Definable sets over valued fields

Ehud Hrushovski

Valuation Theory conference, El Escorial, July 2011

- Review of basics on definable sets.
- Imaginaries. Joint work with Deirdre Haskell, Dugald Macpherson (monograph), Ben Martin (ArXiv)
- Topology. Joint work with François Loeser. (ArXiv, F.L. web page.)
- Definable types and generically stable types.
- Geometric imaginaries: sketch of proof.
- Topological finiteness: rough structure of proof.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine,

$$
V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\} .
$$

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.
- \mathcal{O} is defined by: valx ≥ 0.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.
- \mathcal{O} is defined by: val $x \geq 0$.
- $(\Gamma,+,<)$ denotes the value group, val the valuation map. $\Gamma_{\infty}=\Gamma \cup\{\infty\}$.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.
- \mathcal{O} is defined by: val $x \geq 0$.
- $(\Gamma,+,<)$ denotes the value group, val the valuation map. $\Gamma_{\infty}=\Gamma \cup\{\infty\}$.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.
- \mathcal{O} is defined by: valx ≥ 0.
- $(\Gamma,+,<)$ denotes the value group, val the valuation map. $\Gamma_{\infty}=\Gamma \cup\{\infty\}$.
-k is the residue field; res : $\mathcal{O} \rightarrow k$ the residue map.

Setting

K denotes a valued field.

- Algebraic varieties $V . V(K)=$ points of V in a field K. For most of this talk, can think of V as affine, $V(K)=\left\{x \in K^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.
- A semi-algebraic or constructible $Z \subset V$ is defined by valuation inequalities such as val $f \geq$ valg; again $Z(K)=\{x \in V(K): \operatorname{val} f \geq \operatorname{val} g\}$, etc.
- \mathcal{O} is defined by: valx ≥ 0.
- $(\Gamma,+,<)$ denotes the value group, val the valuation map. $\Gamma_{\infty}=\Gamma \cup\{\infty\}$.
- k is the residue field; res: $\mathcal{O} \rightarrow k$ the residue map.
- For $a \in K$ and $\gamma \in \Gamma$ denote $B_{\geq \gamma}(a)$ (resp. $\left.B_{>\gamma}(a)\right)$ the closed (resp. open) ball of valuative radius γ around a.

Geometric imaginaries

- $S_{n}:=G L_{n} / G L_{n}(\mathcal{O}) \cong B_{n} / B_{n}(\mathcal{O})$.
- $T_{n}:=G L_{n} / G L_{n}(\mathcal{O})^{\circ}$, where: $1 \rightarrow G L_{n}(\mathcal{O})^{\circ} \rightarrow G L_{n}(\mathcal{O}) \rightarrow G L_{n}(k) \rightarrow 1$ exact.
- A definable subset of S_{n} or T_{n} is the image of a definable subset of $G L_{n}$. A definable map $U \rightarrow V$ is a definable subset f of $U \times V$, that always defines a function.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks
- pure / QE: Any definable subset of Γ^{n} is a Boolean
combination of \mathbb{Q}-linear inequalities.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks are $\cdot, x \in \mathcal{O} y$.)
- pure / QE: Any definable subset of Γ^{n} is a Boolean combination of \mathbb{Q}-linear inequalities.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks are $\cdot, x \in \mathcal{O} y$.)
- pure / QE: Any definable subset of Γ^{n} is a Boolean combination of \mathbb{Q}-linear inequalities.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks are $\cdot, x \in \mathcal{O} y$.)
- pure / QE: Any definable subset of Γ^{n} is a Boolean combination of \mathbb{Q}-linear inequalities.
- A natural topology, determined by the ordering. $\Gamma_{\infty}:=\Gamma \cup\{\infty\}$.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks are $\cdot, x \in \mathcal{O} y$.)
- pure / QE: Any definable subset of Γ^{n} is a Boolean combination of \mathbb{Q}-linear inequalities.
- A natural topology, determined by the ordering. $\Gamma_{\infty}:=\Gamma \cup\{\infty\}$.
- $\mathrm{k}=\mathcal{O} / \mathcal{M} ; \mathrm{k}^{*}=G L_{1}(\mathcal{O}) / G L_{1}(\mathcal{O})^{\circ}$; a pure field.

$n=1: \Gamma$ and k

- $\Gamma:=S_{1}=G L_{1} / G L_{1}(\mathcal{O})$.
- A linearly ordered group:,$+<$ are definable (their pullbacks are $\cdot, x \in \mathcal{O} y$.)
- pure / QE: Any definable subset of Γ^{n} is a Boolean combination of \mathbb{Q}-linear inequalities.
- A natural topology, determined by the ordering. $\Gamma_{\infty}:=\Gamma \cup\{\infty\}$.
- $\mathrm{k}=\mathcal{O} / \mathcal{M} ; \mathrm{k}^{*}=G L_{1}(\mathcal{O}) / G L_{1}(\mathcal{O})^{\circ}$; a pure field.
- $R V:=T_{1}=G L_{1} / G L_{1}(\mathcal{O})^{\circ}$ also has a definable set structure that can be explicitly described;

$$
1 \rightarrow k^{*} \rightarrow G L_{1} / G L_{1}(\mathcal{O})^{\circ} \rightarrow \Gamma
$$

We will occasionally consider $\operatorname{Th}\left(\mathbb{Q}_{p}\right)$, where quantifers range over \mathbb{Q}_{p} and not over the algebraic closure. The principal difference is that Γ is now discrete; QE still holds if arithmetic sequences are added to the basic structure.

Elimination of imaginaries

Theorem (H., Haskell, Macpherson)
Let $X \subset U \times V$ be semi-algebraic. Let $X_{u}=\{v:(u, v) \in X\}$.
Then there exists a definable map $f: U \rightarrow S_{n} \times T_{n} \times \mathbb{A}^{n}$ such that

$$
X_{u}=X_{v} \Longleftrightarrow f(u)=f(v)
$$

Elimination of imaginaries

Theorem (H., Haskell, Macpherson)
Let $X \subset U \times V$ be semi-algebraic. Let $X_{u}=\{v:(u, v) \in X\}$.
Then there exists a definable map $f: U \rightarrow S_{n} \times T_{n} \times \mathbb{A}^{n}$ such that

$$
X_{u}=X_{v} \Longleftrightarrow f(u)=f(v)
$$

- Equivalent statement: Let $E \subset U^{2}$ be a semi-algebraic equivalence relation. Then there exists n, a definable subgroup $H \leq G L_{n}(\mathcal{O})$ as above, and a definable embedding $U / E \rightarrow G L_{n} / H$.

Elimination of imaginaries

Theorem (H., Haskell, Macpherson)
Let $X \subset U \times V$ be semi-algebraic. Let $X_{u}=\{v:(u, v) \in X\}$.
Then there exists a definable map $f: U \rightarrow S_{n} \times T_{n} \times \mathbb{A}^{n}$ such that

$$
X_{u}=X_{v} \Longleftrightarrow f(u)=f(v)
$$

- Equivalent statement: Let $E \subset U^{2}$ be a semi-algebraic equivalence relation. Then there exists n, a definable subgroup $H \leq G L_{n}(\mathcal{O})$ as above, and a definable embedding $U / E \rightarrow G L_{n} / H$.
- The same result holds for definabity in \mathbb{Q}_{p}. In this case, only the S_{n} are needed. (H.-Martin)

Elimination of imaginaries

Theorem (H., Haskell, Macpherson)
Let $X \subset U \times V$ be semi-algebraic. Let $X_{u}=\{v:(u, v) \in X\}$.
Then there exists a definable map $f: U \rightarrow S_{n} \times T_{n} \times \mathbb{A}^{n}$ such that

$$
X_{u}=X_{v} \Longleftrightarrow f(u)=f(v)
$$

- Equivalent statement: Let $E \subset U^{2}$ be a semi-algebraic equivalence relation. Then there exists n, a definable subgroup $H \leq G L_{n}(\mathcal{O})$ as above, and a definable embedding $U / E \rightarrow G L_{n} / H$.
- The same result holds for definabity in \mathbb{Q}_{p}. In this case, only the S_{n} are needed. (H.-Martin)
- Probably also for ultraproducts of the \mathbb{Q}_{p}. (Certain cases, conjectured by Cluckers-Denef, proved.)

