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Plan

» Review of basics on definable sets.

» Imaginaries. Joint work with Deirdre Haskell, Dugald
Macpherson (monograph), Ben Martin (ArXiv)

» Topology. Joint work with Frangois Loeser. (ArXiv, F.L. web
page.)

» Definable types and generically stable types.

» Geometric imaginaries: sketch of proof.

» Topological finiteness: rough structure of proof.
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Setting

K denotes a valued field.

>

Algebraic varieties V. V(K) = points of V in a field K. For
most of this talk, can think of V as affine,

V(K)={xe K": fi(x) =--- = fx(x) = 0}.

A semi-algebraic or constructible Z C V is defined by
valuation inequalities such as valf > valg; again

Z(K) ={x € V(K) : valf > valg}, etc.

O is defined by: valx > 0.

(I, +, <) denotes the value group, val the valuation map.
Mo =T U{o0}.

k is the residue field; res : O — k the residue map.

For a € K and v € I denote B>,(a) (resp. B~-(a)) the
closed (resp. open) ball of valuative radius v around a.



Geometric imaginaries

» S, = GL,/GL,(O) = B,/Bn(O).

» T,:= GL,/GL,(O)°, where:
1 — GL,(0)° — GL,(O) — GL,(k) — 1 exact.

» A definable subset of S, or T, is the image of a definable
subset of GL,,. A definable map U — V is a definable subset
f of U x V, that always defines a function.
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=5 = GL;/GL1(0O).
A linearly ordered group: +, < are definable (their pullbacks
are -, x € Oy.)

v

» pure / QE: Any definable subset of I'" is a Boolean
combination of QQ-linear inequalities.

> A natural topology, determined by the ordering.
Moo :=T U{o0}.

» k=0O/M,; k* = GL1(0)/GL1(O)°®; a pure field.

» RV := Ty = GL1/GL1(O)° also has a definable set structure
that can be explicitly described;

1 k' = GLl/GLl(O)O — T



We will occasionally consider Th(Q,), where quantifers range over
Qp and not over the algebraic closure. The principal difference is
that I is now discrete; QE still holds if arithmetic sequences are
added to the basic structure.
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Theorem (H., Haskell, Macpherson)

Let X C U x V be semi-algebraic. Let X, = {v: (u,v) € X}.
Then there exists a definable map f : U — S, x T, x A" such that

Xy =X, <= f(u)="(v)

» Equivalent statement: Let E C U? be a semi-algebraic
equivalence relation. Then there exists n, a definable
subgroup H < GL,(O) as above, and a definable embedding
U/E — GL,/H.

» The same result holds for definabity in Q. In this case, only
the S, are needed. (H.-Martin)

» Probably also for ultraproducts of the Q,. (Certain cases,
conjectured by Cluckers-Denef, proved.)

» All proofs use same strategy: study germs for definable types;
geometry of definable types in terms of generically stable
types. To be explained.
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Corollary (Rationality)

Let X CT x U, ECT xUx U be Th(Qp)-definable, such that E,
is an equivalence relation on X,, with a finite number of classes
a(n).

Then piecewise, a(n) is an exponential polynomial >_ byn*p™.

Piecewise: divide N according to residue mod some M, with a
finite exceptional set. Combinatorial formulation: > a(n)t" is
rational.
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Proof of corollary: counting classes of definable
equivalence relations

» Denef (1984) showed the same statement for p-adic integrals
B(n) = [qm f(x, n)dx varying definably with n € T.
P

» Denef’s theorem is now understood as part of motivic
integration; cf. Scanlon’s talk. It can be shown via iterated
integration, reduction to dimension one.

> Let u be the right invariant volume form on GL,. If X is a
finite set of right GL,(O)-cosets, then
X/ GLA(O) = (f 1xdp) /([ LeL,(0)dm)-

» By elimination of imaginaries, every equivalence relation
reduces to the one above (GL,(O)-cosets).

» Hence counting reduces to volumes.

