
1. Preliminaries

We will consider pairs (G,X) with G a group, X a subset; for simplicity, we will assume
1 ∈ X and X = X−1.

Definition 1.1. Let X,Y ⊂ G. Write X . Y if there exist g1, . . . , gk ∈ G with X ⊆ ∪ki=1giY .
X,Y are commensurable, X m Y , if X . Y and Y . X.

We would like to understand (G,X) up to:

(1) Commensurability.

(2) (G,X) l (G̃,X) if X ⊂ G̃.
(3) (G,X) l (G,X) if π : G→ G is a surjective group homomorphism, and X = π−1(X).

E.g. (G,F ) l (1, 1) for any finite F ⊂ G.

Remark 1.2. (1) Clause (2) means we can always replace G by < X >, the group gen-
erated by X. In other words, only products of elements of X play a role. Model-
theoretically, we can treat G as many-sorted, with sorts X,X·2, · · · .

(2) In fact, only products of < 100 elements of X will be used; moreover the associativity
assumption on G will only be used that far, i.e. explicitly for such products. This state
of affairs is called a local group.

(3) In the approach of [2], local groups are necessary for the proof, even if one wants
the result only for actual groups; but I think we will be able to avoid them, except
inasumuch as they are implicit in (1); so you are free to ignore (2).

1.3. Measures on structures. LetM be a structure; in practice it will have the form (G,X, ·).
Recall that Def(M) = ∪nDefn(M) is the smallest Boolean algebra of subsets of Mn (for some
n), closed under coordinate projections and pullbacks, including the basic relations of L and
the diagonal on M , and all singleton sets (elements of M .)

Let D = Def1(M) be the Boolean algebra of all subsets of M definable with parameters.
definable with parameters in (G,X, ·).

We will consider finitely additive measures on M . These are functions µ : D → R≥0, where
D is a certain Boolean algebra of subsets of G. We can take D to be the algebra of all sets
definable with parameters in (G,X, ·). (Further discussion later.)

Translation invariance: the condition we really need: µ extends to an ultrapower G∗; µ−1(0)
is invariant under Aut(G∗) and under left,r ight translations.

A stronger condition: µ is definable; and for any definable set X, either all translates of X
have measure zero, or all translates of X have measure bounded above zero.

2. Introduction

Consider six “categories” 1.

Near: G has a measure µ as above, with µ(X) > 0 and µ(X·3) <∞. In this situation X
is called a near-subgroup of G.

Approx: Same as NEAR; and in addition, X·2 l X. Then X is called an approximate
subgroup of G.

LC: G is a locally compact group.
Lie: G is a Lie group; moreover G is connected, with no normal compact subgroups other

than 1. We say that G is ncnc.

1we will use this term and the associated term ”functor” completely informally, and will not define the class
of morphisms.
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bdd
∧

: G ⊃ X1 ⊃ X2 ⊃ · · · is a group with a descending family of subsets, with 1 ∈
Xn = X−1n and X2

n+1 ⊂ Xn. Moreover , all Xi are commensurable with X1.
FinApp: By a finite near-group we mean a a sequence (Gm, Xm) of groups Gm (not

necessarily finite) and finite subsets Xm, satisfying 1 ∈ Xm = X−1m , such that for some
k ∈ R indepndent of M , |XXX| ≤ k2|X|. A finite approximate group is a sequence
satisfying the stronger condition: XmXm ⊂ FmXm for some Fm with |Fm| ≤ k.

Theorem 2.1 ([8]). • The four categories bdd
∧

, Approx, LC, LIE are essentially equiv-
alent. There are functors between any two; going back and forth yields the identity on
LIE, and yields an equivalence as in Definition 1.1 on APPROX.
• Approx ⊂ NEAR; in the converse direction if X ∈ NEAR then XX ∈ Approx, and
X m XX.
• For any ultrafilter u, we obtain a functor FinApp → NEAR mapping (Gm, Xm) to

limuGm, limuXm.

Remark 2.2. (1) In LIE and LC, we take X to be a compact neighborhood of 1. Note
that all such neighborhoods are commensurable, so up to equivalence, only the group
matters.

(2) We gave the quick proof of (X ∈ NEAR =⇒ XX ∈ Approx) assuming µ is left-
invariant and X ·4 has finite measure (Rusza). The construction of bdd

∧
from NEAR,

and of Approx from bdd
∧

, use only X ·3.
(3) The equivalence of bdd

∧
, Approx, LC can be stated more generally for approximate

equivalence relations, and will be proved at this generality. The group-theoretic case
follows easily, since the transitions between the three classes are canonical and preserved
under the automorphism groups.

2.3. From finite near-groups to near-groups, and back.

Lemma 2.4. Let (Gm, Xm) be a finite near (resp. approximate) group. Let µm be the counting
measure on Gm, normalized so that µm(Xm) = 1. Let u be an ultrafilter on ω (non-principal.)
Consider the ultraproduct (G,X, µ) of the (Gm, Xm) along u. Here µ(Y ) is defined for any Y of
the form limu Ym, Ym ⊂ Gm; and µ(Y ) = limu µm(Ym). Then (G,X, µ) is a near (respectively
approximate) group. Moreover, any definable partial ordering on X(k) has a maximum element.

This allows us to move information on near groups to bear on finite approximate groups. In
particular the finite statement of [2], Corollary ??, follows by a compactness argument from a
a statement on near groups, Corollary ??. Our structural investigation will take place entirely
in the four equivalent, infinite categories.

2.5. Discussion of bdd
∧

. An
∧

-definable equivalence relation E = ∩Rn is co-bounded if the
number of classes in a model M is bounded independently of M . Equivalently, for each n there
exists a finite b = b(n) such that among any b+ 1 elements a0, . . . , an, two may be found (say
ai, aj) with R(ai, aj).

A
∧

-definable subgroup of a group G is a family of definable subsets (Xi : i ∈ I), where
I = (I,<) is a directed partial ordering, with Xn ⊂ Xm if n > m ∈ I, 1 ∈ Xn = X−1n , and such
that for any n ∈ I, some m ∈ I, XmXm ⊂ Xn. This is the same as saying that ∩Xi(G

∗) is a
subgroup of G∗, where G∗ is any ultrapower of G.

Remark 2.6. Let (Xi) be a
∧

-definable subgroup of G, Γ = ∩Xi. Then TFAE:

(1) X is co-bounded, i.e. for any i > j, Xi is covered by finitely many translates of Xj.
(2) For any i > j, Xi does not contain infinitely many disjoint translates of Xj.
(3) |X(G∗)| is bounded independently of G∗ � G.
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Lemma 2.7. Let Γ be a bdd
∧

subgroup of G. Then so is N = ∩g∈G̃g
−1Xg = ∩i ∩ g ∈ G̃Xi =

∩i ∩ g ∈ X ·2i Xi.

It almost always suffices to consider I = N; e.g. any
∧

-definable subgroup of G∗ is an
intersection of such countably-defined ones.

2.8. From bdd
∧

to LC; from LC to Lie.

2.9. From LC to bdd
∧

. Let G be a locally compact group, X a compact neighborhood of 1.
Let (Xi) be a basis for the toopology at 1, consisting of compact symmetric sets. Fix one of
them, X0, and let X = X ·20 . Clearly (G,Xi)i is a co-bounded

∧
-definable group. If one wishes

for a countable index set, extending slightly Lemma 2.7, it is easy to find an
∧

-definable group

N = ∩j∈JXj with J countable, such that N is normalized by G̃ =< X >. (For any j,m, for
some k > j, Xk ⊂ ∩y∈X·my−1Xjy.) Note X contains X0N . Factor out N .