Elimination of imaginaries

Theorem (H., Haskell, Macpherson)
Let $X \subset U \times V$ be semi-algebraic. Let $X_{u}=\{v:(u, v) \in X\}$.
Then there exists a definable map $f: U \rightarrow S_{n} \times T_{n} \times \mathbb{A}^{n}$ such that

$$
X_{u}=X_{v} \Longleftrightarrow f(u)=f(v)
$$

- Equivalent statement: Let $E \subset U^{2}$ be a semi-algebraic equivalence relation. Then there exists n, a definable subgroup $H \leq G L_{n}(\mathcal{O})$ as above, and a definable embedding $U / E \rightarrow G L_{n} / H$.
- The same result holds for definabity in \mathbb{Q}_{p}. In this case, only the S_{n} are needed. (H.-Martin)
- Probably also for ultraproducts of the \mathbb{Q}_{p}. (Certain cases, conjectured by Cluckers-Denef, proved.)
- All proofs use same strategy: study germs for definable types; geometry of definable types in terms of generically stable types. To be explained.

Elimination of imaginaries

Corollary (Rationality)

Let $X \subset \Gamma \times U, E \subset \Gamma \times U \times U$ be $\operatorname{Th}\left(\mathbb{Q}_{p}\right)$-definable, such that E_{n} is an equivalence relation on X_{n}, with a finite number of classes $\alpha(n)$.
Then piecewise, $\alpha(n)$ is an exponential polynomial $\sum b_{k l} n^{k} p^{\prime n}$.

Elimination of imaginaries

Corollary (Rationality)

Let $X \subset \Gamma \times U, E \subset \Gamma \times U \times U$ be $\operatorname{Th}\left(\mathbb{Q}_{p}\right)$-definable, such that E_{n} is an equivalence relation on X_{n}, with a finite number of classes $\alpha(n)$.
Then piecewise, $\alpha(n)$ is an exponential polynomial $\sum b_{k l} n^{k} p^{\prime n}$.
Piecewise: divide \mathbb{N} according to residue mod some M, with a finite exceptional set.
rational.

Elimination of imaginaries

Corollary (Rationality)

Let $X \subset \Gamma \times U, E \subset \Gamma \times U \times U$ be $\operatorname{Th}\left(\mathbb{Q}_{p}\right)$-definable, such that E_{n} is an equivalence relation on X_{n}, with a finite number of classes $\alpha(n)$.
Then piecewise, $\alpha(n)$ is an exponential polynomial $\sum b_{k l} n^{k} p^{\prime n}$.
Piecewise: divide \mathbb{N} according to residue mod some M, with a finite exceptional set. Combinatorial formulation: $\sum \alpha(n) t^{n}$ is rational.

Proof of corollary: counting classes of definable equivalence relations

Proof of corollary: counting classes of definable equivalence relations

- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.

Proof of corollary: counting classes of definable equivalence relations

- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.
- Denef's theorem is now understood as part of motivic integration; cf. Scanlon's talk. It can be shown via iterated integration, reduction to dimension one.
finite set of right $G L_{n}(\mathcal{O})$-cosets, then $\left|X / G L_{n}(\mathcal{O})\right|=\left(\int 1_{X} d \mu\right) /\left(\int 1_{G L_{n}(\mathcal{O})} d \mu\right)$.
- By elimination of imaginaries, every equivalence relation reduces to the one above $\left(G L_{n}(\mathcal{O})\right.$-cosets)

Proof of corollary: counting classes of definable equivalence relations

- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.
- Denef's theorem is now understood as part of motivic integration; cf. Scanlon's talk. It can be shown via iterated integration, reduction to dimension one.
- Let μ be the right invariant volume form on $G L_{n}$. If X is a finite set of right $G L_{n}(\mathcal{O})$-cosets, then

$$
\left|X / G L_{n}(\mathcal{O})\right|=\left(\int 1_{X} d \mu\right) /\left(\int 1_{G L_{n}(\mathcal{O})} d \mu\right) .
$$

- Hence counting reduces to volumes.

Proof of corollary: counting classes of definable

 equivalence relations- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.
- Denef's theorem is now understood as part of motivic integration; cf. Scanlon's talk. It can be shown via iterated integration, reduction to dimension one.
- Let μ be the right invariant volume form on $G L_{n}$. If X is a finite set of right $G L_{n}(\mathcal{O})$-cosets, then

$$
\left|X / G L_{n}(\mathcal{O})\right|=\left(\int 1_{X} d \mu\right) /\left(\int 1_{G L_{n}(\mathcal{O})} d \mu\right) .
$$

- By elimination of imaginaries, every equivalence relation reduces to the one above $\left(G L_{n}(\mathcal{O})\right.$-cosets $)$.

Proof of corollary: counting classes of definable

 equivalence relations- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.
- Denef's theorem is now understood as part of motivic integration; cf. Scanlon's talk. It can be shown via iterated integration, reduction to dimension one.
- Let μ be the right invariant volume form on $G L_{n}$. If X is a finite set of right $G L_{n}(\mathcal{O})$-cosets, then

$$
\left|X / G L_{n}(\mathcal{O})\right|=\left(\int 1_{X} d \mu\right) /\left(\int 1_{G L_{n}(\mathcal{O})} d \mu\right) .
$$

- By elimination of imaginaries, every equivalence relation reduces to the one above ($G L_{n}(\mathcal{O})$-cosets).
- Hence counting reduces to volumes.

Proof of corollary: counting classes of definable

 equivalence relations- Denef (1984) showed the same statement for p-adic integrals $\beta(n)=\int_{\mathbb{Q}_{p}^{m}} f(x, n) d x$ varying definably with $n \in \Gamma$.
- Denef's theorem is now understood as part of motivic integration; cf. Scanlon's talk. It can be shown via iterated integration, reduction to dimension one.
- Let μ be the right invariant volume form on $G L_{n}$. If X is a finite set of right $G L_{n}(\mathcal{O})$-cosets, then $\left|X / G L_{n}(\mathcal{O})\right|=\left(\int 1_{X} d \mu\right) /\left(\int 1_{G L_{n}(\mathcal{O})} d \mu\right)$.
- By elimination of imaginaries, every equivalence relation reduces to the one above $\left(G L_{n}(\mathcal{O})\right.$-cosets).
- Hence counting reduces to volumes.
- In fancy language: the Grothendieck ring of definable sets, even of imaginary sorts, maps into the Grothendieck ring of normalized volumes.

Two examples of imaginaries arising geometrically

Two examples of imaginaries arising geometrically

- Cluckers-Denef 2007: Orbital integrals. X a homogeneous space for an algebraic group G. Study $X\left(\mathbb{Q}_{p}\right) / G\left(\mathbb{Q}_{p}\right)$ uniformly in p.

