
VALUED FIELDS, METASTABLE GROUPS

EHUD HRUSHOVSKI

Abstract. We introduce a class of theories called metastable, including the theory of alge-

braically closed valued fields (ACVF) as a motivating example. The key local notion is of

definable types dominated by their stable part. A theory is metastable (over a sort Γ) if every
type over a sufficiently rich base structure can be viewed as part of a Γ-parametrized family

of stably dominated types. We initiate a study of definable groups in metastable theories
of finite rank. Groups with a stably dominated generic type are shown to have a canonical

stable quotient. Abelian groups are shown to be decomposable into a part coming from Γ,

and a definable direct limit system of groups with stably dominated generic. In the case
of ACVF, among affine definable groups we characterize the groups with stably dominated

generics.
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1. Introduction

Let V be a variety over a valued field (F, val). By a (val-) constructible set we mean a finite
Boolean combination of sets of the form

{x ∈ U : valf(x) ≤ valg(x)}
where U is an open affine, and f, g are regular functions on U . Two such sets can be identified
if they have the same points in any valued field extension of F , or equivalently, by a theorem
of Robinson, in any fixed algebraically closed valued field extension K of F .

In many ways these are analogous to constructible sets in the sense of the Zariski topology,
and (more closely) to semi-algebraic sets over real fields. However while the latter two categories
are closed under quotients by equivalence relations, the valuative constructible sets are not. For
instance, the valuation ring O = {x : val(x) ≥ 0}, is constructible, and has constructible ideals
αO = {x : val(x) ≥ α} and αM = {x : val(x) > α}. For any group scheme G over O,
one obtains corresponding congruence subgroups; but the quotients O/αO and G(O/αO) are
not constructible. We thus enlarge the category by formally adding quotients, referred to as
imaginary sorts; the objects of the larger category are called definable sets 1. It is explained in
[7] that in place of this abstract procedure, it suffices to add sorts for the homogeneous spaces
G(K)/G(O), where G = GLn for some n, and also G(K)/I for a certain subgroup I; we will not
require detailed knowledge of this here. One that will be explicitly referred to is the value group
Γ = GL1(K)/GL1(O); this is a divisible ordered Abelian group, with no additional induced
structure. 2

The paper [8], continuing earlier work, studied the category of quantifier-free definable sets
over valued fields, especially with respect to imaginaries. As usual, the direct study of a concrete
structure of any depth is all but impossible, if it is not aided by a general theory. We first tried
to find a generalization of stability (or simplicity) in a similar format, capable of dealing with
valued fields as stability does with differential fields, or simplicity with difference fields. To this
we encountered resistance; what we found instead ([8]) was not a new analogue of stability, but
a new method of utilizing classical stability in certain unstable structures.

Even a very small stable part can have a decisive effect on the behavior of a quite “large,”
unstable type. This is sometimes analogous to the way that the (infinitesimal) linear approxi-
mation to a variety can explain much about the variety; and indeed in some cases casts tangent
spaces and Lie algebras in an unexpected model theoretic role.

Two main principles encapsulate the understanding gained:
(1) Certain types are dominated by their stable parts. They behave “generically” as stable

types do.
(2) Uniformly definable families of types make an appearance; they are indexed by the linear

ordering Γ of the value group, or by other, piecewise-linear structures definable in Γ. An
arbitrary type can be viewed as a definable limit of stably dominated types (from (1)).

A general study of stably dominated types was initiated in [8]; it is summarized in §2. (2)
was only implicit in the proofs there. We state a precise version of the principle, and call a
theory satisfying (2)metastable. We concentrate here on finite rank metastability.

(1) is given a general group-theoretic rendering in Proposition 4.6. Generically stably dom-
inated groups are defined, and it is shown that a group homomorphism into a stable group
controls them (generically.) Theorem 5.9 clarifies the second principle in the context of Abelian

1In the literature they are sometimes referred to as interpretable. However interpretations include reducts,

which we do not allow here.
2We will refer to stable sorts also. These include first of all the residue field k = O/M, but also vector spaces

over k of the form  L/M L, where  L is a lattice.
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groups. A metastable Abelian group of finite rank is shown to contain nontrivial generically
stably dominated groups Tα, unless it is internal to Γ. Moreover, the groups Tα are shown
to form a definable direct limit system, so that the group is described by three ingredients: Γ
-groups, generically stably dominated groups, and definable direct limits of groups.

We then apply the theory to groups interpretable over algebraically closed valued fields.
Already the case of Abelian varieties is of considerable interest; all three ingredients above
occur, and the description beginning with a definable map into a piecewise linear definable
group L takes a different aspect than the classsical one. The points of L over a non-archimedean
local field will form a finite group, related to the group of connected components in the Neron
model. On the other hand over R(t) the same formulas will give tori over R.

Non-commutative definable groups include the congruence subgroups of algebraic groups,
and quotients by them.

Previous work in this direction used other theories, inspired by topology; see [23], [10] re-
garding the p-adics.

We now describe the results in more detail. Our main notion will be that of a generically
metastable group. In a metastable theory, we will try to analyze arbitrary groups, and to some
extent types, using them. In the case of valued fields, this notion is related to but distinct
from compactness (over those fields where topological notions make sense, i.e. local fields.)
For groups defined over local fields, generic metastability implies compactness of the group of
points over every finite extension. Abelian varieties with bad reduction show that the converse
fails; this failure is explained by another aspect of the theory, definable homomorphic quotients
defined over Γ.

Let T be a first order theory. It is convenient to view a projective system of definable sets
Di as a single object, a pro-definable set; similarly for a compatible system of definable maps
αi : P → Di. We will also use the terminology ∗-definable, following Shelah’s ∗-types.

Definition 1.1. A partial type P over C is stably dominated if there exists over C a
pro-definable map α : P → D, D stable and stably embedded, such that for any tuple b,
α(a)↓D ∩ dcl(b) implies

tp(b/C, α(a)) |= tp(b/Ca)

Let Γ be a sort of T . By a substructure of a model of T we mean a subset closed under
definable functions. We write A ≤ M |= T for short. A parameterically definable set is a
definable set in TA for A ≤M |= T .

In this paper, we will assume:
(1) Γ is stably embedded: every subset of Γn defined with parameters in a model M of T

is definable from parameters in Γ(M). Equivalently, when M is saturated, the natural map
Aut(M)→ Aut(Γ(M)) is surjective. (cf. [3], appendix.)

(2) Γ is orthogonal to the stable part: no infinite definable subset of Γeq is stable.
In the case of algebraically closed valued fields, Γ will be o-minimal. Another application

is to valued fields with algebraically closed residue field and different value groups, such as Z;
where still every definable subset of Γ is a Boolean combination of 0-definable sets and intervals.

Definition 1.2. T is metastable (over Γ) if for any partial type P over a base C0 there exists
C ⊃ C0 and a *-definable (over C) map γc : P → Γ with tp(a/γc(a)) stably dominated.

In addition, we assume:
(E) Every type over an algebraically closed subset of a model of T eq has an automorphism-
invariant extension to the model.
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We will say that C is a good base for P . A good base is a good base for all partial types over
it.

The condition (E) on existence of automorphism-invariant types, is currently needed in the
hypotheses of the descent lemma for stable domination.

Let A ≤ M |= T . Let StA be the family of all stable, stably embedded A-definable sets.
This will be referred to as the stable part of TA. We write StA(c) for A(c) ∩ StA, where
A(c) = dcl(A ∪ {c}) is the smallest substructure of M containing A ∪ {c}.

Similarly, let ΓA(c) = dcl(A, c)∩ dcl(A∪ Γ). If A = dcl(∅) we omit it from the notation. By
a Γ-set over A we mean an A- definable set D such that there exists an A-definable surjection
h : Γm → D for some m. In practice we can take D ⊆ Γm for some m. A Γ-group is a Γ-set with
a definable group structure; since Γ is assumed to be stably embedded, the group structure is
definable with parameters from Γ.

Remark 1.3. (1) Instead of taking all stable, stably embedded A-definable sets, it is possible
to take a proper subfamily SA with reasonable closure properties. S-domination is meaningful
even for stable theories.

(2) One can also replace the single sort Γ with a family of sorts Γn, or with a family of
parametrized families of definable sets GA, with no loss for the results of the present paper.

As in stability theory, a range of finiteness assumptions is possible. We will use the following
“finite rank” assumption (FD) below. Some terminology: We will refer to the Morley rank of a
formula in the stable part as the (Morley) dimension.

A definable subset D is called o-minimal if it has a distinguished definable linear ordering
<, such that every definable subset of D with parameters in a model of T is a finite union of
intervals and points. There is a natural notion of dimension for definable subsets of Dm, with
dim(D) = 1. See [28].

The dimension dim(e/C) of a tuple of elements e ∈ StC (or e ∈ Γn) is defined to be the
minimum dimension of a formula D over C with e ∈ D.

A structure B is acl-finitely generated over A ⊆ B if B ⊆ acl(A(b)) for some tuple b from B.
(FD) :
(1) Γ is o-minimal.
(2) Morley dimension is finite and definable in families: if Dt is a definable family of definable

sets then {t : MR(Dt) = m} is definable
(3) Let D be a definable set. The Morley dimension of f(D), where f ranges over all definable

functions (with parameters) such that f(D) is stable, takes a maximum value dimst(D) ∈ N.
Similarly, the o-minimal dimension of g(D), where g ranges over all definable functions (with

parameters) such that g(D) is Γ-internal, takes a maximum value dimo(D).
Recall that a definable set X is Γ-internal if X ⊆ dcl(Γ, F ) for some finite set F ; equivalently

for any M ≺M ′ |= T , X(M ′) ⊆ dcl(M ∪ Γ(M ′)). For the purposes of (FD) , we could equally
well ask that g(D) ⊆ dcl(Γ), or simply, when Γ eliminates imaginaries, that g(D) ⊆ Γn for
some n.

Some statements will be simpler if we also assume:
(FDω) : In addition to (FD) , any set is contained in a good base M which is also a model.

Moreover, for any acl- finitely generated F ⊆ Γ and F ′ ⊆ StM over M , isolated types over
M ∪ F ∪ F ′ are dense.

Remarks
(1) Write dimdef

st (d/B) = min{dimst(D) : d ∈ D,DB− definable.}. If B′ = B(d) :=

dcl(B ∪ {d}), let dimdef
st (B′/B) = dimdef

st (d/B); this is well-defined. Note that we may have

dimdef
st (B′/B) > dimStB(B′)/B.
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(2) (FD) and (FDω) are true for ACVF, with all imaginary sorts included (Lemma ??).
(FD) at least is valid for all C-minimal expansions of ACVF, in particular the Lipshitz-Robinson
rigid analytic expansions. cf. [6], [15], [16].

(3) In practice, the main structural results will use finite weight hypotheses; this is a weaker
consequence of (FD) . Recall that a definable type p in a stable theory is said to have weight ≤ n
if for any M and independent b1, . . . , bn+1 over M , and any a |= p|M , for some i, a |= p|Mbi.
In a definable set of Morley rank n, every definable type has weight ≤ n.

(4) Many of our results remain valid in case Γ |= Th(Z) instead of being o-minimal; the theory
thus applies to Henselian valued fields with algebraically closed residue field of characteristic
zero, and value group Z (see the last section of [8]).

A group is generically metastable if it has a generic type that is stably dominated (See
Definitions 3.1, 4.1.) In this case, the stable domination is witnessed by a group homomorphism
(Proposition 4.6). One cannot expect every group to be generically metastable. But one can
hope to shed light on any definable group by studying the generically metastable groups inside it.
We formulate the notion of a limit metastable group; it is a direct limit of connected metastable
groups by a ∗-definable direct limit system.

Theorem 1.4. Let T be a metastable theory with (FDω) . Let A be a definable Abelian group.
Then there exists a definable group Λ ⊂ Γeq, and a definable homomorphism λ : A → Λ, with
K = ker(λ) limit- metastable.

In fact under these assumptions, K is the union of a definable directed family of definable
groups, each of which is connected and generically metastable. Assuming only bounded weight
(in place of (FDω) ), we obtain a similar result but with K ∞-definable.

In the non-Abelian case the question remains open. The optimal conjecture would be a
positive answer to:

Problem 1.5. (FDω) Does any definable group G have a limit-metastable definable subgroup
H with H\G/H internal to Γ?

One goal of this paper is to relate definable groups in ACVF to group schemes over OF .
We recall the analogous results for the algebraic and real semi-algebraic cases. First consider a
field F of characteristic zero. Then the natural functor from the category of algebraic groups
to the category of constructible groups is an equivalence of categories. This follows locally from
Weil’s group chunk theorem; nevertheless some additional technique is needed to complete the
theorem. It was conjectured by Poizat and proved by [29] using definable topological manifolds,
and by [11] using the stability theoretic notions: definable types, germs. These methods will
be explained below. Let us only remark here that an irreducible algebraic variety has a unique
generic behaviour, in that any definable subset has lower dimension or a complement of lower
dimension; this is typical of stable theories. For definable groups over Qp,

Problem 1.6. Let G be a definable group. Then there exist definable normal subgroups (1) =
G0 ≤ · · · ≤ Gn = G of G, such that Gi+1/Gi is a definable homomorphic image of a con-
structible group.

Call a definable set D purely imaginary if there exists no definable map (with parameters)
of D onto an infinite subset of the field K. Thus the elements of D are tuples of value group
elements, residue field elements or elements of the sorts Sn, Tn of [7]; Note that over the algebraic
closure L of a local valued field, D is purely imaginary iff D(L) is countable. Call D boundedly
imaginary if there exists no definable map on D onto an unbounded subset of Γ.
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Proposition 1.7. Let G be a generically metastable group definable in ACVF. Then there exists
an algebraic group H over K and a definable homomorphism f : G → H(K) with boundedly
imaginary kernel.

If D is defined over a local field L, then D is boundedly imaginary iff D(L′) is finite for every
finite extension of L. Hence

Corollary 1.8. Let G be a generically metastable group definable in ACV FL, with L a local
field. Then there exists a definable homomorphism f : G(L)→ H(L) with H an algebraic group
over L, with finite kernel.

Proposition 1.7 reduces the study of a generically metastable group definable in the field sort
in ACVF to that of generically metastable subgroups of algebraic groups H. We proceed to
describe these.

There exists an exact sequence 1→ A→ H →f L→ 1, with A an Abelian variety and L an
affine algebraic group. We show (Lemma 4.5) that a definable subgroup G of H is generically
metastable if and only if G∩A and f(G) are. The Abelian variety case falls under the general
Lemma 5.1; this will be treated separately. For linear groups, we have:

Theorem 1.9. Let H be an affine algebraic group, and let G be a generically metastable
definable subgroup of H. Then G is isomorphic to H1(O), H1 an algebraic group scheme over
O.

If G is Zariski dense in H, H1 can be taken to be K-isomorphic to H.
Examples include GLn(O);GLn(O/aO) where O is the valuation ring; and “congruence sub-

groups” such as the kernel of GLn(O)→ GLn(O/aO).
Parts of this text served as notes for a graduate seminar in the Hebrew University in Fall

2003; the participants have my warm thanks. I am very grateful for a friendly and highly
conscientious referee report (received 2007).

2. Preliminaries

We recall some material from stability and stable domination, in a form suitable for our
purposes.

Let U be a universal domain (a saturated model.) |= φ is shorthand for U |= φ. By a
definable set or function we mean one defined in TA for some A ≤ U. If we wish to specify the
base of definition, we say A-definable, or 0-definable if A = ∅.

By a *-definable function f , we mean an indexed sequence (fi) of definable functions. Simi-
larly a *-type.

Notation 2.1. Given a type p over C with a unique Aut(U/C)-invariant extension p̃ to U,
write:
a↓Cb if a |= p̃|acl({b, C}).

(This applies when p, p̃ are ∆-types; in this case, p̃|E is defined to be the set of E-formulas,
that follow from p̃. )

When the identity of C is clear, or when C = acl(∅), we write: a↓b.

2.2. Definable types. Let ∆ be a set of formulas φ(x; y). Here x is a fixed tuple of variables,
while y may range over all variables. Let ∆x be the Boolean algebra of formulas generated by
those of the form φ(x; b), with φ ∈ ∆.

When not other specified, we assume ∆ consists of all formulas in the appropriate variables.
Though our applications will use this case, definability considerations will occasionally lead us
to consider finite sets ∆.
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By a ∆-definable type p over C we mean a Boolean homomorphism φ 7→ (dp)φ carrying
formulas φ(x; y) ∈ ∆ to formulas (dp)φ(y) over C; so that if M is a model, then

p|C = {φ(x, b) : φ ∈ ∆,M |= (dp)φ(b)}
Sometimes to specify the variable, when p = p(x), we will write: dpxφ(x, y).
We say p concentrates on D if dpD is true.
By a definable function on p we mean a definable function on some definable D ∈ p.
If r is a definable function on a definable type p, we define the pushforward r∗p by:

(dr∗pu)φ(u, v) = (dpx)φ(r(x), v)

So that if a |= p|C then r(a) |= r∗p|C.

2.2.1. Free products of definable types. Let p(x),q(y) be definable types. Define r(x, y) =
p(x)⊗r(y) by:

(drxy)φ(xy, z) = (dpx)(dqy)φ(xy, z)

for those formulas φ for which the right hand side is defined.
If p, q are complete (i.e. their domains are all formulas), then so is r.

Remark 2.3. Let φ be a formula in variables x, y, z; the same formula may be viewed as
φ(x; yz) or φ(y;xz) or φ(xy; z), defining three bipartite graphs. If φ(x; yz) lies in the domain
of p, and φ(y;xz) lies in the domain of q and is stable, then φ(xy; z) lies in the domain of p⊗q.

Proof. (dqy)φ(y;xz) is equivalent to a Boolean combination of formulas φ(bi, xz); all these lie
in dom(p) by assumption. �

We will occasionally use a more general construction. Assume p(x) is a 0-definable type. Let
a |= p and let qa(y) be an definable type of the theory Ta.

Lemma 2.4. There exists a unique definable type r(x, y) such that for any C, if (a, b) |= r|C
then a |= p|C and b |= qa|Ca.

Proof. Given a formula φ(xy, z), let φ∗(x, z) be a formula such that φ∗(a, z) = (dqay)φ(a, y, z).
φ∗ is not uniquely defined, but if φ′, φ′′ are two possibilities then (dpx)(φ′ ≡ φ′′). Therefore we
can define:

(drxy)φ(xy, z) = (dpx)φ∗(x, y, z)

It is easy to check that this definition scheme works. �

In fact over a model, it suffices that qa be definable over acl(a). This follows from:

Lemma 2.5. Let M ≤ N be models, and let tp(a/N) be M -definable. Let c ∈ acl(Ma). Then
tp(ac/N) is definable over M . Indeed, tp(a/N) ∪ tp(ac/M) |= tp(ac/N).

