
1. Metrically approximate subgroups

Let G be a group with a metric d invariant under left and right translations. A
(K, r)-approximate subgroup is a subset X of G containing 1, such that the product
set XX is covered by at most K translates of XBr, where Br is the ball of radius
r around 1. This notion is introduced by Terry Tao’s in his blog entry [3] 1 In this
note, we generalize to this setting some of the results of [6].The model-theoretic
presentation uses additional assumptions; there may well be other routes. Here
is the result under the strongest variant of the assumptions, a ’polynomial decay’
condition on the entropy of X as a function of the scale. (See also Proposition 1.4,
Proposition 1.5, Remark 1.6.)

Proposition 1.1. Fix K, r, c. Then for some M,m,m′ ∈ N, the following state-
ment holds for any metric group (G, d) as above. Assume X is a (K, r)-approximate
subgroup of G, and in addition,

(1)
Nr(X)

NMr(X)
≤M c

then there exists Y with 1 ∈ Y = Y −1, Y k ⊂ (XX−1)2Br, and

(2) Nr(Y ) ≥ 1

m′
Nr(X)

If we consider groups G of bounded exponent 2 then we can also find Ỹ ⊂ Xm with
(1) and

(3) Ỹ 2 ⊂ Ỹ Bmr
so that Ỹ is a (1,mr)-approximate subgroup of G.

Once the model-theoretic setting is in place, the proofs are straightforward trans-
positions of the previous ones. A few points of interest are nevertheless encountered:

(1) Assume (K, r)-approximateness holds for a single K, but for a large number
of scales r. In this case, we find again that a Lie group of dimension about
log(K) is involved. But under somewhat weaker assumptions (Proposi-
tion 1.7), we encounter groups in the Ind-category of compact spaces, that
are not locally compact. I do not know if any structure theory has been
considered for such groups. Do they embed in pro-locally compact groups?
Is it possible to have connected torsion groups in this category? If not,
then Proposition 1.5 can be improved to include the same statement in the
bounded exponent case as Lemma 1.4.

(2) Under the assumption of Lemma 1.1 or Remark 1.6, the group is locally
compact, involves a Lie group if it is not compact and I’d expect that
a considerable further theory can be developed. The statements on the
bounded torsion case are given here as tokens of this. Certainly analogues
of partial Bourgain systems can also be found, but perhaps also nilpotence
of the associated Lie group ([1]).

(3) In the present setting, one disposes of an ideal resembling the ideal of mea-
sure zero sets, but no actual measure. Moreover at the level of generality
of Proposition 1.7, the ideal is not

∧
-definable but only Fσ.

1In [3] the group is commutative.
2say gK = 1, or just d(1, gK) < rm for all g ∈ G
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(4) The construction requires a seed of symmetry to begin with (the hypothesis
(F) of Theorem 3.1). In [6], the same condition (F) was needed. One proof
given there used Morley’s omitting types theorem (and thus unncount-
ably many cardinals); that proof would work here too. In [6], another,
rather constructive construction was also given (Lemma 2.13 there). Im-
mediately afterwards moreover, Sanders independently provided an entirely
finite combinatorial proof. Here I was able to find Lemma 3.5 using ℵ1, but
at the moment I do not see a proof of Proposition 1.7 avoiding uncountable
sets altogether.

(5) The Lie groups mentioned above are related only to K, i.e. to the need for
a finite number of translates. No information is given on (1, r)-approximate
groups. It becomes clear that the axis (1, r) is a more or less autonomous
world; one could call them quasi-subgroups, generalizing the graphs, or
ranges, of quasi-morphisms. These include Turing’s ”Finite approximations
to Lie groups” (Turing 1937), quasi-morpishms (cf. Burger-Iozzi-Wienhard,
Annals 2010) , ε-representations (Kazhdan, IJM 1982). The counterexam-
ple to strong polynomial Freiman in [5] also fits here.

(6) It is likely that the two-sided invariance condition can be relaxed to a
Lipshitz condition on translations. This much holds in a neighborhood
of 1 in any real or p-adic Lie group. Moreover (1) is automatic in this
case, so the hypotheses are valid for (K, r)-approximate subgroups of some
neighborhood of 1. However in this setting, much more precise results were
obtained by Nicolas de Saxce [10], generalizing a different method that
applies in the linear case. I expect that even for r = 1 or larger, one should
have stronger results using the structure theory of Lie groups.

Consider triples (G,X, d), where G is a possibly non-commutative group G,
1 ∈ X = X−1 ⊂ G, d : G2 → R is a metric, invariant under left and right
translations. Let Br denote the ball of radius r around 1.

I follow the notation and statements in [3]. In particular Nr(E) is the minimum
number of r-balls (not necessarily centered in E) needed to cover E. The metric
entropy Nent

r (E) is the largest number of points one can find in E that are r-
separated, i.e. pairwise of distance ≥ r. We have:

(4) Nent
2r (E) ≤ Npack

r (E) ≤ Nr(E) ≤ N int
r (E) ≤ Nent

r (E)

We will use the lemma below for m = 4:

Lemma 1.2. Fix 2 ≤ m ∈ N, k > 0 and assume Nent
r (EE−1E) ≤ κNent

(2m+1)r(E).

Then:

(1) For all e ∈ E, Nr(Bmre ∩ E) ≤ κ
(2) For any Y ⊂ E, Nr(Y ) ≤ κNmr(Y ).

Proof. (1) Let Z be a (2m+ 1)r-separated subset of E with |Z| = Nent
(2m+1)r(E).