Two examples of imaginaries arising geometrically

- Cluckers-Denef 2007: Orbital integrals. X a homogeneous space for an algebraic group G. Study $X\left(\mathbb{Q}_{p}\right) / G\left(\mathbb{Q}_{p}\right)$ uniformly in p.
- H. - Martin. Irreducible representations of finitely generated nilpotent groups, up to 1-dimensional twists.

Two examples of imaginaries arising geometrically

- Cluckers-Denef 2007: Orbital integrals. X a homogeneous space for an algebraic group G. Study $X\left(\mathbb{Q}_{p}\right) / G\left(\mathbb{Q}_{p}\right)$ uniformly in p.
- H. - Martin. Irreducible representations of finitely generated nilpotent groups, up to 1-dimensional twists.
- $G \leq U_{n}\left(\mathbb{Z}_{p}\right) . U_{n}=$ upper triangular matrices. G has infinitely may 1-dimensional representations, but up to tensoring with them, only finitely many $\left(\alpha_{n}\right)$ irreducible continuous representations of dimension p^{n}. Then again $\sum \alpha_{n} t^{n}$ is rational. Here $X=1$-dimensional representations of subgroups; $E=$ same induced representation to G, up to a twist.

From now on we will restrict attention to the theory $A C V F_{F}$ of algebraically closed valued fields, containing a given valued field F. Thus for subsets of algebraic varieties, semi-algebraic $=$ constructible $=$ definable (Robinson.) For subsets of the imaginary sorts, we prefer the term "definable".

Topology

We consider the Berkovich topology of algebraic varieties. We are given a valued field F, an ordered group A and a valuation $v: F \rightarrow A \cup\{\infty\}$. Mostly (with Berkovich) we will consider only the $A=\mathbb{R}$.

Topology

We consider the Berkovich topology of algebraic varieties. We are given a valued field F, an ordered group A and a valuation $v: F \rightarrow A \cup\{\infty\}$. Mostly (with Berkovich) we will consider only the $A=\mathbb{R}$.

- V an algebraic variety over F. A Berkovich point is a Grothendieck point, i.e. a K-irreducible subvariety U of V, along with an extension to $F(U)$ of the valuation on F into the same group A.

Topology

We consider the Berkovich topology of algebraic varieties. We are given a valued field F, an ordered group A and a valuation $v: F \rightarrow A \cup\{\infty\}$. Mostly (with Berkovich) we will consider only the $A=\mathbb{R}$.

- V an algebraic variety over F. A Berkovich point is a Grothendieck point, i.e. a K-irreducible subvariety U of V, along with an extension to $F(U)$ of the valuation on F into the same group A.
- $B_{F}(V)$ denotes the set of Berkovich points. If X is cut out of V by some valuation inequalities, let $B_{F}(X)$ be the subset where these inequalities hold.

Topology

We consider the Berkovich topology of algebraic varieties. We are given a valued field F, an ordered group A and a valuation $v: F \rightarrow A \cup\{\infty\}$. Mostly (with Berkovich) we will consider only the $A=\mathbb{R}$.

- V an algebraic variety over F. A Berkovich point is a Grothendieck point, i.e. a K-irreducible subvariety U of V, along with an extension to $F(U)$ of the valuation on F into the same group A.
- $B_{F}(V)$ denotes the set of Berkovich points. If X is cut out of V by some valuation inequalities, let $B_{F}(X)$ be the subset where these inequalities hold.
- Let f be a regular function on V. For any $p=\left(U_{p}, v_{p}\right) \in B_{F}(V)$, have val $f(p):=v_{p}(f \mid U) \in \mathbb{R}$. Thus while f does not extend to $B_{F}(V)$, val $\circ f$.

Topology

We consider the Berkovich topology of algebraic varieties. We are given a valued field F, an ordered group A and a valuation $v: F \rightarrow A \cup\{\infty\}$. Mostly (with Berkovich) we will consider only the $A=\mathbb{R}$.

- V an algebraic variety over F. A Berkovich point is a Grothendieck point, i.e. a K-irreducible subvariety U of V, along with an extension to $F(U)$ of the valuation on F into the same group A.
- $B_{F}(V)$ denotes the set of Berkovich points. If X is cut out of V by some valuation inequalities, let $B_{F}(X)$ be the subset where these inequalities hold.
- Let f be a regular function on V. For any $p=\left(U_{p}, v_{p}\right) \in B_{F}(V)$, have val $f(p):=v_{p}(f \mid U) \in \mathbb{R}$. Thus while f does not extend to $B_{F}(V)$, val $\circ f$.
- For affine V, topologize $B_{F}(V)$ minimally so that the functions val $\circ f: B_{F}(V) \rightarrow A_{\infty}$ are continuous, for any regular f on V. (in general, patch.)

Topological finiteness for Berkovich spaces

Let X be a definable subset of a quasi-projective variety V. Theorem (H.-Loeser)

Topological finiteness for Berkovich spaces

Let X be a definable subset of a quasi-projective variety V.
Theorem (H.-Loeser)

1. There exists a deformation retraction from $B_{F}(X)$ to a subspace S homeomorphic to a finite simplicial complex.
finitely many possibilities for the homotopy type of $B_{F}\left(X_{b}\right)$, as b runs through $Y(F)$
(1) was proved by Berkovich assuming the base field F is nontrivially valued, and certain weak smoothnes assumptions on the ambient varieties

Topological finiteness for Berkovich spaces

Let X be a definable subset of a quasi-projective variety V.
Theorem (H.-Loeser)

1. There exists a deformation retraction from $B_{F}(X)$ to a subspace S homeomorphic to a finite simplicial complex.
2. Let $f: X \rightarrow Y$ be a morphism, $X_{b}=f^{-1}(b)$. Then there are finitely many possibilities for the homotopy type of $B_{F}\left(X_{b}\right)$, as b runs through $Y(F)$.

Topological finiteness for Berkovich spaces

Let X be a definable subset of a quasi-projective variety V.
Theorem (H.-Loeser)

1. There exists a deformation retraction from $B_{F}(X)$ to a subspace S homeomorphic to a finite simplicial complex.
2. Let $f: X \rightarrow Y$ be a morphism, $X_{b}=f^{-1}(b)$. Then there are finitely many possibilities for the homotopy type of $B_{F}\left(X_{b}\right)$, as b runs through $Y(F)$.
(1) was proved by Berkovich assuming the base field F is nontrivially valued, and certain weak smoothnes assumptions on the ambient varieties.

