̃ → L the natural map. By

hypothesis, G̃/Γ has no normal compact Abelian subgroups; using Lemma 2.19, this hypothesis
is maintained as we successively factor out copies of R; so L has no normal compact Abelian
subgroups. So the center Z of L is isomorphic to Rp ⊕D for some p ∈ N and some discrete D.

Let C1 be a convex, symmetric, compact neighborhood of the origin in Z, with C1∩D = (0);
let C2 be the interior of 1.1C1; let O1, O2 be a compact (respectively open) neighborhood
of the origin in L, with Oi ∩ Z = Ci, and O1 ⊂ O2; let O1, O2 be a compact (resp. open)
neighborhood of the origin in L, with Oi/πAi−1 = Oi.

3 Finally, let O be a definable set with
π−1O1 ⊂ O ⊂ π−1O2. Recall that sU (a) m sO(a). Since we have only used λ/ m so far, we
may redefine λ as the maximal sO(a). Let s(a) = sO(a).

Claim 1. If a ∈ G̃, s(a) m λ, then a is central in G̃ modulo Ai−1.

Proof. Let c ∈ Γ. We have [c, a] ∈ Γ ⊂ U , and s([c, a]) >> s(a) = λ by Gleason, Lemma 2.11
(2). By maximality of λ, [c, a] ∈ Ai−1. By compactness, [c, a] ∈ Ai−1 for all c in some definable

set U ′ containing Γ. As G̃/Γ is connected, U ′ generates G̃, so every element of G̃ centralizes a
modulo Ai−1. �

Let a ∈ Γ, a /∈ Ai−1. Let f ∈ Ai−1 ∩ U be such that s(af) is maximal; and define s′′(a)
to be this maximal number. Then s′′(a) = s(af) ≥ s(af ′) for any f ′ ∈ Ai−1; indeed s(af)
is infinite, and if s(af ′) is infinite then af ′ ∈ Γ so f ′ ∈ Γ, so f ′ ∈ U . Now if µ m s(af)
then π((af)µ) /∈ πAi−1: otherwise by Claim 2 for i − 1 we could find f ′ with (aff ′)µ ∈ Γ, so
s(aff ′) >> µ m s(af), contradicting the maximality of s(af). In particular if s(a) m µ m λ,
then as s(a) ≤ s(af) ≤ λ we have s(af) m λ, so π((af)µ) /∈ πAi−1; but (af)µ = aµf ′ for some
f ′ ∈ Ai−1; so π(aµ) /∈ πAi−1.

(8) λ m µ m s(a)⇒ π(aµ) /∈ πAi−1
Choose ai ∈ U , ai /∈ Ai, with s(ai) = λ maximal. Then by (8), π(aλi ) /∈ πAi−1.

By Claim 1, ai is central in G̃/Ai−1, and in particular π̄(Ai) ⊂ Z ∼= Rp. As π(aλi ) /∈ πAi−1,
π̄(Ai) ∼= R. Identify π̄(Ai) with R, in such a way that the (convex, symmetric) image of C1 is
[−1, 1], so the image of C2 is (−1.1, 1.1). Then using (8) it is clear4 that

(9) π(aλ) ∈ Ai, π̄(aλ) 6= 0⇒ |s(a)/λ− 1/π̄(aλ)| ≤ 1.1

Claim 2. Let b ∈ Γ rAi, µ m s(b).

(1) If s(b) m λ then π(bs(b)) /∈ πAi.
(2) If µ << λ and π(bµ) ∈ πAi then there exists d ∈ Ai with (db)µ ∈ Γ.

Proof. Assume π(bµ) ∈ πAi. We have µ ≤ λ, and µ is infinite. Suppose first that µ << λ.
Say bµ = akcd, with c ∈ Γ and d ∈ Ai−1, and k ∈ O(λ). Write k = eµ + r, r < µ. As µ
is infinite, e << λ. Then e, r << λ. Note that [a, b] ∈ Ai−1, and s([a, b]) << µ. We have

3One can let O1, O2 be the images under the exponential map of concentric balls of radius 1, 1.1 in the
Lie algebra; but as we promised not to use the Lie algebra, it can also be done as an elementary excercise in

topology.
4using also the fact that any real can be written as st(µ/λ) for some µ ∈ Z∗
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(a−eb)µ = arcd ∈ ΓAi−1. By Claim 2 for i − 1, there exists e′ ∈ Ai−1 with (d′a−eb)µ ∈ Γ. So
d′a−e is as required

Next suppose µ m λ, but there exist an integer l ∈ Z with π((alb)µ) ∈ πAi−1 Then by
induction for some d ∈ Ai−1, (dalb)µ ∈ Γ; so s(dalb) >> λ. Seeing that dalb /∈ Ai, this
contradicts the choice of λ.