Proof. Let φ(x, y) be a formula over M such that φ(a, c) holds, and such that φ(a, y) has m
solutions, with m least possible. If φ(a, y) does not imply a complete type over Na, there exists
ψ(u, x, y) over M and d ∈ N such that ψ(d, a, y) implies φ(a, y), and ψ(d, a, y) has k solutions
with 1 ≤ k < m. Since tp(a/N) is M -definable, there exists d′ ∈ M satisfying the p-definition
of the formulas below, and hence with

(∃ky)ψ(d′, a, y), (∃m−ky)(φ(a, y)&¬ψ(d′, a, y))

But then either ψ(d′, a, c) or ¬ψ(d′, a, c), contradicting the minimality of m in either case. �
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See Proposition 2.10 (4) for a stronger statement in the stably dominated case.
Let p be a definable type. Let f = fc(x) be a c-definable function.
When we consider definable functions f(x, y), g(x, z), we will assume that the formula

f(x, y) = g(x, z) lies in ∆.

Definition 2.6 (Germs of definable functions). Two definable functions f(x, b), g(x, b′) are said
to have the same p-germ if

|= (dpx)f(x, b) = g(x, b′)

We say that the p-germ of f(x, b) is defined over C if whenever tp(b/C) = tp(b′/C),
f(x, b), f(x, b′) have the same p-germ. Note that the equivalence relation:

“b ∼ b′ iff f(x, b), f(x, b′) have the same p-germ”
is definable; the p-germ of f(x, b) is defined over C iff b/ ∼∈ dcl(C).

2.7. Stably dominated types.

Definition 2.8. A partial type P is stably dominated over C if there exist C-definable maps
αi : P → Di, D stable, α = (αi)i, such that α(a)↓b implies

tp(b/α(a)) |= tp(b/a)

for any tuple b.

We call a definable set D stable if every formula φ(x; y) with y = (y1, . . . , ym), such that φ
implies D(y1)& · · ·&D(ym), is stable. This is often referred to as stable, stably embedded in the
literature. See e.g. [22] for a treatment of basic stability.

A type over C is said to be stably dominated if it is stably dominated over C via some α.

Proposition 2.9. Let p be a complete type over C = acl(C). If p is stably dominated, it has
a C-definable extension to U, and this extension is unique.

Thus the ↓ - notation is applicable, as well as the notion of a p-germ.

Proposition 2.10. Let p = tp(a/C) be stably dominated.
(1) (Symmetry) If tp(b/C) is also stably dominated, a↓Cb iff b↓Ca
(2) (Transitivity) a↓Cbd iff a↓Cb and a↓acl(Cb)d.

(3) (Base change) If a↓Cb, then tp(a/acl(Cb)) is stably dominated.
(4) If tp(d/C) and tp(b/acl(Cd)) are stably dominated, then so is tp(bd/C). Conversely if

a ∈ dcl(Cb) and tp(b/C) is stably dominated, then so is tp(a/C).
(5) For any formula φ(x, y), (dpxφ) is a positive Boolean combination of formulas φ(ai, y),

where the a1 |= p|C, a2 |= p|Ca1, etc.

Proposition 2.11 (Descent). Let p, q be Aut(U/C)-invariant ?-types. Assume that whenever
b |= q|C, the type p|Cb is stably dominated. Then p is stably dominated.

Question 2.12. Can the descent lemma be proved without the additional hypothesis (E) on
existence of invariant types? Does (E) follow from metastability over an o-minimal Γ?

Proposition 2.13 (The strong germ lemma). Let p be stably dominated. Assume p as well as
the p-germ of f(x, b) are defined over C = acl(C). Then there exists a C-definable function g
with the same p-germ as f(x, b).

Proposition 2.14. A definable type p is stably dominated iff for any definable function g on p
into Γ, the p-germ of g is constant.
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Write g(p) for the constant value of the p-germ. The property of p in the theorem is referred
to as orthogonality of p to Γ. Note that this is strictly weaker than orthogonality of D to Γ for
some definable D ∈ p.

See [8] for proofs of these propositions. Proposition 2.10 (4) is Lemma 5.10 there. Sym-
metry, transitivity and base change are easy consequences of the corresponding facts in stable
theories; but descent (Theorem 9.3 there) is more difficult, and uses the additional hypothesis
of extendibility of types to invariant types.

Lemma 2.15. (FD) Let M be a good base, and let c be a (finite) tuple. Then ΓM (c) and
StM (c) are are acl- finitely generated over M .

Proof. Any tuple d ∈ StM (c) can be written d = h(c) for some M -definable function. By the

dimension bound in (FD) , dim(d/M) ≤ dimdef
st (c/M). It follows that if d1, d2, . . . ∈ StM (c)

then dn ∈ acl(M(d1, . . . , dn−1) for all sufficiently large n. So StM (c) is finitely generated in the
sense of algebraic closure. �

Say tp(a/C) is strongly stably dominated if there exists φ(x) ∈ tp(a/StC(a)) such that for any
tuple b with StC(a)↓b, tp(a/Cb) is isolated via φ. Equivalently, tp(a/C) is stably dominated via
some definable h, and tp(a/C, h(a)) is isolated. (We then say that tp(a/C) is strongly stably
dominated via h.)

Lemma 2.16. (FDω) Let D be a formula over C0, h : D → S a definable map to a stable de-
finable set of maximal possible dimension dim(S) = dimst(D). Then there exists M containing
C0 and a ∈ D such that with ΓM (a) = C we have dimst(D) = dimStC(a)/C = dimStM (a)/M ,
and tp(a/C) is strongly stably dominated via h. (In particular, tp(a/StC(a)) is isolated.)

Proof. We may assume h is defined over C0. Let a0 ∈ D be such that
dimst(D) = dimh(a0)/C0; extend C0 to a good base M with h(a0) independent
from M ; then dimst(D) = dimStM (a0)/M = dimh(a0)/M . Choose a0 such that
dimo ΓM (a0)/M is as large as possible (given the other constraints.) Let C = ΓM (a0); then C
is acl- finitely generated over M , and ΓC(a0) = C. Let C ′ = StC(a0). Let D′ be a formula
over C ′ implying D and such that for any a′ with D′(a′), C ′ ⊆ acl(M(a′)) (Lemma 2.15.) By
(FDω) there exists a ∈ D′ such that tp(a/C ′) is isolated. By choice of D′ we have C ′ ⊆ StC(a)
and hence StC′(a) ⊆ StC(a). But then dim(StC′(a)/C) ≤ dimst(D) = dim(C ′/C) so
StC(a) ⊆ acl(C ′). Since StC(a) is acl-finitely generated over C, tp(StC(a)/C ′) is algebraic and
in particular StC(a)/C ′(a) is atomic, i.e. any tuple from StC(a) realizes an isolated type over
C ′(a). But tp(a/C ′) is isolated, so tp(a, StC(a)/C ′(a)) is atomic and hence tp(a/StC(a)) is
isolated. Similarly by maximality of dimo ΓM (a0)/M and the fact that ΓM (a0) ⊆ C ′ ⊆ ΓM (a)
we have ΓM (a0) = C. By metastability, tp(a/C) is stably dominated; since tp(a/C ′) is isolated
and C ′ = StC(a), tp(a/C) is strongly stably dominated. �

Lemma 2.17. (FD) Let f : P → Q be a definable map between definable sets P,Q. Let
Pa = f−1(a). Then there exists m such that if Pa is finite, then |Pa| ≤ m.

Proof. Say f, P,Q are 0-definable. By compactness, it suffices to show that if Pa is infinite then
there exists a 0-definable set Q′ with a ∈ Q′ and Pb infinite for all b ∈ Q′.
Claim. If Pa is infinite then either dimst(Pa) > 0 or dimo(Pa) > 0.

Proof. Let M be a good base, with a ∈ M . Let c ∈ Pa \M . If ΓM (c) 6= M then dimo(Pa) >
0. Otherwise, by metastability, tp(c/M) is stably dominated, say via f . If f(c) ∈ M , then
tp(b/M) =⇒ tp(b/Mc) for all b, and taking b = c it follows that c ∈M . Thus f(c) ∈ StM \M .
It follows that dimst(Pa) > 0. �
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If dimst(Pa) > 0, then there exists a definable family of stable definable sets Dt with
dim(Dt) = k > 0, and a definable function f(x, u) such that for some b and t, f(Pa, b) = Dt.
Then the formula (∃u)(∃t)f(Py, u) = Dt is true of y = a, and implies that Py is infinite. The
case dimo(Pa) > 0 is similar. �

2.18. Some o-minimal lemmas. This subsection contains some lemmas on o-minimal partial
orders and groups. The former will yield a definable generic type of limit metastable groups.
The latter will be used to improve some statements from “almost internal” to “internal”.

Let P be a partial ordering, and p a definable type. We say p is cofinal if for any c ∈
P , |= (dpx)(x ≥ c). Equivalently, for every non-cofinal parametrically definable Q ⊆ P , |=
¬(dpx)Q(x).

Lemma 2.19. Let P be a definable directed partial ordering in an o-minimal structure Γ. Then
there exists a definable type p cofinal in P .

Proof. We assume P is 0-definable, and work with 0-definable sets; we will find a 0-definable
type with this property.

Note first that we may replace P with any 0-definable cofinal subset. Also if Q1, Q2 are
non-cofinal subsets of P , there exist a1, a2 such that no element of Qi lies above ai; but by
directedness there exists a ≥ a1, a2; so no element of Q1 ∪Q2 lies above a, i.e. Q1 ∪Q2 is not
cofinal. In particular if P = P ′∪P ′′, at least one of P ′, P ′′ is cofinal in P (hence also directed.)

If dim(P ) = 0 then P is finite, so according to the above remarks we may assume it has one
point; in which case the lemma is trivial. We use here the fact that in an o-minimal theory,
any point of a finite 0-definable set is definable.

If dim(P ) = n > 0, we can divide P into finitely many 0-definable sets Pi, each admitting
a map fi : Pi → Γ with fibers of dimension < n (where Γ is o-minimal.) We may thus assume
that there exists a 0-definable f : P → Γ with fibers of dimension < n. Let P (γ) = f−1(γ),
and P (a, b) = f−1(a, b).
Claim 1. One of the following holds:

(1) For any a ∈ Γ, P (a,∞) is cofinal in P .
(2) For some 0-definable a ∈ Γ, for all b > a, P (a, b) is cofinal.
(3) For some 0-definable a ∈ Γ, P (a) is cofinal.
(4) For some 0-definable a ∈ Γ, for all b < a, P (b, a) is cofinal.
(5) For all a ∈ Γ, P (−∞, a) is cofinal.

Proof. Suppose (1) and (5) fail. Then P (a,∞) is not cofinal in P for some a; so P (−∞, b)
must be cofinal, for any b > a. Since (5) fails, {b : P (−∞, b) is cofinal } is a nonempty proper
definable subset of Γ, closed upwards, hence of the form [A,∞) or (A,∞) for some 0-definable
A ∈ Γ. In the former case, P (−∞, A) is cofinal, but P (−∞, b) is not cofinal for b < A, so
P (b, A) is cofinal for any b < A; thus (4) holds. In the latter case, (−∞, b) is cofinal for any
b > A, while (−∞, A) is not; so P ([A, b)) is cofinal for any b > A. Thus either (2) or (3)
hold. �

Let p1 be a 0-definable type of Γ, concentrating on sets X with f−1(X) cofinal. (For instance
in case (1) p1 concentrates on intervals (a,∞). )
Claim 2. For any c ∈ P , if a |= p1|{c} then there exists d ∈ P (a) with d ≥ c.

Proof. Let Y (c) = {x : (∃y ∈ P (x))(y ≥ c)}. Then the complement of Y (c) is not cofinal in P ,
so it cannot be in the definable type p1. Hence Y (c) ∈ p1|{c}. �

Now let M |= T . Let a |= p1|M . By induction, let qa be an a-definable type, cofinal in P (a),
and let b |= qa|Ma. Then tp(ab/M) is definable (Lemma 2.4). If c ∈M then by Claim 2, there
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exists d ∈ P (a) with d ≥ c. So {y ∈ P (a) : ¬(y ≥ c)} is not cofinal in P (a). Therefore this set
is not in qa. Since b |= qa|Ma, we have b ≥ c. This shows that tp(ab/M) is cofinal in P . �

Discussion. If there exists a definable weakly order preserving map j : Γ→ P with cofinal
image, then we can use the definable type at ∞ of Γ, r∞, to obtain a cofinal definable type of
P , namely j∗r∞.

When Γ admits a field structure, perhaps such a map j always exists. In general, it is not
always possible to find a one-dimensional cofinal subset of P . For instance, when Γ is a divisible
ordered Abelian group, consider the product of two closed intervals of incommensurable sizes;
or the subdiagonal part of a square.

At all events, one can define the limit of a function along a definable type, generalizing the
limit along a one-dimensional curve.

Definition 2.20. Given a definable function g : D → Γ and a definable type p of elements of
D, define limp g = γ ∈ {−∞,∞} ∪ Γ if for any neighborhood U of γ in the order topology, for
generic c |= p we have g(c) ∈ U .

To see that the limit always exists, consider the definable type g∗p on Γ itself. The definable
types of elements of Γ are r∞, r−∞, ra = (x = a), r+

a the type of elements infinitesimally bigger
than a, and r−a . By definition limp g is ∞,−∞, a, a, a in the respective cases.

Given a definable space X over an o-minimal structure Γ, a definable set D, a definable type
p on D, and a definable g : D → X, we can define limp g = x ∈ X if for any neighborhood U
of x, g∗p concentrates on U . The following definition is equivalent to the one in [21].

Definition 2.21. X is definably compact if for any definable type p on Γ and any definable
function f : Γ→ X, limp f exists as a point in X.

Recall that definable set X is Γ-internal if X ⊆ dcl(Γ, F ) for some finite set F ; equivalently
for any M ≺M ′ |= T , X(M ′) ⊆ dcl(M ∪ Γ(M ′)). The same condition with acl replacing dcl is
called almost internality; thus X is almost Γ-internal if X is Γ′-internal for some Γ′ defined over
parameters F ′, and admitting a definable m-to-one function f : Γ′ → Y into some definable
Y ⊆ dcl(Γn), for some finite m.

Lemma 2.22. Let G be a definable group. Assume G is almost internal to a stably embedded
definable set Γ. Then there exists a finite normal subgroup N of G with G/N internal to Γ.

Proof. (cf. [2], [9]). We work in a saturated model U, possibly over parameters for a small
elementary submodel. The assumption implies the existence of a definable finite-to-one function
f : G → Y , where Y ⊆ dcl(Γ). Given a definable Y ′ ⊆ Y , let m(Y ′) be the least integer m
such that over further parameters, there exists a definable m-to-one map f−1(Y ′) → Z, for
some definable Z ⊆ dcl(Γ). Let I be the family of all definable subsets Y ′ of Y with (Y = ∅
or) m(Y ′) < m(Y ). This is clearly an ideal (closed under finite unions, and definable subsets).
Let F = {Y \ Y ′ : Y ′ ∈ I} be the dual filter. For g ∈ G, let D(g) be the set of y ∈ Y
such that for some (necessarily unique) y′, gf−1(y) = f−1(y′); and define g∗y = y′. The
function x 7→ (f(y), f(gy)) shows that {y : |f(gf−1(y))| > 1} ∈ I; equivalently, D(g) ∈ F . Let
F |Z = {W∩Z : W ∈ F}. Let G0 be the set of bijections φ : Y ′ → Y ′′ with Y ′, Y ′′ ∈ F , carrying
the filter F |Y ′ to F |Y ′′. Write φ ∼ φ′ if φ, φ′ agree on some common subset of their domains,
lying in F ; and let G′ = G0/ ∼. Composition induces a group structure on G′. The function g∗
on D(g) lies in G0, and we obtain a homomorphism G→ G′, g 7→ g∗/ ∼. Let N be the kernel
of this homomorphism. Clearly Aut(U/Γ) fixes G′ and hence G/N pointwise. It remains only
to show that N is finite. In fact |N | ≤ m!. For suppose n0, . . . , nm! are distinct elements of
N . Then for some y ∈ ∩D(ni) we have (ni)∗(y) = y. It follows that ni(f

−1(y)) = f−1(y), and
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since |f−1(y)| = m, for some i 6= j we have nig = njg for all g ∈ f−1(y). But then ni = nj , a
contradiction. �

Lemma 2.23. Let G be a definable group. Assume G is almost internal to an o-minimal
definable set Γ. Then G is Γ-internal.

Proof. By Lemma 2.22, there exists a definable surjective homomorphism f : G→ B with B a
group definable over Γ, and N = ker(f) a group of finite size n.

Let B0 be the connected component of the identity in B; then B/B0 is finite, and it suffices
to prove the lemma for f−1(B0). Assume therefore that B is connected.

If G has a proper definable subgroup G1 of finite index, then f(G1) = B by connectedness
of B. It follows that N is not contained in G1, so N1 = N ∩G1 has smaller size than N . Hence
using induction on the size of the kernel, G1 is Γ-internal; hence so is G. Thus we may assume
G has no proper definable subgroups of finite index.

Since the action of G on N has kernel of finite index, N must be central.
Let Y = {gn : g ∈ B}. By [4], Theorem 7.2, there exists a definable function α : Y → B

with nα(b) = b. Define h : Y → A by h(b) = na where f(a) = α(b); this does not depend on
the choice of a, and we have fh(b) = nf(a) = ng(b) = b. It follows that f−1(Y ) = Nh(Y ) ⊆
dcl(N,Γ) is Γ-internal.

Similarly, let [B,B] = {[g, h] : g, h ∈ B}. Again there exists a definable α1 : [B,B]→ B such
that (∃y)[α1(b), y] = b, and α2 : [B,B]→ B such that [α1(b), α2(b)] = b. Define h′ : [B,B]→ A
by h′(b) = [a1, a2] where f(ai) = αi(b). Again h′ is definable and well-defined, and shows that
h−1[B,B] is Γ-internal.

Hence for any k, letting X(k) = {x1...xk : x1, ..., xk ∈ X}, (h−1(Y ∪ [B,B]))(k) = h−1((Y ∪
[B,B])(k)) is Γ-internal. So we are done once we show:
Claim. Let B be any definably connected group definable in an o-minimal structure. Let
Y = Yn(B) = {gn : g ∈ B}. Then for some k ∈ N, (Y ∪ [B,B])(k) = B.

Proof If the Claim holds for a normal subgroup H of B with bound k′, and also for B/H
(with bound k′′), then it is easily seen to hold for B (with bound k′ + k′′.)

We use induction on dim(B). If B has a nontrivial proper connected definable normal
subgroup H, then the statement holds for H and for B/H. We may thus assume B has no
such subgroups H

If B is Abelian then in fact Y = B, by [27]. Otherwise the center Z of B is finite. In this
case by the same argument as above, the claim holds with k = kB/Z + |Z|. By connectedness
B has no nontrivial finite normal subgroups. Hence B is definably simple.