In the model-theoretic treatment, Berkovich points are replaced by generically stable types. The set of generically stable types on X is denoted X.
They are defined for any valued field, not necessarily with value group $\subset \mathbb{R}$. This is related to the finiteness theorem (2). We will define the points from several viewpoints; show that they form a pro-definable set; define a topology on this set; and discuss the relation of $\widehat{X}(F)$ to $B_{F}(X)$, when the latter is defined. But first we must consider a more general notion, of a definable type. Asides from serving as a natural setting for picking out the generically stable types, we will use them to define and prove most of the significant properties of \widehat{X},
from Martin Hils' Segovia tutorial: The notion of a definable type

- $T=A C V F_{F}, L=+, \cdot$, val
from Martin Hils' Segovia tutorial: The notion of a definable type
- $T=A C V F_{F}, L=+, \cdot$, val

Definition
Let $\mathcal{M} \models T$ and $A \subseteq M$. A type $p(x) \in S_{n}(M) p$ is A-definable if for every L formula $\phi(x, y)$ there is an $L_{A^{-}}$formula $d_{p} \phi(y)$ s.t.

$$
\phi(x, b) \in p \Leftrightarrow \mathcal{M} \models d_{p} \phi(b) \quad(\text { for every } b \in M)
$$

We say p is definable if it is definable over some $A \subseteq M$.
from Martin Hils' Segovia tutorial: The notion of a definable type

- $T=A C V F_{F}, L=+, \cdot$, val

Definition
Let $\mathcal{M} \models T$ and $A \subseteq M$. A type $p(x) \in S_{n}(M) p$ is A-definable if for every L formula $\phi(x, y)$ there is an $L_{A^{-}}$-formula $d_{p} \phi(y)$ s.t.

$$
\phi(x, b) \in p \Leftrightarrow \mathcal{M} \models d_{p} \phi(b) \quad(\text { for every } b \in M)
$$

We say p is definable if it is definable over some $A \subseteq M$.
The collection $\left(d_{p} \phi\right)_{\phi}$ is called a defining scheme for p.
from Martin Hils' Segovia tutorial: The notion of a definable type

- $T=A C V F_{F}, L=+, \cdot$, val

Definition

Let $\mathcal{M} \models T$ and $A \subseteq M$. A type $p(x) \in S_{n}(M) p$ is A-definable if for every L formula $\phi(x, y)$ there is an $L_{A^{-}}$formula $d_{p} \phi(y)$ s.t.

$$
\phi(x, b) \in p \Leftrightarrow \mathcal{M} \models d_{p} \phi(b) \quad(\text { for every } b \in M)
$$

We say p is definable if it is definable over some $A \subseteq M$.
The collection $\left(d_{p} \phi\right)_{\phi}$ is called a defining scheme for p.
Remark If $p \in S_{n}(M)$ is definable via $\left(d_{p} \phi\right)_{\phi}$, then the same scheme gives rise to a (unique) type over any $\mathcal{N} \succ \mathcal{M}$, denoted by $p \mid N$.

Definable types

I prefer to take the defining scheme itself to be the definable type.
Definition
A definable type $p(x)$ is a Boolean retraction $L_{x, y_{1}, y_{2}, \ldots}$ to $L_{y_{1}, y_{2}, \ldots}$,

$$
\phi \mapsto\left(d_{p} x\right) \phi
$$

Definable types

I prefer to take the defining scheme itself to be the definable type.
Definition
A definable type $p(x)$ is a Boolean retraction $L_{x, y_{1}, y_{2}, \ldots}$ to $L_{y_{1}, y_{2}, \ldots}$,

$$
\phi \mapsto\left(d_{p} x\right) \phi
$$

Analogy: a finite measure on a compact space X can be defined as a retraction from continuous functions on $X \times Y$, to continous functions on Y.

Definable types

I prefer to take the defining scheme itself to be the definable type.
Definition
A definable type $p(x)$ is a Boolean retraction $L_{x, y_{1}, y_{2}, \ldots}$ to $L_{y_{1}, y_{2}, \ldots}$,

$$
\phi \mapsto\left(d_{p} x\right) \phi
$$

Analogy: a finite measure on a compact space X can be defined as a retraction from continuous functions on $X \times Y$, to continous functions on Y.
Example, $\operatorname{Th}(\mathbb{C})$: let V be an irreducible variety. $\left(d_{p} x\right) \phi=$ "for generic $x \in V, \phi^{\prime \prime}=$ for some proper Zariski closed $Z \subset V$, $(\forall x \in V \backslash Z) \phi$.

Definable types

I prefer to take the defining scheme itself to be the definable type.
Definition
A definable type $p(x)$ is a Boolean retraction $L_{x, y_{1}, y_{2}, \ldots}$ to $L_{y_{1}, y_{2}, \ldots}$,

$$
\phi \mapsto\left(d_{p} x\right) \phi
$$

Analogy: a finite measure on a compact space X can be defined as a retraction from continuous functions on $X \times Y$, to continous functions on Y.
Example, $\operatorname{Th}(\mathbb{C})$: let V be an irreducible variety. $\left(d_{p} x\right) \phi=$ "for generic $x \in V, \phi^{\prime \prime}=$ for some proper Zariski closed $Z \subset V$, $(\forall x \in V \backslash Z) \phi$.
Example, $\operatorname{Th}(\mathbb{R})$ Let V be a variety and let $g:(a, b] \rightarrow V$ be a parameterized curve. $\left(d_{p} x\right) \phi=$ "for all t sufficiently close to b, $\phi(g(t))$. Definition of definable compactness in o-minimality.

Definable types

I prefer to take the defining scheme itself to be the definable type.

Definition

A definable type $p(x)$ is a Boolean retraction $L_{x, y_{1}, y_{2}, \ldots}$ to $L_{y_{1}, y_{2}, \ldots}$,

$$
\phi \mapsto\left(d_{p} x\right) \phi
$$

Analogy: a finite measure on a compact space X can be defined as a retraction from continuous functions on $X \times Y$, to continous functions on Y.
Example, $\operatorname{Th}(\mathbb{C})$: let V be an irreducible variety. $\left(d_{p} x\right) \phi="$ for generic $x \in V, \phi^{\prime \prime}=$ for some proper Zariski closed $Z \subset V$, $(\forall x \in V \backslash Z) \phi$.
Example, $\operatorname{Th}(\mathbb{R})$ Let V be a variety and let $g:(a, b] \rightarrow V$ be a parameterized curve. $\left(d_{p} x\right) \phi=$ "for all t sufficiently close to b, $\phi(g(t))$. Definition of definable compactness in o-minimality. In ACVF, both kinds of example occur; in fact we will see that every definable type decomposes into a composition of the two.

Operations on definable types
(from M.H. tutorial)
(Realised types are definable)
Let $a \in M^{n}$. Then $\operatorname{tp}(a / M)$ is definable.
(Take $d_{p} \phi(y)=\phi(a, y)$.)
(Preservation under definable functions)
Let $b \in \operatorname{dcl}(M \cup\{a\})$, i.e. $f(a)=b$ for some M-definable function f. Then, if $\operatorname{tp}(a / M)$ is definable, so is $\operatorname{tp}(b / M)$

Operations on definable types
(from M.H. tutorial)

- (Realised types are definable)

Let $a \in M^{n}$. Then $\operatorname{tp}(a / M)$ is definable.
(Take $d_{p} \phi(y)=\phi(a, y)$.) constant definable types

Operations on definable types
(from M.H. tutorial)

- (Realised types are definable)

Let $a \in M^{n}$. Then $\operatorname{tp}(a / M)$ is definable.
(Take $d_{p} \phi(y)=\phi(a, y)$.) constant definable types

- (Preservation under definable functions)

Let $b \in \operatorname{dcl}(M \cup\{a\})$, i.e. $f(a)=b$ for some M-definable function f. Then, if $\operatorname{tp}(a / M)$ is definable, so is $\operatorname{tp}(b / M)$. Pushforward, $f_{*} p$:

$$
\left(d_{f_{*} p} y\right) \theta(y, u):=\left(d_{p} x\right) \theta(f(x), u)
$$

Operations on definable types
(from M.H. tutorial)

- (Realised types are definable)

Let $a \in M^{n}$. Then $\operatorname{tp}(a / M)$ is definable.
(Take $d_{p} \phi(y)=\phi(a, y)$.) constant definable types

- (Preservation under definable functions)