The remaining case is µ m λ, but no such l exists, i.e. π̄(b) is not an exact multiple of π̄(a).
Note that π̄(a) < 1.2π̄(b). As π̄(Ai) ∼= R, there exists l ∈ N with π̄(alb) ≤ (1/2)π̄(a). Using
(9), this implies that s(alb) > s(a), a contradiction.

�

Claim 3. For any definable set D, D ∩Ai is a definable set.

Proof. Let a = ai. Define h : R → L by h(t) = π̄(an), where n is any element of Z∗ with
st(n/λi) = t. By Claim 2, the image of h is nontrivial; by Claim (1) it lies in the center
Z ∼= Rp of L. The image of h is thus a 1-dimensional subspace. So for any compact subset of L,
specifically for π̄(D), there exists ν ∈ N such that if t ≥ ν then h(t) /∈ K. Thus if n > sν then

ani /∈ D. So D ∩Ai = D ∩ a≤sνi Ai−1. By induction, Ai−1 is locally definable, so Da≤sνi ∩Ai−1
is contained in a definable set E. So D ∩Ai ⊂ a≤sνi E, and hence D ∩Ai = D ∩ (a≤sνi E). �

By Claim 2, πA1 < πA2 < . . . < is a strictly increasing sequence of closed normal subgroups

of G̃/Γ, for as long as Ai is defined; we saw the successive quotients are ∼= R; hence the inductive

process must terminate at some n with n ≤ dim(G̃/Γ); the only reason an+1 cannot be chosen,

is that U ⊆ An. Since U generates G̃, we have G̃ = An.

By definition of λi, a
o(λi)
i ⊂ Γ. Thus a

o(λ1)
1 · · · ao(λn)

n ⊂ Γ. It is easy to see, by induction on

i, that a
O(λ1)
1 · · · aO(λi)

n /a
o(λ1)
1 · · · ao(λi)

n has no nontrivial compact subgroups; in particular this

holds for i = n, so the image of Γ in a
O(λ1)
1 · · · aO(λn)

n /a
o(λ1)
1 · · · ao(λn)

n must be trivial. Hence

Γ = a
o(λ1)
1 · · · ao(λn)

n .

Let X be a definable set, Γ ⊂ X ⊂ G̃. For any element u ∈ X, for some m ∈ N we have

u ∈ a≤mλ1

1 · · · a≤mλn
n . By compactness, for some m ∈ N, for any u ∈ X, u ∈ a≤mλ1

1 · · · a≤mλn
n .

Thus X ⊂ a≤mλ1

1 · · · a≤mλn
n . Similarly, a

≤λ1/m
1 · · · a≤λn/m

n ⊂ X for appropriate m.

At this point it is clear that G̃ is n-nilpotent. To obtain an enveloping definable group with
the same property, let G1 = CG(a1), G2 = {x ∈ G1 : [x, a2] ∈ aZ

∗

1 }, etc. Then inductively,

G̃ ≤ Gn; moreover G̃ is contained in Zn(Gn), the n’th element of the upper central series of

Gn. So Zn(Gn) is a definable nilpotent group of class ≤ dim(G̃/Γ), containing G̃. �

To understand the import of Claim 3, one should think of the possibility of a 1-parameter
group taking an irrational angle along a two-dimensional torus, and thus entering a given open
neighborhood countably many times (so not a definable set.) The assumption on no compact
normal Abelian subgroups is used to show this does not happen.

Let us say that elements a1, . . . , an of a group H form a central sequence if (letting A0 = 1
and Ai be the group generated by a1, . . . , ai), for i ≥, Ai is normal in An, and Ai+1/Ai is
central in An/Ai.

Corollary 3.3. Fix k. For some b,m, the following holds. For any group G and finite X ⊂ G,
if 1 ∈ X = X−1 and |X ·3| ≤ k|X|, there exists a subgroup H of G, a definable normal subgroup
K of H, and a subset Y of H/K of the form

Y = a
[−d1,d1]
1 · · · a[−dm,dm]

m
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with di ∈ Z and ai forming a central sequence, such that K ⊂ X4, and X ·2 is b-commensurable
with the pullback to H of Y .

The corollary follows from Theorem 3.1 by the standard compactness argument. One can
add that the pullback of Y to H is contained in X ·4,

Remark 3.4. As Immanuel Halupczok pointed out, the fact that G̃ and Γ are subgroups
in Theorem 3.2 entails some additional information about λ1, . . . , λn. For instance, we have
[a2, ak] = aµk

1 for some µk ∈ o(λ1); and since since [aλ2
2 , aλk

k ] ∈ A1, we must have λ2λkµk ∈
O(λ1). We refrain from listing these conditions as they follow in an elementary fashion from
the statement, and are not needed in the proof; the interested reader can see the definition of
a ”nil-sequence” in [3].