Now by [19], B is elementarily equivalent to a Lie group. So we may assume B is a simple
Lie group. In this case it is known that every element is the product of a bounded number of
commutators.

�

Let G be an Abelian group. A definable set is called generic if finitely many translates cover
the group. Say G has the property (NGI) if the non-generic definable sets form an ideal.

It is shown in [18] that in any definably compact group in an o-minimal theory, (NG) holds;
moreover any definable subsemigroup is a group. We include the deduction of the latter fact.

Lemma 2.24. Let G be a group with (NG). Let Y be a definable semi-group of G, such that
Y − Y = G. Then Y = G.

Proof. Note first that G \ Y is not generic.
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Otherwise, some finite intersection ∩ni=1(ci+Y ) = ∅. By assumption, there exist bi ∈ Y with
bi + ci ∈ Y ; so if b =

∑
bi then b+ ci ∈ Y ; so by translating we may assume each ci ∈ Y . But

then
∑
ci ∈ ci + Y for each i, a contradiction.

Hence Y is generic. So ∪mi=1di+Y = G for some di ∈ G. Again we find e ∈ Y with e+di ∈ Y .
So ∪ni=1(e+ di) + Y = G. But e+ di + Y ⊆ Y . So Y = G. �

2.25. Valued fields: imaginaries and resolution. Let K be an algebraically closed valued
field, with valuation ring OK . The geometric language for valued fields has a sort for the valued
field itself, and certain other sorts. In particular, there is a sort Sn such that Sn(K) is the
space of for the space of free OK-modules in Kn, or GLn(K)/GLn(OK).

We let M(K) be the set of K-points of all these sorts.
By a substructure, we mean a subset of M(K), closed under the quantifier-free definable

functions.
A substructure A of M(K) is called resolved if any element of Sn(A) - viewed as a lattice in

Kn - has a basis in K(A). When Γ(A) 6= 0 and A is algebraically closed this just amounts to
saying that A ≺M(K).

Recall in any first order theory that if A is a substructure of a model M , M is prime over
A if any elementary map A→ N into another model, extends to an elementary map M → N ;
and minimal if there is no M ′ ≺ M with A ⊂ M . If a minimal model over A and a prime one
exist, then any two minimal or prime models over A are isomorphic.

Proposition 2.26. Let A be a substructure of M(K), finitely generated over a subfield L of

K, and assume Γ(A) 6= 0. Then there exists a minimal prime model Ã over A.

Ã enjoys the following properties.

(1) Ã is a minimal resolution of A. Moreover it is the unique minimal resolution, up to
isomorphism over A. It is atomic over A.

(2) StL(Ã) = StL(A).

(3) Let A ≤ A′, with A′/A finitely generated. Then Ã embeds into Ã′ over A. If A ≤ A′ ≤
Ã, then Ã is the prime resolution of A′.

(4) Let L′(A) be the structure generated by L′ ∪A. Then L′(Ã)alg is a prime resolution of
L′(A).

(5) If A/L is stably dominated, then Ã/L is stably dominated.

(6) If A′/A is stably dominated, and A′↓AÃ, then Ã′/Ã is stably dominated.

Proof. The existence, uniqueness and minimality of Ã are [8], Theorem 11.14.

It is also shown there that k(Ã) = k(acl(A)) and Γ(Ã) = Γ(acl(A)), where k is the residue

field; and that Ã/A is atomic, i.e. tp(c/A) is isolated for any tuple c from A.
Uniqueness of the minimal resolution: Let B be a minimal resolution of A. Then the prime

resolution Ã embeds into B over A. As B is minimal, this embedding is an isomorphism.
Since L is a field, for any B = acl(B) with L ⊂ B, StL(B) = dcl(B, k(B)). This proves (2).

(3) is immediate from the definition of prime resolution: since Ã′ is a resolution of A, Ã

embeds into Ã′. If A ≤ A′ ≤ Ã, then Ã is clearly a minimal resolution of A′; hence by (1) it
is the prime resolution.

(4) Let B be the prime resolution of L′(A). Then Ã embeds into B. Within B, L′(Ã)alg is

a resolution of L′(A); by minimality of B, B = L′(Ã)alg.
(5) We may assume L = Lalg. Let L̄ be a maximal immediate extension of L. Choose it in

such a way that tp(Ã/L̄) is a sequentially independent extension of tp(Ã/L).
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Since A/L is stably dominated, Γ(L̄(A)alg) = Γ(L̄). According to (4), BL̄(Ã)alg is the

prime resolution of L̄(A)alg, and so Γ(L̄(Ã)alg) = Γ(L̄). Thus by [8], Theorem 10.12, tp(Ã/L̄)

is stably dominated. Using descent, Proposition 2.11, tp(Ã/L) is stably dominated.

(6) Let Ã be a prime resolution of A, with A′↓AÃ. Then tp(A′/Ã) is stably dominated. By

(5), tp(B/Ã) is stably dominated, where B is a resolution of Ã(A′). Since Ã′ embeds into B

over A′, tp(Ã′/Ã) is stably dominated.
�

Let C be a substructure of M |= ACV F , and let e be an (imaginary) element. Call e purely
imaginary over C if acl(C(e)) contains no field elements other than those in acl(C). If α ∈ Γ,
let αO := {x ∈ K : val(x) ≥ α}, and αM := {x ∈ K : val(x) > α}.

Lemma 2.27. The following are equivalent:
(1) e is purely imaginary
(2) C(e) ∩K ⊆ acl(C)
(3) For some β0 ≤ 0 ≤ β1 ∈ Γ(C(e)), e ∈ dcl(C, β0, β1, β0O/β1M).

Proof. A nonempty ball in K cannot be a definable image of (βR/αR)n, since in some models
of ACVF, R/αR is countable while every ball is countable. Hence any such definable image is
finite. Thus (3) implies (2).

(2) implies (1): Let d ∈ acl(C(e)) be a field element. The finite set of conjugates of d over C
is coded by a tuple d′ of field elements. By Galois theory, d′ ∈ C(e). By (2), d′ ∈ acl(C). Since
d ∈ acl(d′) we have d ∈ acl(C).

(1) implies (2) trivially.
(2) implies (3): By [7], and using (2), there exists an e-definable O-submodule Λ of Km (for

some m), such that e is a canonical parameter for Λ (over acl(C).) The K-space V = K⊗OΛ
is coded by an element w of some Grassmanian Gm,l; by (2) we have w ∈ K0 := K ∩ acl(C);
since K0 is an algebraically closed field, V is K0-isomorphic to Kl, so we may assume V = Kl.

Dually, let V ′ = {v ∈ V : Kv ⊆ Λ}. Then V ′ is a K ∩ acl(C(e)) = K0-definable K-vector
subspace of V . Replacing Λ by the image in V/V ′, we may assume V ′ = (0). It follows ([7])
that V ′ ⊆ β0O

l for some β0 < 0.
Let v1, . . . , vl be a standard basis for V = Kl. Since vi ∈ K⊗OΛ, we have civi ∈ Λ for some

ci ∈ O. So
∑
ricivi ∈ Λ for all r1, . . . , rl ∈ O. Let Λ′(β) = {

∑
rivi : val(ri) > β}. Then

Λ′(β) ⊆ Λ for sufficiently large β. (Namely for β ≥ max val(ci)). {β : Λ′(β) ⊆ Λ} is definable,
hence has the form {β : β ≥ β1} for some C(e)-definable β1.

Thus Λ is determined by its image in β0O/β1M. Pick c ∈ β0O/β1M; then r 7→ rc is an
isomorphism O/(β1 − β0)M→ b0O/b1M. By [14], O/(β1 − β0)M is stably embedded; hence so
is β0O/β1M. Thus e ∈ dcl(C, β0O/β1M).

�

Lemma 2.28. Any definable function f : (αO/βM)n → Γ is bounded.

Proof. Suppose first n = 1. Since parameters are allowed, we may assume α = 0, and consider
f : O/βM→ Γ, defined over C. Let q be the type of elements of Γ greater than any element of
Γ(C). For γ |= q, let X(γ) be the pullback to O of f−1(γ). This is a finite Boolean combination
of balls of valuative radii δ1(γ), . . . , δm(γ), with 0 ≤ δi(γ) ≤ β. But any C-definable function
into a bounded interval in Γ is constant on q. Thus X(γ) is a finite Boolean combination of balls
of constant valuative radii δ1, . . . , δm. However it is shown in [7] that any definable function
on a finite cover of Γ into balls of constant radius has finite image. Hence X(γ) is constant on
q. But if if X(γ) = X(γ′) 6= ∅ then for any x ∈ X(γ), γ = f(x + βM) = γ′. It follows that
X(γ) = ∅ for γ |= q, i.e. f is bounded.
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Now given f : (αO/βM)2 → Γ, let F (x) = sup{f(x, y) : y ∈ αO/βM}. Then F is bounded,
so f is bounded. This shows the case n = 2, and the general case is similar. �

Corollary 2.29. Let D be a C- definable set in ACVF. Then the following are equivalent:
(1) There exists a definable surjective map g : (O/βO)n → D.
(2) There is no definable function f : D → Γ with unbounded image.
(3) For some β0 ≤ 0 ≤ β1 ∈ Γ(C), for any e ∈ D, e ∈ dcl(C, β0O/β1M).

An ∞-definable set D satisfying (3) will be called boundedly imaginary. By compactness, D
is then contained in a definable set D′ satisfying (1-3).

Proposition 2.30. ACVF is metastable, with (FD) and (FDω) .

Proof. Let P be a partial type, and let M be a maximally complete algebraically closed valued
field, with P defined over M . Let γ(a) enumerate Γ(M,a) = dcl(M,a)∩ Γ. Then tp(a/γ(a)) is
stably dominated by Theorem 10.12 of [8].

To see that (FDω) holds, let M |= ACV F , C finitely generated over M (imaginary sorts
allowed.) The resolution N of C is a model of ACVF, and is atomic over M (Lemma 2.26).
Hence over C are dense. �

Finally, a characterization of independence of stably dominated types of field elements in
ACVF in terms of a “maximum modulus” principle.

Proposition 2.31. (Maximum modulus) Let p be a stably dominated C-definable type on an
affine variety V defined over K ∩ C, P = p|C. Let F be a regular function on V over L ⊃ C.
Then valF has an infimum γFmin ∈ Γ(C) on P . Moreover for a |= P , a |= p|L iff valF (a) = γFmin

for all such F .

Proof. [8] Theorem 14.12. �

Corollary 2.32. Let U, V be varieties over the algebraically closed valued field C. Let p, q be
a stably dominated types over C of elements of U, V respectively. Let F be a regular function
on U × V . Then there exists γ = γF ∈ Γ such that

(1) If (a, b) |= p⊗q then valF (a, b) = γ.
(2) For any a |= p, b |= q, we have valF (a, b) ≥ γ.
(3) Assume U, V are affine. If a |= p, b |= q and valF (a, b) = γF for all regular F on U × V ,

then (a, b) |= p⊗q.

Proof. U admits a finite cover by open affines, and p concentrates on one of these affines; so we
may assume U is affine. Let b |= q. Then the statement follows from Theorem 2.31. (See [8]
Theorem 14.13.) �

3. Groups with definable generics

Let us clarify the notion of an ∞-definable group G. The required data is a sequence
G1 ⊃ G2 ⊃ . . . of definable sets and maps, and a definable map m : (G2)2 → G1, such that
m(Gn+1)2 ⊂ Gn. Composition gives two maps G3 → G1, m(m(x, y), z) and m(x,m(y, z)); we
assume they are equal. Further, there exists a unit element 1 ∈ ∩nGn, m(1, x) = m(x, 1) =
1; and an inverse map x 7→ x−1 (G2 → G2), such that m(x, x−1) = m(x−1, x) = 1. For
x1, . . . , xn ∈ Gn, we can then write unambiguously x1 · . . . ·xn to denote their product (but not
for more than n elements.)

Let G = ∩nGn: in the sense that in any model M , we set G(M) = ∩nGn(M); so that
G(M) is a group (with multiplication m.) Two ∞-definable groups G,H are considered equal
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if H(M) = G(M) for all M ; equivalently, the {Hn}, {Gn} are isomorphic as directed limit
systems.

Essentially everything we will say goes through for ?-definable groups; this notion differs only
in that the inclusion maps Gn+1 → Gn are replaced by arbitrary definable maps. For simplicity,
we will deal explicitly with ∞-definable groups. Thus a ’group’ is ∞-definable unless otherwise
stated.

Let G be a group, and let ∆ be a set of formulas φ(x; y). Here x refers to elements of G,
while y may range over Gn or elsewhere. Let ∆x be the Boolean algebra of formulas generated
by those of the form φ(x; b), with φ ∈ ∆. We assume ∆x is closed under left translations and
inversion .

Note that if ∆′ = {φ(y1xy2, y3) : φ(x, y) ∈ ∆}, then ∆′x is left- and right- translation
invariant.

If p is a definable type over C, we let ap (the left translate of p by a) be the definable type
such that for any C ′ ⊃ C ∪ {a},

d |= p|C ′ iff ad |= ap|C ′

Similarly the right translate pb.
Note that bp is Cb-definable.

Definition 3.1. Let G be a group, p a definable ∆- type of elements of G . p is left-generic
in G if for any C = acl(C) with p defined over C, and b ∈ G, pb is defined over C. p is
right-generic if for any such C, b, bp is defined over C.

Lemma 3.2. Right generics have boundedly many left translates. If ∆ is finite, right ∆-generics
have finitely many left-translates.

Proof. the first statement is immediate, since only boundedly many types are C-definable.
The second statement follows by compactness, since when ∆ is finite, the equivalence relation:
bp =b′ p is definable: it holds iff for each φ(x, y) ∈ ∆, |= (∀y)(dpx)(φ(b′x, y) ≡ φ(bx, y)). �

Call a definable type p symmetric if whenever q is a definable type, p, q definable over C,
b |= q|C, a |= p|acl(C ∪{b}), then b |= q|acl(C ∪{a}). (We will see that stably dominated types
are symmetric in this sense.)

Lemma 3.3. Any symmetric left generic is right generic. Any two symmetric generics differ by
a left translation. If ∆ is finite, and a symmetric generic ∆-type exists, there exists a definable
group G0

∆ of finite index stabilizing all generics. This group has no ∆-definable subgroups of
finite index.

Proof. Let p be a left generic. Using the inverse map x 7→ x−1, we see that G also has right
generics. Let q be any right generic of G. Let C be an elementary submodel with p, q defined
over C. Let a |= p|C, b |= q|acl(C ∪ {a}). Then ab |=a q|(C ∪ {a}), by definition of aq. By
right genericity of q, aq is C-definable. By symmetry, a |= p|acl(C ∪{b}). So ab |= pb|(C ∪{b}).
As p is left generic, pb is C-definable. Thus aq|C = tp(ab/C) = pb|C; since C is an elementary
submodel, these definable types are equal.

Now if p1, p2 are left-generic, then for any right-generic q, for some a1, a2, b we have a1q = p1
b,

a2q = p2
b; so a1

−1a2p1 = p2.
This shows that any two left generics differ by a left translation. In particular by 3.2 there

are boundedly many left generics.
Let G0 be the right stabilizer of all left generics. So G0 is of bounded index in G. By

translating into G0 we see that it has left and right generics; the left generic is unique. G0 can
have no subgroups of finite index, since the left generic is unique. If p is the left generic of G0
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and q is a right generic, a |= p, b |= q, a↓b, then tp(ab) is left generic so equals p. This shows q
is also unique. Thus pb = p and aq = q; since we saw above that pb = aq, we have p = q. When
∆ is finite, G0 is definable and hence of finite index. �

It follows that if G has a symmetric left generic (for ∆ = {all formulas}), then G has at
most |L| definable subgroups of finite index, over any set of parameters. In general, in this
situation, the intersection of all definable subgroups of finite index is denoted G0. For any
sufficiently saturated M , G(M)/G0(M) is a profinite group, denoted G/G0 since (up to a
canonical isomorphism) it does not depend on the choice of M .

Any generic type has a translate lying in G0. A principal generic is one lying in G0. In case
a symmetric left generic exists, the principal generic is unique. If G = G0 we say that G is
connected.

Remark 3.4. Let p be a symmetric definable generic type of elements of a definable group G.
Then the following are equivalent:

(1) p is the unique definable generic type of G.
(2) For all g ∈ G, gp = p.
(3) G = G0.

Proof. Assume (1). By definition of genericity, and associativity, for g ∈ G, gp is right generic.
Hence by uniqueness, gp = p.

Conversely given (2), let q be generic. Then by Lemma 3.3, gp = q for some g. By (1), p = q.
The equivalence with (3) is immediate. �

Lemma 3.5. Let T be a theory in a language L; let H be a group ∞-definable over C, with
a symmetric definable generic type. Then H0 is ∞-definable over some C0 ⊂ C, with |C0| ≤
|L|+ ℵ0. (We will say that C0 is small.)

Proof. A definable type q(x) is determined by the function φ→ (dqx)φ, where φ = φ(x, y) ∈ L.
Thus every definable type is C0-definable for some small |C0|, in this sense. Apply this to the
principal generic of H �

3.6. Stabilizers. The stabilizer of a definable type can be viewed as an adjoint notion for the
generic of a definable group. If p is a generic of G, then G0 will be the stabilizer of p. If q is a
definable type and is in some sense no bigger than Stab(q), then it is a translate of a generic of
Stab(q).

Definition 3.7. Let p be a definable ∆-type of elements of a definable group G.

Stab(p) = {c : cp = p}

The definition makes it clear that Stab(p) is a subgroup of G. When ∆ is generated by a
formula φ, q =c p, we have: dqφ(x, y) = dpφ(cx, y); so : c ∈ Stab(p) iff q = p iff dqφ = dpφ iff

|= (∀y)(dpx)(φ(x, y) ≡ φ(cx, y))

Thus when ∆ is finite, Stab(p) is a definable group. In general, therefore, it is an intersection
of definable groups.

Lemma 3.8. Let p be a definable type of elements of a definable group G. If ap = p for
a ∈ Q, and Q generates G, then p is a generic of G. In particular if p is B-definable and
p|B ⊂ Stab(p), then p is a definable generic type of Stab(p).
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Proof. Stab(p) is a subgroup, so if Q ⊂ Stab(p) then G ⊂ Stab(p); it follows that p is generic
of G.

Let g ∈ Stab(p). Let a |= p|B¿ Then ga |= p|Ba. In particular ga |= p|B, and g = (ga)a−1.
Thus p|B generates Stab(p). The second statement thus follows from the first. �

3.8.1. Let p, q be two definable ∆-types, and let

Stab(p, q) = {c : cp = q}
Then Stab(p, q) may be empty. If nonempty, Stab(p, q) is a regular torsor for both Stab(p)

and Stab(q). In particular these two groups are then conjugate (by any element of Stab(p, q).)

