Voyage to the land of Erdös Macintyre meeting

Ehud Hrushovski
August 22, 2014

1

1. \aleph_{1}-categoricity. Structures, fields, fields with extra structure. How big are finite sets?
2. Pseudo finite structures / fields with extra structure. Erdös geometry.
3. Fine dimension δ, associated measures μ_{α}; coarse dimension $\boldsymbol{\delta}$. Stability phenomena for δ-generics.
4. Lachlan-Zilber, Zilber's conjecture.
5. Probability logic. Hoover (Gromov, Binyamini-Schram.) Probability logic on varieties.
6. Tao's induced structure theorem for $\boldsymbol{\delta}$-generics.
7. Extensions towards probability logic on varieties (joint with Bukh-H.-Zimmerman). Limiting examples, Archimedean moonshine.
8. Metrically approximately subgroups. (Beyond local compactness; Set theoretic phenomena?)
$2 \delta, \boldsymbol{\delta}, \mu_{\alpha}$.
For subsets of Y^{n}, we define the coarse dimension

$$
\boldsymbol{\delta}(X)=\operatorname{st}(\log |X| / \log |Y|)
$$

The fine dimension: $\delta(X)=\log |X|$ modulo the convex hull of \mathbb{R} in \mathbb{R}^{*}.

And the measure at fine dimension α : If $\delta(X)=\delta\left(X^{\prime}\right)=\alpha$, $\mu_{\alpha}(X) / \mu_{\alpha}\left(X^{\prime}\right)=s t\left(\left|X / X^{\prime}\right|\right)$.

So $\boldsymbol{\delta}(X)$ is a real number, and given $\alpha(X), \mu_{a}(X)$ is a real number.

3 Lachlan-Zilber, Zilber's conjecture

$X \subset F, \boldsymbol{\delta}(X)=1$. Let \mathcal{R} be the set of all subvarieties V of F^{n} such that $\operatorname{dim}(V)=\boldsymbol{\delta}\left(V \cap X^{n}\right)$.

By a $(2,3,2)$ pseudo-plane (for short, in this talk, pseudo-plane) we mean : interpretable ∞-definable sets P, L lying on algebraic varieties $\underline{P}, \underline{L}$, and a constructible set \underline{I} such that for any two points of $\underline{P}, \underline{I}(a) \cap \underline{I}\left(a^{\prime}\right)$ is finite, and dually; and $\boldsymbol{\delta}(P)=\operatorname{dim}(\underline{P})=2$, $\boldsymbol{\delta}(L)=\operatorname{dim}(\underline{L})=2, \boldsymbol{\delta}(I)=\operatorname{dim}(I)=3$.

Proposition 3.1. If some $V \in \mathcal{R}$ is not modular (1-based in every cut), then (X, F) interprets a pseudo-plane on W / E, with $W, E \in \mathcal{R}$.

Conjecture 3.2. Assume \mathcal{R} is not modular. Then it interprets a field k with $\boldsymbol{\delta}(k)>0$. In fact $\boldsymbol{\delta}(k)=1$.
cf. Rabinovich.
Proposition 3.3 (Trotter-Szemeredi, Elekes-Szabo, Solymosi-Tao
). The conjecture is true in internal characteristic zero; in fact \mathcal{R} interprets no (2,3,2)-pseudoplane.

4 Probability logic

Probability logic is best viewed in the framework of real-valued logic. It is presented as an operator, taking a formula $\phi(x, y)$ to a formula $\operatorname{Ex} \phi(x, y)$ representing the x-expectation of ϕ.

Hoover quantifier-elimination.
The usual quantifiers of real-valued logic can be defined (using essential inf for inf) via: (for f taking values in a bounded region of \mathbb{R})

$$
i n f_{x} f:=\lim _{n} E_{x_{1}, x_{n}} f_{n}
$$

where $f_{n}\left(x_{1}, \ldots, x_{n}, y\right)=\min f\left(x_{1}, y\right), f\left(x_{2}, y\right),, f\left(x_{n}, y\right)$ Thus we have a full-fledged real-valued theory, so various statements apply; in particular the complete theory determines the isomorphism type of a compact model. In the special case of a language consisting of a metric alone, this is the Gromov (or Gromov-Vershik) theorem that the statistics of a compact measured metric space determines it up to isomorphism.