Let $b \in \operatorname{dcl}(M \cup\{a\})$, i.e. $f(a)=b$ for some M-definable function f. Then, if $\operatorname{tp}(a / M)$ is definable, so is $\operatorname{tp}(b / M)$.
Pushforward, $f_{*} p$:

$$
\left(d_{f_{*} p} y\right) \theta(y, u):=\left(d_{p} x\right) \theta(f(x), u)
$$

- (Transitivity) Let $a \in N$ for some $\mathcal{N} \succ \mathcal{M}, A \subseteq M$. Assume
- $r=\operatorname{tp}(a / M)$ is A-definable;
- $\operatorname{tp}(b / N)$ is $A \cup\{a\}$-definable. so $\operatorname{tp}(b / N)=h(a)$

Operations on definable types
(from M.H. tutorial)

- (Realised types are definable)

Let $a \in M^{n}$. Then $\operatorname{tp}(a / M)$ is definable.
(Take $d_{p} \phi(y)=\phi(a, y)$.) constant definable types

- (Preservation under definable functions)

Let $b \in \operatorname{dcl}(M \cup\{a\})$, i.e. $f(a)=b$ for some M-definable function f. Then, if $\operatorname{tp}(a / M)$ is definable, so is $\operatorname{tp}(b / M)$.
Pushforward, $f_{*} p$:

$$
\left(d_{f_{*} p} y\right) \theta(y, u):=\left(d_{p} x\right) \theta(f(x), u)
$$

- (Transitivity) Let $a \in N$ for some $\mathcal{N} \succ \mathcal{M}, A \subseteq M$. Assume
- $r=\operatorname{tp}(a / M)$ is A-definable;
- $\operatorname{tp}(b / N)$ is $A \cup\{a\}$-definable. so $\operatorname{tp}(b / N)=h(a)$

Then $\operatorname{tp}(a b / M)$ is A-definable. We will refer to this type as $\int_{r} h$

Definable types: germs and limits

- Let f, g be definable functions. f, g have the same p-germ if $\left(d_{p} x\right)(f(x)=g(x))$ (iff whenever $c \models p \mid M$, where f, g are defined oer M, we have $f(c)=g(c)$.)
- Assume $f: D \rightarrow X, p$ a definable type on X, and X carries a (definable) topology. Write $\lim _{p} f=a$ if for any definable open U of $a, a \in U \Longrightarrow\left(d_{p} x\right)(f(x) \in U)$
\widehat{V} : generically stable types on V
Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$

Stahly dominated types: p dominated by $g_{x} p$ for some definable $g: V \rightarrow E, E$ a finite dimensional space over k
\widehat{V} : generically stable types on V

1. Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$.
\widehat{V} : generically stable types on V
2. Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$.
3. Stably dominated types: p dominated by $g_{*} p$ for some definable $g: V \rightarrow E, E$ a finite dimensional space over k. The center of the monoid
$p(x) \otimes q(y)=q(y) \otimes p(x)$ (When $V \leq \mathbb{A}^{n}$ is an affine variety). Γ-seminorms such that $\nu(f)=\infty$ if $f \mid V=0$, and $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is definable, for each d
\widehat{V} : generically stable types on V
4. Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$.
5. Stably dominated types: p dominated by $g_{*} p$ for some definable $g: V \rightarrow E, E$ a finite dimensional space over k.
6. The center of the monoid of definable types: for any q, $p(x) \otimes q(y)=q(y) \otimes p(x)$
\widehat{V} : generically stable types on V
7. Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$.
8. Stably dominated types: p dominated by $g_{*} p$ for some definable $g: V \rightarrow E, E$ a finite dimensional space over k.
9. The center of the monoid of definable types: for any q, $p(x) \otimes q(y)=q(y) \otimes p(x)$
10. (When $V \leq \mathbb{A}^{n}$ is an affine variety). Γ-seminorms $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ $\nu(f g)=\nu(g)+\nu(g), \nu(f+g) \geq \min (\nu(f), \nu(g)), \nu(c)=\operatorname{val}(c)$ such that $\nu(f)=\infty$ if $f \mid V=0$, and $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is definable, for each d
\widehat{V} : generically stable types on V
11. Definable types, orthogonal to the value group: $f_{*} p$ for any $f: V \rightarrow \Gamma$.
12. Stably dominated types: p dominated by $g_{*} p$ for some definable $g: V \rightarrow E, E$ a finite dimensional space over k.
13. The center of the monoid of definable types: for any q, $p(x) \otimes q(y)=q(y) \otimes p(x)$
14. (When $V \leq \mathbb{A}^{n}$ is an affine variety). Γ-seminorms $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ $\nu(f g)=\nu(g)+\nu(g), \nu(f+g) \geq \min (\nu(f), \nu(g)), \nu(c)=\operatorname{val}(c)$ such that $\nu(f)=\infty$ if $f \mid V=0$, and $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is definable, for each d
15. (When $\Gamma(F) \leq \mathbb{R})$. An element of $B_{F}(V)$, functorially extendible to $B_{F^{\prime}}(V)$ for $F^{\prime} \geq F$ As Antoine Ducros pointed out, for this statement we must consider arbitrary F^{\prime}; for those with value group \mathbb{R}, a theorem of Poineau extends any Berkovich point functorially.

Remarks

- An F-definable, generically stable type need not be dominated by an F-definable map into k^{n}. The vector space E may have the form $\wedge / \mathcal{M} \Lambda, \Lambda$ an F-definable lattice.
- The \otimes characterization arises from NIP theory, and admits many equivalent forms at that level of generality. E.g. $p^{\otimes n}$ is Sym(n)-invariant.

Remarks

- An F-definable, generically stable type need not be dominated by an F - definable map into k^{n}. The vector space E may have the form $\Lambda / \mathcal{M} \Lambda, \Lambda$ an F-definable lattice.

Remarks

- An F-definable, generically stable type need not be dominated by an F - definable map into k^{n}. The vector space E may have the form $\Lambda / \mathcal{M} \Lambda, \Lambda$ an F-definable lattice.
- The \otimes characterization arises from NIP theory, and admits many equivalent forms at that level of generality. E.g. $p^{\otimes n}$ is $\operatorname{Sym}(n)$-invariant.

Let $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ be a definable semi-norm. Let $\Lambda_{d}=\Lambda_{d}(p)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right]_{d}: \nu(f) \geq 0\right\}$. $\left(K\left[X_{1} \ldots X_{n}\right]_{d}\right.$ are the polynomials of degree S d.) Then Λ_{d} is a semi-lattice, i.e. the dual of a finitely generated \mathcal{O}-submodule. $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is easily reconstructed from \wedge_{d}. This shows how p can be coded canonically by a sequence of elements of the set S_{m}^{\prime} of semi-lattices. S_{m}^{\prime} is easily coded by $S_{\leq m}$ and K^{m}.
$\Rightarrow\left\{\Lambda_{d}(p): p \in \widehat{V}\right\}$ is in fact definable. (It is easily seen to be a countable intersection of definable sets. Using stable domination, it is also a countable union of definable sets. By compactness it must be definable.)

- Let $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ be a definable semi-norm. Let $\Lambda_{d}=\Lambda_{d}(p)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right]_{d}: \nu(f) \geq 0\right\}$. $\left(K\left[X_{1}, \ldots, X_{n}\right]_{d}\right.$ are the polynomials of degree $\leq d$.) Then Λ_{d} is a semi-lattice, i.e. the dual of a finitely generated \mathcal{O}-submodule. $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is easily reconstructed from Λ_{d}. This shows how p can be coded canonically by a sequence of elements of the set S_{m}^{\prime} of semi-lattices. S_{m}^{\prime} is easily coded by $S_{\leq m}$ and K^{m}.
- $\left\{\Lambda_{d}(p): p \in \widehat{V}\right\}$ is in fact definable. (It is easily seen to be a countable intersection of definable sets. Using stable domination, it is also a countable union of definable sets compactness it must be definable.)