» In fancy language: the Grothendieck ring of definable sets,
even of imaginary sorts, maps into the Grothendieck ring of
normalized volumes.
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Two examples of imaginaries arising geometrically

> Cluckers-Denef 2007: Orbital integrals. X a homogeneous
space for an algebraic group G. Study X(Q,)/G(Qp)
uniformly in p.

» H. - Martin. Irreducible representations of finitely generated
nilpotent groups, up to 1-dimensional twists.

» G < Un(Zp). Up=upper triangular matrices. G has infinitely
may 1-dimensional representations, but up to tensoring with
them, only finitely many («,) irreducible continuous
representations of dimension p". Then again ) a,t" is
rational. Here X=1-dimensional representations of subgroups;
E= same induced representation to G, up to a twist.



From now on we will restrict attention to the theory ACVFg of
algebraically closed valued fields, containing a given valued field F.
Thus for subsets of algebraic varieties, semi-algebraic =
constructible = definable (Robinson.) For subsets of the imaginary
sorts, we prefer the term "definable”.
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Topology
We consider the Berkovich topology of algebraic varieties. We are
given a valued field F, an ordered group A and a valuation
v:F — AU {co}. Mostly (with Berkovich) we will consider only
the A =R.

» V an algebraic variety over F. A Berkovich point is a
Grothendieck point, i.e. a K-irreducible subvariety U of V/,
along with an extension to F(U) of the valuation on F into
the same group A.

» Bp(V) denotes the set of Berkovich points. If X is cut out of
V' by some valuation inequalities, let B(X) be the subset
where these inequalities hold.

> Let f be a regular function on V. For any
p = (Up, vp) € BF(V), have valf(p) := v,(f|U) € R. Thus
while f does not extend to Br(V), valo f.

» For affine V, topologize BF(V) minimally so that the
functions valo f : BE(V) — A are continuous, for any
regular f on V. (in general, patch.)
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Topological finiteness for Berkovich spaces

Let X be a definable subset of a quasi-projective variety V.

Theorem (H.-Loeser)

1. There exists a deformation retraction from Bg(X) to a
subspace S homeomorphic to a finite simplicial complex.

2. Let f : X — Y be a morphism, Xp = f~1(b). Then there are
finitely many possibilities for the homotopy type of Bg(Xp), as
b runs through Y (F).

(1) was proved by Berkovich assuming the base field F is
nontrivially valued, and certain weak smoothnes assumptions on
the ambient varieties.



)

In the model-theoretic treatment, Berkovich points are replaced by
generically stable types. The set of generically stable types on X is
denoted X.

They are defined for any valued field, not necessarily with value
group C R. This is related to the finiteness theorem (2).

We will define the points from several viewpoints; show that they
form a pro—definAabIe set; define a topology on this set; and discuss
the relation of X(F) to Be(X), when the latter is defined.

But first we must consider a more general notion, of a definable
type. Asides from serving as a natural setting for picking out the
generically stable types, we will use them to define and prove most
of the significant properties of X,
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from Martin Hils' Segovia tutorial: The notion of a
definable type

» T =ACVFg, L =+, -,val

Definition
Let M =T and A C M. A type p(x) € Sp(M) p is A-definable if
for every L formula ¢(x,y) there is an La-formula dp¢(y) s.t.

o(x,b) e p & M = dpp(b) (for every b e M)

We say p is definable if it is definable over some A C M.
The collection (dp¢)y is called a defining scheme for p.

Remark
If p € S,(M) is definable via (dp®)s, then the same scheme gives
rise to a (unique) type over any N' = M, denoted by p | N.
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Definable types
| prefer to take the defining scheme itself to be the definable type.

Definition
A definable type p(x) is a Boolean retraction Ly, y, . to Ly, \,

¢ = (dpx)9

Analogy: a finite measure on a compact space X can be defined as
a retraction from continuous functions on X x Y, to continous
functions on Y.