2.10. From LIE to NEAR. Let L be a Lie group. It is a theorem (stated by Lie and proved
by F. Schur, according to Hilbert) that any Lie group admits an analytic structure. Thus L
can be taken to have a neighborhood U of 1 which is a ball in Rn, as well as a sub-ball U1 ⊂ U ,
such that multiplication is given by analytic functions.

By a theorem of Gabrielov (see Denef-Van-den-Dries), for any neighborhood of 1 in G with
analytic boundary, any definable subset of (G, ·, X) is subanalytic, hence certainly Borel and
so Haar measurable. This shows that the Haar integral gives a map from LIE to NEAR (and
so to Approx).

Remark 2.11. To avoid using Lie-Schur and Gabrielov, one could restrict the measure to a
subclass of the definable sets; i.e. a slightly weaker definition of NEAR, a posteriori equivalent
to NEAR, suffices.

2.12. From NEAR to bdd
∧

. We need this special case of Theorem 3.1 of [8]. It follows a
sequence of similar results in model theory, called ”stabilizer theorems”.

Theorem 2.13. Let (G,µ,X) be a near-subgroup. Then there exist a µ-wide,
∧

-definable

subgroup S of G, S ⊂ X ·4. (Moreover S is normal in G̃, and S rX ·2 is not wide. )

Note:

Corollary 2.14. Let (G,µ,X) be a near-subgroup. Then there exist a µ-wide definable set Y
with Y 8 ⊂ X4.

Proof. Say S = ∩Sn; then ∩S8
n ⊂ S ⊂ X4, so for some n, S8

n ⊂ X4. �

The corollary is in fact easily seen to be equivalent to the theorem . For (ultraproducts of)
finite approximate subgroups, it was given an independent, direct proof by Sanders, following a
line in combinatorics starting from Balog-Szemeredi. See [2] , Theorem 5.3 for a self-contained
proof in about one page.

We will nevertheless give the model-theoretic proof, in part in order to introduce the notion
of a stable relation. We also give a more general formulation for equivalence relations. (I don’t
know if Sanders’ proof can be generalized to this setting.)

Definition 2.15. • A bipartite graph (G1, G2;R) (i.e. a relation R ⊂ G1×G2) is stable
if for some m, there are no a1, . . . , am ∈ G1, b1 . . . , bm ∈ G2 with R(ai, bj) for i < j
while ¬R(ai, bj) for i > j.
• Let Rn be a descending sequence of relations Rn ⊂ G1×G2. We say “∩nRn is stable” if

for each n, for some n′ > n and some m, there are no a1, . . . , am ∈ G1, b1 . . . , bm ∈ G2

with Rn′(ai, bj). while ¬Rn(ai, bj) for i > j.
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• Let ρ : G1 × G2 → [0, 1] ⊂ R be a function. ρ is stable if for any α < β, for some
m, there are no a1, . . . , am ∈ G1, b1 . . . , bm ∈ G2 with ρ(ai, bj) < α for i < j while
ρ(ai, bj) > β for i > j.

Exercise 2.16. Let µ be a probability measure on G3; let Si ⊂ Gi × G3 be a relation; define
R(a, b) ⇐⇒ µ(S1(a) ∩ S2(b)) = 0. Then R is stable. (In fact µ(S1(a) ∩ S2(b)) ≤ α is stable
for any α, see [[8] Prop. 2.25] .)

Say I is a good ideal on G1 × G2 if there are proper, automorphism invariant ideals Ii on
definable subsets of Gi such that any element of Ii divides over ∅, and if D ∈ I then D(a, x) ∈ I2
and D(x, b) ∈ I1 for all a ∈ G1, b ∈ G2.

If I is an ideal on definable subsets of D, and f : D → R is a function, say f(x) = α for I-
almost all x ∈ D if for any ε > 0, for some D′ ∈ I, |f(x)− α| < ε for all x ∈ D rD′.

Theorem 2.17 ([1]). Let f : G1 × G2 → R be stable. Then there exists a co-bounded
∧

-
definable equivalence relation Ei on Gi, and a good ideal I on definable subsets of G1 × G2,
such that (in any elementary extension), for any class X1 of E1 and X2 of E2, for some α ∈ R,
f(x1, x2) = α for almost all (x1, x2) ∈ X1 ×X2.

The same is true when G1 = G2 is a class of a
∨

-definable equivalence relation Ẽ on a

complete type Q, provided: f(x, y) > 0 implies xẼy; either E will be
∧

-definable, or else

E = Ẽ.

Consider relations R on a set Y ; i.e. R is a subset of Y 2. For n = 2, 3, . . ., define the
compositional powers of R by: R◦n = R◦n−1 ◦ R. For simplicity, as we did for groups, we will
take R to be symmetric and reflexive. (In the general case we would obtain R ◦ Rop ◦ R ◦ Rop
in place of R◦4.)

We will consider measures such that µ(R(a)) < ∞ for all a. By an ε-slice we mean a set
U such that for all a, |R◦3(a) ∩ U | ≤ εR(a). We say an

∧
-definable set is is wide if it is not

contained in any 0-slice.

Theorem 2.18. Fix k ∈ N, m ∈ N. Let R be a symmetric, reflexive relation on a set G; let
R◦n = R◦n−1 ◦ R. Assume R(b) is finite, and |R◦3(a)|/|R(b)| ≤ k for a, b ∈ G. Then there
exists a symmetric, reflexive relation S such that S◦m ⊂ R◦4, and for all a ∈ G outside an
ε-slice U , |S(a)| ≥ Ok,m(1)|R(a)|.

Moreover S is 0-definable, uniformly in (G,R), in a language with cardinality comparison
quantifiers; in particular Aut(G,R) leaves U, S invariant.

If Aut(G,R) acts transitively on G, then of course |S(a)| ≥ Ok,m(1)|R(a)| for all a ∈ G. So
we recover in this setting Corollary 2.19:

Corollary 2.19. Fix k ∈ N, m ∈ N. Let G be a group, X a finite subset of G, 1 ∈ X = X−1,
and assume |X ·3| ≤ k|X|. Then there exists S, 1 ∈ S = S−1 ⊂ G, such that S·m ⊂ X ·4 and
|S| ≥ Ok,m(1)|X|.

Corollary 2.20. Fix k ∈ N, m ∈ N. Let G be a group, H a subgroup (not necessarily normalized
by X), X ⊂ G a set with HX = X and |X ·3/H| ≤ k|X/H|. Then there exists S, 1 ∈ S =
S−1 ⊂ G, such that S·m ⊂ X ·4 and |S/H| ≥ Ok,m(1)|X/H|.