3.8.2. A more general variant. Let p(x) be a complete definable type, and let h be a definable
function, h(a, x) = y, with parameters a in U. Then we have a definable type q(y) = hp(x):

(dqy)φ(y, u) ≡ (dpx)φ(h(a, x), u)

Let G0(p) be the family of U-definable functions h such that hp = p. G0(p) forms a semi-group
under composition; one has the quotient semi-group of p-germs of elements of G0(p). The
invertible germs form a group, denoted G(p).

If p is a type of elements of a group G, then the stabilizer Stab(p) defined above embeds
naturally into G(p): c maps to the germ of left translation by c.

Remark 3.9. If p is left-generic, let G0
p be the intersection of Stab(q) over all left-translates

q of p; they are bounded in number. So G0
p has bounded index in G; and p is a translate of a

left-generic type of G0
p

3.10. A general remark on interpreting groups. A structure M interprets a structure N
if there exists a 0-definable set D over M , and a surjective function f : D → N , such that for
any 0-definable (in N) R ⊂ Nk, f−1R ⊂ Dk is 0-definable in M .

It suffices to have this for any basic R (in the language of N), if this is understood to include
equality.

In order to interpret a group N , it suffices to find a function f : D → G and m ∈ N such
that:

(1) f(D) generates G in m steps. I.e. any element of G is a product of ≤ m elements of
f(D) and their inverses.

(2) {(d0, . . . , d2m) ∈ D2m+1 : f(d0) · . . . · f(d2m) = 1} is a definable subset of D2m+1.

Indeed in this case we obtain a surjective function µ : D≤m → G defined by (µ(d1, . . . , dl) 7→
f(d1) · . . . · f(dm). To see that the pullback multiplication is definable, show by induction on l
that {(d, e, e′) ∈ Dl×D≤m×D≤m : µ(d)µ(e) = µ(e′)} is definable. For l = 1, this follows from
assumption (ii). For l + 1, we have:

µ(d0 a d)µ(e) = µ(e′) ≡ (∃e′′ ∈ D≤m)(µ(d)µ(e) = µ(e′′)&µ(d0)µ(e′′) = µ(e′)))

.
The pullback of equality can be viewed as a special case.

3.11. Group chunks. This idea, in the context of algebraic groups, is due to Weil.
Let G be a definable group, with principal generic type p. The p⊗p-germ of multiplication

is called the group chunk corresponding to (G, p).
An abstract group chunk is a C-definable type p and a C-definable function F (or a p⊗p-germ

of such a function), such that:

(1) If a |= p|C, and b |= p|acl(Ca), then F (a, b) |= p|acl(Ca), and b ∈ dcl(a, F (a, b)), and
a ∈ dcl(b, F (a, b)).
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(2) |= (dpx)(dpy)(dpz)F (x, F (y, z)) = F (F (x, y), z)

Proposition 3.12. Let p, F be an abstract group chunk. Then (p, F ) is (definably isomorphic
to) the chunk of an ∞-definable group G (in Ueq.) In other words p can be identified with a
generic type of G, in such a way that (dpx)(dpy)F (x, y) = x · y.

Proof. Let P = p|C, and let Q = P × P . For a ∈ P , The p-germ of F (a, x) is invertible. The
germ ga of F (a, x) is thus an element of the group G(p) of § 3.6. Let G be the subgroup of
G(p) generated by the elements ga and their inverses. By § 3.10, it suffices to see:

(1) Any element of G is a product gagb
−1.

(2) {(a0, . . . , am) : ga0(ga1)−1 . . . gam = 1} is definable.

The second point is immediate from the definability of p, and the fact that the map G0(p)→
G(p) is a well-defined homomorphism. As for the first, it suffices to show that a product
gagb

−1gcgd
−1 has the required form. Note that by (iii), when (a, b) |= p⊗p, gagb = gF (a,b);

and thus also ga
−1gb = gc where F (a, c) = b. Applying this, Thus given any a, b, c, d ∈ P ,

let e |= p|acl(Cabcd); then gd
−1ge = ge′ for some e′, and e′ |= p|acl(Cabc); so gcge′ = ge′′

for some e′′ |= p|acl(Cab); continuing this way, we obtain gagb
−1gcgd

−1ge = ge′′′′ and so
gagb

−1gcgd
−1 = ge′′′′ge

−1 as required. �

The uniqueness of G in 3.12 is guaranteed by the following:

Proposition 3.13. Let G1, G2 be ∞-definable groups, and let p be the unique generic type of
G1. Let F : G1 → G2 be a partial definable map, such that (dpx)(dpy)F (xy) = F (x)F (y). Then
there exists a unique homomorphism H : G1 → G2 such that |= (dpx)F (x) = H(x).

Proof. Uniqueness of H is clear, since the solution set P to p generates G: if g ∈ G, a |=
p|acl(C, b), then ag ∈ P .

Existence is also clear, provided we show that F (a)F (b) = F (c)F (d) when a, b, c, d ∈ P and
ab = cd. Let e |= p|acl(Cabcd). It suffices to show that F (a)F (b)F (e) = F (c)F (d)F (e). But
F (b)F (e) = F (be), F (d)F (e) = F (de) by the property of F . Moreover, be |= p|acl(Ca), and
so F (a)F (be) = F (abe) Similarly the right hand side equals F (cde). Since abe = cde, equality
holds.
H is definable by compactness. We can also write: H(a) = b iff (dpx)F (ax) = bF (x). �

The analogous statements and proofs work for group actions.

3.14. ?-definable groups with definable generics are projective limits of definable
groups. For simplicity, we will deal with ∞-definable groups.Thus we show that ∞-definable
groups with definable generics are intersections of definable groups.

Actually we will prove something more general, by weakening the assumption of a (complete)
definable generic to what we will call a “largeness notion”.

Fix a saturated model U. By a largeness notion with support G, we mean a filter µ on the
Boolean algebra of U-definable subsets of G1, such that:

(1) If Qb = {a : (a, b) ∈ R} where R is a definable set, then for some definable set dµR,
Qb ∈ µ iff b ∈ dµ(R)(U).

(2) Each Gn ∈ µ.
(3) (translation invariance) If Qb ∈ µ, g ∈ G, then gQb ∈ µ.

Note using (2) that if Qb, Q
′
b′ are two definable sets, and Qb ∩ G = Q′b′ ∩ G, then by

compactness Qb ∩Gn = Q′b′ ∩Gn for some n, and so Qb ∈ µ iff Qb ∩Gn ∈ µ iff Q′b′ ∩Gn ∈ µ iff
Q′b′ ∈ µ. Thus µ can be viewed as a filter on relatively definable subsets of G; this explains (3).

Note that if G has a definable generic type, then the principal generic gives a largeness
notion.
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Proposition 3.15. Let G = ∩n≥1Pn be an ∞-definable group, supporting a largeness notion
µ. Then G is the intersection of a sequence of definable subgroups of a definable group.

Proof. Let Pn be as above. Let Qn = P3 ∩ dµ(xy−1 ∈ Pn). Thus for a ∈ P3(U), a ∈ Qn iff
aPn ∈ µ.
Claim. G = ∩n≥2Qn

Proof. Let a ∈ G. Then a−1 ∈ Pn+1, so a−1Pn+1 ⊂ Pn, Pn+1 ⊂ aPn, and thus as Pn+1 ∈ µ we
have aPn ∈ µ. So a ∈ Qn.

Conversely, let a ∈ ∩nQn. Then each aPn ∈ µ. Since µ is closed under finite intesections,
and U is saturated, there exists b ∈ ∩naPn ∩ ∩nPn. So b ∈ G, and b = ac, c ∈ G. It follows
that bc−1 = (ac)c−1 = a(cc−1) = a · 1 = a so a ∈ G. �

Thus for some n0 ≥ 3, for all n ≥ n0, Qn ⊂ P4. Let n > n0.
Claim. GQn ⊂ Qn.

Proof. Let g ∈ G, b ∈ Qn. As b ∈ P3, gb ∈ P2. Now g(bPn) = (gb)Pn. Since bPn ∈ µ, also
g(bPn) ∈ µ. Thus (gb)Pn ∈ µ and so gb ∈ Qn. �

Let Sn = {x ∈ P3 : (∀y ∈ Qn)xy ∈ Qn}. If a, b ∈ Sn, then for any x ∈ Qn, bx ∈ Qn, so
a(bx) ∈ Qn. In particular, taking x = 1, ab ∈ Qn, so ab ∈ P3. Thus by definition ab ∈ Sn. So
Sn forms a semigroup under m. We have Sn ⊂ Qn, and by the last claim, G ⊂ Sn.

Finallly, let Hn = {x : x, x−1 ∈ Sn}. Then clearly Hn is a group under m, and G =
∩nHn. �

Corollary 3.16. Let R = ∩Pn be an ∞-definable ring, supporting a largeness notion µ in-
variant both for both additive translations and for multiplication by units of R. Assume every
element of R is a sum of units. Then R is the intersection of a sequence of definable subrings
of a definable ring.

Proof. By Proposition 3.15 applied to the additive group, we may assume that the Pn have the
structure of additive groups, with Pn+1 a subgroup of Pn. By compactness, we can refine the
sequence so that the multiplication map is defined and gives a bilinear map m : Pn → Pn →
Pn−1. Now follow the proof of Proposition 3.15 with respect to the multiplicative group of units
R∗. Let Qn = P3 ∩ dµ(xy−1 ∈ Pn. By the additive invariance of µ and the distributive law, Qn
is a subgroup of P3. As in the Claim, we have R = ∩nQn. Let Rn = {x ∈ Qn : m(x,Qn) ⊆ Qn}.
Then Rn is a ring. Again as in the first Claim, but now multiplicatively, R∗ ⊆ Rn; thus R ⊆ Rn.
Conversely we have ∩nRn ⊆ ∩nQn = R. �

3.17. Products of types in definable groups. By a piecewise definable set, we mean a
sequence Hn of definable sets, with injective definable maps Hn → Hn+1, viewed as inclusion
maps. The direct limit is thus identified with the union, and denoted H. A piecewise definable
group is a piecewise definable set together with maps mn : Hn×Hn → Hn+1, compatible with
the inclusions, and inducing a group structure m : H ×H → H.

By a definable (or ∞-definable) subgroup G of H we mean a (∞-) -definable subset G ⊂ Hk

for some definable piece Hk of H; such that m(G2) ⊂ G and (G,m) is a subgroup of (H,m).
Let p1, . . . , pn be a definable type of elements of H, and let w be an element of the free group

F on generators {1, . . . , n}. We construct a definable type pw = w∗(p1, . . . , pn). If w is the
product of the generators 1, 2, we also write p1 ∗ p2 for pw. Let
ai |= pi|acl(Ca1 . . . ai−1). Let aw = w(a1, . . . , an) be the image of w under the homomor-

phism F → H with i 7→ ai. Let pw|C = tp(aw/C).
These are definable types.
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The words of the free group will be denoted by expressions such as 12̄3; 2̄ is the inverse of
the generator 2.

If a single type p is given, rather than a sequnce pw will refer to the sequence (p, p, . . . , p).
Let p∗n denote p123···n, p±2n[+1] = p12̄34̄··· ¯(2n)[(2n+1)].

4. Generically metastable groups

Definition 4.1. A generically metastable group is a group with a stably dominated left-generic.

Lemma 4.2. If A,B are generically metastable groups, so is A × B. If A is generically
metastable and f : A → C is a definable surjective homomorphism, then C is generically
metastable.

Proof. Let p, q be the principal generic types of A,B. Then p⊗q, f∗p are the generics of A×B,C
respectively; the verifications are easy. �

Lemma 4.3. Assume N is a generically metastable definable or ∞-definable subgroup of G,
and G/N has a stably-dominated type invariant under G-translations. Then G is generically
metastable.

In particular, if N E G and N,G/N are generically metastable, then so is G.

Proof. Let pN be the principal generic type of N , the unique generic of the connected component
N0 of N , and let pG/N be a G-invariant stably dominated type of G/N .

Assume first that N is connected, N = N0.
If n ∈ N then np = p. Thus if cN = dN , so that c = dn for some n ∈ N , then

cpN =dn pN =d (npN ) =d pN

Thus the definable type cpN depends only on the coset S = cN ; denote it pS .
We obtain a definable type pG of G: a realization of pG over C is a realization of pS over

C, s where s |= pG/N |C, and S is the coset of N corresponding to s. Here pG/N is the given
G-invariant definable type of G/N .

Then pS is stably dominated. (Descent: Proposition 2.11.) So is pG/N . Hence by transitivity
(Proposition 2.10 (4)) pG is stably dominated. By construction it is translation invariant.

In general, the natural map r : G/N0 → G/N has profinite fibers. Thus pG/N lifts to G/N0;

i.e. the set Q of definable types q of G/N0 with r∗q = pG/N is nonempty. Moreover it is
profinite. Now G acts on Q by translation. So a co-profinite ∞-definable subgroup G1 of G
must fix some element q ∈ Q. The above proof now applies to G1, using q. So G1 is generically
metastable, and hence so is G. �

Lemma 4.4. Let G be a generically metastable group, N a definable subgroup, X = N\G the
right coset space, η : G→ X the map: η(g) = Ng. Assume there exists a definable Y ⊂ G with
η|Y finite-to-one. Then N is generically metastable.

Proof. Let p be the generic type of G0, and let g |= p|C (where N,G,X, Y, η, p are C-definable.)
Let h = η(g). Let g1 ∈ Y , η(g1) = h. Then g1 ∈ acl(C, h) ⊂ acl(C, g). Thus tp((g, g1)/C) is
stably dominated (Proposition 2.10 (4))). Let n = gg−1

1 ∈ N . Then n ∈ dcl(C, g, g1), so by
Lemma 2.10, q := tp(n/C) is stably dominated. Because of the finite ambiguity in the choice
of g1, the above may not pick out a unique type q, but at worst a finite set Q of types meet the
description.

We now show that Q is N ∩G0-invariant. Let n′ ∈ N ∩G0; take g |= p|Cn′. Let h = η(g),

g1 ∈ Y , η(g1) = h. Let n = gg−1
1 . By definition, n |= q|C,q a typical element of Q, and n′n |=n′

q|Cn′. Note that n′n = (n′g)g−1
1 , and g1 ∈ Y , η(g1) = h = η(n′g). Thus tp(n′n/C) ∈ Q
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also. So Q is a finite, N ∩ G0-invariant collection of definable types; hence all types in Q are
generic. �

Corollary 4.5. Let G be an algebraic group, N an algebraic subgroup. Let H be a definable
subgroup of G in ACVF, with H generically metastable. Then H ∩N is generically metastable.

Proof. Let X be the coset space N\G; it is an algebraic variety. Let η : G → X. Let
XH = η(H) = NH\H (where NH = H ∩ N .) This is all defined over some M |= ACV F .
Let g ∈ H be generic, h = η(g). Then N = M(h)alg |= ACV F ; so there exists d ∈ H(N)
with η(d) = h. Let Y ′ be a formula over M , true of (d, h), with a finite-to-one projection
to XH ; let Y be the projection of Y to G. Then the hypotheses of Lemma 4.4 hold true of
(H,NH , XH , η|H,Y ). Thus NH is generically metastable. �

Proposition 4.6. Let G be a generically metastable group. Then there exists a *-definable
stable group g, and a *-definable homomorphism g : G → g, such that the generics of G are
stably dominated via g.

Assuming G is definable, the base is algebraically closed, and (FD) holds. Then g and g :
G→ g can be taken to be definable.

Proof. Let θ(a) enumerate StC(a). Consider the map fa, fa(b) = θ(ab). The p-germ is strong,
and is in StC(a), so it factors through θ(a): fa = f ′θa. By stable embeddedness, it factors
through θ(b) too: let c = fa(b) = f ′θa(b). Since c ∈ StC , tp(θ(a), c/C, θ(b)) =⇒ tp(θ(a), c/C, b).
Thus c ∈ dcl(θ(a), θ(b)); i.e. θ(ab) = c = F (θ(a), θ(b)) for a |= p, b |= p|Ca. Now the hypotheses
of the group chunk theorem 3.12 are satisfied, so F is a restriction of the multiplication map
on a *-definable group g. θ is generically a homomorphism, and by Proposition 3.13, it extends
to a group homomorphism.

If g′ : G → g′ is another such homomorphism, then g(a) is part of StC(a), when a realizes
the generic type of G. Thus for some definable function r, g′(a) = r(g(a)). r extends uniquely
to a group homomorphism R : g→ g′, and g′ = R ◦ g.

By Proposition 3.15, g is a projective limit lim
←−

gi of definable groups over some directed

partially ordered index set I; for i > j we have a homomorphism πi : gi → gj . Let gi : G→ gi
be the natural homomorphism. Since there are no descending chains of definable subgroups of
gi, every∞-definable subgroup is definable; in particular the image of gi is definable. Replacing
gi by this image, we may assume gi and hence all maps πi are surjective.

Assume (FD) . Let M be a good base and let a realize the generic type of G0 over M .
Then StM (a) is acl- finitely generated over M (Lemma ??); say StM (a) = M(d). Then
dim(d/M(gi(a)) decreases as i increases; so it stabilizes at some i0. Since all gi(a) are in
M(d), it follows that gi(a) ∈ acl(M(gi1(a))) for all i ≥ i1. It follows that tp(d/M) is dominated
via gi.

�

The homomorphism g is not uniquely determined by G; even if G is stable, there may be a
nontrivial homomorphism of this kind. We do however have a maximal *-definable homomor-
phism into stable pro-definable groups.

Remark 4.7. There exists a *-definable stable group g, and a *-definable homomorphism g :
G → g, maximal in the sense that any homomorphism g′ : G → g′ into a stable group factors
through g. The kernel of this maximal g is uniquely determined. If G is stably dominated it
will be stably dominated via this maximal homomorphism.
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Lemma 4.8. Let G be a generically metastable group, with generics dominated by a surjective
group homomorphism g : G→ g. Then tp(a/C) is generic in G (i.e. a |= r|C for some definable
generic r of G) iff tp(g(a)/C) is generic in g.

Proof. Assume tp(g(a)/C) is generic in g. Let p be a generic type of G, stably dominated via
g : G→ g. Let b |= p|acl(Ca). Then q =a p is a definable generic. Hence q is stably dominated
via g. Note that ab |= q|C. Since g(a) is generic in g, we have g(a)g(b)↓Cg(b); since g is a
homomorphism, g(ab)↓Cg(b). Since p, q are both stably dominated via g we have ab↓Cb. Thus

ab |= q|acl(Cb). So a |= r = qb
−1 |Cb, and in particular a |= r|C. Since r is generic, the lemma

is proved. �

Corollary 4.9. Let G be a generically metastable group, with generics dominated by a group
homomorphism g : G→ g. let H be a definable subgroup of G. If g(H) = g, then H has finite
index in G.