For z ∈ Zr, let Wr,z be a maximal r-separated subset of Bmr(z)∩EE−1E. Then the
Wr,z are disjoint, and ∪z∈ZWr,z is r-separated. Thus |∪z∈ZWr,z| ≤ Nent

r (EE−1E).
So

1

|Z|
∑
z∈Z
|Wr,z| ≤

Nent
r (EE−1E)

Nent
(2m+1)r(E)

≤ κ

So for some a ∈ Z we have: |Wr,a| ≤ κ. In particular, Bmr(a) ∩ EE−1E can be
covered by κ balls of radius r.
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Now let b ∈ E and let f(x) = ab−1x. Then f maps bBmr ∩ E isometrically
into aBmr ∩EE−1E. Hence bBmr ∩E can be covered with κ balls of radius r, i.e.
Nr(Bmrb ∩ E) ≤ κ.

(2) Y can be covered by Nmr(Y ) balls of radius mr, and each of these - when
restricted to E - can be covered by κ balls of radius r; so Y can be covered by
κNmr(Y ) balls of radius r.

�

Lemma 1.3. Assume Nent
r/2 (EE−1E) ≤ κNent

9r
2

(E). Let Z be a maximal r-separated

subset of E. Then for any Y ⊂ E,

Nr(Y ) ≤ |BrY ∩ Z| ≤ κNr(Y )

Proof. Any point of E, in particular of Y , has distance < r from some point of
Z, by maximality of Z. Hence Y ⊂ ∪{Br(z) : z ∈ Z ∩ BrY }, so Y is covered by
|Z ∩BrY | balls of radius r; by definition, Nr(Y ) ≤ |Z ∩BrY |. On the other hand,
as Z is r-separated, no two points of Z lie in a single r/2-ball; hence

|Z ∩BrY | ≤ Nr/2(Z ∩BrY )

By Lemma 1.2 (2) for m = 4, applied to the set Z ∩BrY ⊂ E, we have

Nr/2(Z ∩BrY ) ≤ κN2r(Z ∩BrY )

Now if a set of r-balls covers Y , and each is extended to a 2r-ball, then the resulting
set of 2r-balls covers BrY . Thus N2r(BrY ) ≤ Nr(Y ). A fortiori

N2r(Z ∩BrY ) ≤ Nr(Y )

the lemma follows.
�

Let us assume that X resembles a metrically approximate subgroup not just at
one scale r, but many. Say r, r′ > 0 are separated if r′ > 2r or r > 2r′.

Proposition 1.4. Fix K, and k > 0. Then for some m ∈ N, for all triples
(G,X, d), if there exist at least m separated values of r > 0 such that

Nr/8(X9) ≤ KN9r/2(X) <∞

then there exists Y with 1 ∈ Y = Y −1, Y k ⊂ X4Br, and

(5) Nr(Y ) ≥ 1

m
Nr(X)

holds for at least k among these scales r.
If we consider only triples (G,X, d) with G of bounded exponent, 3 then we can

also find Ỹ ⊂ Xm with (5) and

(6) Ỹ k ⊂ Ỹ Brk
For the first part of the statement, we can allow K to change with the scale.

Proposition 1.5. Fix K1,K2, . . ., and let k > 0. Then for some m ∈ N, for all
triples (G,X, d), and rm, . . . , r1 with 2ri+1 < ri, if for each i ≤ m we have:

(7) Nent
ri/2

(X9) ≤ KiN
ent
9ri/2

(X) <∞

then there exists Y ⊂ X4 satisfying, for at least k values of i,

3or just d(1, gk) < rm for all g ∈ G
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(8) 1 ∈ Y = Y −1, Y k ⊂ X4Brk , Nri(Y ) ≥ 1

m
Nri(X)

Remark 1.6. In the bounded exponent case, the assertion (6) of Lemma 7 remains
true under the assumptions of Lemma 1.5 if we further assume e.g. that Xk+4Bri∩
Xk+16 ⊂ Xk+8 for k ≤ m; see Lemma 1.11.

The next remark proves Proposition 1.1.

Remark 1.7. Let m = m(K, k) be as in Lemma 1.4. Assume X is (K, r)-
approximate, and in addition, Nr(X) ≤ KmN1002mr(X). Then the conclusion
of Lemma 1.4 holds.

Proof. Indeed the hypothesis of Lemma 1.4 must hold for at least m of the 2m
scales immediately above r, for K2 in place of K. �

Example 1.8. Let Ki = 5i+1. r1 > r2 > · · · > rm > 0 be a descending sequence
of positive reals, and 0 < N1 < N2 < · · · < NM a sequence of integers. Let G = R,
with the usual metric d, and

X = X(r,N,m) = (
Z
N1
∩ [0, 1])r0 + (

Z
N2
∩ [0, 1])r1 + · · ·+ (

Z
Nm
∩ [0, 1])rm

Then X,G, d fit the hypotheses of Lemma 1.5, but not of Lemma 1.4 or Lemma 1.7,
or Corollary 1.11. The group obtained in the proof of Lemma 1.5 embeds into a
pro-locally compact group, but is not locally compact.

It would be interesting to know if non-pro-locally compact examples exist; this is
related to the question of analyzing (K, r)-approximate subgroups at a single scale.

The proof of Lemma 1.5 will use the stabilizer theorem of [6], or Cor. 3.6 there.
We need to apply it to a quotient of a definable group by an∞-definable subgroup,
namely the group of elements close to 1 (at an appropriate scale). Though originally
formulated for definable groups, the extension to this case is routine. With the slight
modifications needed, the stabilizer theorem and this corollary are attached below
as Theorem 3.1 and Corollary 3.2.