Proof of Theorem 2.18. Suppose otherwise. So for each c ∈ N there is a counterexample (G,R),
such that there are no S,U as stated with |S(a)| ≥ c−1|R(a)| for a /∈ U . Take a nonprincipal
ultraproduct, and let µ be the ultraproduct of the counting measures, normalized so that
µR(a) = 1 for some a ∈ G; hence 1/k ≤ µR(a) ≤ k for all a ∈ G. Then there are no definable
S,U with S symmetric, reflexive, S◦m ⊂ R◦4, U a 0-slice, and µS(a) > 0 for all a ∈ Gr U
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By Theorem 2.21 there is a cobounded 0-
∧

-definable equivalence relation E such that E ⊂
R◦4. We have E = ∩nSn for some sequence S1 ⊃ S2 ⊃ of symmetric, reflexive definable
relations. Since E◦m = E ⊂ R◦4, some Si (denote it by S) satisfies S◦m ⊂ R◦4. In addition
we have: E(a) is µ-wide for all a realizing a wide type. Thus µ(S(a)) > 0 if tp(a) is wide. Let
U be the set of all 0-definable thin slices. So no a falls into the

∧
-definable set: µ(S(x)) = 0

intersected with all complements of sets U ∈ U. By compactness, for some U ∈ U, we have
µ(S(a)) > 0 for all a ∈ Gr U . This contradicts the first paragraph. �

We consider finitely additive measures on the U- definable sets in some sort D, over a
base set A with L(A) countable. We assume each measure µ is Borel definable, meaning: for
any formula φ(x, y),µφ(x, b) depends only on tp(b/A), and is a Borel function Sy(A) → R.
Then given µ on D and µ′ on D′, we can define the iterated measure µ⊗µ′ on D × D′, by
(µ⊗µ′)(X) =

∫
(y 7→ µ′(X(y))dµ(y)). See [?]. Note that µ(x)⊗µ′(y) is another Borel-definable

measure, on D′×D. If the natural map D×D′ → D′×D, (x, y) 7→ (y, x), is measure-preserving,
we say that µ, µ′ commute. If µ, µ commute, say that µ is symmetric or self-commuting. In
general a measure need not commute with itself, but ultraproducts µ of counting measures do:
µ(x)⊗µ(y) = µ(y)⊗µ(x).

Theorem 2.21. Fix k. Let R be a symmetric, reflexive relation on a set G. Let µ be a
symmetric definable measure, with µ(R◦3(a))/µ(R(b)) ≤ k for a, b ∈ G. Then there exists a
0-
∧

-definable equivalence relation E, such that E ⊂ R◦4, E is co-bounded in R, and E(a) is
µ-wide for all a realizing a wide type.

Remark 2.22. The statement on width in Theorem 2.21 is automatically true: the co-
boundedness of E implies that E(a) is µ-wide for all a realizing a wide type. Indeed let q
be a wide type. So q ∩ R(a) is wide for some a. We have to show for any definable S′ with
q ⊂ s′ than µ(S′(a)) > 0. Let E ⊂ S, S definable, symmetric, and with S◦2 ⊂ S′ ⊂ R◦4. Let
a1, . . . , ar be a maximal subset of q∩R(a) such that ¬S(ai, aj). This is indeed a finite set since
E is co-bounded. So the sets S◦2(ai) cover q ∩R(a); since q is wide, we must have µS′(ai) > 0
for some i. This proves that E(a) is wide for a |= q.

2.23. Random elements. We have a continuous map r : Sx(U)→ Sx(A) between type spaces.
Let r∗µ be the measure on Sx(A) induced by µ (so the r∗µ-measure of a clopen subset of Sx(A),
namely of {q : U ∈ q} for some A-definable set U , is just µ(U).) Then by Radon-Nykodim
there exists a Borel mapp 7→ µ|p from Sx(A) to Borel-definable measures on D, such that for

any definable U , µ(U) =
∫
µ|p(U)dr∗µ(p); and µ|p concentrates on r−1(p), i.e. µ|p(U) = 0 if U

is A-definable and U /∈ p. In general, µ|p is not definable even if µ is definable; but it is Borel
definable over A.

Lemma 2.24. Assume µ is self-commuting. Then for r∗µ-almost all p, the measures µ, µ|p
commute.

Proof. It suffices to show, for all continuous functions g(x, y) on Sxy, that∫
gdµ(x)⊗dµ|p(y) =

∫
gdµ|p(y)⊗dµ(x). The two sides of this equation can be seen

as functions of p, and we need to show that these functions coincide r∗µ-a.e. Now in general
to show that two functions agree a.e., it suffices to show for any Borel set U that the
integral of their products with 1U are equal. It suffices here to show for any definable D′

that
∫ ∫

1D′(p)gdµ(x)⊗dµ|p(y)dr∗p(p) =
∫ ∫

1D′(p)gdµ|p(y)⊗dµ(x)dr∗p(p). Let µ′ be the

restriction of µ to D′; This resolves to
∫ ∫

1D′(x)gdµ(x)⊗dµ(y) =
∫ ∫

1D′(x)gdµ(y)⊗dµ(x).
But this follows from the self-commutation of µ. �

In fact for almost all pairs (p, q), the measures µ|p, µ|q commute; though µ|p need not com-
mute with itself, even if µ does.
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Let Def0(D) be the Boolean algebra of subsets of D generated by A-definable sets. Let
Defn+1(D) be the Boolean algebra generated by the sets: {a ∈ D : µ(R(a)) = 0}, where
R ∈ Defn(D×D′). So each Defn(D) is countable. µ extends to a finitely additive measure on
each Defn.

Call a ∈ D k-random over A for µ if it avoids all measure-zero sets in Defk(D). And
ω-random if k-random for all k.

Note that ω-randomness is still a model-theoretic and not purely measure- or set - theoretic
condition. Notably, it is possible for tp(a/b) to be ω-random even though tp(a) = tp(b) and
µ(tp(b)) = 0.

Exercise 2.25 (Fubini). Let µ, µ′ be Borel-definable measures on D,D′ respectively. If a/A is
k + 1-random for µ and b/A(a) is k + 1-random for µ′, then (a, b)/A is k-random for µ⊗µ′.
And conversely, if (a, b)/A is k+ 1-random then a/A is k+ 1-random and b/A(a) is k-random.

Let Rt = {(b, a) : (a, b) ∈ R}.
In the following lemma, we assume to to simplify notation that R is symmetric.

Lemma 2.26. Let µ be a Borel-definable measure on D, over A. Assume µ(x)⊗µ(y) =
µ(y)⊗µ(x). Let R be a symmetric relation on D ×D, such that Rt(c) has measure > 0 for all
c. Then:

(1) For almost all types q on D, there exist a, b ∈ q and c ∈ D with R(a, c), R(b, c), c/a, b
wide, b/A(a) does not divide over A.

(2) Assume c, d ∈ D, c ≡lc d over A. Then there exist a, b ∈ D, a ≡lc b, with b/A(a)
µ-wide, tp(a/A) random, and R(a, c), R(b, d).

Proof. (1) Fix a random q, so that µq is a probability Borel-definable measure commuting with
µ (Lemma 2.24) and let a |= q. Let c be such that R(a, c), and c/A(a) is ω-random. Then
a/A(c) is ω-random for µ (using the fact that µ, µ commute, and Lemma 2.25.) Choose b with
b/A(a, c) µq-ω-random. In particular b/A(a) is µq-ω-random so it does not divide over A. By
Lemma 2.25, (b, a, c) is random for µq⊗µ⊗µ. Now these measures commute, so we can apply
Lemma 2.25 in the opposite direction and conclude that c/A(a, b) is µ-wide.

(2) Find a with tp(a/A(c)) random, R(a, c). Let C be the ≡lc-class of a. As c ≡lc d over A,
there exists an automorphism σ fixing A and with σ(C) = C, σ(c) = d. Then σ(a)/d is wide,
and σ(a) ∈ C. So the partial type asserting that x ∈ C and x |= tp(σ(a)/d) is wide. Let b ∈ C,
bd ≡ σ(a)d, and b/a, d wide. �

Remark 2.27. Let A ≤ M , M a model. Then we have a continuous surjection from Sx(M)
to the set of Lascar tyeps Slcx (A); it induces a Borel measure on the space of compact Lascar
types. The proof of Lemma 2.26 (1) over M provides, for a random q over M , realizations b, a
with µ(R(a) ∩ R(b)) > 0, and such that (in particular) tp(b/A(a)) is 1-random, so it does not
fork over A. It follows Lemma 2.26 (1) is valid for compact Lascar types over A: for almost all
q ∈ Slcx (A), for some a, b |= q such that tp(a/A(b)) does not divide over A, µ(R(a) ∩R(b)) > 0.