Proof. Work over C = acl(C). Let p be the principal generic type of G. Let b ∈ H ∩ G0 be
such that g(b) is generic in g over C. By Lemma 4.8, tp(b/C) is generic in G. Thus a generic
of G lies in H, so H has finite index in G. �

Corollary 4.10. (FDω) Let G be a generically metastable definable group, with generics dom-
inated by a group homomorphism g : G→ g. Then G0 is definable, i.e. [G : G0] is finite.

Proof. G/G0 is profinite. Extend the base C so as to have a representative of each class of
G/G0. As in Lemma 2.16 we may further extend the base, and then find a ∈ D, C ′ = ΓC(a),
such that g(a) has dimension n over C ′, and tp(a/C ′, g(a)) is isolated. From the first fact it
follows (Lemma 4.8) that tp(a/C ′) is a generic of G. So it is a translate (by some element in
G(C) ⊆ G(C ′)) of the generic p of G0. It follows that p|C ′ is isolated.

On the other hand, G = ∩iGi where {Gi} is a bounded family of definable subgroups of
finite index, closed under intersections. p|C ′ is generated by all formulas ¬g(x) ∈ E (with E
a C ′-definable non-generic subset of g) together with all formulas Gi(x). So tp(a/C ′, g(a)) is
generated by the formulas Gi(x). Being isolated, it is generated by a single formula Gi(x). It
follows that every generic of Gi lies in G0. Go Gi = G0, and G0 is definable. �

Here is a characterization of generics that does not explicitly mention g and g.

Corollary 4.11. Let G be a generically metastable group, dimst(G) < ∞. Then the generic
types of G over C are precisely the types tp(c/C) maximizing, for generic h, dim(St(hc)/C(h)).

Proof. By Proposition 4.6 and Lemma 4.8: we have aclSt(hc) = acl(g(h)g(c)) so
dim(St(hc)/C(h)) = dim(g(h)g(c)/C(h)) = dim(g(c)/C(h)) ≤ dim(g(c)); if this is maximal,
then g(c) is generic in g over C(h), and hence over C. �

(We could have used the Lascar rank of the stable part, in place of Morley dimension.)
Note that the proof uses rather than proves the existence of a generic.
If G is piecewise-definable, in a superstable theory, and p is a type of maximal rank in G,

then p is a translate of a generic of a definable subgroup of G, Stab(p). For stably dominated
types, the analog need not hold:

Example 4.12. (ACVF). Let G = (Ga)2. Let P = {(x, y) : val(x − y2) ≥ v} where v is a
fixed positive element of the value group. Then the maximal dimension of the stable part of
any element of G over any base equals 2. P also extends to a type p whose stable part has rank
2. But though p has maximal rank, it is not a generic type. (We do have: p∗2 is generic.)

A certain converse to Proposition 4.6:
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Proposition 4.13. Let G be a definable group in a metastable theory, with dimst(G) = n <∞.
Assume G admits a surjective definable homomorphism g : G → g, with g stable of dimension
n. Then there exists an ∞- definable normal subgroup T of G with:

(1) G/T almost internal to Γ
(2) T connected and generically metastable via g|T .
(3) g(T ) = g0, and
T is uniquely determined by (1,2) or by (2,3).

Proof. Let Z be the collection of definable types q (over some B) of elements of G with g∗q
generic in g, and q stably dominated.
Claim 1. Z 6= ∅.

Proof. Let C be a good base for G. Let q1 = tp(a1/C) be any type over C avoiding g−1(Y ) for
all non-generic C-definable Y ⊂ g. Then g∗q1 is generic in g. Let γ = dcl(C(a1)) ∩ dcl(Γ). Let
q = tp(a/ acl(C, γ)). Any acl(C, γ)-definable subset of g is already acl(C)-definable, so q also
avoids all pullbacks of non-generic sets, and g∗q is generic in g. By metastability, q is stably
dominated, and extends to a unique definable type; thus Z 6= ∅. �

Claim 2. Any two elements of Z are (left or right) translates of each other.

Proof. Let q, r ∈ Z; say both are B-definable. Let a |= q|B, b |= r|B(a). Then g(a), g(b)
are B-independent generic elements of g; hence also g(a), g(a)g(b)−1 and g(b), g(a)g(b)−1 are
independent pairs of elements of g over B. Let c = ab−1. Then g(c) = g(a)g(b)−1. Since
dimst(G) = n = dim(StB(c)/B), we have StB(c) ⊆ acl(g(c)). Hence g(a)↓Bc. By stable
domination, a |= q|B(c). Similarly b |= r|B(c). It follows that q =c r. �

It follows that T := Stab(q) is an ∞-definable group, not depending on q ∈ Z. Since Z is
invariant under conjugation, T is normal. Moreover if a, b are independent realizations of q over
B, then the proof of the second claim shows that a↓Bab−1, hence ab−1 ∈ S. It follows that

r = qb
−1

is a type of elements of S, and must be a generic type of S. Thus S is generically
metastable. Also g(ab−1) is a B-generic element of g, so g∗(r) is a generic of g.

By Lemma 3.15, or over a larger base directly from the definition of a stabilizer, T is the
intersection of definable groups Si.
Claim 3. G/Si is almost Γ-internal.

Proof. Otherwise, fix Si, a good base C, and a type q̄ = tp(ā/C) of elements of G/Si, with q̄
not almost Γ-internal. The element ā corresponds to a coset Uā of Si. Pick a ∈ Uā; if c ∈ S
is generic then ac ∈ Uā while g(ac) = g(a)g(c), so replacing a by ac we may assume g(a) is
generic in g over C. By the proof of Claims 1 and 2, for some γ from Γ, q = tp(a/C(γ)) is
stably dominated, and q ⊆ Sa, i.e. q is contained in a single coset of S. It follows that each
aSj is algebraic over C(γ), and in particular ā = aSi ∈ acl(C(γ)); contradicting the choice of
q̄. �

Let T ′ be another connected generically metastable group. Then T ′/(T ∩ T ′) is almost Γ-
internal but also connected generically metastable, hence is trivial; so T ′ ⊆ T . By Corollary 4.9
and Lemma 3.15, T/T ′ is profinite; but T is connected, so T = T ′. �

4.14. Generically metastable subgroups of maximal rank. While not all generically
metastable subgroups are definable, we will show that subgroups whose residual rank is
dimst(D) are.
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Lemma 4.15. Let G be a definable group in a metastable theory. Let T be an ∞- defin-
able normal subgroup of G with G/T almost internal to Γ, and T connected and generically
metastable.

(1) (FD) There exists a definable subgroup S of G with S0 = T .
(2) (FDω)T itself is definable.

Proof. By Lemma 3.15, T is the intersection of definable groups Si; and G/Si is almost Γ-
internal. Assume (FD) . By Proposition 4.6, there exists a definable homomorphism g : T → g,
with g stable, and T generically metastable via g|T . By compactness, g extends to a definable
homomorphism on some Si; replacing G by this Si, we may assume g : G→ g.

(1) By Lemma 2.22, some quotient G/S by a finite normal subgroup is Γ-internal; define
dim(G/S) to be the o-minimal dimension of any such quotient. By (FD) , for any a ∈ A, the
rank of ΓB(a) over B is finite, so the o-minimal dimension of G/Si is bounded independently
of i. Thus for some i, for all j ≥ i, dim(G/Sj) = dim(G/Si). It follows that the natural map
G/Sj → G/Si has zero-dimensional fibers, hence it has finite kernel. This shows that for some
i, for all j ≥ i, Si/Sj is finite.

Thus all Sj (with j ≥ i) are generically metastable via g, and (1) holds.
(2) Assume (FDω) . Then by Corollary 4.10 , T is definable. �

Corollary 4.16. (FDω) Let H be a definable group, G be a connected ∞-definable generically
metastable subgroup of H, with a stable homomorphic image of dimension n = dimst(H). Then
G is definable.

Proof. By Proposition 4.6, there exists a definable homomorphism g : G → g with g ω-stable,
such that G is stably dominated via g. So dim(g(a)) = n for a |= p, p the generic of G. By
Proposition 3.15, G is an intersection of definable groups Gi; by compactness, g extends to
a homomorphism Gi → gi, with gi a stable definable group (for some i.) Then g(Gm) is a
descending sequence of definable subgroups of gi; by ω-stability of the stable part, it must
stabilize; i.e. gm = g for large enough m. By Proposition 4.13 there exists an ∞-definable T of
H with H/T almost internal to Γ, T connected and generically metastable via g|T , g(T ) = g0.
By Lemma 4.15, T is definable. By the uniqueness in Proposition 4.13, T = G. �

Corollary 4.17. Let A be a definable Abelian group in a metastable theory.
(FD) Any connected generically metastable ∞-definable subgroup of A is contained in a de-

finable generically metastable subgroup.
(FDω) Any connected generically metastable ∞-definable subgroup of A is contained in a

definable connected generically metastable subgroup.

Proof. By Proposition 3.15, H is an intersection of definable groups Hi; for simplicity assume
H = ∩i∈NHi, H0 ⊃ H1 ⊃ . . .. Then dimst(A/Hi) is non-decreasing with i, and eventually
stabilizes; we may assume it is constant, dimst(A/Hi) = n. Clearly dimst(A/H) ≤ n; but
also since A/H0 is a homomorphic image of A/H, dimst(A/H) ≥ dimst(A/H0) = n. By
Proposition 5.4, A/H contains a generically metastable ∞-definable subgroup S with stable
homomorphic image of dimension n. Let Si be the image of G in A/Hi. So Si is generically
metastable, S is the inverse limit of the Si, and for large enough i (say for i = 1), S1 has a stable
homomorphic image of dimension n. By Corollary 4.16, S1 is definable. Let S1 be the pullback
of S1 to A. So S1 is definable, and for any j ≥ 1, S1/Hj has a stable homomorphic image of
dimension n = dimst(S1/Hj). By Proposition 4.13 there exists a unique ∞-definable group Tj
with Hj ≤ Tj ≤ S1, S1/Tj almost Γ-internal, and Tj/Hj generically metastable and connected.
By Lemma 4.15 Tj/Hj is definable, hence Tj is definable. If k > j then Hk ≤ Hj ; since Tk/Hk

is generically metastable connected, and S1/Tj is almost Γ-internal, we have Tk/Hk ≤ Tj/Hk,
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i.e. Tk ≤ Tj . Since S1/Tj is (almost) Γ-internal, the argument of Lemma 4.15 (1) shows that
for large enough j (say for j = 1), for all k ≥ j, Tk has finite index in T1; i.e. the Tk all have
the same connected component of 1, an ∞-definable gruop T . Then T/Hk ∩ T is generically
metastable for all k, so T/H is generically metastable. By Proposition 4.3, T is generically
metastable. Hence so are the Ti. By Lemma 4.15, if (FDω) holds, T is definable. �

A connected generically metastable definable group H is called certifiable (over C) if it is an
element of a uniformly definable family of definable groups Hc : c ∈ Q, with Q definable over
C, such that each Hc is connected and generically metastable.

Lemma 4.18. (FDω) Let A be a definable Abelian group. There exists a base C and C-definable
families Sν of definable subgroups Sνt of A such that

(1) Any Sνt is connected, generically metastable.
(2) Any connected, generically metastable ∞-definable subgroup of A (over any set of param-

eters) is contained in some Sνt .

An equivalent statement is that any connected, generically metastable∞- definable subgroup
of A is contained in a C-certifiable one. By Corollary 4.17, it suffices to show that any connected,
generically metastable definable subgroup of A is contained in a C-certifiable one.

Proof. For a definable Abelian group B, define invariants n, k, l as follows: n = dimst(B).
Let Z(B) be the collection of definable subgroups S of B with stable homomorphic images
of dimension n; by Lemma 5.4, Z(B) 6= ∅. Let Z2(B) = {(T,K) : T ∈ Z(B),dimst(T ) =
n,K ≤ T, T/K Γ- internal}. Let k = max{dim(T/K) : (T,K) ∈ Z2(B)}. (By (FD) , such a
maximum exists.) If (T,K) ∈ Z2(B) then by Proposition 4.13 and Lemma 4.15, K is generically
metastable, and by [K : K0] is finite. Since Z2(B) is uniformly definable, by Lemma 2.17 there
exists a bound l on [K : K0], valid for all such K.

The set of triples (n, k, l) is ordered lexicographically.
Pick a definable generically metastable definable B0 ≤ A such that (n, k, l)(A/B0) is as small

as possible. (If (T/B0,K/B0) attains the maximum for A/B0, then the pullbacks to A show that
(n, k, l)(A) ≥ (n, k, l)(A/B0). Thus increasing B0 has the effect of decreasing (n, k, l)(A/B0).)
For any generically metastable H ≤ A, H + B0 is also generically metastable; so it suffices to
find a family {St} for A/B0. Thus (after augmenting the base so that B0 is definable) we may
assume (n, k, l)(A/B) = (n, k, l)(A) for any connected generically metastable definable B ≤ A.
Let (n, k, l) = (n, k, l)(A). S
Claim. Let S be a definable subgroup of A admitting a surjective homomorphism h : S → g
to a stable group of dimension n. Let W be a Γ-group, dimo(W ) = k, and let g : S → W
be a homomorphism with kernel L. Assume [L : L0] = l. Then L0 is connected, generically
metastable, and certifiably so (over C. )

Proof. Say S, h, g, g,W,L, L0 are all d-definable. Clearly they lie in a family
(St, ht, gt, gt,Wt, Lt, L

′
t). such that g is stable, dim gt = n(A), Wt is a Γ-group,

ht : St → g is a surjective homomorphism, gt : St → Wt is a surjective homomorphism
with kernel Lt, and L′t is a definable subgroup of Lt of index l. By Proposition 4.13 and
Lemma 4.15, Lt is generically metastable. By definition of l we have [Lt : L0

t ] ≤ l; so L0
t = L′t.

Thus L′t is connected and generically metastable, for any element of the family. Let {L′t} be
the projection to a family of subgroups of A. This is a definable family (using definability
of Morley dimension and o-minimal dimenstion, (FD) .) Any L′t is connected and generically
metastable, showing certifiability. �

Let B be a generically metastable definable subgroup of A. Let (T,K) ∈ Z2(A/B) with
dimst(T ) = n, dim0(T/K) = k, [K : K0] = l. Let (S,L, L′) be the pullbacks to A, so that
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B ≤ L′ ≤ L ≤ S and T = S/B,K = L/B,K0 = L′/B. Clearly S admits a homomorphism
onto a stable group of dimension n, and dimo(S/L) = dimo(T/K) = k, [L : L′] = l.

Since (n, k, l)(A) = (n, k, l) it follows that L is generically metastable, and (since [L : L0] ≤ l)
that L′ = L0. By the Claim, L′ is certifiable connected generically metastable subgroup. Since
B ⊆ L′, the Proposition is proved. �

5. Abelian groups

We will use the notation of § 3.17.

Lemma 5.1. Let H be a piecewise definable, or even piecewise *-definable, Abelian group, p a
symmetric definable type of elements of H. Assume H has p-weight < 2n, in the sense that:

Whenever b ∈ H, (a1, . . . , a2n) |= p⊗2n, ai |= p|b for some i.
Then there exists an ∞-definable subgroup G of H with generic type p±2n. p is contained in

a coset of G.

Proof. Let (a1, a2, . . . , a2n) |= p⊗2n, and let b = a−1
1 a2 · . . . · a2n.

By the weight assumption, ai |= p|b for some i. Say i is odd (the even case is similar.) Since
the group is commutative, tp(a1, a2, . . . , a2n/b) is Sym(n)-invariant,so a1 |= p|b.

Let G be the stabilizer of p±2n, and C = Stab(p∓2n−1, p±2n). (Recall § 3.8.1.) Then a−1
1 ∈ C,

so p±1 is a type of elements of C. It follows that p±2 and hence also p±2n is a type of elements
of G. By Lemma 3.8, it is the generic type.

�

Remark 5.2. It follows that p generates a coset of the ∞-definable group G, in finitely many
iterations of the function: (x, y, z) 7→ xy−1. If p is stably dominated, it follows that G is
connected and generically metastable.

For the rest of this section we work with a metastable theory.
Let us say that a set D has bounded weight if for some n, every stably dominated type of

elements of D has weight ≤ n. In ACVF, every definable set has bounded weight ( if it is a
subset of an algebraic variety V , the weight is bounded in fact by the dimension of V .) In
EVDF, the same is true of a definable set of finite differential order.

Proposition 5.3. Let G be a definable Abelian group of bounded weight. Let Ai (i ∈ I) be
connected generically metastable ∞-definable subgroups of G (defined over a set C.) Then there
exists a generically metastable ∞-definable subgroup B containing all Ai.

Proof. The sum of two generically metastable groups is again generically metastable, by
Lemma 4.2: A+B is a homomorphic image of A×B.

Let F be the family of all C-definable functions into Γ. By metastability, enlarging C if
necessary, we have for any c ∈ G: tp(c/C, (f(c) : f ∈ F)) is stably dominated.

Let pi be the principal generic of Ai. Consider the partial type:

q0 = {(dpiy)f(x) = f(yx) : i ∈ I, f ∈ F}
Claim 1. q0 is consistent.

It suffices to show that any finite number of formulas, concerning say p1, . . . , pn, can be
satisfied. As above, let A = A1 + . . .+An, and let p be the principal generic of A.

If (b, c) |= pi⊗p, then by genericity of p, bc |= p|b. By symmetry for stably dominated types,
b |= pi|c. Now if f ∈ F, as p is stably dominated, and thus orthogonal to Γ, there exists γf such
that for any c′ |= p|C, f(c′) = γf . In particular, f(c) = γf = f(bc). Thus |= (dpiy)f(c) = f(yc).
Since this is true for each i = 1, . . . , n and f ∈ F, q0 is consistent.
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Let c |= q0, C ′ = C ∪ (f(c) : f ∈ F), C ′′ = acl(C ′).
Claim 2. tp(c/C ′′) is generically pi-invariant for each i.

Indeed if a |= pi|Cc, then tp(ac/C) = tp(c/C) (consider two-valued functions in F). Thus
tp(ac, (f(ac) : f ∈ F)/C) = tp(c, (f(c) : f ∈ F)/C). But f(ac) = f(c); so tp(ac, (f(c) : f ∈
F)/C) = tp(c, (f(c) : f ∈ F)/C). This shows tp(c/C ′) = tp(ac/C ′). In fact

As noted, tp(c/C ′) is stably dominated. By 5.2, tp(c/C ′′) generates a coset B′ of a generically
metastable group B. B′ depends on the extension of tp(c/C ′) to a type over C ′′, but B does
not. It follows that B is generically pi-invariant, and hence Ai ⊆ B. �

Lemma 5.4. (FD) . Let G be a ?-definable Abelian group. Then G contains a generically
metastable ∞- definable subgroup S with stable homomorphic image of dimension dimst(G).