1.9. Proofs. We prove Proposition 1.5. Suppose for contradiction that Lemma 1.5
is false. So K0,K1,K2, . . . , k are fixed; and for each m we have a counterex-
ample (G(m), d(m), X(m), r1(m), . . . , rm(m)), with 2ri+1 < ri; i.e. there is no
Y ⊂ X(m)4 satisfying (8) for k values of i. Fix also a maximal ri-separated subset
Zi(m) of X(m)3 (for i ≤ m), and let νi(m) be the normalized counting measure on
Zi. Let

(G, d,X, r1, r2, . . . , Z1, Z2, . . .)

be an ultraproduct; here the ri are nonstandard and d takes nonstandard values.
(7) holds for all i ∈ N. Note that Nri(XXX) is defined as a nonstandard real
(typically infinite, but not ∞.) On the other hand we will work with ri only for
i ∈ N.

Let G̃ be the group generated by X. Let

B∗ = ∩k∈NBrk = {g ∈ G :
∧
i∈N

d(g, 1) ≤ ri}

B∗ is an
∧

-definable subgroup of G; it is normalized by X by virtue of the

invariance. So B∗ ∩ G̃ E G̃.
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Let o(1) denote the infinitesimal nonstandard reals, i.e. |x| < 1/2, 1/3, · · · .
The ideal µr. Fix i for a moment, let r = ri, Z = Zi, ν = νi, so that (7) holds.

By (7), Nr(X), N2r(X), Nr(X
3) are of the same order of magnitude. Let

$ = $r = o(1)Nr(X) = o(1)N2r(X) = o(1)Nr(X
3)

Define an ideal µ = µr of definable subsets of G:

Y ∈ µ ⇐⇒ Nr(Y ) ∈ $

Since Nr(Y ) is 2-sided invariant, µ is 2-sided translation invariant. However, we
will mostly be interested in subsets Y of X3.

By Lemma 1.2 (2), Nr/2(Y ) ≤ κNr(Y ) for a standard integer κ. But clearly any
covering of Y by r/2-balls yields (if these balls are inflated) a covering of Br/2Y by
the same number of r-balls. Thus Nr/2(Y ), Nr(Br/2Y ), Nr(Y ) differ by a bounded
multiple. So: Y ∈ µ ⇐⇒ Nr/2(Y ) ∈ $, and

(9) Y ∈ µ ⇐⇒ Br/2Y ∩X3 ∈ µ

Of course, this continues to hold if r/2 is replaced by any smaller positive number.
By (7) and Lemma 1.3, we have

(10) For Y ⊂ X3, Y ∈ µ ⇐⇒ ν(Br/2Y ∩ Z) = 0

In particular, µ is invariant under automorphisms of (G, ·, d,X, Z, ν, r).
Note X /∈ µ. Also, (10) and the S1 property of ν immediately gives a metrically

approximate version of S1 for µ: if Y ⊂ X3×P , Y (c) = {y : (y, c) ∈ Y } the section
of c, and if (ck) is an indiscernible sequence in P , and Y (ck) /∈ µ, then

(11) Br/2Y (ck) ∩Br/2Y (cl) ∩X3 /∈ µ for k < l

The ideal µ∞. We now restore the index i to the notation; the ideal µri above
will be denoted µi.

Define an ideal µ∞ on definable subsets of X3 by:

Y ∈ µ∞ ⇐⇒
∨
n∈N

∧
n≤i∈N

Y ∈ µi

We extend µ∞ to
∧

-definable sets by letting
∧
k Ek ∈ µ∞ iff some finite inter-

section of the Ek lies in µ∞. This makes it a good ideal in the sense of § 2. Note
µ∞ is also invariant and left and right translations.

We let G act on products G × P by ignoring the P -coordinate, i.e. g · (h, y) =
(gh, y). We say Y is B∗-invariant if B∗Y = Y .

Claim . µ∞ has the S1-property for B∗-invariant subsets of B∗X
3: if Y ⊂

B∗X
3 × P is

∧
-definable, B∗Y = Y , and if (c1, c2, . . .) is an indiscernible sequence

in P , and Y (c1) ∩X3 /∈ µ∞, then Y (c1) ∩ Y (c2) ∩X3 /∈ µ∞.

Proof. write Y = ∩jYj with Yj definable; we may also arrange

(12) Brj′Yj ⊂ Yj−1
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Where j 7→ j′ is an increasing function. So for all j, Yj(c1) /∈ µ∞; thus there are
arbitrarily large i with Yj(c1) /∈ µi. Fix j, and take i > j′ with Yj(c1) /∈ µi. By
(11),

Bri/2Yj(c1) ∩Bri/2Yj(c2) ∩X3 /∈ µi
Thus Brj′Yj(c1) ∩ Brj′Yj(c2) ∩X3 /∈ µi. By (12), Yj−1(c1) ∩ Yj−1(c2) ∩X3 /∈ µi.
As this holds for infinitely many i, Yj−1(c1) ∩ Yj−1(c2) ∩X3 /∈ µ∞. Now that was
proved for arbitary j, so Y (c1) ∩ Y (c2) ∩X3 /∈ µ∞. �

Now let G = G̃/(B∗ ∩ G̃), h : G̃ → G the quotient map. Then G is a piecewise
hyperdefinable group (see § 2). Define µ on

∧
-definable subsets of G: Y ∈ µ iff

h−1(Y ) ∈ µ∞. Since µ∞ is a good ideal, the same holds for µ; and by the above
Claim, µ has the S1-property for subsets of X3. Let M ′ �M be such that condition
(F) of Theorem 3.1 holds. By Corollary 3.2, there exists an

∧
-definable over M ′

subgroup S of G, with G/S bounded. Moreover we may take S = h(W ) where
W = (q−1q)2.