Example, Th(C): let V be an irreducible variety. (dpx)¢ = "for
generic x € V, ¢" = for some proper Zariski closed Z C V,

(Vx € V N\ Z)¢.
Example, Th(R) Let V be a variety and let g : (a, b] — V be a
parameterized curve. (dpx)¢ = "for all t sufficiently close to b,

¢(g(t)). Definition of definable compactness in o-minimality.
In ACVF, both kinds of example occur; in fact we will see that
every definable type decomposes into a composition of the two.
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(from M.H. tutorial)
» (Realised types are definable)
Let a € M". Then tp(a/M) is definable.
(Take dpo(y) = ¢(a, y).) constant definable types

> (Preservation under definable functions)
Let b € dcl(M U {a}), i.e. f(a) = b for some M-definable
function f. Then, if tp(a/M) is definable, so is tp(b/M).
Pushforward, f,p:

(de.py)0(y, u) := (dpx)0(f(x), u)

» (Transitivity) Let a € N for some N = M, A C M. Assume
» r =tp(a/M) is A-definable;
» tp(b/N) is AU {a}-definable. so tp(b/N) = h(a)
Then tp(ab/M) is A-definable. We will refer to this type as

Jih



Definable types: germs and limits

» Let f, g be definable functions. f, g have the same p-germ if
(dpx)(f(x) = g(x)) (iff whenever ¢ |= p|M, where f, g are
defined oer M, we have f(c) = g(c).)

» Assume f : D — X, p a definable type on X, and X carries a
(definable) topology. Write lim, f = a if for any definable
open Uof a, ac U = (dpx)(f(x) € U)
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V: generically stable types on V

1.

Definable types, orthogonal to the value group: f.p for any
f:v-rT.

Stably dominated types: p dominated by g.p for some
definable g : V — E, E a finite dimensional space over k.

The center of the monoid of definable types: for any q,
p(x)@q(y) = aly)©p(x)

(When V < A" is an affine variety). I-seminorms
v:K[Xt,..., X0 = T

v(fg) = v(g)+v(g), v(F+g) = min(u(F), v(g)), v(c) = val(c)
such that v(f) = o if f|V =0,

and v|K[X1, ..., Xnld is definable, for each d

(When I'(F) <R). An element of Bg(V), functorially
extendible to Bg/(V) for F' > F As Antoine Ducros pointed
out, for this statement we must consider arbitrary F’; for
those with value group R, a theorem of Poineau extends any
Berkovich point functorially.
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Remarks

» An F-definable, generically stable type need not be dominated
by an F- definable map into k”. The vector space E may have
the form A/ MA, A an F-definable lattice.

» The ® characterization arises from NIP theory, and admits
many equivalent forms at that level of generality. E.g. p®" is
Sym(n)-invariant.
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(K[X1,...,Xs]q are the polynomials of degree < d.) Then Ay
is a semi-lattice, i.e. the dual of a finitely generated
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Ag4. This shows how p can be coded canonically by a sequence

of elements of the set S}, of semi-lattices. S}, is easily coded
by S<m and K™.

{Ng(p) : p € V} is in fact definable. (It is easily seen to be a
countable intersection of definable sets. Using stable
domination, it is also a countable union of definable sets. By
compactness it must be definable.)
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> Let v: K[X1,...,X,] = s be a definable semi-norm. Let
Ng = /\d(p) = {f S K[Xl, .. 'aXn]d : V(f) > 0}
(K[X1,...,Xs]q are the polynomials of degree < d.) Then Ay
is a semi-lattice, i.e. the dual of a finitely generated
O-submodule. v|K[X1, ..., Xp]q is easily reconstructed from
Ag. This shows how p can be coded canonically by a sequence
of elements of the set S}, of semi-lattices. S}, is easily coded
by S<m and K.

» {Ag(p):p€ V} is in fact definable. (It is easily seen to be a
countable intersection of definable sets. Using stable
domination, it is also a countable union of definable sets. By
compactness it must be definable.)



Proof of equivalence

v

2 = 3 Since p is determined by gyp, and g.pRqg = gRg«p.

v

3 = 1: Symmetry implies symmetry of pushfoward. A type on
" commuting with itself is constant.