Proof. Say dimst(G) = n. Let C = acl(C) be a base substructure, g ∈ G with dim(StC(g)/C) =
n. Let γ = dcl(C(g))∩ dcl(Γ), p = tp(g/C, γ). So p is stably dominated, with stable part pst of
dimension n.

A real valued function r on types is subadditive if r(tp(ab/C)) ≤ r(tp(b/C)) + r(tp(a/Cb)).
Claim 1. dim(StC(x)/C) is subadditive.

Proof.

dim(StC(a, b)/C) ≤ dim(StC(a, b)/C, StC(a))+dim(StC(a)/C) = dim(StC(a, b)/Ca)+dim(StC(a)/C)

Claim 2. p±m is also stably dominated, with stable part of dimension n. More generally, if q is
stably dominated, dim(pst) = dim(qst) = n, a |= p|C, b |= q|Ca, c = ab, then dim(StC(c)/C) =
n, and tp(c/C) is stably dominated.

Proof. 2n ≤ dim(StC(a, b)/C) = dim(StC(a, c)/C) ≤ dim(StCc(a)/Cc) + dim(StC(c)/C) ≤
n+ dim(StC(c)/C). So dim(StC(c)/C) ≥ n. But dimst(G) = n, so dim(StC(c)/C) = n. Since
tp(ab/C) is stably dominated, so is tp(c/C).

By Lemma 5.1, G contains a generically metastable group S, with generic type p±2n. By
the claims, the stable part of the generic of S has dimension n.

�

5.5. Limit - metastable groups.

Definition 5.6. Let q be a ?-type of Γ, over a small set C0. For t |= q, let St be an ∞-definable
subgroup of G: St =def ∩nSnt , where Snt is a Γ- definable family of subgroups of G. We call
(St) a limit-metastable family for G if:

(1) St is a connected generically metastable subgroup of G.
(2) q carries a C0-invariant partial ordering ≤. Any small set has an upper bound in this

ordering. If t ≤ t′ |= q, then St ⊂ St′ .
(3) If W ⊂ G is connected and generically metastable, ∞-definable over C, then W ⊆ St

for some t |= q.

∪t′|=qSt′ = H is ∞-definable (with no parameters.) We say that H is the limit-metastable
group for G. If G = H we say that G is limit-metastable.

Lemma 5.7. Assume St is the connected component of a definable group Rt. Then the partial
ordering on q is (relatively) definable.

Proof. If St ⊆ Rt, then necessarily St ⊆ R0
t = St′ . Hence St ⊆ St′ iff (dqtx)(x ∈ Rt), where

qt is the generic type of St. (Another argument, assumign (FD) : St ⊆ St′ iff Rt/(Rt ∩ Rt′) is
finite.) �
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In particular this is the case when the St are definable groups. When this is so we will say
that the system is definable.

We thus view H as the limit of a Γ-internal direct limit system of generically metastable
groups. It is clearly independent of the particular limit-metastable family.

Two different behaviors are possible, according to whether or not the direct limit system has
a maximal element. The latter is equivalent to the existence of a maximal connected generically
metastable subgroup of G.

Lemma 5.8. Let G be a definable Abelian group of bounded weight. There exists a limit-
metastable ∞-definable subgroup for G.

Proof. Let C1 be an ℵ1-saturated elementary submodel of a large saturated model for the
theory. Let C1 ⊆ C be such that metastability for G is witnessed over C.

Let F be the family of all C-definable functions into Γ. Let Ai(i ∈ I) be the family of all
connected generically metastable ∞-definable subgroups of G, defined over C. Let q0 be the
partial ?-type found in the proof of Proposition 5.3. Let c |= q0, t = F(c), and let St be the
generically metastable group found there.

By Lemma 3.5, we can take t to be a small tuple. Moreover we can find a small C0 ⊂ C
such that St is C0(t)-definable. Let q = tp(t/C0).

If W is a connected generically metastable group, we must show that for some t′ |= q,
W ⊂ St′ . For this purpose we can replace W by a conjugate, under the group of automorphisms
of the universal domain over C0. Thus we may assume W is defined over C. In this case,
W ⊂ St. This gives (3).

Define the partial ordering by: St ⊂ St′ . The directedness follows from Proposition 5.3,
together with (3). �

Theorem 5.9. Let A be a definable Abelian group in a metastable theory of bounded weight.
There exists an ∞-definable limit- metastable subgroup K of A, with A/K almost internal

to Γ.
If K is itself generically metastable, then A/K is a pro-definable Γ-group.
If (FDω) holds, then K is definable, has a definable generic type, and equals the kernel of a

definable λ : A→ Λ into a Γ-group.

Remark 5.10. For the definability of Λ it suffices to assume, in place of (FDω) , that every
∞-definable connected generically metastable subgroup of A is contained in a certifiable one.

Proof. First suppose A contains no nontrivial generically metastable ∞-definable subgroups.
Then by Lemma 5.1, no type of elements of A is stably dominated. As the theory is metastable,
for some base set C, there exist C-definable maps fj : A→ Γ such that the fibers of f = (fj)j
are stably dominated. Thus the common kernel of the maps fj is finite. By compactness finitely
many of the fj have finite kernel. By Lemma 2.23, one can take λ to be an isomorphism.

This argument works for ?-definable groups as well. Specifically if B = ∩iBi is an intersection
of definable subgroups of A, and A/B = lim

←− iA/Bi has no nontrivial generically metastable

∞-definable subgroups, then each A/Bi is isomorphic to a Γ-group; by stable embeddedness of
Γ the group structures and the homomorphisms A/Bi → A/Bj for j ≥ i are also definable over
Γ.

Next suppose A has a maximal ∞-definable generically metastable subgroup B. By Propo-
sition 3.15, we have B = ∩iBi for certain definable subgroups Bi of A. We can view A/B as
a *-definable group (a projective limit of the groups A/Bi.) By Lemma 4.3, A/B can have no
nontrivial generically metastable ∞-definable subgroups; otherwise the pullback to A would be
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a generically metastable ∞-definable group. By the previous case, A/B is definably isomor-
phic to a pro-definable group Λ of Γeq. The isomorphism A/B → Λ gives an homomorphism
λ : A→ Λ ⊂ Γeq with kernel B.

In general, let B be the limit-metastable subgroup of A. B is ∞-definable:

b ∈ B ⇐⇒ (∃t |= q)(b ∈ St) ⇐⇒ (∃t |= q)
∧
n

(b ∈ Snt )

If ψ ranges over all finite sets of formulas in q, we find

b ∈ B ⇐⇒
∧
n

∧
ψ

(∃t)(ψ(t)&b ∈ Snt )

Let C be a good base for A (Definition 1.2).
Let F be the family of all C-definable functions f : A → E, where E is C-definable and

E ⊆ acl(C,Γ).
Claim. If f(c) = f(d) for f ∈ F, then cd−1 ∈ B.

In fact every fiber of F lies in a coset of some St. This is proved as in Proposition 5.3 Claim
2, and implies the claim. Thus A/B is definably isomorphic to F(A)/E for some ∞-definable
equivalence relation E.

Now assume that among the connected generically metastable ∞-definable subgroups of A,
the certifiable ones are cofinal. Replacing St by a larger certfiable group, we can take (St : t |= q)
to be a uniformly definable family of connected generically metastable definable groups, such
that every connected generically metastable definable group is contained in some St. Let Q be
a definable set containing q, such that St is connected and generically metastable for t ∈ Q.
Then ∪t∈QSt = ∪t|=qSt. (Any St with t ∈ Q is connected generically metastable, and thus
by cofinality of the family contained in some S′t, t |= q.) Define a partial ordering on Q by
St ⊆ St′ . This is directed, since again if t, t′ ∈ Q there exists t′′ |= q with t, t′ ≤ t′′. Thus the
limit-metastable group is definable, and hence Λ is definable in Γeq.

By Lemma 2.19, Q has a cofinal definable type q̃. For t |= q̃ let pt be the unique generic type
of St. Let r be the definable type as in Lemma 2.4. If c ∈ Λ, and t |= q̃|c, then c ∈ St (since
c ∈ St′ for some t′ ∈ Q, and q̃ is cofinal.) Hence if a |= pt|{c, t} then ca |= pt|{c, t}. It follows
that a |= r|{c} and ca |= r|{c}; showing that r is Λ-translation invariant. �

Corollary 5.11. (FDω) Let A be a definable Abelian group. There exists a universal pair (f,B)
with B a Γ-internal definable group, and f : A→ B a definable homomorphism. In other words
for any (f ′, B′) of this kind there exists a unique definable homomorphism h : B → B′ with
f ′ = hg.

Proof. Let L be the limit-metastable subgroup of A. Then L is definable. For any pair (f ′, B′)
as above, f vanishes on any connected generically metastable group. Since L is a union of such
groups, f vanishes on L. But A/L is Γ-internal, so the canonical homomorphism A → A/L
clearly solves the universal problem. �

In particular, in ACVF, for 0 < a ∈ Γ, there cannot be a compatible sequence of homomor-
phisms ψn : A → C(n!a) for each n, where C(b) is the definable subquotient C(b) = {c ∈ Γ :
(∃m ∈ N)(−mb < C < mb)}/Zb of (Γ,+).

Corollary 5.12. (FDω) Let A be a definable Abelian group. There exists a smallest definable
subgroup A0 of A of finite index.

Proof. As in Corollary 5.11, any subgroup A′ of finite index must contain each connected
generically metastable group, and hence the limit group L. The question thus reduces to the
o-minimal group A/L, where it is known, [28]. �
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Lemma 5.13. (FDω) Let A be a definable Abelian group. There exists a universal pair (f,B)
with B a stable definable group, and f : A→ B a definable homomorphism. Equivalently, there
exists a smallest definable subgroup K with A/K stable.

Proof. Clearly if A/K and A/K ′ are stable, so is A/(K ∩ K ′). it suffices to show that there
are no strictly descending chains A ⊃ K1 ⊃ K2 . . .of such subgroups. By (FD) dim(A/Kn) is
bounded; so we may assume it is constant, dim(A/Kn) = d. Then Kn/Kn+1 is finite. By
Corollary 5.12, the chain stabilizes. �

Corollary 5.14. (FDω) Let A be a connected definable Abelian group. Then for almost all
primes p, pA = A.

Proof. Let L be the limit metastable group of A. We have L = ∪t|=qBt where q is a complete
type and Bt is connected generically metastable. Let At be the maximal stable quotient of Bt.
Then At has finite Morley rank m. Let At(p) = {x ∈ At : px = 0}. Then At(p) can be infinite
for at most m values of p. For any other p, At(p) is finite and hence pAt = At. It follows
that pBt has finite index in Bt (Lemma 4.9); so pBt = Bt. Thus pL = L. On the other hand
p(A/L) = A/L since A/L is a connected o-minimally definable group. So pA = A. �

5.15. Metastable fields. By a rng we mean an Abelian group with a commutative, associative,
distributive multiplication (but possibly without a multiplicative unit element.) If a rng has no
zero-divisors, the usual construction of a field of fractions makes sense.

Proposition 5.16. Let F be a metastable field of bounded weight. There exists an∞- definable
subrng D of F , with (D,+) connected generically metastable.

Moreover F is the field of fractions of D.
(FDω) If D is a ring, then the generic type of (D,+) is also generic for (D∗, ·).

Proof. Let n be the maximal weight of a stably dominated type of elements of F . Using
Lemma 5.1, find a definable subgroup M of F ∗ with a stably dominated generic type p of
weight n. Let D be a subgroup of (F,+) with generic type p±2n, generated by p±2 (additively).
Then p clearly stabilizes D multiplicatively. Since D is generated by p±2n, so does D; so D is
a subrng of F .

Let F ′ be the field of fractions of D. Suppose a ∈ F , a /∈ F ′. Then the map (x, y) 7→ x+ ay
takes D2 → F injectively. (For if x + ay = x′ + ay′ and (x, y) 6= (x′, y′) then y 6= y′ and
a = (x′ − x)/(y − y′).) Thus D + aD is definably isomorphic to D2, hence is metastable of
weight 2n; but this contradicts the weight bound n on stably dominated types of F . So F = F ′

is the field of fractions of D.
Note also that a generic element of M is a unit, and every element is a sum of generics, so

the units D∗ generate D additively.
By Corollary 3.16, D is the intersection of definable subrings Dn.
Let N be the unique normal ∞-definable subgroup of (D,+) such that D/N is stable (cf.

Proposition 4.6.) Then clearly N is multiplicatively invariant under the units of D. Thus N is
actually an ideal of D, so D/N is a rng.

Now assume that 1 ∈ D, and (for simplicity) (FDω) . Then D is definable. D/N is a definable
connected ω-stable ring. It follows that modulo the Jacobson radical, D/N is a finite union of
fields. Hence the additive generic type of D/N is also a generic type of (D/N)∗.

Let c ∈ R be an additive generic. Then the ideal cR has image in R/J containing the generic
c+ J , which is invertible, so the image equals R/J . By Lemma 4.9, cR = R. So c is invertible.

�

Additional remarks
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(1) In place of 1 ∈ D it suffices to assume that R/J is not nil, i.e. there is no n with
(∀x1, . . . , xn)(x1 · . . . · xn = 0) in R/J . This holds for instance if R is closed under roots.

(2) (F,+) is properly limit metastable, unless the limit metastable group is 0 (in this case
F is Γ-internal) or F is stable.

(3) Let M = ∪Mt(t |= q) be the limit metastable system of F ∗. As above one can construct
a generically metastable rng Rt, stabilized by Mt. If t < s we have Rt ⊆ Rs and Nt ⊆ Ns
(since Rt/(Rt ∩Ns) is stable.) The limit R = ∪Rt cannot equal F (unless F is stable), since if
a ∈ Rt \Nt then a−1 /∈ Rs for s > t, so a−1 /∈ R.

(4) The maximal stable quotient B of Rt does not depend on t. We have ht : Rt → B. If
s |= q and t |= q|s, the inclusion Rs → Rt induces a homomorphism f : B → B, which also
does not depend on s, t. Hence f2 = f . So B = I ⊕ A where A = f(B) and I = ker(f). We
have f |A = Id. The direct limit of the B under these maps is A. If I = (0) then the system
degenerates to a single element, by stable domination of Rs via A.

(5) Let St = {r ∈ R : rRt ⊆ Rt}. This ring contains Mt. Hence S = ∪St contains
M . It follows that V = F ∗/S∗ is Γ-internal. Note that V admits a natural subsemigroup
V + = (R \ (0))/S∗, and that since any element of F is a quotient of two elements of R (in fact
of any Rt), we have V + − V + = V .

(6) Since by (3) R 6= F we have S 6= F , so V + 6= V . By Lemma 2.24, V does not have
fsg, so is not definably compact. By [21] V contains a definable one-dimensional group without
torsion.

6. Valued fields: Generically metastable subgroups of algebraic groups

In this section, we work with definable groups in ACVF. Let K be an algebraically closed
valued field; O denotes the valuation ring. Occasionally we will assume K to be saturated.

We repeat the statement of Proposition 1.7. Recall Lemma 2.29

Proposition 6.1. Let H be a connected, generically metastable definable or∞-definable group.
Then there exists an algebraic group G and a definable homomorphism f : H → G, with
boundedly imaginary kernel.

If H is defined over C = acl(C), then G, f can be found over C.

Proof. Let F = C∩K Let p be the definable generic type of H; let (a1, a2) |= p⊗2|C, a3 = a1a2.
Let τ = {a1, a2, a3, a12 = a1a2, a23 = a2a3, a123 = a1a2a3}. We view this six-element set as

a matroid, given by specifying the collection of algebraically dependent subsets of τ . This data
is called a group configuration.

For c ∈ τ , let A(c) = acl(C(c)) ∩K; this is the set of field elements in the algebraic closure
of c over C. Pick a tuple α(c) ∈ A(c) such that A(c) = F (α(c))alg.

We view c 7→ α(c) as a map on τ into the matroid of algebraic dependence in the algebraically
closed field K over F . Then α preserves both dependence and independence. For independence
this is clear. For dependence we need:
Claim 1. Let E1, E2 be two algebraically closed substructures of a model of ACVF, all sorts
allowed. Let Li be the set of field elements of Ei. If c ∈ acl(E1 ∪ E2) and c ∈ K, then
c ∈ (L1L2)alg.

Hence α(τ) is isomorphic to τ . According to the group configuration theorem for stable
theories, applied to the theory ACF over the model F , there exists an ACF- definable group G
with parameters in F , such that a(τ) is a group configuration for G; in particular there exist
b1, b2 ∈ G, b12 = b1b2 such that A(ai) = F (bi)

alg. Since ACF-definable groups are (definably
isomorphic to) algebraic groups, we can take G to be an algebraic group over F . Compare [10]
(Proposition 3.1).
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We work in the group H ×G. Let ci = (ai, bi). By Proposition 2.10 (4), tp(ci/C) is stably
dominated, and so has a unique C- definable extension qi. Let Z = Stab(q2, q3). This is a coset

of S = Stab(q2, q2); and q1 is a generic type of Z. (I.e. q = (q1)c1
−1

is a generic type of S.) Let
J = {h ∈ H : (h, 1) ∈ S}.
Claim 2. J is boundedly imaginary.

Proof. If h ∈ J then for (a, b) |= q2|C(h), (ha, b) |= q2|C. Now tp(a/bC) is purely imaginary,
and so is tp(ha/bC). By Lemma 2.27, β0 ≤ 0 ≤ β1 ∈ Γ(C(a, b)), a ∈ dcl(C, β0, β1, β0O/β1M).
Since tp(ab/C) is stably dominated, we have β0, β1 ∈ Γ(C), and a ∈ dcl(C, β0O/β1M). Sim-
ilarly there exist β′0, β

′
1 ∈ Γ(C) with ha ∈ dcl(C, β′0O/β

′
1M). Thus h ∈ dcl(a, ha,C) ⊆

dcl(C, β0O/β1M, β′0O/β
′
1M). By Corollary 2.29, some C-definable tp(h/C) is boundedly imag-

inary. This holds for any h ∈ J ; so by compactness J is boundedly imaginary. �

Let J ′ = {g ∈ G : (1, g) ∈ S}. By a dual argument, using that b ∈ acl(a) when (a, b) |= q2,
we see that J ′ is a finite normal subgroup of G.

Note that S projects onto H; this is because the projection contains a−1a′ for (a, a′) |= p1;
in other words it contains a realization of p1|M ; but p1 generates H.

Thus J is a boundedly imaginary normal ∞-definable subgroup of H.
Now S can be viewed as the graph of a homomorphism f : H → G/J ′ with kernel J . Now

G/J ′ is isomorphic to an algebraic group defined over F ; so replacing G by G/J ′ we may assume
f : H → G. S is ∞-definable (an intersection of definable groups); but being the graph of a
function, it must be definable relative to H. (We have (a, b) /∈ S iff (a, b′) ∈ S for some b′ 6= b.)
In particular J is definable relative to H.