Then h−1S is an
∧

-definable subgroup of G̃, and h−1S /∈ µ∞. As (h−1S)k =
(h−1S) ⊂ X4B∞, there exists a definable Y with 1 ∈ Y = Y −1, Y k ⊂ X4Brk ,
and h−1S ⊂ Y ; so Y /∈ µ∞. Thus for infinitely many values of i, Y /∈ µi; choose
k such values i1, . . . , ik. For i = i1, . . . , ik, we have Y /∈ µi, so for some m0

we have Nri(Y ) ≥ 1
m0
Nri(X). But it follows that a set Y (m) with the same

properties exists in the factors G(m) for infinitely many m; taking m ≥ m0, we have
Nri(Y (m)) ≥ 1

mNri(X) for i = i1, . . . , ik. This contradicts the initial assumption.

1.10. Topologizing G/S. The group G/S is the union of subsets Xn; each Xn

is compact under the logic topology, where images of ∞-definable sets are closed.
As Xn has bounded cardinality - it can be taken to be smaller than the saturation
degree of the model - the topology is not sensitive to increasing the set of allowed
parameters. For this reason it is also Hausdorff; and it follows that the product
topology is the same as the logic topology on products.

One can topologize G/S using the compactly generated topology, so that a set
is open iff it has open intersection with Xn for each n. It is not clear that the
resulting topology is Hausdorff; indeed Example 1.8 shows that G/S need not be a
locally compact group in general. However we do have:

Lemma 1.11. The quotient G/S of the proof of Lemma 1.5 is a locally com-
pact topological group provided: for any k, for some k′ and ri, for all k′′ we have
Xk+4Bri ∩Xk′′ ⊂ Xk′ ,

Proof. As XkBri ∩ Xk′′ ⊂ Xk, we certainly have XkB∞ ∩ Xk′′ ⊂ Xk. Now

(h−1S) ⊂ X4B∞ so Xk(h−1S) ∩Xk′′ ⊂ Xk, and

Xk ∩ (h−1S)(Xk′′ rXk′) = ∅

Thus Xk ∩ cl(Xk′′ r Xk′) = ∅, so Xk is contained in the interior of Xk′ in Xk′′ .

This propagates: Xk′ is contained in the interior of Xk′′ in Xk′′′ ; thus the interior

of Xk′ in Xk′′ and in Xk′′′ is the same; so Xk is contained in the interior of Xk′ in

Xk′′′ , etc. Finally we see that Xk is contained in the interior of Xk′ in G/S.
In particular, 1 lies in the the interior of X1′ in G/S. It follows that G/S is

locally compact. Similarly, if 1 6= a ∈ G/S then a ∈ int(Xk′) for some k; as Xk′ is
Hausdorff it follows that 1, a are separated by open sets in G/S is too. �
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Lemma 1.12. Assume all Ki are equal (as in Lemma 1.4.) Then G/S is a locally
compact topological group.

Proof. In the second case, we have a sequence ri such that Npack
ri (X3) ≤

K ′Npack
ri (X). It follows that X3 contains at most K ′ disjoint translates of BriX;

so it may be covered by K ′ translates of X2B2ri . Hence by compactness X3 may
be covered by K ′ translates of X2B∗. So X3 is covered by finitely many translates
of X2; this propagates to Xn. Cover Xn by finitely many translates of X2; those
that meet Xk are contained in Xk+4; thus Xn is covered by a finite union of
compact sets not meeting Xk, and by Xk+4. So Xk lies in the interior of Xk+4 in
Xn, and local compactness follows as above. �

Proof. of Lemma 1.4 It remains to prove the statement when G has bounded ex-
ponent. As in [6] 4.5, 4.16, the group G/S (shown above to be locally compact)
has a compact open subgroup. This subgroup, by definition of the topology on
G/S, pulls back to an ∞-definable, co-∞-definable subset C of Xm1 for some

m1; and Ỹ := h−1(C) is an ∞-definable, co-∞-definable and thus simply defin-
able subset of Br1X

m1 . Since C is a subgroup and h a homomorphism we have

h(Ỹ k) = h(Ỹ )k ⊂ C, so Ỹ k ⊂ Ỹ B∗ and in particular Ỹ k ⊂ Ỹ Brk . �

Remark 1.13. The bounded torsion statement of Lemma 7 also holds in
Lemma ??, under the assumption of Lemma 1.11 (up to Xm.)

Remark 1.14. To obtain a locally compact local group as in [4], it would suffice
in Lemma 1.11 to assume X4Bri ∩X40 ⊂ X10.

Remark 1.15. Without the assumption of Lemma 1.11, in place of the compactly
generated topology, it seems better to view G/S as a group object in the Ind-category
of compact spaces. The limit of the compact sets [−n, n]N, with the natural addition,
is a simple example of a group of this type which is not locally compact.

Remark 1.16. (1) In fact as in [6], in Lemma 1.4 we have a canonically asso-
ciated Lie group with no compact normal subgroups, and the assumption
of bounded exponent can be replaced by: Lie rank 0.

(2) If the hypothesis of Lemma 1.4, holds at m consecutive scales, the ideals
µr occurring in the proof will be all the same, so µ∗ will be

∧
-definable.

(3) In case G/S is nilpotent, or becomes nilpotent after factoring out a com-
pact normal subgroup, then in Lemma 1.5 one can find Y ⊂ Xm sat-

isfying (8) and such that the length k′- iterated commutator set Ỹ :=
[Y, [Y, [· · · , Y ] · · · ] satisfies (6).

(4) The group B∗ should be
∧

-definable to use Cor. 3.6 of [6] for hyperdefin-
ables; but there is no restriction on the complexity definition of the ideal
(provided we don’t mind a change of basis.)