1= 4 v(f) = (valf).p.
1 = 2 follows from the decomposition theorem over

maximally complete fields below, and a (still quite technical)
descent theorem for stably dominated types.

4 = 1: (dpx)(valf > valg) <= v(f)>v(g).
1 = 5 as definable types give types over any larger base.

v

v

v

v

v

5 = 1: example of type 4 point.



Connection with Berkovich space

» F be a valued field, with value group < R.



Connection with Berkovich space

» F be a valued field, with value group < R.

» M3 3 spherically complete algebraically closed field,
containing F, with value group R, and residue field equal to
the algebraic closure of the residue field of F. (unique up to
isomorphism, by Kaplansky's theorem.)



Connection with Berkovich space

» F be a valued field, with value group < R.

» M3 3 spherically complete algebraically closed field,
containing F, with value group R, and residue field equal to
the algebraic closure of the residue field of F. (unique up to
isomorphism, by Kaplansky's theorem.)

> T=Tx ! )A((F’"ax) — Bp(X) (realization and restriction.)



Connection with Berkovich space

v

v

F be a valued field, with value group < R.

Fmax a spherically complete algebraically closed field,
containing F, with value group R, and residue field equal to
the algebraic closure of the residue field of F. (unique up to
isomorphism, by Kaplansky's theorem.)

=T )A((F’"ax) — Bp(X) (realization and restriction.)
Tx IS surjective.

7 is functorial in X. 7(l') = R.



Connection with Berkovich space

v

F be a valued field, with value group < R.

Fmax a spherically complete algebraically closed field,
containing F, with value group R, and residue field equal to
the algebraic closure of the residue field of F. (unique up to
isomorphism, by Kaplansky's theorem.)

=T )A((F’"ax) — Bp(X) (realization and restriction.)
Tx IS surjective.

7 is functorial in X. 7(l') = R.

in particular a homotopy h : XxIl—X gives a homotopy
Br(X) x I(R) — Bg(X).



Connection with Berkovich space

v

v

F be a valued field, with value group < R.

Fmax a spherically complete algebraically closed field,
containing F, with value group R, and residue field equal to
the algebraic closure of the residue field of F. (unique up to
isomorphism, by Kaplansky's theorem.)

=T )A((F’"ax) — Bp(X) (realization and restriction.)
Tx IS surjective.

7 is functorial in X. 7(l') = R.

in particular a homotopy h : XxIl—X gives a homotopy
Br(X) x I(R) = Br(X).

X is definably compact iff Bg(X) is compact; etc.



Proposition

Let M be a spherically complete valued field, N = M(a) a valued
field extension. Let v = (y1,...,7vn) be a basis for [(N)/T(M).
Then there exists a unique M(~)-definable type extending
tp(a/M(7)). This type is stably dominated.



Call a lattice A diagonal for a basis (by, ..., b,) if there exist
C1y...,cn € K with A =5 Oc;b;. In other words, A = @;A N Kb;

Proposition

let D be a -internal set of lattices, i.e. there exists a surjective
map '™ — D. Then there exist a finite partition D = U;_; D; and
bases b, ..., b" such that each \ € D; is diagonal in b'.
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Decomposition theorem

Theorem

Let p be an A-definable type on a variety V. Then there exist an
A-definable type r on " and an A-definable r-germ of
pro-definable maps into V, with p = [ f.

Example

Definable types on a curve C correspond to germs of definable
paths on « : [a, b] C I — C. Generically stable types correspond
to constant paths.
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Decomposition theorem, remarks

Theorem

Let p be an A-definable type on a variety V. Then there exist an
A-definable type r on " and a pro-definable map f into V/, with
p= fr f, the r-germ of f is A-definable.

v

n < dim(V).

» The theorem holds also for invariant types, meaning a
functorial Huber-Knebush point; r is then an invariant type on
rn.