Proof of Theorem 2.21. We may assume the language is countable. We will show that ≡lc⊂
R◦4. By Lemma 2.26 (1) and remark 2.27, for almost all compact Lascar types q over A, for some
a, b |= q such that tp(a/A(b)) does not divide over A, µ(R(a) ∩ R(b)) > 0. By Theorem 3.27,
this is true for all such a, b. In particular, the distance between them is ≤ 2. It follows from
Lemma 2.26 (2) that for arbitrary c, d with c ≡lc d, the R-distance from c to d is at most 4. �

3. Appendix 1: stability

We develop the basic results of stability, presented here in Theorems 3.14 and 3.27. We view
them as a reduction, modulo a certain ideal, of binary relations to unary ones; thus a kind
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of measurability result for binary relations for the product measure. The theory is primarily
due to Shelah, and for the most part we follow standard presentations. Shelah understood
the significance of having the theorem over an arbitrary base structure and not just over an
elementary submodel, and introduced imaginary elements and the algebraic closure as the
precise obstructions to this. In [?], the theory was extended beyond the first order setting.
In [?], the main theorem was proved for arbitrary invariant stable relations over a model. In
the same paper, for simple theories, the “bounded closure” with its compact automorphism
group was recognized as the obstacle to existence of 3-amalgmation (in the finite rank case,
the algebraic closure still sufficed, as shown in [?].) See [4] for a good presentation of the
compact and general Lascar types; we will use it below. In [1], the theory was beautifully
developed for continuous real-valued relations; 3.27 is a (less elegant) generalization for more
general

∧
-definable stable relations.

The novelties here are: (i) we treat arbitrary automorphism- invariant stable relations, over
any base set. We show that the fundamental theorems of stability theory hold, with strong
Lascar types as the natural obstacles to both uniqueness and existence. (ii) For

∧
-definable

relations, we show that compact Lascar types or Kim-Pillay types suffice. This generalizes the
continuous real-valued case; different proofs are required for certain parts. (iii) We introduce a
”local setting”, allowing notably to discuss stable independence over an “imaginary” element
of the form a/E, where E is a

∨
-definable equivalence relation.

We begin with (iii); readers interested only in (i) or (ii) can skip this, and ignore the metric
later, i.e. assume it is bounded.

To ease the notation we will sometimes assume the language is countable, though the general
case carries no real difficulties. We will work over a countable base denoted A, and sometimes
use a countable elementary submodel M containing A.

When R ⊂ X × Y , and a ∈ X, we let R(a) = {b : (a, b) ∈ R}. Define Rt ⊂ Y × X,
Rt = {(b, a) : (a, b) ∈ R}. When the context leaves no room for doubt, for b ∈ Y we will write
R(b) for Rt(b).

3.1. Local structures. Let U be a structure with a metric d : U2 → N. If many sorts are
allowed, we still assume the domain of d is the set of all pairs, belonging to the union of all
sorts. We assume that any closed ball of finite radius is 0-

∨
-definable. 2

A typical way to obtain such a structure is to begin with an arbitrary binary relation R0

on another structure U0. Let Ẽ be the equivalence relation generated by R0. Then any Ẽ-
class is naturally a local structure; the metric distance d(x, y) is the length of a shortest chain
x = x0, . . . , xn = y with R(xi, xi+1) or R(xi+1, xi) for each i. Here the balls are 0-definable.

More generally, we could take the distance along the Gaifman graph with respect to some
set of definable relations.

A relation R(x1, . . . , xn) is local if it implies d(xi, xj) < m for some m. (For unary relations,
this poses no constraint.) We will be concerned only with local relations. There is always a
reduct generated by the local relations, which is local. This is closely related to the Gaifman
graph, frequently used in finite model theory, and to Gaifman’s theorem on this subject. We
will say, when only local relations are allowed, that the structure is local.

The definable sets are obtained by closing the basic relations under finite unions, intersections,
differences, projections, and distance-bounded universal quantifiers, of the form: (∀x)(d(x, y) ≤
5→ φ(x, y)). The complement of a definable set is only Ind-definable.

2There are natural generalizations to bigger semigroups than N, both in the direction of continuous metrics
and of uncountable languages, but we restrict here to the main case.
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If E is a
∨

-definable equivalence relation in a saturated structure, for simplicity a countable
union of 0-definable relations, then each E-class can be presented as a local structure; the
local structures setting will enable us to speak about independence over an E-class (viewed as a
(generalized) imaginary element of the base.) We can present E as having the form d(x, y) <∞,
where d is a metric such that d(x, y) ≤ n is definable, for each n. Then we can take the basic
relations to be the d-bounded ones (this does not depend on the choice of d.) Keeping long
distance (non-local) relations would not change the automorphism group - they can be recovered
as bounded unions of local relations.

If a local structure U has a constant symbol, or more generally a nonempty bounded definable
set D, then it can be viewed as an ind-definable, in fact piecewise-definable structure; the union
of the definable sets of points at distance ≤ n from D. In general however, the automorphism
group here need not respect any specific inductive presentation.

The metric can be extended to imaginary sorts; first to Un via: d((x1, . . . , xn), (y1, . . . , ym)) =
max(maxi minj d(xi, yj),maxj mini d(xi, yj)) ; then to a quotient by a bounded equivalence
relation, with quotient map π : Un → Un/E, with distance defined by d(u, v) = inf d(x, y) :
π(x) = u, π(y) = v.

We assume U is saturated as a local structure, or locallly saturated: any ball is saturated;
equivalently any small family of definable sets has nonempty intersection, provided the family
includes a bounded set, and that any finite subset has nonempty intersection. Local saturation
can be achieved by taking an ultrapower using bounded functions only.

A remark on ultraproducts: if (Ni, di) are a family of local structures for the same language, an
(N, d) is an ultraproduct in the usual sense, one has an equivalence relation: d(x, y) ≤ n for
some standard n; each equivalence class is a local structure, and Los’s theorem holds. thus an
ultraproduct here requires a choice of an ultrafilter along with a component, rather than just
an ultrafilter. �

3.2. Locally compact Lascar types. Call a sort S separated if it carries a 0-
∧

-definable
cobounded local equivalence relation. If S is separated, let ≡lc=≡Slc be the intersection of all
0-
∧

-definable cobounded local equivalence relations on S. Then ≡lc is the unique smallest such
relation.

Let π = πlcS : S → S/ ≡lc be the quotient map. On S/ ≡lc we define a topology: Y is closed
iff π−1Y is locally

∧
-definable.

Lemma 3.3. The quotient by ≡lc is a locally compact space.

Proof. See earlier notes (or [?], [4]) for the bounded case, of Kim-Pillay spaces. Let a ∈ S,
and let Bn be the ball of radius n + m around a, in S. Then π(Bn) is compact (so S/ ≡lc is
σ-compact.) Since ≡lc is local, say d(x, y) < m for (x, y) ∈ S2 with x ≡lc y. Then the closed
sets π(S r Bn+m), π(Bn) are disjoint. Thus π(Bm+1) contains a neighborhood of π(a), the
complement of π(S rBm+1).