(5) With a little care it may be possible to relax right invariance to a uni-
form Lipshitz condition on right translations. Notably, in the proof of
Lemma 1.5, translation invariance is used in order to achieve normality of
the subgroup B∗, (at least within the group generated by X), and invari-
ance (under X-translations) of the ideals µr. For both of these, a uniform
Lipshitz condition on left and right translations by elements of X would
suffice. The 9 could also be replaced by 3, with some adjustment of other
parameters.
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2. Appendix 1: Hyper-definable sets

We recall some basic definitions. We work in a sufficiently saturated and ho-
mogeneous structure U; so that a ’small’ intersection of definable subsets of U is
nonempty, if every finite intersection is nonempty. For our present purposes ’small’
can be taken to mean ’countable’. By an

∧
-definable set we mean a small intersec-

tion of definable sets.
We are given a definable set P0 and an∞-definable equivalence relation E on P0.

Let h : P0 → P := P0/E be the quotient map. P is called a hyperimaginary set.
A subset of P is called

∧
-definable if the pullback to P0 is

∧
-definable. Note that

the image of a definable subset of P is
∧

-definable. A product of hyperdefinable
sets is viewed as hyperdefinable in the natural way.

We do not have a notion of a definable subset of P . But when Q ⊂ Pm is
∧

-
definable, we will call a function f : Q → P definable if the graph is ∞-definable.
In this case there exists a definable D ⊂ Pm0 and a definable function F : D → P0

whose projection is f . By a (complete) type over a base set M we mean a nonempty
M −

∧
− definable subset Y of P that is minimal under inclusion; thus for any

M −
∧

-definable subset Z of P , either Y ⊂ Z or Y ∩ Z = ∅
By a good ideal on P (over A) we mean a family I of ∞-definable subsets of P

such that :

(1) I is invariant under Aut(U/A).
(2) If X,X ′ ∈ I and Y ⊂ X ∪X ′ then Y ∈ I. Also I is a proper ideal: P /∈ I.
(3) If X /∈ I, then there exists a complete type over U extending X, and

including no element of I.

Definition 2.1. A good ideal I is S1 if whenever (ai) is an indiscernible sequence
(in some sort Q of the structure U), D ⊂ P × Q is ∞-definable, and D(ai) /∈ I,
then for some m, D(ai) ∩D(aj) /∈ I.

The ideals we will actually use have an additional property of compactness,
namely, if X = ∩i∈IXi is a small intersection, and X ∈ I, then for some finite
I0 ⊂ I we have ∩i∈I0 ∈ I.

When P is an ordinary sort carrying a measure µ, the ideal of measure zero∧
-definable sets is not compact and does not satisfy (3), but the ideal generated

by the definable measure zero sets is a good, compact ideal with S1.

Definition 2.2. An
∧

definable set X divides over M if X is defined over some
(possibly infinite) tuple b, and there exists an indiscernible sequence (bi : i ∈ N)
with corresponding sets Xi, b1 = b,Xi = X, such that ∩i∈NXi = ∅.

The forking ideal fM is the ideal generated by the the ∞-definable subsets of P
that divide over M .

Remark 2.3. fM is a proper, M -invariant ideal. If X divides over M , then X
clearly lies in any S1-ideal. Thus fM is contained in any S1-ideal.

A piecewise hyperdefinable group is a strict Ind-object in the category of hyper-
definable sets. Explicitly, it is a group G, ·,−1 whose universe is G = ∪nGn,with
each Gn hyperdefinable, and such that G−1n = Gn and Gn · Gn ⊂ Gn+1, and the
graph of · restricted to G2

n ×Gn+1 is
∧

-definable. By an
∧

-definable subset of G,
we mean such a subset of some Gn.
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Key example: Consider a sufficiently satruated group H, say obtained as an ultra-
product, and B an

∧
-definable subgroup ofH, i.e. B is an intersection B = ∩n∈NBn

of definable sets, such that Bn = B−1n and Bn+1Bn+1 ⊆ Bn. Then H/B is a hy-
perdefinable group. An

∧
− definable subgroup of H/B is just the image modulo

B of an
∧

-definable subgroup of H.
If X is an

∧
-definable subset H, and B an

∧
-definable normal subgroup of H,

we can also consider the subgroup of H/B generated by the image of X; then G is
a piecewise hyperdefinable group. To define G, it suffices for B to be normalized
by X rather than fully normal.

3. Appendix 2: The stabilizer theorem for hyperdefinable sets

We repeat here the stabilizer theorem of [6], noting that the proof carries over
(routinely) for hyperdefinable groups. The text below is a lightly modified cut-and-
paste from [6]. An easier proof was given for approximate equivalence relations as
well, but that proof used measures whereas in [6] only the measure-zero ideal was
used.

We are given a good ideal µ of
∧

-definable subsets of G; An
∧

-definable subset
of G is called thin if the image in G is in µ, wide otherwise.

We work over some base model M .

Theorem 3.1. Let G be a piecewise hyperdefinable group, generated by a symmetric
hyperdefinable set X; µ is a good ideal, also invariant under left or right translations,
with the S1 property on X3. Let q ⊂ X be a wide type over M . Assume:

(F) There exist two realizations a, b of q such that tp(b/Ma) does not fork over
M and tp(a/Mb) does not fork over M .

Then there exists a wide, M -
∧

-definable subgroup S of G. We have S = (q−1q)2;
the set qq−1q is a coset of S.

Moreover, S is normal in G. It is the smallest Aut(U/M)-invariant subgroup of
G of small index.

Proof. We also write q to denote {a : tp(a/M) = q}; and q−1 = {a−1 : tp(a/M) =
q}.