» r and the r-germ of f are unique up to reparameterization; a

canonical additional constraint on the parameterization of f
exists.

> f itself may not exist over A, but only over a bigger base field.
E.g., when p=pg= generic type of an open ball.
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Imaginaries

> Let A be a set of abstract imaginaries. Let D C K" be a
nonempty A-definable set. Then there exists a definable type
p on D (over U) such that p has a finite orbit under
Aut(U/A). .

» Any definable type has a canonical base B C S, x T, x K",
some n. (A unique minimal base of definition.)

» Let E be a definable equivalence relation on A", let D be a
class, a an (abstract) code for the class D. Let p be a
definable type on D. Let b be the canonical base. Then D is
b-definable, and b has finitely many a-conjugates by, ..., by.
Hence a is equivalent to a finite set of geometric imaginaries.

» Explicitly code finite sets of lattices by a higher-dimensional
lattice.
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Topological finiteness for V

Let X be a definable subset of a quasi-projective variety V, over F.

Theorem

1. There exists a definable deformation retraction from X to a
definable subspace T, and a definable homoeomorphism
T =S CT%; w a finite set.

2. The image in S of any constructible Y C X is definable using
<,+ alone. (A hint of tropicality.)

3. Let f : X — Y be a morphism, X, = f~1(b). Then the
retractions X, — T, and definable homeomorphisms
Tp — Sp C 'Y, are uniformly definable; and as b runs
through Y (F), there are finitely many possibilities for the
homeomorphism type of Sp(Roo).



Remarks

» w is the set of roots of a polynomial over F. T'Y is

. w .
homeomorphic to F‘oo|; we use w in order to have an F-
definable homeomorphism; in particular, Galois invariant.
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Remarks

» w is the set of roots of a polynomial over F. T'Y is

. w .
homeomorphic to F‘oo|; we use w in order to have an F-
definable homeomorphism; in particular, Galois invariant.

» Semi-linearity of the image is automatic: any (ACVF)
definable subset of '] is <, +-definable.

» Finite number of definable homotopy types: likewise
automatic from the same statement in o-minimal case, once
one notes that the family of skeleta S, of the sets Xp, is
uniformly definable. Any ACFAEg-definable subset of '] is
<, +-definable with parameters from I'(F).
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Definable homotopies

v

A definable homotopy is a continuous, pro-definable
H:XxI— X I a T-interval; with hpi = Id, hmaX, = h;.
We seek a definable homotopy H to h; with hy(X) =S C Y.

We construct a deformation of V/, respecting finitely many
definable subsets, and functions into I.

v

v

Canonical extension: Any definable h: V' — U extends to
H:V — U; similarly for h: V x | — U. H(p fh

Continuity criteria: cf. Knebush, primary and secondary
specializations.

v
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ACV?F and continuity criteria

» ACV?F is the theory ACV?F of triples (K2, K1, Kp) of fields
with surjective, non-injective places Ky —,,, K1 —, Ko.

> 0—>T19—Top—>T2—0

> Vglo = 020 Hence Vgo — /\721

> An ACVF-definable map f : W — V extends to a continuous

map WV |f and only if it is compatible with the natural
maps among \/,j
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Construction of a definable deformation
We obtain the deformation by a composition of four kinds of
homotopies:

1. Deformations of (relative) curves.

Arrange (after a blowup with finite center) that V is fibered
by curves over a variety U. Apply (1) to each curve V.

Away from a divisor D¢+ on U, and after a fiber produAct with
a finite Galois cover of U, obtain a deformation H on V with
final image definably homeomorphic to a subset Q2 of U x I'.

2. Extend deformation Hy of Uto Q.

3. Pre-compose with inflation homotopy in order to get away
from D,ert. This homotopy does not move singular points,
and slightly inflates smooth points to generics of small
polydisks around them.

4. These steps already yield H as stated; but one also wants a
strong deformation, i.e. that H fixes h1(X).. This can be
arranged by post-composing with a homotopy of hl()?). This
fourth homotopy lives entirely in the tropical world.