�

Remark 3.4. The local algebraic closure acl(A) can be defined as the union of the locally finite
definable sets. The automorphism group of U/A has a quotient group acting faithfully on acl(A),
referred to as the automorphism group of acl(A) over A is a locally profinite group (a totally
disconnected locally compact group.) The stabilizer of a nonempty set is a compact group (fixing
one point implies leaving invariant balls of various radii.)

One can similarly define the local compact closure to be the union of S/ ≡lc, over all sorts
S such that ≡lc is defined.
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On the other hand, we consider the more general setting of Aut(U/A)- invariant equivalence
relations. Assume S has an Aut(U/A)- invariant cobounded local equivalence relation. Then
it has a smallest one; it is denoted ≡Las. This equivalence relation is generated by ∪mθm(a, b),
where θm(a, b) holds iff a, b begin an indiscernible sequence, and d(a, b) ≤ m. When d has the
property that any two elements are connected by a chain of elements of distance 1, as is the
case in the main examples, ≡Las is generated by θ2. At any rate, ≡Las is an Fσ relation (a
countable union of

∧
-definable relations.)

3.5. Σ-compactness. The stability theory we will develop - more precisely, existence of generic
extensions of a given type - requires Σ-compactness and not just local compactness. We thus
assume:

(Σ): for some m0, for all n, any n-ball is a finite union of m0-balls.
Σ-compactness is true in the setting of a measure, finite on balls. More precisely assume µ

is a 0-definable measure, each ball of radius 1 has nonzero measure, and each ball of radius ≤ 3
has finite measure. Then by Rusza’s trick, any ball of radius 3 is a union of finitely many balls
of radius 2 (consider a maximal disjoint set of radius 1- balls in the radius 3 ball; then enlarging
them to radius 2 would cover the larger ball.) Assume in addition that the metric space is
“geodesic” in the sense that any two points of length n are joined by a path of length n, where
the successive distance is 1 (as is the case for Gaifman graphs.) Then it follows inductively that
any ball of radius n is a union of finitely many balls of radius 2.

We are interested only in types of elements at finite distance from elements of U. In the
presence of Σ-compactness, any such type has bounded distance ≤ m0 from some element of
U. It follows that if X is an Aut(U/A)- invariant closed set of types over U, then X contains a
compact subset X with Aut(U/A)X = X.

3.6. Aside on continuous logic. This above use of a metric for local structures, with concern
for large values, is dual to the function of the metric in the compact logic of [1], where the concern
is with small values of d. They could easily be combined; this would give an unbounded real-
valued logic, where the automorphism group of the bounded closure is a locally compact group.
3

3.7. Ideals of definable sets. We will work with saturated (local) structures U. Invariance
refers to the action of Aut(U), or Aut(U/A) for a small substructure A. A set divides if for some
l it has an arbitrarily large set of l-wise disjoint conjugates (i.e. any l have empty intersection).

We will consider ideals of U-definable sets (of some sort S). Say I is definably generated if
it is generated by a definable family of definable sets. Say I is

∨
-definable if it is generated

by some bounded family of definably generated ideals. Equivalently, for any formula definable
D ⊂ S × S′, {b ∈ S′ : S(b) ∈ I} is

∨
-definable. If I is Aut(U/A)-invariant, then {b ∈ S′ :

S(b) ∈ I} is in fact
∨

-definable over A.
Dually, I determines a partial type over U, generated by the complements of the definable

sets in I. Any extension of this partial type is called I-wide. We say a/A is I-wide if a does not
lie in any A-definable set lying in I. Note that tp(a/A) will then extend to an I- wide complete
type over U.

If f : S → S′ is a 0-definable surjective map, and I is a
∨

-definable ideal, let f∗I = {D :
f−1D ∈ I}. This is a

∨
-definable ideal on S′, proper if I is proper. If c/A is I ′-wide, then

c = f(b) for some I-wide b/A.
If I, I ′ are two ideals (on S, S′), we can define an ideal I⊗I ′ on S × S′, generated by the

sets D ⊂ S × S′ such that for some D1 ∈ I, for all a ∈ S rD1, D(a) ∈ I ′. So if a/A is I-wide

3This differs from the unbounded logic of [?], which is shown there to reduce to the bounded case functorially;
structures have compact absolute Galois groups in this logic, vs. locally compact here.
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and b/A(a) is I ′-wide, then (a, b)/A is I⊗I ′-wide. Conversely, if (a, b)/A is I⊗I ′-wide, then
a/A is I-wide, and - assuming I ′ is

∨
-definable - b/A(a) is I ′-wide: to see the last statement,

if b ∈ D(a) ∈ I ′, then since I ′ is
∨

-definable, there exists θ(x) true of a such that D(a′) ∈ I ′
for all a′ ∈ θ; let D′ = {(a′, b′) : b′ ∈ D(a′), a′ ∈ θ}; then D′ ∈ I⊗I ′; and (a, b) ∈ D′.

Inductively, we define I⊗n, I⊗(n+1) = I⊗n⊗I. We will say b = (b1, . . . , bn) is I-wide if it is
I⊗n-wide.

Let us mention here some canonical ideals, relative to a given complete type p over A. There
is Shelah’s non-forking ideal Ish, generated by the set Div(p) of formulas that divide over A.
Given any invariant measure µ (such that p is wide), we have the ideal Iµ of all formulas of
µ-measure zero. If µ is definable, then Iµ is

∧
-definable. We have Div(p) ⊆ Ish ⊆ Iµ, for any

A-invariant measure µ.
If I is an ideal on S′, let SDiv(I) be the family of generically I-dividing subsets of S; i.e.

the family of sets Q(b), b ∈ S′, Q an A-definable subset of S × S′, such that for any I⊗n-wide
(b1, . . . , bn) with tp(b/A) = tp(bi/A), ∩ni=1Q(bi) = ∅. Let Ǐ be the ideal generated by SDiv(I).
We have SDiv(I) ⊆ Div and so Ǐ ⊆ Ish. If I is

∨
-definable over A, so are SDiv(I) and Ǐ.

Definition 3.8. Let R ⊂ P × P ′ be an invariant relation, and let I be a
∨

-definable ideal on
P . Say R holds I-almost always if for any c ∈ P ′, for any b ∈ P with b/A(c) I-wide, we have
R(b, c). Say R holds I-almost always in the strong sense on P ×P ′ if Rt holds Ǐ almost always.
Explicitly, if whenever (b, c) ∈ P × P ′ r R, there exists an A- definable local Q ⊂ P × P ′ such
that (b, c) ∈ Q, and for any I⊗n-wide n-tuple (b1, . . . , bn), P ∩ ∩ni=1Q(bi) = ∅.

If R ⊂ S × S′ is an invariant relation, I a
∨

-definable ideal on S, and P ⊆ S, P ′ ⊆ S′

invariant sets, we will also say that R holds I-almost always in the strong sense on P × P ′ if
R ∩ (P × P ′) does.

Lemma 3.9. Assume R holds I-almost always in the strong sense on S × S′. Then:

(1) R holds I-almost everywhere.
(2) If tp(c/A(b)) does not divide over A, and tp(b/A) is I-wide, then R(b, c).

Proof. (1) Suppose not; let Q,n be as in Definition 3.8. Let b1 = b. Inductively find bk such
that Q(bk, c) and bk is wide over A(c, b1, . . . , bk−1); this is possible since Q(c) is wide. But then
c ∈ ∩ni=1R(bi), a contradiction.