Given two subsets X,Y of G, let

X ×nf Y = {(a, b) ∈ X × Y : tp(b/M(a)) does not fork over M}

Let

Q = {a−1b : (a, b) ∈ q ×nf q}

Q′ = {a−1b : a, b ∈ q, tp(b/Ma) is wide}
Note qq−1 is obviously wide by right-invariance, and similarly q−1q is wide as-

suming left-invariance.
Throughout this proof, we will use the fact that wideness of qx∩qy−1 is a stable

relation between x and y. By Lemma 3.4, we have:
� for any two types p1, p2, this relation holds for one pair (a1, a2) ∈ p1 ×div p2

iff it holds for all pairs iff it holds for one or all pairs (a2, a1) in p2 ×div p1. Here
X ×div Y = {(a, b) ∈ X × Y : tp(b/M(a)) does not divide over M}.

Claim 1. q−1q ⊆ QQ.
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Proof. Let a, b ∈ q. Using (F), find c |= q be such that tp(a/Mc) does not fork
over M , and tp(c/Ma) does not fork over M . By extending tp(c/Ma) to a type
over M(a, b) and realizing this type, we may assume tp(c/Mab) does not fork over
M . So we have (b, c) ∈ q ×nf q, and (c, a) ∈ q ×nf q. So b−1c, c−1a ∈ Q, hence
b−1a ∈ QQ. �

Claim 2. For all (a, b) ∈ q ×nf q, qa−1 ∩ qb−1 is wide.

Proof. By �, it suffices to show that for some (a, b) ∈ q ×nf q, qa−1 ∩ qb−1 is
wide. Let a1, a2, . . . be an M - indiscernible sequence of elements of q, such that
tp(ai/A∪ {aj : j < i}) does not fork over M . Then (ai, aj) ∈ q×nf q for any i < j.

It suffices to show that qa−11 ∩ qa
−1
2 is wide. This is clear since µ is an S1-ideal,

and by right-invariance, qa−1i /∈ I. �

Claim 3’. For all (c1, c2) ∈ (q−1q)×nf Q′, qc−11 ∩ qc
−1
2 is wide.

Proof. Let pi = tp(ci/M). As in Claim 2, it suffices to see that qc−11 ∩ qc−12 is
wide for some (c1, c2) ∈ p1 ×nf p2. Let a0 |= q. Then there exists a1 ∈ q with

tp(a−10 a1/M) = p1. Since c2 ∈ Q′, there exists a′2 such that r = tp(a′2/M(a0)) is
wide and tp(a−10 a′2/M) = p2; extend r to a wide type r′ over M(a0, a1), and let
a2 |= r′. We thus have (a0, a1, a2) ∈ (q × q) ×nf q, with tp(a−10 ai/M) = pi for

i = 1, 2. Note also, using left invariance of µ, that tp(a−10 a2/M(a0, a1)) is wide,
hence so is tp(a−10 a2/M(a−10 a1)), so it does not fork over M .

By Claim 2 we have qa−11 ∩ qa
−1
2 wide. By the right invariance of µ, qa−11 a0 ∩

qa−12 a0 is wide. �

Claim 3. For all (c, d) ∈ (q−1q)×nf Q, qc−1 ∩ qd−1 is wide.

Proof. Let d = a−1b, with tp(b/M(a)) wide for the forking ideal over M . We have
to show that qc−1 ∩ qb−1a is wide. By �, it suffices to show this for one instance
(c, b, a) with tp(b, a) specified and such that tp(b, a/M(c)) does not divide over M .
We may thus take tp(a/M(c)) to be a nonforking extension of q = tp(a/M), and
tp(b/M(a, c)) to be a non-forking over M extension of tp(b/M(a)). The latter is
possible using the assumption that tp(b/M(a)) does not fork over M .

By right-invariance, we need to show that qc−1a−1 ∩ qb−1 is wide. We apply
� to the pair (a, b) (viewed as a single tuple) and c. So it suffices to show that
qc−1a−1∩q(b′)−1 is wide, where tp(b/M) = tp(b′/M) and tp(b′/M(a, c)) is wide. By
left-invariance of µ, the type tp(a−1b′/M(a, c)) is µ-wide, and hence tp(a−1b′/M(c))
is µ-wide; so tp(a−1b′/M(c)) does not fork over M . Also tp(b′/M(a)) is µ-wide,
so a−1b′ ∈ Q′. By Claim 3’, qc−1 ∩ q(a−1b′)−1 is wide. By right invariance,
qc−1a−1 ∩ q(b′)−1 is wide, as required. �

Claim 4. Let (b, a) ∈ Q×nf q−1q. Then ab ∈ q−1q. In fact qa ∩ qb−1 is wide.

Proof. We have a−1 ∈ q−1q. Since M is a model, tp(a−1/M) extends to a global
type r finitely satisfiable type in M ; so r is M -invariant. Use Lemma 3.4 (1), and
Claim (3) to conclude that qc−1 ∩ qb−1 is wide if c |= r|M(b). Now tp(c/M(b))
does not divide over M , so by �, since tp(a−1/M(b)) does not divide over M either,
qa ∩ qb−1 is wide. In particular, for some d, e ∈ q we have da = eb−1. So ab =
d−1e ∈ q−1q. �
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Claim 5. Let a ∈ q−1q, b1, . . . , bn ∈ Q and assume tp(a/M(b1, . . . , bn)) is wide.
Then ab1 · · · bn ∈ q−1q. In fact qa ∩ q(b1 · · · bn)−1 is wide.