Let $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ be a definable semi－norm．Let $\Lambda_{d}=\Lambda_{d}(p)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right]_{d}: \nu(f) \geq 0\right\}$. $\left(K\left[X_{1}, \ldots, X_{n}\right]_{d}\right.$ are the polynomials of degree $\left.\leq d.\right)$ Then Λ_{d} is a semi－lattice，i．e．the dual of a finitely generated \mathcal{O}－submodule．$\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is easily reconstructed from Λ_{d} ．This shows how p can be coded canonically by a sequence of elements of the set S_{m}^{\prime} of semi－lattices．S_{m}^{\prime} is easily coded by $S_{\leq m}$ and K^{m} ．
－$\left\{\Lambda_{d}(p): p \in \widehat{V}\right\}$ is in fact definable．（It is easily seen to be a countable intersection of definable sets．Using stable domination，it is also a countable union of definable sets．By compactness it must be definable．）

- Let $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ be a definable semi-norm. Let $\Lambda_{d}=\Lambda_{d}(p)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right]_{d}: \nu(f) \geq 0\right\}$.
$\left(K\left[X_{1}, \ldots, X_{n}\right]_{d}\right.$ are the polynomials of degree $\leq d$.) Then Λ_{d} is a semi-lattice, i.e. the dual of a finitely generated \mathcal{O}-submodule. $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is easily reconstructed from Λ_{d}. This shows how p can be coded canonically by a sequence of elements of the set S_{m}^{\prime} of semi-lattices. S_{m}^{\prime} is easily coded by $S_{\leq m}$ and K^{m}.
compactness it must be definable.)
- Let $\nu: K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \Gamma_{\infty}$ be a definable semi-norm. Let $\Lambda_{d}=\Lambda_{d}(p)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right]_{d}: \nu(f) \geq 0\right\}$. $\left(K\left[X_{1}, \ldots, X_{n}\right]_{d}\right.$ are the polynomials of degree $\leq d$.) Then Λ_{d} is a semi-lattice, i.e. the dual of a finitely generated \mathcal{O}-submodule. $\nu \mid K\left[X_{1}, \ldots, X_{n}\right]_{d}$ is easily reconstructed from Λ_{d}. This shows how p can be coded canonically by a sequence of elements of the set S_{m}^{\prime} of semi-lattices. S_{m}^{\prime} is easily coded by $S_{\leq m}$ and K^{m}.
- $\left\{\Lambda_{d}(p): p \in \widehat{V}\right\}$ is in fact definable. (It is easily seen to be a countable intersection of definable sets. Using stable domination, it is also a countable union of definable sets. By compactness it must be definable.)

Proof of equivalence

- $2 \Rightarrow 3$ Since p is determined by $g_{*} p$, and $g_{*} p \otimes q=q \otimes g_{*} p$.
- $3 \Rightarrow 1$: Symmetry implies symmetry of pushfoward. A type on Γ commuting with itself is constant.
- $1 \Rightarrow 4 \nu(f)=(\text { val } f)_{*} p$.
- $1 \Rightarrow 2$ follows from the decomposition theorem over maximally complete fields below, and a (still quite technical) descent theorem for stably dominated types.
- $4 \Rightarrow 1:\left(d_{p} x\right)($ val $f \geq \operatorname{val} g) \Longleftrightarrow \nu(f) \geq \nu(g)$.
- $1 \Rightarrow 5$ as definable types give types over any larger base.
- $5 \Rightarrow$ 1: example of type 4 point.

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.
- $F^{\text {max }}$ a spherically complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. (unique up to isomorphism, by Kaplansky's theorem.)

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.
- $F^{\text {max }}$ a spherically complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. (unique up to isomorphism, by Kaplansky's theorem.)
- $\pi=\pi_{X}: \widehat{X}\left(F^{\max }\right) \rightarrow B_{F}(X)$ (realization and restriction.)

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.
- $F^{\text {max }}$ a spherically complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. (unique up to isomorphism, by Kaplansky's theorem.)
- $\pi=\pi_{X}: \widehat{X}\left(F^{\max }\right) \rightarrow B_{F}(X)$ (realization and restriction.)
- π_{X} is surjective.
- π is functorial in $X . \pi(\Gamma)=\mathbb{R}$.

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.
- $F^{\text {max }}$ a spherically complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. (unique up to isomorphism, by Kaplansky's theorem.)
- $\pi=\pi_{X}: \widehat{X}\left(F^{\text {max }}\right) \rightarrow B_{F}(X)$ (realization and restriction.)
- π_{X} is surjective.
- π is functorial in $X . \pi(\Gamma)=\mathbb{R}$.
- in particular a homotopy $h: \widehat{X} \times I \rightarrow \widehat{X}$ gives a homotopy $B_{F}(X) \times I(\mathbb{R}) \rightarrow B_{F}(X)$.

Connection with Berkovich space

- F be a valued field, with value group $\leq \mathbb{R}$.
- $F^{\text {max }}$ a spherically complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. (unique up to isomorphism, by Kaplansky's theorem.)
- $\pi=\pi_{X}: \widehat{X}\left(F^{\text {max }}\right) \rightarrow B_{F}(X)$ (realization and restriction.)
- π_{X} is surjective.
- π is functorial in $X . \pi(\Gamma)=\mathbb{R}$.
- in particular a homotopy $h: \widehat{X} \times I \rightarrow \widehat{X}$ gives a homotopy $B_{F}(X) \times I(\mathbb{R}) \rightarrow B_{F}(X)$.
- \widehat{X} is definably compact iff $B_{F}(X)$ is compact; etc.

Proposition

Let M be a spherically complete valued field, $N=M(a)$ a valued field extension. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be a basis for $\Gamma(N) / \Gamma(M)$. Then there exists a unique $M(\gamma)$-definable type extending tp $(a / M(\gamma))$. This type is stably dominated.

Call a lattice Λ diagonal for a basis $\left(b_{1}, \ldots, b_{n}\right)$ if there exist $c_{1}, \ldots, c_{n} \in K$ with $\Lambda=\sum \mathcal{O} c_{i} b_{i}$. In other words, $\Lambda=\oplus_{i} \Lambda \cap K b_{i}$

Proposition

let D be a 「-internal set of lattices, i.e. there exists a surjective map $\Gamma^{m} \rightarrow D$. Then there exist a finite partition $D=\cup_{i=1}^{r} D_{i}$ and bases b^{1}, \ldots, b^{r} such that each $\Lambda \in D_{i}$ is diagonal in b^{i}.

Decomposition theorem

Theorem
Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and an A-definable r-germ of pro-definable maps into \widehat{V}, with $p=\int_{r} f$.

Example
 paths on $\alpha:[a, b] \subset \Gamma \rightarrow \widehat{C}$. Generically stable types correspond to constant paths.

Decomposition theorem

Theorem
Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and an A-definable r-germ of pro-definable maps into \widehat{V}, with $p=\int_{r} f$.

Example

Definable types on a curve C correspond to germs of definable paths on $\alpha:[a, b] \subset \Gamma \rightarrow \widehat{C}$. Generically stable types correspond to constant paths.