(2). Supose ¬R(b, c). Let Q be a definable set as in Definition 3.8, so that for any I-wide
(b1, . . . , bn) ∈ Sn, ∩ni=1Q(bi) = ∅. As tp(b/A) is I-wide, one can find bi |= tp(b/A) for i ∈ N, such
that tp(bn/A(b1, . . . , bn−1)) is wide. Then any subsequence of length n of this infinite sequence
is I⊗n-wide, so the intersection of Q(bi) over any such subsequence is empty. It follows that
tp(c/A(b)) divides over A. �

3.10. Stable invariant local relations.

Definition 3.11. Two definable relations P (x, y), Q(x, y) are stably separated if there is no
sequence of pairs (ai, bi) : i ∈ N with P (ai, bj) and Q(aj , bi) for i < j ∈ N.

Let R ⊂ S × S′ be an Aut(U/A)-invariant relation.

Definition 3.12. R is stable if whenever (a, b) ∈ R and (c, d) ∈ (S × S′) rR, then there exist
A-definable sets Q,Q′ such that Q(a, b), Q′(c, d) and Q,Q′ are stably separated.

Remark 3.13. R is stable iff there is no indiscernible sequence (xi, yi) such that for i 6= j,
R(xi, yj) iff i < j.
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Proof. If no such indiscernible sequence exists, then whenever (a, b) ∈ R and (c, d) ∈ (S ×
S′) r R, tp(a, b) and tp(c, d) must be stably separated; by compactness, for some definable P
approximating tp(a, b) and Q approximating tp(c, d), P,Q are stably separated. Conversely if
(ai, bi) is an indiscernible sequence as in the remark, then tp(a1, b2) is not stably separated from
tp(a2, b1) though R(a2, b1) and ¬R(a1, b2). �

Theorem 3.14. Let U be a Σ-compact local structure. Let f be a family of A-invariant stable
local relations on S×S′. Let Ef be the intersection of all co-bounded A-invariant local equivalence
relations on S, such that each class is a Boolean combination of a bounded number of sets
R(b) ⊂ S, R ∈ f. Then for each complete type P̄ in S over A, there exists a proper,

∨
-definable

(over A) ideal I(P̄ ) on S, satisfying:
(*) If R ∈ f, P ⊂ P̄ is an Ef-class, and Q is an Eft-class on S′, then either R holds almost

always in the strong sense for I(P̄ ) on P ×Q, or ¬R does.
Also, symmetry holds: if for P,Q as above, if Q̄ is a complete type with Q ⊂ Q̄, then on

P ×Q, R holds almost always for I(P̄ ) iff Rt holds almost always for It(Q̄).
There exists a canonical proper

∨
-definable ideal IS, such that the dichotomy (*) and sym-

metry hold IS-almost always.

Remark 3.15. Assume S is a complete type. Then either Ef is local, or else for any R ∈ f,
¬R holds almost always in the strong sense for I(S). In the former case, ≡Las is local on S,
and (*) holds for ≡Las in place of Ef. (See proof, above Lemma 3.20.)

Though the proofs go through for any f, we will assume below that f = {R} to simplify
notation. (In fact the theorem reduces easily to the case that f is finite; and then, - replacing

S by S × f, and considering the relation R̂((x,R), y) ⇐⇒ R(x, y) - to the case that f has a
single element R.)

We will use the space SD(U) of all bounded global types on a sort D, i.e. types containing a
formula implying d(x, a) ≤ n for some a, n. If x is a variable of sort D, we will also write Sx(U).
Let (dpx)R = {b : R(x, b) ∈ p}. If (dpx)R = (dp′x)R, we say p, p′ define the same R-type. We
do not define a topology on the set of global R-types.

Lemma 3.16. Let S′(x, y), S(x, y) be definable relations (of which at least one is local.) Assume
S′(x, y) and S(x, y) are stably separated. Then for any type p over M there exists a finite
Boolean combination Y of sets S(x, ci) with ci ∈M , such that dpyS

′ =⇒ Y while Y, dpyS are
disjoint.

Proof. Define an, bn, cn ∈ M recursively . Given c1, . . . , cn, the equivalence relation:∧
i≤n S(x, ci) ⇐⇒ S(x′, ci) has at most 22n classes; if none of these classes meets both dpyS

and dpyS
′, then some union Y of these classes contains dpyS and is disjoint from dpyS

′, and
the lemma is proved. Otherwise, choose an, bn such that dpyS(an), dpyS

′(bn), while an,bn lie
in the same sets S(x, ci), i ≤ n. Then, find cn+1 such that S′(d, cn+1) ⇐⇒ S′(d, c), where
d ∈ {ai, bi : i ≤ n}.

For n < k we have S′(bn, ck). Applying Ramsey with respect to the question S and refining
the sequence (an, bn, cn), we may assume that S(bn, ck) for all n > k or for no n > k; but the
former is impossible since S′, S are stably separated. So ¬S(bn, ck) for all n > k

Since an, bn have the same S-type over the smaller ci, it follows that ¬S(an, ck) for n > k.
But for n < k we have S′(an, ck); so the sequence (an, cn) contradicts the stable separation of
S′, S.

�
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Corollary 3.17. Assume M is countable. Let S′, S be stably separated local definable relations
on G1 × G2. There does not exist an uncountable set W ⊂ Sx(M) such that for p 6= p′ ∈ W ,
for some b ∈M , S′(x, b) ∈ p while S(x, b) ∈ p′.

Proof. Let Yp be an M -definable set such that dpS
′ → Y → ¬dpS (Lemma 3.16). There are

only countably many choices for Yp, so there will be p, p′ ∈W with Yp = Yp′ . Now if S′(x, b) ∈ p
then b ∈ Yp = Yp′ so ¬S(x, b) ∈ p′. �

It follows that there is no map f from the full binary tree s<ω into G2, such that for each
branch η ∈ 2ω,

∧
S′(x, f(η|n + 1) : η(n) = 0) ∧

∧
S(x, f(η|n + 1) : f(n) = 1) is consistent.

By compactness, for some finite n, no such map exists for the height-n tree 2n. We define the
rank of a partial type W to be the maximum m such that there exists f : 2m → G2, with
W ∧

∧
S′(x, f(η|n+ 1) : η(n) = 0) ∧

∧
S(x, f(η|n+ 1) : f(n) = 1) consistent for each η ∈ 2m.

Let R be a stable invariant relation on G1 ×G2.

Lemma 3.18. Let p, p′ be types over U. Assume: for any stably separated φ, ψ, for some
e = eφ,ψ we have: e ⊂ p, p′ and rkφ,ψ(p) = rkφ,ψ(e) = rkφ,ψ(p′). Then p|R = p′|R.

Proof. Let c |= p and c′ |= p′. Suppose p|R 6= p′|R. Then for some b ∈ U, tp(b, c) implies
R but tp(b, c′) implies ¬R. As R is stable, tp(b, c) and tp(b, d) are stably separated; hence by
compactness, some φ(x, y) ∈ tp(b, c) and ψ(x, y) ∈ tp(b, d) are stably separated. Let e = eφ,ψ,
l = rkφ,ψ(e). Let [φ(x, b)] be the set of types extending φ(x, b). It follows that either rkφ,ψ(e∩
[φ(b, x)]) < l or rkφ,ψ(e ∩ [ψ(b, x)]) < l. But rkφ,ψ(p) = rkφ,ψ(p′) = l, a contradiction. �

In particular, if e is a partial type, and rkφ,ψ(p) = rkφ,ψ(e) = rkφ,ψ(p′) for all stably
separated (φ, ψ), then p|R = p′|R. This hypothesis holds if e is a type over a model M , and
p, p′ extend e are finitely satisfiable in M .