Proof. Since tp(a/Mb1) is wide, it does not fork over M (Remark 2.3). Hence by
Claim 4 we have ab1 ∈ q−1q. By right-invariance of µ, tp(ab1/M(b1, . . . , bn)) is wide,
and in particular tp(ab1/M(b2, . . . , bn)) is wide. By induction, qab1 ∩ q(b2 · · · bn)−1

is wide. Multiplying by b−11 on the right, qa ∩ q(b1b2 · · · bn)−1 is wide. Hence as in
Claim 4, ab1 · · · bn ∈ q−1q. �

In view of �, Claim 5 is also valid assuming tp(a/M) is wide, and
tp(a/M(b1, . . . , bn)) does not fork over M . To show that qq−1q is a coset, we will
later need a variant of Claim 5, proved in the same way:

Claim 5’. Let a ∈ q−1q, b1, . . . , bn ∈ Q and assume tp(a−1/M(b1, . . . , bn)) is wide.
Then ab1 · · · bn ∈ q−1q. In fact qa ∩ q(b1 · · · bn)−1 is wide.

Proof. Since tp(a−1/Mb1) is wide, it does not fork over M , and so tp(a/Mb1) does
not fork over M . Hence by Claim 4 we have ab1 ∈ q−1q. By left-invariance of µ,
tp((ab1)−1/M(b1, . . . , bn)) is wide, and in particular tp((ab1)−1/M(b2, . . . , bn)) is
wide. By induction, qab1 ∩ q(b2 · · · bn)−1 is wide. Multiplying by b−11 on the right,
qa ∩ q(b1b2 · · · bn)−1 is wide. Hence as in Claim 4, ab1 · · · bn ∈ q−1q. �

Claim 6. Qn ⊂ q−1qq−1q.

Proof. Let b1, . . . , bn ∈ Q. Let a ∈ q−1q with tp(a/M(b1, . . . , bn)) wide. Then
ab1 · · · bn ∈ q−1q, so b1 · · · bn = a−1(ab1 · · · bn) ∈ q−1qq−1q. �

It follows from Claim 1 that Q and q−1q generate the same subsemigroup, which
is hence a group S. By Claim (6), this group is in fact equal to the

∧
-definable set

q−1qq−1q.
Since q−1q ⊆ S, we have q ⊆ bS for any b ∈ q, and so qq−1q ⊆ bS. Con-

versely, choose b ∈ q. Any element x of bS can be written x = ba1 · · · a4 with
ai ∈ Q. Let d ∈ q be such that tp(d/M(a1, . . . , a4, b)) is wide. Let e = d−1b. Then
tp(e−1/M(a1, · · · , a4, b)) and hence tp(e−1/M(a1, · · · , a4)) are wide. By Claim 5’
we have ea1 · · · a4 ∈ q−1q. So x = ba1 · · · a4 ∈ dq−1q ⊂ qq−1q. Thus qq−1q = bS
S can have no proper Aut(U/M)-invariant subgroups of bounded index. For

suppose such a subgroup T exists. Let q′ be an M -invariant type extending q. If
a, b |= q , let c |= q′|M(a, b). Then a, c must lie in the same coset of T (otherwise
we may take any number of further realizations of q′ to contradict the boundedness
of T .) Similarly for b, c; so a, b lies in the same coset of T , i.e. all realizations of q
lies in the same coset. But then q−1qq−1q, is contained in T ; so T = S.

We know at this point that S is an
∧

-definable group over M , with no proper∧
-definable over M (or even Aut(U/M)-invariant) subgroups of bounded index.

Let r be a type of elements of X ∪X−1 over M . There cannot exist an unbounded
family of cosets aiS with ai ∈ r, for then the sets aibq would also be disjoint for
any b ∈ q−1, contradicting the S1 property for µ within rbX ⊆ (X ∪X−1)3. Thus r
is contained in boundedly many left cosets of S. Now r extends to an M -invariant
global type r′; r′ must be contained in a single coset Cr of S; so Cr is M -definable,
and hence the conjugate group Sr = C−1r SCr is M -definable.

For any c ∈ X ∪ X−1 ∪ {1}, r = tp(c), the image of qc in G/S is bounded.
Otherwise there is a large collection of disjoint sets of the form aicS, with ai ∈ q.
Pick b0 ∈ q; then q−1b0 ⊆ S; the sets aicSb

−1
0 are also disjoint, hence so are the
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aicq
−1. But this contradicts the wideness of aicq

−1 and the S1 property within
XcX−1. Thus qc/S is bounded. It follows that q is contained in boundedly many
cosets of cSc−1 = Sr. So q is contained in a single coset gSr. It follows that

q−1q ⊆ Sr, so S ⊆ Sr. Similarly S ⊆ Sr
−1

, so Sr ⊆ S and Sr = S. This shows
that X ∪X−1 normalizes S, i.e. S is normal in G.

We argued above that q−1q is wide; in particular S is wide. Also, there can be
no large number of disjoint sets aq−1q with a ∈ X; in particular no large number
of distinct cosets aS, a ∈ X. Thus the image of X in G/S is small. But G/S is
generated by the image of X; so it is small, i.e. S has small index.

�

Corollary 3.2. Let µ be a good ideal on G, left, right - translation-invariant,
and with the S1 property on subsets of X3. Assume M is ℵ1- saturated. Then
there exists wide,

∧
-definable over M subgroup S of G, with G/S bounded. For an

appropriate complete type q ⊂ X over M we have S = (q−1q)2.