Theorem 4.1. Let G_{n} be a sequence of locally finite metric spaces, convergent in probability logic (=Binyamini-Schramm) and increasingly 1-homogeneous. Assume a 2-ball is a union of k 1-balls. Then the limit (Γ, X) admits a homomorphism to a vertex transtive graph B of bounded degree, such that each fiber is commensurable to a Riemannian homogeneous space.

4.2 Probability logic on varieties

Add bounded quantifiers. Equivalently, a system of measures on varieties, compatible with products and pushforwards.

5 Tao's 'algebraic Szemeredi lemma'

Strong definability of measure: $\boldsymbol{\delta}$ determines $\boldsymbol{\delta} ; \boldsymbol{\delta}$ and μ_{a} definable. (cf. Macpherson-Steinhorn asymptotic classes.)

Explicitly: write $X \approx X^{\prime}$ if $\| X\left|-\left|X^{\prime}\right|\right|=o\left(|X|^{1-\epsilon}\right)$ for some rational $\epsilon>0$. Let X, Y be sorts and $U \subset X \times Y$ be a definable set. Y can be partitioned into finitely many definable sets Q_{ν}, such that U^{b} / \approx is constant in each class Q_{ν}.

Example: pseudo-finite fields (Lang-Weil.)
Theorem 5.1. Let A be a pseudo-finite structure, with strong definability of measure. Let B be a subset, $\boldsymbol{\delta}(B)=\boldsymbol{\delta}(A)$, and assume B meets every 0-definable unary subset of A of positive measure. Then $T h_{\text {prob }}(B)=T h_{\text {prob }}(A)$ (and they have a common elementary submodel.)

This is obvious when $\mu(B)=1$. However, in nonstandard terms, the assumption is only that $|B|=|A|^{1-\epsilon}$; so $\mu(B)=0$ and it seems like an amazing coincidence that $\mu_{B}=\mu_{A}(\phi)$.

One can delete the assumption that B meets every 0-definable subset of A of positive measure, and describe $T h_{\text {prob }}(B)$ as the induced from $T h_{\text {prob }}(A)$ in a natural sense; the usual notion of 'induced structure to a definable set' generalizes to a probability distribution on 1-types. Explicitly, for any definable $U \subset X^{n}$ one can find a definable partition $X=\cup_{i=1}^{r} X_{i}$, such that the theorem holds for each $\left(X_{i}, X_{j}, U \cap\left(X_{i} \times X_{j}\right)\right.$.

6 Extensions; towards probability logic on varieties

Partly in Tao, partly joint work with Bukh, Zimmerman.
Definition 6.1. Let $\phi, B \subset Y$. Say B meets ϕ properly (in Y) if $(\phi \cap B) \times Y \approx B \times \phi$.

Say B is 1-dense if for any definable $D \subset F$ with $\boldsymbol{\delta}(D)=1$, we have $\boldsymbol{\delta}(D \cap B)=k$.

Theorem 6.2. Let F be a pseudo-finite field Let $V \subset \mathbb{A}^{n}$ be a subvariety of codimension 1 , projecting onto each \mathbb{A}^{n-1}. Then V meets properly every 1 -dense $D \subset F$, unless V is conjugate (by multi-valued correspondences) to the graph of $\sum_{i=1}^{n} x_{i}=0$ in some algebraic group.

In fact: there exists a definable partition of F, such that for any pieces P_{1}, \ldots, P_{n}, and any $B_{i} \subset P_{i}$ with $\boldsymbol{\delta}\left(B_{i}\right)=\boldsymbol{\delta}\left(P_{i}\right)$, Then $\Pi_{i} B_{i}$ meets V properly;

Theorem 6.3. Let F be a pseudo-finite field, $B \subset F, \boldsymbol{\delta}(B)=\boldsymbol{\delta}(F)$. Let $V \subset \mathbb{A}^{n}$ be a subvariety of codimension 2, not contained in a subvariety of codimension 1 of the above type. Then B^{n} meets V properly, unless there exist a simple Abelian variety A and curves C_{i} on A, such that $\left(F^{n}, V\right)$ is isogenous to $\left(C_{1} \times \cdots \times C_{n},+\cap\left(C_{1} \times\right.\right.$ $\left.\cdots \times C_{n}\right)$.

Example 6.4 (Too few relations). G a 2-dimensional simple Abelian variety, $A=F\left(\mathbb{F}_{p}\right)$. Find subsets $Y \subset A$ of size about $(1 / 10)|A|$ such that the equation $y_{1}++y_{10}=0$ has no solutions in Y^{10}. E.g. find a homomorphism $f: A \rightarrow \mathbb{Z} / m$ with $m>10$, and let Y be the inverse image of $1, \ldots,[m / 10]-1$.