We can also deduce that for any global p, there are definable dp(φ, ψ), d′p(φ, ψ) such that p
contains {¬φ(x, b) : dp(φ, ψ)(b)} and {¬ψ(x, b) : d′p(φ, ψ)(b)}; and any type p′ containing these
formulas has p|R = p′|R.

Proposition 3.19. Let R be a stable local A- invariant relation on S×S′. Let X be a nonempty
closed Aut(U/A)-invariant subset of SS(S)(U). Let X|R = {(dpx)R : p ∈ X}.

Then 1→ 2→ 3:

(1) X is minimal.
(2) for any stably separated φ, ψ defined over A, rkφ,ψ(p) is constant (does not depend on

p ∈ X.)
(3) X|R has cardinality bounded independently of U; in fact |X|R| ≤ 2|A|+ℵ0 .

Proof. (1) implies (2) since the set of elements of X of (φ, ψ)-rank ≥ n is a closed subset of X.
Now assume (2). Fix φ, ψ stably separated, and say rkφ,ψ(p) = m for p ∈ X. For each ball

B of the metric d, the intersection of B,X and the complement of all definable sets of (φ, ψ)-
rank ≤ m is empty; by (local) compactness, B ∩X is covered by finitely many definable sets of
(φ, ψ)-rank ≤ m. Thus X is covered by countably many such definable sets, say e(φ, ψ, l), l ∈ N.
Each p now determines a function χp : (φ, ψ) 7→ l, where l is least such that p ∈ e(φ, ψ, l). But
in turn p|R is determined by this function. For if p, p′ ∈ X and χp = χp′ , then by Lemma 3.18,
p|R = p′|R. This proves (3). �

Note - this is the place where the Σ-compactness assumption Σ- is used - that for any
complete type P over A, there exists a minimal nonempty closed Aut(U/A)-invariant subset
of SS(S)(U), consisting of elements compatible with P . Indeed let Z be any nonempty closed
Aut(U/A)-invariant subset of SS(S)(U), consisting of elements compatible with P . Fix b ∈ P ,
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and let B be the ball defined by d(x, b) ≤ 2m0. By Σ, any type p over U meets some m0-
ball; this m0-ball contains a U-point a; so d(x, a) ≤ 2m0 is compatible with p. By invariance,

d(x, b) ≤ 2m0 is compatible with some p′ ∈ Z. Thus B̂ ∩ Z 6= ∅ (where p is the set of all types
over U of elements of B.) So if Zi is a descending chain of nonempty closed Aut(U/A)-invariant

subset of SS(S)(U), consisting of elements compatible with P , then Zi ∩ B̂ is nonempty, and as

B̂ is compact, ∩Zi ∩ B̂ is nonempty, and in particular ∩Zi is nonempty. Thus by Zorn’s lemma
a minimal element exists.

Let R ⊂ S × S′ be A-invariant, stable.
Let GenRA(S) be the set of all restrictions p|R, where p is a global type of S and p|R has

a small orbit under Aut(U/A). (The total number of orbits is small, say by Lemma 3.18, so
GenRA(S) is small.) When A or R do not vary, we omit them from the notation. Any type P
on S extends to some element of Gen(S), by Proposition 3.19 1→ 3, and the comment below
it. It follows that for any ≡Las-class X on S there exists an element qX of GenRA(S) such that
for any small N , qX |N is realized in X. Indeed some ≡Las-class of P has this property; since
all ≡Las-classes in P are conjugate, all have it.

Similarly define GenR
t

(S′). But for short we will write Gen(S), Gen(S′).
Define an equivalence relation Ef on S by: (a, a′) ∈ Ef iff for all p ∈ Gen(S′) and R ∈ f,

(dpy)R(a, y) ⇐⇒ (dpy)(R′a, y); and dually define ERt on S′. Ef is co-bounded since Gen(S′)
is bounded. Ef is local since R is local: if aEfb then for some c, R(a, c) and R(b, c); so
d(a, b) ≤ d(a, c) + d(b, c).

We say that q|R is consistent with an invariant set Z if any small subset q0 of q|R is realized
by some element of Z.

Lemma 3.20 (symmetry and uniqueness). Any Ef-class on S is consistent with a unique
q ∈ Gen(S). If q ∈ Gen(S), q′ ∈ Gen(S′), a ∈ S, a′ ∈ S′, and q is consistent with Ef(a), and q′

with ERt(a′), then dq′yR(a, y) ⇐⇒ dqxR(x, b).

Proof. We prove the symmetry statement first, following the standard route. Suppose for
contradiction that it fails for q, q′, a, a′. Say dq′yR(a, y) holds but dqxR(x, b) fails. Construct
an, a

′
n so that an |= q|A(a′i : i < n), anEfa, and a′n |= q′|A(ai : i < n), a′nERta′. Then since

anEfa, dq′yR(an, y) holds, and similarly dqxR(x, a′n) fails. Thus if i > n then R(an, a
′
i) holds

but R(ai, a
′
n) fails. This contradicts the stability of R.

We have already shown that there exists q′ ∈ Gen(S′) consistent with ERt(a′). Now if
q1, q2 ∈ Gen(S) are both consistent with Ef(a), then by symmetry we have dq1xR(x, b) ⇐⇒
dq′yR(a, y) ⇐⇒ dq2xR(x, b). Thus q1 = q2. �

Because of this lemma, if χ is an Ef-class and q is the unique element of Gen(S) consistent
with it, we can write (dχx)(R(x, y) for (dqx)R(x, y).

Let χ be an Ef-class, consistent with q. Let M be a substructure such that for any two
elements q1 6= q2 ∈ Gen(S), there exists b ∈M with R(x, b) ∈ q1 but R(x, b) /∈ q2, or vice versa.

Let Ef
M be the equivalence relation: aEf

Mb iff for any R ∈ f and b ∈ M , R(a, b) ⇐⇒ R(a, b′).
Then χ is a cobounded equivalence relation, each class is a bounded Boolean combination of

sets Rt(b), and Ef
M refines Ef. Indeed by construction a unique element q ∈ Gen(S) will be

consistent with a given Ef
M -class χ. So for any q′ ∈ Gen(S′), let d be such that tp(d/M) is

consistent with q′; then for a ∈ χ, R(a, y) ∈ q′ iff R(x, d) ∈ q.
Since all Ef classes of a complete type P over A are Aut(U/A)- conjugate, it follows from

uniqueness that all elements q of Gen(S) consistent with P are Aut(U/A)- conjugate.
We choose a minimal nonempty closed Aut(U/A)-invariant set X = XP of global types

extending P , as in Lemma 3.19. By this lemma, for any φ, ψ, βp(φ, ψ) = rkφ,ψ(p) does not
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depend on the choice of p ∈ X. Let I(Xp) be the ideal generated by all definable sets D such
that for some φ, ψ, rkφ,ψ(D) < βp(φ, ψ).

Lemma 3.21 (dividing). Let q′ be a global type of elements of S′, Assume q′|Rt ∈ Gen(S′),
P is an Ef-class, and R(a, y) ∈ q′ for a ∈ P (U). For i ∈ ω1, let bi |= q′|A(bj : j < i). Then for
any a ∈ P (U), for cofinally many α ∈ ω1 we have R(a, bα).