�

The proof of Lemma 6.1 goes through, at least over a model, assuming only that the generic
type of H is symmetric (rather than stably dominated.) Lemma 2.5 replaces Proposition 2.10
(4). However in our context this gains no generality, since in ACVF every symmetric definable
type is stably dominated.
Additional Remarks

(1) Let f ′ : H → G′ be another homomorphism into an algebraic group. Since J is purely
imaginary, f ′(J) is finite. Thus ker(f ′) contains a finite index subgroup of ker(f).

(2) Assume H is Abelian, or more generally that H is a subgroup of a definable group H ′

such that Question 6.16 has a positive answer for definable subgroups of H ′. Then one can
demand that ker(f) be be as small as possible, i.e. that ker(f)/ ker(f)0 be least possible. It
follows that

(*) Let G′ be an F -algebraic group, and let f ′ : H → G′ be a definable homomorphism (over
any base). Then there exists a unique definable homomorphism g : f(H)→ G′ with f ′ = g ◦ f .

With a small additional argument, one can show that (*) is valid for any algebraic group G′,
not necessarily defined over F .

Remark 6.2. Let H be a purely imaginary definable group, and let B be a generically metastable
subgroup. Then B is boundedly imaginary.

Proof. Let p be the principal generic type of B; with H,B, p defined over C. Then Γ(C(a)) =
Γ(C) for a |= p|C. Since p|C is purely imaginary, it follows that it is boundedly imaginary. Any
element of B0 is a product of two realizations of p|C, so B0 is boundedly imaginary. It follows
that some definable set B′ containing B0 is boundedly imaginary. Finitely many translates of
B′ cover B, so B too is boundedly imaginary. �
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Proposition 6.3. Let H0 be a definable group, such that 6.16 has a positive answer for sub-
groups of H0.

Let H be an ∞- definable limit metastable subgroup of H. Assume this data is defined over
C = acl(C), and let F = K ∩ C.

Then there exists an algebraic group G and a definable homomorphism f : H → G, with
purely imaginary kernel.

For any definable homomorphism f ′ : H → G′ into an F -algebraic group over C, there exists
a unique g : f(H)→ G′ with f ′ = g ◦ f .

Proof. Let Ht(t |= q0) be a limit metastable system for H; so q0 is a Γ-internal type with a
directed definable ordering, Ht ≤ Ht′ for t ≤ t′, and ∪tHt = H. We may extend q0 to a
definable type q, compatible with the directed ordering (Lemma 2.19).

For t |= q0, by Proposition 6.1 there exists an algebraic group G and a definable homo-
morphism ft : H → G, with boundedly imaginary kernel Jt. G is acl(C(t))-definable; but as
t ∈ dcl(C,Γ) we have K ∩ acl(C(t)) = K ∩ C = F . So G is C-definable and does not depend
on t. As in Remark 2, J0

t is definable, and any boundedly imaginary subgroup of Ht contains
J0
t . As in Remark (2) may replace Jt by the smallest subgroup (containing J0

t ) such that the
quotient embeds into an algebraic group. Then Jt ⊆ (Jt′ ∩Ht) if t′ ≥ t.

If t |= q0 and t′ |= q|C(t), then ft(Jt′∩Ht) is finite since Jt′ is purely imaginary. This is a finite
set of elements of G, and so (as acl(C(t))∩K = acl(C)∩K) it cannot depend on t′; so ft(Jt′∩Ht)
is a fixed finite group F0. Thus J∗t = Jt′ ∩Ht = f−1

t (F0) is a fixed normal subgroup of Ht, not
depending on t′. Note that if t′′ |= q|C(t, t′) then J∗t′ ∩Ht = (Jt′′ ∩Ht′) ∩Ht = Jt′′ ∩Ht = J∗t .
It follows that one can replace each Jt by J∗t and obtain: Jt′ ∩Ht = Jt.

We obtain induced embeddings φt,t′ : ft(Ht)→ ft′(Ht′), such that φt,t′ ◦ft = ft′ |Ht. Clearly
φt′,t′′ ◦ φt,t′ = φt,t′′ .

Let Φt,t′ be the Zariski closure of the graph of φt,t′ . This is a Zariski closed, connected
subgroup of G × G of dimension equal to dim(G), and projecting onto G in both directions
(since dim(ft(Ht)) = dim(G).) So Φt,t′ is the graph of an isogeny. At all events it is coded by
elements of K, and so cannot depend on t or t′; Φt,t′ = Φ.

The relation φt′,t′′ ◦ φt,t′ = φt,t′′ shows that {(a, b, c) : φt,t′(a) = b, φt′,t′′(b) = c} is contained
in {(a, b, c) : (a, c) ∈ Φ}. But the former set is Zariski dense in the connected component of
Φ ◦ Φ. Thus Φ ◦ (Φ ∼ Φ) where ∼ denotes commensurability. Let Φ′ be the Zariski closure of
φ−1
t,t′ . We have

Φ ⊆ Φ ◦ (Φ ◦ Φ′) = (Φ ◦ Φ) ◦ Φ′) ∼ Φ ◦ Φ′ ∼ IdG
As Φ is a connected, Φ = IdG. So φt,t′(x) = x.

Define f(x) = ft(x) where x ∈ Ht. This is then well-defined. Given a map f ′ : H → G′,
there exists a unique gt : ft(Ht) = f(Ht)→ G′ with f ′ = gtft, so we must have gt = gt′ ft(Ht);
let g = ∪tgt.

�

Remark 6.4. Assume in Proposition 6.1 or Proposition 6.3 that H has no nontrivial Abelian
normal subgroups. Then one can find f with the following universal property:

(**) for any definable homomorphism f ′ : H → G′ into an algebraic group, there exists a
unique definable homomorphism of algebraic groups g : G→ G′ with f ′ = g ◦ f .

Indeed by factoring out any normal Abelian subgroups of G, we may assume G is semi-simple.
In this case G as an algebraic group has only finitely many connected finite central extensions.
Let F be the family of those finite central extensions G′ of G that admit a homomorphism
f ′ : H → G′, lying over f . If (f ′, G′) and (f ′′, G′′) are two such, let f ′′′(h) = (f ′(h), f ′′(h)) ∈
G′ ×G′′, and let G′′′ be the Zariski closure of f ′′′(H); then G′′′ dominates both G′ and G′′. It
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follows that F has a maximal element. By a similar construction one shows that (**) holds.
Uniqueness of g follows from Zariski density of f(H).

Remark 6.5. The examples of § 6.17 show that the assumption of limit metastability cannot
be eliminated. Without it, it seems likely that one can find an isogeny of H into a quotient of
an Ind-algebraic group.

6.6. Stably dominated subgroups of algebraic gruops. By an O-variety (or variety over
O), we mean a flat, reduced scheme over SpecO, admitting a finite open covering by schemes
isomorphic to O[X1, . . . , Xn]/I. Since O is a valuation ring, SpecR is flat over SpecO iff no
nonzero element of O is a 0-divisor in R. So O[X1, . . . , Xn]/I is flat iff I = IK[X1, . . . , Xn] ∩
O[X1, . . . , Xn]. Hence there are no infinite descending chains of O-subvarieties.

If V is an O-variety, we write V (K) for (V⊗Spec(K))(K). Let Vk = V⊗Ok, and let r :
V (O)→ Vk(k) be the natural map. By flatness, dimVk = dimVK .

For any set Z ⊆ OnK , if I = {f ∈ O[X1, . . . , Xn] : f |Z = 0} and R = O[X1, . . . , Xn]/I,then
then SpecR is flat over SpecO. If Z = V (K) ∩ OnK for some K-variety V , then SpecR(O) = Z.

If W is a scheme over O, and V ′ a subvariety of WK = W⊗OK, there exists a unique
O-subvariety of W such that VK = V ′, and V (O) = V ′(K) ∩W (O).

For example, if V ′ ⊂ An is an affine variety over K, defined by a radical ideal P ⊂ O[X], we
let V = SpecO[X]/P ∩O[X]. Let Vk ⊂ kn denote the zero set of the image of P ∩O[X] in k[X].
In this case we denote the affine coordinate ring K[X]/P by K[V ], and O[V ] = O[X]/(P∩O[X]).

Lemma 6.7. Let V be a scheme over O, with dimVK = n. Let q be a K-definable type of
elements of V (O) with r∗q of Morley rank ≥ n. Assume V is defined over B = acl(B); then so
is q. In fact there are only finitely many q with this property.

Proof. Say q is defined over B′ ⊃ B. Let a |= q|B′. Then r(a)↓BB′. B(a) is a field exten-
sion of B of transcendence degree n, and also of residual transcendence degree n. (Indeed
tr.deg.B′B

′(r(a)) = n, so tr.deg.BB(r(a)) ≥ n.) It follows that a↓BB′.
Since dimVk ≤ n, the set of types in question is the set of q with r∗q a generic type of Vk.

This is an elementary class. (If predicates are added to designate (dqx)φ for all φ, then the set
of q corresponds to the set of expansions to a certain partial theory.) Since it has boundedly
many elements, it can only have finitely many. �

Let G be a group scheme over O, with generic fiber GK and special fiber Gk. Then G(O) ⊂
GK(K), and we have a definable group homomorphism r : G(O)→ Gk.

Proposition 6.8. Let p be a definable type of elements of G(O). Assume dimGK = dimGk =
d, and r∗p is a generic type of Gk. Then p is a generic type of G(O).

When G is of finite type, G(O) has finitely many generic types.

Proof. Consider translates q =g p of p, g ∈ G(O). Clearly r∗q =r(g) r∗p. By Lemma 6.7, q is
defined over acl(B), where B is a base of definition of G, p. So p is generic.

Since G(O) has a stably dominated generic, all generics are translates of each other. Thus
all generics q have r∗q generic. By Lemma 6.7 again, there are only finitely many generics. �

We will see that all generically metastable ∞-definable groups, with their generics, may be
obtained this way; but Example 6.14 shows that we cannot take G to be of finite type.

6.9. Linear groups.

Proposition 6.10. Let G be an affine algebraic group over K, H a Zariski dense definable
subgroup of G(K). Let p be a definable type of elements of H. Then the following are equivalent:

(1) p is the unique definable generic of H, and p is stably dominated.
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(2) For any regular function f on G, p attains the highest modulus of f on H; i.e for some
γf ,

|= (dpx)(valf(x) = γf )

and for any x ∈ H, valf(x) ≥ γf .

Proof. (1) =⇒ (2) :
Since p is stably dominated, for any regular f there exists γf with (dpx)(valf(x) = γf ). If

(a, b) |= p⊗p then ab |= p; so valf(ab) = γf . By Proposition 2.32, for any a, b |= p we have
valf(ab) ≥ γf . But since p is the unique generic, any element c of H is a product of two
realizations of p. Thus valf(c) ≥ γf .

(2) =⇒ (1): Note using quantifier elimination, that (2) characterizes p uniquely. Also, since
γf does not depend on x, p is orthogonal to Γ, hence stably dominated by Proposition 2.14.

On the other hand, (2) is invariant under H-translations. Thus if (2) holds of p, it holds
of every translate, so every translate equals p. By Remark 3.4, p is the unique generic type of
H. �

Note that connectedness of G follows from the assumptions (any function constant on con-
nected components of G is regular.)

Let G be an algebraic group scheme over O. resG(O) is a definable, hence algebraic, subgroup
of (resG)(k). It may be a proper subgroup. Let n = dim(Gk). This in turn, when G is not of
finite type, may be smaller than dim(GK).

Proposition 6.11. Let G be an affine algebraic group scheme over O. Assume:
(*) if f ∈ K[G] and |f(x)| ≤ 1 for x |= p, then f ∈ O[G].
Let p be a definable type of elements of G(O). Then p is the unique generic of H = G(O) iff

r∗p is the unique generic type of resH.

Proof. In an algebraic group chunk, to show that a type is the unique generic is to show that
any regular function f vanishing on the type vanishes on the whole chunk. If f over k vanishes
on r∗p, lifting to O we obtain a regular function F ∈ O[G] with val(F (a)) > 0 for a |= p. By
Proposition 6.10 (2), val(F (a′)) > 0 for all a′ ∈ G(O). So F vanishes on res(G(O)).

The converse uses (*). Let F ∈ K[G]. Since p is stably dominated, for some γ, for any
a |= p, |F (a)| = γ. If γ = 0, then by assumption any K- multiple of F lies in O[G], so
F = 0 ∈ K[G]. Otherwise, we may assume γ = 1. By assumption we may take F ∈ O[G].
Suppose |F (a′)| = |c| > γ, a′ ∈ G(O); (we may take a′ ∈ G(O0), a fixed submodel.) Then
c−1 ∈ O, and |c−1F (a)| < 1 for a |= p, i.e. resc−1F (a) = 0. By Zariski density in Gk, resc−1F
vanishes on resG(O); so |c−1F (a′)| < 1 for all a′ ∈ G(O); a contradiction. �

Proposition 6.12. genchar3 Let G be an affine pro-algebraic group over K. Let H be a Zariski
dense ∞- definable subgroup of G, with unique stably dominated generic type p. Then there
exists a group scheme H over O and an isomorphism φ : G→ HK , such that φ(H) = H(O).

Moreover, H is a pro-group variety over O.
If H is definable, there exists an affine group variety H ′ over O such that H ' H ′(O).

Proof. p is Zariski dense in G (and G is connected) by Proposition 6.10.
G, H are defined over some subfield K0 = (K0)a of K. Let R0 := K0[G] be the affine

coordinate ring of G.
Define R = {f ∈ K0[G] : (dpx)valf(x) ≥ 0}. This is an O-subalgebra of R0.

Claim 1. R⊗OK = R0.

Proof. Let 0 6= r ∈ R0. Since p is stably dominated, it is orthogonal to Γ. Thus for some
c ∈ K0, for a |= p|K0, |r(a)| = |c|. If c = 0, then r vanishes on p. Since p is Zariski dense in
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G, r vanishes on G, i.e. r = 0 ∈ R0, contradicting the choice of r. So c 6= 0, and c−1r ∈ R.
This shows that the natural map R⊗OoK → R0 is surjective. Injectivity is clear since R has
no O-torsion. �(Claim.)

Let H = SpecR. So HK := H×SpecO SpecK = spec(R⊗OK) = G. We identify HK with G.
So p is a type of elements of G(K) and in fact, by definition of R, of G(O).

The morphisms x 7→ x−1 : G→ G and (x, y) 7→ xy : G2 → G correspond to two operations:

i : R0 → R0, i(r)(g) = r(g−1)

c : R0 → R0⊗K0
R0, c(r) =

n∑
i=1

ri⊗sj , r(gh) =

n∑
i=1

ri(g)si(h)

Note that any O-subalgebra R′ of R0 is O-torsion-free, hence a flat O-module. Thus the maps
R′⊗OR

′ → R′⊗OR→ R⊗OR are injective. We identify R′⊗OR
′ with its image in R⊗OR.

Let us say that an O-subalgebra R′ of R0 is Hopf if i(R′) ⊆ R′ and c(R′) ⊆ R′⊗OR
′.

Claim 2. R is Hopf.

Proof. : Co-inversion: Let g = i(r), r ∈ R. Clearly val(g(x)) = valf(x−1) ≥ 0 for x |= p. Hence
g ∈ R.

Co-multiplication: Let (a, b) |= p2, and r ∈ R. Write r(ab) =
∑
j gj(a)hj(b) (a finite

sum, with gj , hj ∈ R0.) By [8] (Lemma 12.4; see Claim there), we may assume |r(ab)| =
maxj |gj(a)||hj(b)|. Note no gj is zero; and then by renormalizing gj and hj , we may assume
|gj(a)| = 1 (as in the first Claim.) But then

max
j
|hj(b)| = |r(ab)| ≤ 1

Since both a and b realize p|K0, for generic a′ |= p|K0 we have |gj(a′)| = 1, |hj(a′)| = |cj | with
|cj | ≤ 1. As in Claim 1, we can take cj ∈ K0. Thus gj , hj ∈ R. �(Claim).
Claim 3. p is the unique generic type of H(O).

Proof. Proposition 6.10 (2) and the definition of R. �

It follows that H = H(O). Let F be the family of finitely generated O-subalgebras of R that
are Hopf. If R′ ∈ F then SpecR′ is a group O-variety. To show that H is a pro-group variety
over O, it suffices to show that R is the direct limit (i.e. the union) of F.

Note that if S is generated by R′, R′′ as an O-algebra, then then S is closed under c if R′, R′′

are. Indeed c : R → R⊗OR is an O-algebra homomorphism, so {r : c(r) ∈ S⊗OS} is an O-
subalgebra of S, hence equal to S since it contains R′, R′′. Moreover i is an automorphism of R
of order 2; if c(R′) ⊆ R′⊗R′, then the same holds for the O-algebra i(R′); since the O-algebra
generated by R′ ∪ i(R′) is closed under i, it is Hopf. Hence it suffices, given r ∈ R, to find a
finitely generated O-subalgebra R′ of R with r ∈ R′ and c(R′) ⊆ R′⊗R′.
Claim 4. Let r, ai, bi ∈ R. If (g, h) |= p2 and r(gh) =

∑n
i=1 ai(g)bi(h), then c(r) =

∑
ai⊗bi.

Proof. Since p is Zariski dense in G, p(2) is Zariski dense in G2. So if r(gh) =
∑n
i=1 ai(g)bi(h)

for (g, h) |= p2 then this holds for all (g, h) ∈ G2. �

By virtue of this claim, all elements x, y, gj , h considered below can be taken to be indepen-
dent realizations of p.

Fix r ∈ R.
Write c(r) =

∑n
i=1 ai⊗bi, with n least possible, and a1, . . . , an, b1, . . . , bn ∈ R. (Proof of

Claim 2.)
The expression r(xy) =

∑n
i=1 ai(x)bi(y) shows that {r(gy) : g ∈ G} spans a finite-

dimensional K-space. Similarly {r(gyh) : g, h ∈ G} spans a finite-dimensional K-subspace V
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of K[G]. Note that V ∩ R is a lattice in V . Let R′ be the O-algebra generated by V ∩ R. We
will show that ai, bi ∈ R′, so that r ∈ A = {x : c(x) ∈ R′⊗OR

′}. By construction, R′ and
hence A are left,right G-invariant. It follows that A contains V and hence R′. So R′ is Hopf.

We saw in Claim 2 that the ai, bi lie in R. Thus it suffices to show that they lie in V . By
symmetry, it suffices to show that ai ∈ V .

Let (g1, . . . , gn) |= p(n)|K0. Then r(xgj) =
∑
i ai(x)bi(gj).

Claim 5. The matrix b = (bi(gj))1≤i,j≤n is invertible over K.