Find a hyperplane section C of Y such that $Y \cap C$ has $>1 / 11|C(F)|$ points.

Let $V=\left\{\left(x_{1}, x_{10}\right) \in C^{10}: f\left(x_{1}\right)+.+f\left(x_{10}\right)=0\right\}$. This is a codimension 2 subvariety of C^{10}, which is not group-like in the sense of one-dimensional groups, but it has empty intersection with X^{10}.

On the other hand if one takes p such that $\left|G\left(\mathbb{F}_{p}\right)\right|$ has no small prime factors, so that over the ultraproduct $G(\mathbb{F})$ has no subgroups of finite index, it can be shown that no definable partition can be responsible for this; the predicted intersection number with any product of 10 pieces will be nonzero.

7 Caucy-Schwartz

Let M be a pseudo-finite structure. Let X, Y be sorts and $U \subset X \times Y$ be a definable set. When $U \subset X \times Y, a \in X, b \in Y$ we will write $U_{a}=\left\{y:(a, y) \in U\right.$ and $U^{b}=\{x:(x, b) \in U\}$

Proposition 7.1. Assume $\left|U_{a}\right| / \approx$ is constant for $a \in X(M)$; and $Y \times Y$ can be partitioned into finitely many definable sets Q_{ν}, such that $\left(U^{b} \cap U^{b^{\prime}}\right) / \approx$ is constant in each class Q_{ν}. Similarly, $Y=$ $\dot{U}_{\nu^{\prime}} Q_{\nu}^{\prime}$ and U^{b} / \approx is constant in each class $Q_{\nu^{\prime}}^{\prime}$.

Let B be a subset of Y meeting properly any (generic) Q_{ν} or Q_{ν}^{\prime}. Then B meets $U(a, y)$ properly for almost all a (all but $|X|^{1-\epsilon}$ for some $\epsilon>0$).

The following was noticed also by Starchenko-Pillay:
Remark 7.2. In codimension 0 , the Q_{ν} (intersection measure) are stable relations on $Y \times Y$.

Hence a large enough B meets the Q_{ν} properly; this serves as an induction base.

Proof of 7.1. Consider:

$$
\begin{equation*}
\frac{1}{X} \Sigma_{a \in X}| | U_{a}(B)\left\|Y|-| U_{a}\right\| B \| \tag{1}
\end{equation*}
$$

By Cauchy-Scwhartz, or just convexity of the parabola $y=x^{2}$, $(1)^{2}$ is bounded above by:

$$
=
$$

$$
\begin{gathered}
\frac{1}{|X|} \Sigma_{a \in X}\left(\left|U_{a}(B)\right||Y|-\left|U_{a}\right||B|\right)^{2}= \\
\frac{1}{|X|} \Sigma_{a \in X} \Sigma_{b, b^{\prime} \in B}\left(1_{U}(a, b)|Y|-\left|U_{a}\right|\right)\left(1_{U}\left(a, b^{\prime}\right)|Y|-\left|U_{a}\right|\right) \\
\frac{1}{|X|} \Sigma_{b, b^{\prime} \in B}\left(U^{b} \cap U^{b^{\prime}}\right)+\cdots
\end{gathered}
$$

8 Metrically approximate subgroups

Let G be a group with a metric d invariant under left and right translations. A (K, r)-approximate subgroup is a subset X of G containing 1 , such that the product set $X X$ is covered by at most K translates of $X B_{r}$, where B_{r} is the ball of radius r around 1. (Tao, de Saxce, \cdots.) A closely related condition is that $N_{r}(X X) \leq K N_{r}(X)$, where $N_{r}(X)$ is the number of r-balls needed to cover X.

Proposition 8.1. Fix K_{1}, K_{2}, \ldots, and let $k>0$. Then for some $m \in \mathbb{N}$, for all triples (G, X, d), and r_{m}, \ldots, r_{1} with $2 r_{i+1}<r_{i}$, if for X is $\left(K_{i}, r_{i}\right)$-approximate, then there exists $Y \subset X^{4}$ satisfying, for at least k values of i,

$$
\begin{equation*}
1 \in Y=Y^{-1}, Y^{k} \subset X^{4} B_{r_{k}}, N_{r_{i}}(Y) \geq \frac{1}{m} N_{r_{i}}(X) \tag{2}
\end{equation*}
$$

Stabilizer theorem for hyperimaginaries.