Proof. Re-define bi (without changing the type of the sequence) as follows: let Mi ≺ U be a
small model containing aj for j < i, and let bi |= q′|Mi. Let M = ∪i<ω1

Mi. For any pair
(φ, ψ), for some i < ω1, we have rkφ,ψ(tp(a/Mi)) = rkφ,ψ(tp(a/M)). Since ω1 has uncountable
cofinality, for some α < ω1, for any φ, ψ , rkφ,ψ(tp(a/Mα)) = rkφ,ψ(tp(a/M)). Since Mα ≺ U,
there exists a global type q extending tp(a/Mα) such that rkφ,ψ(tp(a/Mα)) = rkφ,ψ(q). By
Lemma 3.18, q|R is uniquely determined. On the other hand since q′|Rt ∈ GenRA(S′), it is clear
that q′|Rt ∈ GenRM (S′). Since R(a, y) ∈ q′, by Lemma 3.20, R(x, b) ∈ q if tp(b/Mα) is consistent
with q′. Hence R(x, bi) ∈ q for i ≥ α. But we can also construct a global type q+ extending
tp(a/Mα+1) with rkφ,ψ(tp(a/Mα+1)) = rkφ,ψq

+). As rkφ,ψ(tp(a/Mα+1)) = rkφ,ψ(tp(a/Mα)),
it follows that q = q+; as R(x, bα) ∈ q we have R(x, bα) ∈ q+, i.e. R(a, bα).

�

It follows from Lemma 3.21 (as well as from Lemma 3.20, as we saw before) that (dpy)R(x, y)
is a bounded (but infinitary) Boolean combination of instances of R(x, b); namely (dpy)R(a, y)
iff R(a, bj) holds for cofinally many j, where (bj) is a sufficiently long sequence as in the lemma.

Proof of Theorem 3.14. We will use the equivalence relation Ef and the ideals I(Xp) defined
above. We have to show

(*) If R ∈ f, P ⊂ P̄ is an Ef-class, and Q is an Eft-class on S′, then either R holds almost
always in the strong sense for I(p) on P ×Q, or ¬R does.

Pick p ∈ X(P̄ ), and p′ ∈ X(Q̄) (with respect to tR.) By definition of Ef, for any a ∈ P ,
p′(y) implies R(a, y), or else for any a ∈ P , p′(y) implies R(a, y). Without loss of generality
the latter holds. Now suppose ¬R(c, b) holds with c ∈ P, b ∈ Q. As p′(y) implies R(a, y) and
Eft(a, c), p

′(y) also implies R(c, y). Let r = tp(c, b/A). We have to show that the condition

in Definition 3.8 holds, i.e. that for some n, and some D ∈ r, ∪D(x, yj) ∪ ¬I⊗nft (y1, . . . , yn)

is inconsistent. Otherwise, there exists a sequence c, b1, b2, . . . with bk/A(b1, . . . , bk−1) wide
for Ift for each k, and r(c, bi) holds for each i. Let σ be an automorphism taking (c, b) to
(c, b1). Then q′ = σ(p′) is a global type, q′|Rt ∈ GEN , consistent with Eft-class of σ(b1), and
q′(y) implies R(c, y) (since σ(c) = c.) By Lemma 3.21, R(c, bi) holds for some i. But r is
a complete type, and cannot be consistent with both ¬R(c, b) and R(c, bi). This shows that
∪D(x, yj) ∪ ¬I⊗nft (y1, . . . , yn) is indeed inconsistent.

We saw that (dpy)R(x, y) is a bounded Boolean combination of instances of R(x, b); hence
any Ef - class can be expressed as Boolean combination of a bounded number of sets R(b) ⊂ S,
R ∈ f. Given this, the finest co-bounded equivalence relation with this property refines Ef, and
so also satisfies (*).

�

Remark 3.22. Let p(x, y) be a type (or partial type) over A. Then there exists a unique
smallest stable (respectively equational) A-invariant relation P , containing p. (I.e. p implies
P .) P is Fσ.

Proof. (We omit A from the notation, and prove the stable case; the equational case is the
same, with a0 = a, b0 = b below.) For any invariant relation P (x, y), let P ′(a, b) hold iff there
exists an indiscernible sequence of pairs (ai, bi) with a1 = a, b0 = b, and P (a0, b1). Clearly P ′
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is ∞-definable if P is; and P is stable if P = P ′. Also if P =
∨
j Pj then P ′ =

∨
j P
′
j . So let

P0 = p, Pn+1 = P ′n and P = ∪n∈NPn. Then P is Fσ and stable. �

Presumably P is usually not
∧

-definable. (For instance when p implies ≡Las and ≡Las is
not ∞-definable.) Note that ≡Las is itself a stable invariant relation.

3.23.
∧

-definable stable relations. Assume R is ∞-definable, stable.
First we note that the p-definition of R is ∞-definable, for any type p.

Lemma 3.24 (definability). Let p ∈ Sx(M). Let R = ∩nRn, with Rn definable. Then dpR is∧
-definable; it is an intersection of Boolean combinations of the definable sets Rn.

In more detail, the lemma states: fix m ∈ N. Then there exists n0 and a finite Boolean
combination Y of sets Rn0(x, ci), ci ∈M , such that dpR→ Y → dpRm.

Proof. By stability, there is no sequence dn, ek with ¬Rm(dn, ek) for k > n and R(dn, ek) for
k < n. By compactness, for some n0, there is no sequence with ¬Rm(dn, ek) for k > n and
Rn0(dn, ek) for k < n < n0. Thus ¬Rm, Rn0 are stably separated. By Lemma 3.16, there exists
a finite Boolean combination Y of sets Rn0(x, ci), ci ∈M , such that dpRn0 → Y → dpRm. �

Lemma 3.25. Any Ef-class is
∧

-definable. (Over parameters, it is cut out by certain sets of
the form (dqy)R(x, y).)

Proof. Let P be a complete type of G1.
We can find a ∈ P such that Q(a) = {q ∈ Gen(S′) : a ∈ (dqy)R(x, y)} is maximal. This uses

Zorn’s lemma, and the fact that (dqy)R(x, y) is ∞-definable, so if (dqy)R(ai, y) and ai → a
then (dqy)R(a, y) (working with types over M .)

Let Q = Q(a). Now aEfb iff for each q ∈ Q, (dqy)R(b, y). So the Ef-class of a is∞-definable.
Since all Ef- classes in P are conjugate, all Ef-classes in P are

∧
-definable. As P was

arbitrary, the lemma follows. �

Corollary 3.26. If a ≡lc b then (a, b) ∈ Ef.

Proof. Define: aEb iff tp(a/c) = tp(b/c) for any Ef-class c (i.e. there exists an automorphism
fixing c and taking a to b.) Clearly E ⊂ Ef. Let {Ci : i ∈ I} list all the classes. then aEb
iff for each i, (∃c)(∃d)(c, d ∈ Ci&ac ≡ bd). Since each Ci is

∧
-definable by Lemma 3.25, E is∧

-definable. Since the number of classes Ci is bounded, and elements with the same type over
some representative ci ∈ Ci also have the same type over Ci, it is clear that E is cobounded.
Hence ≡lc⊂ E, so ≡lc⊂ Ef. �

From this and Theorem 3.14 we obtain:

Theorem 3.27 (locally compact equivalence relation theorem). Let f be a nonempty family of
∞-definable stable local relations on S × S′. Let P,Q be classes of ≡lc on S, S′ respectively.
There exists a proper

∨
-definable ideal I ′ of definable subsets of S′, such that if R ∈ f, then R

holds almost always on P × Q in the strong sense for I ′, or ¬R does. Symmetry holds as in
Theorem 3.14. Also, the analogue of Remark 3.15 is valid.

In particular, fix a and assume tp(a/A) forms a single ≡lc-class; then for b such that tp(a/Ab)
or tp(b/Aa) does not divide over A, the truth value of R(a, b) depends only on tp(b).
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