Proof. Lemma 3.5 provides M ′ � M and a type q over M ′ such that (F) holds,
taking into account that µ contains the forking (over 0, hence over M ’) ideal. By
Theorem 3.1 there exists an M ′-

∧
-definable subgroup S′ with G/S′ bounded. We

may find an M ′-
∧

-definable subgroup S′′ (containing S′) with S′′ defined over a
countable set; by internalizing the parameters in M , we may also find such an∧

-definable subgroup over M . �

Some remarks:

(1) (Locality). Inspection of the proof will show that for all assertions except
the normality of S, we only use µ the S1 property only for subsets of
XX−1X. To show normality S, we also require XaX−1, where a ∈ X or
a ∈ X−1. Moreover the group structure is used only up to (X−1X)3. This is
explicitly so everywhere except in Claim 5. There, note that qc ⊆ XX−1X.
Hence qc∩ Y ⊆ XX−1X for any set Y , and it makes sense to say that this
intersection is wide. In the proof, by the time we use qab1, we know that
ab1 is in q−1q.

(2) The stronger statements on St0 made in [6] probably go through as well.

Lemma 3.3. Let Iz be an invariant S1-ideal. Let P = P (x, z), Q = Q(y, z) be∧
-definable sets. Define:

R(a, b) ⇐⇒ (P (a, z) ∧Q(b, z)) ∈ Iz
Then R is a stable invariant relation.

Proof. We show indeed that R is equational: if R(ai, bj) holds for i < j, where
(ai, bi)i is indiscernible, then R(ai, bi) holds too.

Otherwise, let Ci = {z : P (ai, z) ∧Q(bi, z)}. Then Ci /∈ Iz but µz(Ci ∩Cj) = 0.
This contradicts the S1 property of I.

Since (a2i, b2i−1) is also indiscernible, by equationality we see that R(a2i, b2i−1)
holds for each i, and so R(ai, bj) holds for i > j in general. �

Lemma 3.4. Let p(x) be a type over A, and q(y) be a global, A-invariant type. Let
R be a stable relation over A.

(1) Assume R(a, b) holds with a |= p, b |= q|A(a). Then R(a′, b) holds whenever
a′ |= p and tp(a′/Ab) does not divide over A.
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(2) Assume tp(a/A) = tp(a′/A), b |= q, and neither tp(a/Ab) nor tp(a′/Ab)
divides over A. Then R(a, b) implies R(a′, b).

(3) Assume p too extends to a global, A-invariant type. Let E = {(a, b) : a |=
p, b |= q|A}. Then the eight conditions:
R(a, b) holds for some/all pairs (a, b) ∈ E such that tp(a/A(b)) /tp(b/A(a)) does

not fork / divide over A
are all equivalent.

Proof. (1) Suppose R(a′, b) fails to hold. Let r = tp(a, b) and r′ = tp(a′, b).
Define a1, . . . , c1, . . . inductively: given a1 . . . , an−1, c1, . . . , cn−1, choose cn such

that cn |= q|{a1, . . . , an−1, c1, . . . , cn−1}, and an |= p chosen with r′(x, ci) for i < n.
The latter choice is possible since by assumption, p(x)∪r′(x, y) does not divide over
A. Then r(ai, cj) holds if i < j, but r′(ai, cj) holds when i > j. Hence R(ai, cj)
holds for i < j, but fails for i > j. This contradicts the stability of R.

(2) Let R′ be the complement of R; it is also a stable relation. Let c |= q|A(a).
If R(a, c) holds then by (1) we have R(a′, b) and R(a, b). If R(a, c) holds then
similarly R′(a′, b) and R′(a, b). In any case we have R(a, b) ⇐⇒ R(a′, b), so the
stated implication holds.

(3) Let E′ be the set of pairs (a, b) ∈ E such that tp(a/A(b)) does not divide
over A, and E′′ the set of pairs (a, b) ∈ E such that tp(b/A(a)) does not divide over
A. The equivalence between the four conditions for tp(a/A(b)) follows from (2): if
R(a, b) holds for some pair such that tp(a/A(b)) does not fork, then in particular
it holds for a pair in E′ (the same pair); by (2), it holds for al such pairs; hence
certainly for all pairs for which tp(a/A(b)) does not fork over A.

Thus a single truth value for R is associated with pairs (a, b) ∈ E′. Similarly,
as the conditions are symmetric, a single truth value for R is associated with pairs
(a, b) ∈ E′′. It remains to show that these truth values are equal. Replacing R be
its complement if necessary, we may assume R(a, b) holds in the situation of (1),
where b |= q|A(a). In particular tp(b/A(a)) does not fork over A; so R(a′, b′) holds
for all (a′, b′) ∈ E′′. But (1) asserts that R(a′, b) holds for all (a′, b) ∈ E′. Hence R
holds for all pairs in E′ ∪ E′′. �

Lemma 3.5. Let L be a countable language. I = I(x) be a proper ideal on a
hyperdefinable set P , over A. Assume any I-wide type over a countable base set
extends to an I- wide type over any bigger countable base set. There exists a model
M ≥ A, a type q over M , and a, b |= q such that tp(b/Ma) is I-wide and tp(a/Mb)
does not fork over M , and indeed is finitely satisfiable in M .

Proof. We have P = P0/E; we may pull back the ideal I to P0; so we may assume
here that P is definable. Let Tsk be a Skolemization of the theory, in a expansion
Lsk of the language L; so the Lsk-substructure < X > generated by a set X is
an elementary submodel. Define a sequence of elements ai (i ≤ ω1), and sets
Mi =< {aj : j < i} >, pi a type over Ai such that pi ⊆ pj for i < j, ai |= pi,
and with and with tpL(ai/Mi) I-wide. Let b = aω1 . Find i such that Mi is an
elementary submodel of ∪i<ω1

Mi in a language including a constant symbol for b.
Then , tp(ai/Mib) is finitely satisfiable in Mi, and we are done with M = Mi, a = ai.

�
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