Decomposition theorem, remarks

Theorem
Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and a pro-definable map f into \widehat{V}, with $p=\int_{r} f$; the r-germ of f is A-definable.

Decomposition theorem, remarks

Theorem
Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and a pro-definable map f into \widehat{V}, with $p=\int_{r} f$; the r-germ of f is A-definable.

- $n \leq \operatorname{dim}(V)$.

Decomposition theorem, remarks

Theorem
Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and a pro-definable map f into \widehat{V}, with $p=\int_{r} f$; the r-germ of f is A-definable.

- $n \leq \operatorname{dim}(V)$.
- The theorem holds also for invariant types, meaning a functorial Huber-Knebush point; r is then an invariant type on Γ^{n}.

Decomposition theorem, remarks

Theorem

Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and a pro-definable map f into \widehat{V}, with $p=\int_{r} f$; the r-germ of f is A-definable.

- $n \leq \operatorname{dim}(V)$.
- The theorem holds also for invariant types, meaning a functorial Huber-Knebush point; r is then an invariant type on Γ^{n}.
- r and the r-germ of f are unique up to reparameterization; a canonical additional constraint on the parameterization of f exists.

Decomposition theorem, remarks

Theorem

Let p be an A-definable type on a variety V. Then there exist an A-definable type r on Γ^{n} and a pro-definable map f into \widehat{V}, with $p=\int_{r} f$; the r-germ of f is A-definable.

- $n \leq \operatorname{dim}(V)$.
- The theorem holds also for invariant types, meaning a functorial Huber-Knebush point; r is then an invariant type on Γ^{n}.
- r and the r-germ of f are unique up to reparameterization; a canonical additional constraint on the parameterization of f exists.
- f itself may not exist over A, but only over a bigger base field. E.g., when $p=p_{B}=$ generic type of an open ball.

Imaginaries

- Let A be a set of abstract imaginaries. Let $D \subset K^{n}$ be a nonempty A-definable set. Then there exists a definable type p on $D($ over $U)$ such that p has a finite orbit under Aut (\mathbb{U} / A).
- Any definahle type has a canonical base $B \subset S_{n} \times T_{n} \times K^{n}$. some n. (A unique minimal base of definition.)
decomposition theorem
\qquad
\qquad

Imaginaries

- Let A be a set of abstract imaginaries. Let $D \subset K^{n}$ be a nonempty A-definable set. Then there exists a definable type p on D (over \mathbb{U}) such that p has a finite orbit under $\operatorname{Aut}(\mathbb{U} / A)$. reduces to dimension 1.

Imaginaries

- Let A be a set of abstract imaginaries. Let $D \subset K^{n}$ be a nonempty A-definable set. Then there exists a definable type p on D (over \mathbb{U}) such that p has a finite orbit under $\operatorname{Aut}(\mathbb{U} / A)$. reduces to dimension 1.
- Any definable type has a canonical base $B \subset S_{n} \times T_{n} \times K^{n}$, some n. (A unique minimal base of definition.) uses decomposition theorem.

Imaginaries

- Let A be a set of abstract imaginaries. Let $D \subset K^{n}$ be a nonempty A-definable set. Then there exists a definable type p on D (over \mathbb{U}) such that p has a finite orbit under $\operatorname{Aut}(\mathbb{U} / A)$. reduces to dimension 1.
- Any definable type has a canonical base $B \subset S_{n} \times T_{n} \times K^{n}$, some n. (A unique minimal base of definition.) uses decomposition theorem.
- Let E be a definable equivalence relation on \mathbb{A}^{n}, let D be a class, a an (abstract) code for the class D. Let p be a definable type on D. Let b be the canonical base. Then D is b-definable, and b has finitely many a-conjugates b_{1}, \ldots, b_{m}. Hence a is equivalent to a finite set of geometric imaginaries.

Imaginaries

- Let A be a set of abstract imaginaries. Let $D \subset K^{n}$ be a nonempty A-definable set. Then there exists a definable type p on D (over \mathbb{U}) such that p has a finite orbit under $\operatorname{Aut}(\mathbb{U} / A)$. reduces to dimension 1.
- Any definable type has a canonical base $B \subset S_{n} \times T_{n} \times K^{n}$, some n. (A unique minimal base of definition.) uses decomposition theorem.
- Let E be a definable equivalence relation on \mathbb{A}^{n}, let D be a class, a an (abstract) code for the class D. Let p be a definable type on D. Let b be the canonical base. Then D is b-definable, and b has finitely many a-conjugates b_{1}, \ldots, b_{m}. Hence a is equivalent to a finite set of geometric imaginaries.
- Explicitly code finite sets of lattices by a higher-dimensional lattice.

Topological finiteness for \widehat{V}

Let X be a definable subset of a quasi-projective variety V, over F. Theorem

Topological finiteness for \widehat{V}

Let X be a definable subset of a quasi-projective variety V, over F.
Theorem

1. There exists a definable deformation retraction from \widehat{X} to a definable subspace Υ, and a definable homoeomorphism $\gamma \rightarrow S \subset \Gamma_{\infty}^{w} ; w$ a finite set.

Topological finiteness for \widehat{V}

Let X be a definable subset of a quasi-projective variety V, over F.
Theorem

1. There exists a definable deformation retraction from \widehat{X} to a definable subspace Υ, and a definable homoeomorphism $\uparrow \rightarrow S \subset \Gamma_{\infty}^{w} ; w$ a finite set.
2. The image in S of any constructible $Y \subset X$ is definable using $<,+$ alone. (A hint of tropicality.)
retractions $X_{b} \rightarrow \Upsilon_{b}$ and definable homeomorphisms $r_{b} \rightarrow S_{b} \subset \Gamma_{\infty}$ are uniformly definable; and as b runs homeomorphism type of $S_{b}\left(\mathbb{R}_{\infty}\right)$.

Topological finiteness for \widehat{V}

Let X be a definable subset of a quasi-projective variety V, over F.
Theorem

1. There exists a definable deformation retraction from \widehat{X} to a definable subspace Υ, and a definable homoeomorphism $\gamma \rightarrow S \subset \Gamma_{\infty}^{w} ; w$ a finite set.
2. The image in S of any constructible $Y \subset X$ is definable using $<,+$ alone. (A hint of tropicality.)
3. Let $f: X \rightarrow Y$ be a morphism, $X_{b}=f^{-1}(b)$. Then the retractions $X_{b} \rightarrow \Upsilon_{b}$ and definable homeomorphisms $\Upsilon_{b} \rightarrow S_{b} \subset \Gamma_{\infty}^{w}$ are uniformly definable; and as b runs through $Y(F)$, there are finitely many possibilities for the homeomorphism type of $S_{b}\left(\mathbb{R}_{\infty}\right)$.

Remarks

- w is the set of roots of a polynomial over $F . \Gamma_{\infty}^{w}$ is homeomorphic to $\Gamma_{\infty}^{|w|}$; we use w in order to have an F definable homeomorphism; in particular, Galois invariant.
definable subset of Γ_{∞}^{n} is $<,+$-definable.
- Finite number of definable homotodv tvoes: likewise automatic from the same statement in o-minimal case one notes that the family of skeleta S_{b} of the sets X_{b}, is uniformly definable Anv ACFA r-definahle suhset of Γ^{n} is $<,+$-definable with parameters from $\Gamma(F)$

Remarks

- w is the set of roots of a polynomial over $F . \Gamma_{\infty}^{w}$ is homeomorphic to $\Gamma_{\infty}^{|w|}$; we use w in order to have an F definable homeomorphism; in particular, Galois invariant.
- Semi-linearity of the image is automatic: any (ACVF) definable subset of Γ_{∞}^{n} is $<,+$-definable.