Proof. Suppose otherwise. Then there exists a nonzero vector α = (α1, . . . , αn) with α · b = 0.
We may assume an = 1. Since g1, . . . , gn are independent, some gj must be independent from
α (which has weight n − 1). Now

∑
αibi(g) = 0 for generic g |= p|K0(α). By Claim (4),∑

αibi = 0; thus b1, . . . , bn are K-linearly dependent, contradicting the minimality of n.
�

Now the r(xgj) are in V by definition. By Claim 5, ai(x) ∈ V . �

This gives Theorem 1.9.

Lemma 6.13. Let V ⊂ An be an irreducible affine K-variety, and assume V (O) := V (K) ∩
On 6= ∅. Then V (O) ∩ On is Zariski dense in V .

Proof. (A similar argument was given by Scanlon, in a slightly different context.) Let L be a
large algebraically closed field extending K. Let a ∈ V (L) be a K-generic point. Thus for any
b ∈ V (K) there exists a K-algebra homomorphism h : K[a]→ K with h(a) = b. In particular,
there exists such an h with h(a) ∈ V (O). It follows that MK generates a proper ideal of OK [a].
(Otherwise, for some m ∈MK and f ∈ OK [X], mf(a) = 1; but then applying h we would have
mf(h(a)) = 1.) Thus MK extends to a maximal ideal M ′ of OK [a], and thence to a maximal
ideal M ′′ of some valuation ring OL of L, with OK [a] ⊂ OL. Thus the valuation on K can be
extended to L in such a way that a ∈ O(L). By model completeness of ACVF, there exists
a′ ∈ V (K) outside any given proper K- subvariety of V , with coordinates in O. �

Example 6.14. An ∞-definable generically metastable group that is not definable, not purely
inertial, and not the connected component of a definable group.

Let K0 = C(t)a, with val(t) > 0. Let Hn = {(x, y) ∈ Ga ×Gm : val(y −
∑n
i=1 1/n!(tx)n) ≥

val(tn+1)}. Hn is a definable subgroup of (Ga×Gm)(O), isomorphic to (Gm×Ga)(O). H = ∩Hn

is also generically metastable; but it is dominated by the map (x, y) 7→ res(x). The Zariski
closure of H has dimension 2, but the generic type of H has a residual part of transcendence
degree one. �

Lemma 6.15. Let G be a group scheme over O. For each n, let φn(g) = gn, and assume
φn : φ−1

n (V )→ V is a finite morphism. Then G(O) is connected.

Proof. By properness, φn : G(O) → G(O) is surjective. So any finite quotient has order prime
to n. This holds for all n, so G(O) has no finite quotients. �

Question 6.16. in ACVF, is G/G0 always finite?

The answer is presumably yes (cf. Problem 1.5 and the proof of Lemma 5.12). This would
imply that Lemma 5.11 holds for non-Abelian groups too.

Example 6.17 (Versions of tori). The value group of an algebraically closed valued field is an
ordered Q-vector space, admitting quantifier elimination. Every group definable over the value
field has a chunk in common with the group V = Γn. Interesting variants of Γn are known. If ∆
is a finitely generated subgroup of Γn, the convex hull C(∆) of ∆ (with respect to the product
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partial ordering of V ) is an Ind-definable subgroup (a non-definable direct limit of definable
sets). ∆ is of course itself not-definable. But the quotient C(∆)/∆ is canonically isomorphic
to a group interepretable over Γ. See [20].

These examples lift to the tori T = Gm
n over algebraically closed valued fields. Let r : T → V

be the homomorphism induced by the residue map. Let ∆ be a finitely generated subgroup of
T . Then C(∆) = r−1(C(r∆) is Ind-definable, and C(∆)/∆ is definable in ACVF. For example,
fix t ∈ K with val(t) = τ > 0, and define a group structure on A(t) = {x : val(x)0 ≤ val(x) ≤ τ}
by: x ∗ y = xy if xy ∈ A(t), x ∗ y = xy/t otherwise. This group admits a homomorphism into
a Γ-definable group, with generically metastable kernel.

6.18. Abelian varieties.

Definition 6.19. Let V be an affine variety over K. A definable subset W is bounded if for
any regular function f on V , valf is bounded below on W .

For a general K-variety V , a definable subset W is bounded if there exists an open affine
covering V = ∪mi=1Ui, and a bounded Wi ⊆ Ui, with W = ∪iWi.

This definition is due to [?], §6.1; the assumption there that the valuation is discrete is
inessential. If V ′ is a closed subvariety of V and W is bounded on V , then clearly W ∩ V ′ is
bounded on V ′. In the affine case, if V has coordinate ring K[f1, . . . , fn], it suffices that the fi
be bounded. In the case of projective space Pn, a standard covering by bounded sets is given
in projective coordinates by: Ui = {(x0 : · · · : xn) : (∀j ≤ n)(val(xi) ≤ val(xj))}. Complete
varieties are bounded as subsets of themselves.

Assume the base C is a model, so C = dcl(F ) where F = C ∩ K; F is an algebraically
closed valued field. Let F be the family of all C-definable functions on V into Γ. Recall (
Proposition 2.14) that a C-definable type r is stably dominated iff for any f ∈ F there exists
γ = f(r) ∈ Γ(M) such that if c |= r|C then f(c) = γ.

Let q be a definable type extending a type q0 over C, and let (pt : t |= q0) be a family of
stably dominated C(t)-definable types on V .

We say that the family {pt} is uniformly bounded at q if there exists open affine U such
that for any regular function f on U , there exists α ∈ Γ such that if if t |= q|C(α, f)) and
c |= pt|C(α, f, t) then c ∈ U and valf(c) ≥ α.

Lemma 6.20. Let pt be a family of stably dominated types. Assume pt concentrates on a
bounded W ⊆ V (i.e. W ∈ pt). Then {pt} is uniformly bounded at q.

Proof. The types pt (when t |= q0) concentrate on one of the bounded affine sets Wi in Defini-
tion 6.19. Let U be the corresponding affine Ui. Any regular function on Ui is bounded on all
of Wi, hence in particular on generic realizations of the pt. �

Recall Definition 2.20.

Lemma 6.21. Assume {pt} is uniformly bounded at q. Then there exists a unique C-definable
type p∞ = limq pt such that for any f ∈ OV (U), if a |= p∞ then valf(a) = limq f(qt) . p∞ is
stably dominated. If h : V →W is an isomorphism of varieties, then limq h∗pt = h∗ limq pt.

Proof. By assumption we cannot have limq qt(f) = −∞. The set of f such that limq qt(f) =
+∞ is a prime ideal I; part of the condition on p∞ is that (f = 0) ∈ p∞ iff f ∈ I. Let
V ′ be the zero set of I. Let U ′ = V ′ ∩ U . The affine coordinate ring of U ′ is OV (U)/I;
hence an element of K(V ′) = K(U ′) can be written g/h with g, h ∈ OV (U) and h /∈ I; and
limq qt(h) 6= ±∞. Hence we can define a valuation v on F (V ′) (extending the given valuation
on F ) by v(g/h) = limq qt(g) − limq qt(h). This determines a valued field extension F+ and
hence gives a complete type p∞ of elements of V ′. Note that p∞(f) = limq qt(f) ∈ C for any
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f ∈ F (V ′). In particular the choice of U is immaterial. It is clear that p∞ is definable; and
that that Γ(F+) = Γ(F ), so p∞ is orthogonal to Γ. By Lemma 2.14 it is stably dominated.
The functoriality is evident. �

Lemma 6.22. Let G be a bounded definable subgroup of an algebraic group G̃ over K. Let
Ht be a Γ-family of connected stably dominated definable subgroup, forming a directed system
under inclusion, H = ∪tHt. Assume G/H is internal to Γ. Then H is generically metastable.
Moreover G/H is definably compact.

Proof. Let q(t) be a definable type cofinal in the partial ordering: Ht ⊆ Ht′ . Let pt be the
generic type of Ht. By Lemma 6.20 the family is uniformly bounded at q, so p∞ = limq pt
exists.
Claim. Let H,H ′ be connected generically metastable definable subgroups of G. Let p, p′ be
their generic types. Then H ⊆ H ′ iff p ∗ p′ = p′.

Proof. If H ⊆ H ′, then p∗p′ = p′ by definition of genericity for p. Conversely if p∗p′ = p′ then
a generic of H is a product of two realizations of p′; in particular it lies in H ′; but any element
of H is a product of two generics, hence any element of H lies in H ′. �

By Lemma 6.21, we have lima
q pt =a limq pt for any a ∈ G. Let s |= q|C, t |= q|C(s). If

a |= ps|C(s), then apt = pt, and hence ap∞ = p∞. Thus Hs ⊆ Stab(p∞). So H ⊆ Stab(p∞).
On the other hand, as p∞ is generically metastable, and G/H is internal to Γ, the function
x 7→ Hx is constant on p∞, so p∞ lies in a single double coset Hb. It follows that p∞ is a
generic type of a coset of H, so H is generically metastable.

Now let q′ be a definable type on Γ, and let h :→ G/H be a definable function. For t ∈ Γ, let
p′t be the generic type of h(t), viewed as a coset of H; this is a translate of the generic type of
H. Let p′∞ = limr p

′
t. Then p′∞ is stably dominated, so it concentrates on a unique coset of H,

corresponding to an element e ∈ G/H. Tracing through the definitions we see that e = limr h.
Since r, h are arbitrary, G/H is definably compact (Definition 2.21). �

Corollary 6.23. Let A be an Abelian variety over K. Then A has a unique maximal stably
dominated definable subgroup B. There exists a definably compact group C defined over Γ, and
a definable isomorphism φ : A/B ∼= C.

If A is defined over a field F ≤ K, then B and φ are are also defined over F .
�

If A ∼= G(K) where G is an Abelian scheme over OK with good reduction, then by Lemma 6.7,
Lemma 6.8, G(K) = G(OK) is generically metastable. Since G(K) is divisible, it has a unique
definable generic. Thus in this case the definably compact quotient B is trivial.

If F is locally compact, then the set B(F ) of points of B lifting to F -points will be a finite
subgroup of the definably connected group C. On the other hand if F = Qp((t)), B(F ) can be
a finite extension of Z.

After appropriate base change, A becomes isomorphic to a group over the residue field. It is
interesting to compare this with the classical theory of semi-stable reduction.

6.24. Residually Abelian groups.

Example 6.25. In ACVF, there exists a stably dominated non-Abelian group, with Abelian
stable part.
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Proof. Let A = {Ga}2, and let β : A2 → Ga be a non-symmetric bilinear map; defined over
the prime field. E.g. β((a1, a2), (a′1, a

′
2)) = a1a

′
2 − a2a

′
1. Let t be an element with val(t) > 0.

Define on A2:

(a, b) ? (a′, b′) = (a+ a′, b+ b′ + tβ(a, a′))

�
In fact, Simonetta found a C-minimal example:

Example 6.26. If we work in Ga(O/t2O), where val(t) > 0, we can also just take a ? b =
a+ b+ tβ(a, b). cf. [26].

The group in the above example does lift to an algebraic group structure on O.
We may still ask if a G be connected metastable of weight 1 is nilpotent.
We believe that a definably simple group definable in ACVF is either finite or an algebraic

group over the valued field or over the residue field. The existing metastable technology yields
a proof of the Abelian case.

Proposition 6.27. Let A be a nonzero Abelian group definable in ACVF. Then there exist
definable subgroups B ≤ C ≤ A, with B 6= C, and C/B definably isomorphic (with parameters)
to an algebraic group over the residue field or a definable group over the value group.

Proof. Let λ : A → Λ be as in Theorem 5.9. If λ(A) 6= 0 we can take C = A,B = ker(λ). If
λ(A) = 0, then A is limit-metastable. In particular A contains a nonzero generically metastable
definable Abelian group C. C has a k-algebraic group as a nontrivial quotient.

�

6.28. Interpretable fields.

Proposition 6.29. Let F be an infinite field definable in ACVF. Then F is definably isomor-
phic to the residue field or the the valued field.

Proof. If F is stable, then by [7] it is definable over the residue field (after base change), hence
by [29] or [11] it is definably isomorphic to the residue field. There are no infinite fields definable
over Γ, since Γ is a model of the theory DOAG of divisible ordered Abelian groups, without
additional structure. We will also use below the fact that any one-dimensional torsion-free group
defined in DOAG is definably isomorphic to (Γ,+). (See [5] for a more general statement.)

By Remark (6) to Proposition 5.16, F ∗ has a definable homomorphic image V definable over
Γ, containing a torsion-free one-dimensional definable group. Since this group is isomorphic
to (Γ,+), F admits a definable unbounded map into Γ. Hence F is not boundedly imaginary
(Lemma 2.29).

Let D be a subng of F , with (D,+) connected generically metastable, and such that F is the
field of fractions of D (Proposition 5.16). There exists a surjective definable map D ×D → F
(namely (x, y) 7→ x/y for nonzero y, (x, 0) 7→ 0.) If D were boundedly imaginary, then F would
be too; so D is not boundedly imaginary. If I ′ is any nonzero ideal of D, say c ∈ I ′; then
D ∼= Dc ⊆ I ′; so I ′ is not boundedly imaginary either.

Let f be the homomorphism of Proposition 6.3 on (F,+) into an algebraic group. Let I be
the kernel. If c ∈ D, then d 7→ f(cd) is another such homomorphism, so it must factor through
f , f(cd) = g(f(d)); thus if f(d) = 0 then f(cd) = 0, i.e. if d ∈ I then cd ∈ I. So I is an ideal
of F , and is purely imaginary; moreover (Remark 6.2) for any stably dominated subgroup A of
(F,+), I ∩ A is boundedly imaginary. In particular I ∩ D is boundedly imaginary, so by the
above discussion I ∩ D = (0). It follows that I 6= F , so I = (0). Hence f is an isomorphism
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onto a subgroup of an algebraic group G. It follows that any purely imaginary definable subset
of Fn is finite.

Let L be the limit metastable subgroup of (F ∗, ·). Then L also is definable over the field
sort, and hence so is he semi-direct product H = Ln(F,+) ⊆ F 2. Let φ : H → G be the
homomorphism of Lemma 6.3. As above the kernel is a normal subgroup, and being imaginary
it is finite; but H has no finite nontrivial normal subgroups, so φ is an embedding.

We proceed as as in [23], with some changes of local reasoning. The Zariski closure of φ(F )
is commutative. Let A0 be the maximal semi-Abelian subgroup of A. View L as a subgroup
of H. Then the Zariski closure L̄ of φ(L), being connected, acts trivially on A0, and it follows
that A0 ∩ φ(F ) = (0). Factoring out A0 we obtain an embedding ψ of F in a vector group W .
Identify F with ψ(F ); we may assume F is Zariski dense in W . Now L̄ is connected, hence acts
linearly on W , and the action of L on F factors through the action of L̄. For b ∈ L we write
b · w for φ(b)w; this extends the action of L on F to a linear action of L on W . If ri ∈ L and∑
niri = 0, then

∑
niri(y) = 0 for y ∈ F , and by Zariski density of F we have

∑
niri(y) = 0

for y ∈ W . Thus the action may be extended to an action of the ring R′ generated by L on
W , again extending the given action of R′ on F . Finally if 0 6= r ∈ R′ then r acts on F as
an invertible linear transformation, since the image contains r(F ) = F and hence by Zariski
density W . Thus we can extend the action to the field of fractions of R′, namely to F . We
have thus extended the action of F on F by multiplication, to an action of F on W .

Let Z be some nonzero orbit of L on F . Then Z is definably isomorphic to L, and hence
has the same dimension as F . (Recall F ∗/L∗ is Γ-internal.) So Z contains a nonempty open
subset U of W . Let c ∈ U ; then any sufficiently nearby c′ is L-conjugate to c. In particular for
any α ∈ O with val(α− 1) sufficiently large, there exists h(α) ∈ L with h(α) · c = αc. Since F
is a field, h(α) is uniquely defined. For any b ∈ L we have

α(b · c) = b · (αc) = b · (h(α) · c) = h(α) · (b · c)
so h(α), α agree on Z. The linear span of Z is W , soh(α), α agree on W .

Let E = {α ∈ K : (∃b ∈ F )(∀x ∈ W )(αx = bx)}. This is clearly a subfield of K, and it
contains a neighborhood of 1. Hence it contains a neighborhood N of 0. If 0 6= x ∈ K then
x−1N ∩ N includes some nonzero u ∈ N , so xu ∈ N and x = (xu)/u ∈ E. So E = K. We
have thus defined an embedding of rings K → F . Since F has bounded dimension, for some
m no definable subset of F admits a definable map onto Km; so dimK F < m. Since K is
algebraically closed we have K ∼= F . �

We naturally expect that any infinite non-Abelian simple group definable in ACVF is iso-
morphic to an algebraic group defined over the residue field or valued field. A proof along the
above lines may be possible assuming a positive solution to Problem 1.5, at least for ACVF,
along with an interpretation of an ordered proper semi-group structure on H\G/H

Example 6.30. [Definable generic types of algebraic groups]
Let K be an algebraically closed valued field; given an algebraic group G, look at the definable

generic types of G(K).

(1) SLn(OK) is generically metastable, with a unique definable generic.
(2) Gm(K) has two definable generics: of elements of large absolute value, and of infinites-

imal absolute value. Attributable to Γ.
(3) Ga(K) has a unique definable generic: of elements of large absolute value. This is a

limit-metastable example; here definable generic types correspond to cofinal definable
types in the partially ordered set (Γ<0, <) indexing the generically metastable subgroups
αO. The fact that the poset has a unique cofinal definable type is however a phenomenon
of dimension one:
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(4) G2
a(K) has a large family of generics. For any definable curve E in (Γ<0)2, cofinal in

the sense that for any (a, b) there exists (d, e) ∈ E with d < a, e < b, there exists a
definable generic type of G2

a whose projection to (Γ<0)2 concentrates on E.
(5) The groups described in Example 6.17 admit a homomorphism to a definably compact

group over Γ, and hence have no invariant definable types at all.
(6) Let G be the solvable group of upper diagonal matrices. Then G has one-sided definable

left-generics, right-generics, as well as two-sided generics. One of the latter is given as
follows:

Let (xij) be the matrix coefficients of an element of x ∈ GLn(K). A two-sided
generic is determined by: |xij | >> |xi′j′ | when (i, j) < (i′, j′) lexicographically (and
i < j.)

(7) For n > 1, SLn(K) (or GLn(K)) has no definable left generic type. For suppose p
is a definable type. Then (dpx)(x11| ≥ |x21|) or (dpx)(x11| < |x21|) . Multiplying on
the left by the elementary matrix with 1’s on the diagonal, and t (with |t| > 1) in the
(2, 1)-entry (respectively the (1, 2)-entry), this situation becomes reversed. Thus p is
not invariant under left multiplication. Since GLn(K) has no proper subgroups of finite
index (definable or not), p cannot be a left generic.
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