4. Order of nilpotence

As noted in [8] 4.11, 4.12, there is a canonical maximal choice of K (contained in Xm for some
bounded m) as well as non-canonical smaller choices; one can obtain K ⊆ X4. On the other
hand the canonical maximal K gives precise and optimal l bounds on the degree of nilpotence.
§10 of [3] includes a study of both directions; we will only cover the former in these notes.

In Theorem 3.1, let km = µ(Xm
0 )/µ(X0). In order to bound the degree of nilpotence directly

in terms of these doubling coefficients, we note two lemmas (cf. [8], p. 220).

Lemma 4.1. Let X0 be a near-subgroup of (G,µ), Let G̃ be a subgroup of G, X = X−10 X0∩ G̃,
k5 = µ(X5)/µ(X). Then k5 ≤ k11.

Proof. For any coset C of G̃ with C ∩X0 6= ∅ we have µ(C ∩X ·110 ) ≥ µ(X ·5) = µ(X)k5. Indeed
if c ∈ C ∩X0, then cX ·5 ⊂ C ∩X ·110 . Also µ(X) ≥ µ(C ∩X0) since c−1(C ∩X0) ⊂ X. Thus
µ(C ∩X ·110 ) ≥ (C ∩X0)k5. Summing over all C we obtain µ(X ·110 ) ≥ µ(X0)k5. �

Lemma 4.2. Let X be a Haar measurable subset of a group Rn/Zm, X = X−1. Let m2 =
|{a ∈ L : a2 = 1, a ∈ X−1X}. Then µ(X2) ≥ 2n/m2µ(X).

If X is a measurable subset of a torsion-free nilpotent Lie group L of dimension n, then
similarly µ(X2) ≥ 2nµ(X)

Proof. µ(X2) ≥ µ(fX) where f(x) = x2. Now f is at most m2-to-one, and |det f ′| = 2n. �

Corollary 4.3. Let hypotheses be as in Theorem 3.1. Let km = µ(Xm
0 )/µ(X0). Then there

exists a
∨

–definable subgroup G̃ of G̃0, and a definable normal subgroup K of G̃ (K ⊂ Xm
0 for

some m), such that and X0 is contained in finitely many cosets of G̃, and G̃/K is nilpotent, of
class [log2(k11)].

Proof. Let G̃,N be as in Theorem 3.1, and take X = X−10 X0 ∩ G̃. Let k5 = µ(X5)/µ(X). By

Lemma 4.1, k5 ≤ k11. Let Γ be an
∧

-definable normal subgroup of G̃0 containing Γ0, such that

G̃0/Γ is connected with no compact normal subgroups, as in [8]. As in Theorem 3.1 we reduce

to Proposition 3.2, with G̃/Γ nilpotent, connected without compact normal subgroups. We then
run the proof of Proposition 3.2, using the compact case of Lemma 2.19. This shows that the

nilpotence class of G̃ is bounded by dim(G̃/Γ). But dim(G̃/Γ) ≤ log2(k5) by Lemma 4.2. �

Remark 4.4. In Theorem 3.1, the class of nilpotence of G̃/Γ is at most 1+[log2(k11)] (without
factoring out by any K. ) Indeed to pass from Theorem 3.1 to Proposition 3.2 we need merely

factor out a compact Abelian (so central in the connected component) normal subgroup of G̃/Γ,
which raises the degree of nilpotence by at most 1.
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Remark 4.5. In Corollary 4.3, factoring out a compact in order to obtain a torsion-free nilpo-
tent group obliges us to weaken the assertion that K ⊂ X4

0 ; in this version, we can only assert
K ⊂ Xm

0 for some m.

Corollary 4.6. Fix k, and let m = [10 log2 k + 1]. For some b, l, the following holds. For any
group G and finite X ⊂ G, if 1 ∈ X = X−1 and |X ·3| ≤ k|X|, there exists a subgroup H of
G, a definable normal subgroup K of H, such that H/K is ≤ m-step nilpotent, K ⊂ X ·l, and
|X/H| ≤ b. Moreover, X is b-commensurable with the pullback to H of a subset of H/K of the

form a
[−d1,d1]
1 · · · a[−dn,dn]n , with ai ∈ H/K as in Theorem 3.2, and n ≤ m. and di ∈ Z.

Again this follows by the standard compactness argument.
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