Finite number of definable homotopy types: likewise automatic from the same statement in o-minimal case one notes that the family of skeleta S_{b} of the sets X_{b}, is uniformly definable. Any $A C F A_{F}$-definable subset of Γ_{∞}^{n} is $<,+$-definable with parameters from $\Gamma(F)$

Remarks

- w is the set of roots of a polynomial over $F . \Gamma_{\infty}^{w}$ is homeomorphic to $\Gamma_{\infty}^{|w|}$; we use w in order to have an F definable homeomorphism; in particular, Galois invariant.
- Semi-linearity of the image is automatic: any (ACVF) definable subset of Γ_{∞}^{n} is $<,+$-definable.
- Finite number of definable homotopy types: likewise automatic from the same statement in o-minimal case, once one notes that the family of skeleta S_{b} of the sets X_{b}, is uniformly definable. Any $A C F A_{F}$-definable subset of Γ_{∞}^{n} is $<,+$-definable with parameters from $\Gamma(F)$.

Definable homotopies

- A definable homotopy is a continuous, pro-definable $H: \widehat{X} \times I \rightarrow \widehat{X}, I$ a Γ-interval; with $h_{\text {minI }}=I d, h_{\max I}=h_{1}$. We seek a definable homotopy H to h_{1} with $h_{1}(\widehat{X}) \cong S \subset \Gamma_{\infty}^{w}$.

Definable homotopies

- A definable homotopy is a continuous, pro-definable $H: \widehat{X} \times I \rightarrow \widehat{X}, I$ a Γ-interval; with $h_{\text {minI }}=I d, h_{\max I}=h_{1}$. We seek a definable homotopy H to h_{1} with $h_{1}(\widehat{X}) \cong S \subset \Gamma_{\infty}^{w}$.
- We construct a deformation of V, respecting finitely many definable subsets, and functions into Γ.
- Continuity criteria: cf. Knebush, primary and secondary specializations.

Definable homotopies

- A definable homotopy is a continuous, pro-definable $H: \widehat{X} \times I \rightarrow \widehat{X}, I$ a Γ-interval; with $h_{\min I}=I d, h_{\max I}=h_{1}$. We seek a definable homotopy H to h_{1} with $h_{1}(\widehat{X}) \cong S \subset \Gamma_{\infty}^{w}$.
- We construct a deformation of V, respecting finitely many definable subsets, and functions into Γ.
- Canonical extension: Any definable $h: V \rightarrow \widehat{U}$ extends to $H: \widehat{V} \rightarrow \widehat{U}$; similarly for $h: V \times I \rightarrow \widehat{U} . H(p)=\int_{p} h$.

Definable homotopies

- A definable homotopy is a continuous, pro-definable $H: \widehat{X} \times I \rightarrow \widehat{X}, I$ a Γ-interval; with $h_{\text {minI }}=I d, h_{\max I}=h_{1}$. We seek a definable homotopy H to h_{1} with $h_{1}(\widehat{X}) \cong S \subset \Gamma_{\infty}^{w}$.
- We construct a deformation of V, respecting finitely many definable subsets, and functions into Γ.
- Canonical extension: Any definable $h: V \rightarrow \widehat{U}$ extends to $H: \widehat{V} \rightarrow \widehat{U}$; similarly for $h: V \times I \rightarrow \widehat{U} . H(p)=\int_{p} h$.
- Continuity criteria: cf. Knebush, primary and secondary specializations.

$A C V^{2} F$ and continuity criteria

- $A C V^{2} F$ is the theory $A C V^{2} F$ of triples $\left(K_{2}, K_{1}, K_{0}\right)$ of fields with surjective, non-injective places $K_{2} \rightarrow_{r_{21}} K_{1} \rightarrow_{r_{10}} K_{0}$.

$A C V^{2} F$ and continuity criteria

- $A C V^{2} F$ is the theory $A C V^{2} F$ of triples $\left(K_{2}, K_{1}, K_{0}\right)$ of fields with surjective, non-injective places $K_{2} \rightarrow_{r_{21}} K_{1} \rightarrow_{r_{10}} K_{0}$.
- $0 \rightarrow \Gamma_{10} \rightarrow \Gamma_{20} \rightarrow \Gamma_{21} \rightarrow 0$

$A C V^{2} F$ and continuity criteria

- $A C V^{2} F$ is the theory $A C V^{2} F$ of triples $\left(K_{2}, K_{1}, K_{0}\right)$ of fields with surjective, non-injective places $K_{2} \rightarrow_{r_{21}} K_{1} \rightarrow_{r_{10}} K_{0}$.
- $0 \rightarrow \Gamma_{10} \rightarrow \Gamma_{20} \rightarrow \Gamma_{21} \rightarrow 0$
- $\widehat{V}_{210}=\widehat{V}_{20}$. Hence $\widehat{V}_{20} \rightarrow \widehat{V}_{21}$.
- An ACVF-definable map $f: W \rightarrow \widehat{V}$ extends to a continuous $\operatorname{map} \widehat{W} \rightarrow \widehat{V}$ if and only if it is compatible with the natural maps among $\widehat{V}_{i j}$.

Construction of a definable deformation

We obtain the deformation by a composition of four kinds of homotopies:

Construction of a definable deformation

We obtain the deformation by a composition of four kinds of homotopies:

1. Deformations of (relative) curves.

Construction of a definable deformation

We obtain the deformation by a composition of four kinds of homotopies:

1. Deformations of (relative) curves.

Arrange (after a blowup with finite center) that V is fibered by curves over a variety U. Apply (1) to each curve V_{u}.
2. Extend deformation H_{U} of \widehat{U} to Ω.

Construction of a definable deformation

We obtain the deformation by a composition of four kinds of homotopies:

1. Deformations of (relative) curves.

Arrange (after a blowup with finite center) that V is fibered by curves over a variety U. Apply (1) to each curve V_{u}.
Away from a divisor $D_{\text {vert }}$ on U, and after a fiber product with a finite Galois cover of U, obtain a deformation H on \widehat{V} with final image definably homeomorphic to a subset Ω of $U \times \Gamma_{\infty}^{n}$.
2. Extend deformation H_{U} of \widehat{U} to Ω.
3. Pre-compose with inflation homotopy in order to get away from $D_{\text {vert }}$. This homotopy does not move singular points, and slightly inflates smooth points to generics of small polydisks around them.

Construction of a definable deformation

We obtain the deformation by a composition of four kinds of homotopies:

1. Deformations of (relative) curves.

Arrange (after a blowup with finite center) that V is fibered by curves over a variety U. Apply (1) to each curve V_{u}.
Away from a divisor $D_{\text {vert }}$ on U, and after a fiber product with a finite Galois cover of U, obtain a deformation H on \widehat{V} with final image definably homeomorphic to a subset Ω of $U \times \Gamma_{\infty}^{n}$.
2. Extend deformation H_{U} of \widehat{U} to Ω.
3. Pre-compose with inflation homotopy in order to get away from $D_{\text {vert }}$. This homotopy does not move singular points, and slightly inflates smooth points to generics of small polydisks around them.
4. These steps already yield H as stated; but one also wants a strong deformation, i.e. that H fixes $h_{1}(\widehat{X})$.. This can be arranged by post-composing with a homotopy of $h_{1}(\widehat{X})$. This fourth homotopy lives entirely in the tropical world.

