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EHUD HRUSHOVSKI

This manuscript is largely an exposition of material from [1], [2] and [3], regard-
ing definable types in the model completion of the theory of valued fields, and the
classification of imaginary sorts. The proof of the latter is based here on definable
types rather than invariant types, and on the notion of generic reparametrization;
it allows a more conceptual view than we had when [1] was written. I also try to
bring out the relation to the geometry of [3] - stably dominated definable types
as the model theoretic incarnation of a Berkovich point.

The text is based on notes from a class entitled Model Theory of Berkovich
Spaces, given at the Hebrew University in the fall term of 2009, and retains the
flavor of class notes. Thanks to Adina Cohen, Itai Kaplan, and Daniel Lowen-
grub for comments. Most recently, Will Johnson went through the notes with
great care; he is due thanks for numerous textual improvements as well as some
highly perceptive mathematical comments and corrections. He further discovered
a considerable simplification of the proof of elimination of imaginaries, based on
definable types and their coding in O-submodules of finite dimensional K-spaces,
but shortcutting the decomposition theorem of definable types, Theorem 5.3; this
proof, I hope, will appear separately.

The material was discussed in my talk in the Valuation Theory meeting in El
Escorial in 2011. The slides for this talk can be found in [4].

0.1. Notation. We will use a universal domain for a given theory, usually the
theory ACVF defined below. This is a highly saturated and highly homogeneous
model, denoted U. Small subsets of U are denoted by A, B, . . . . Definable subsets
of U are denoted by X, Y , . . . , and sometimes D. If M is a model containing
the parameters used to define X, X(M) denotes the interpretation of X in M .
If A is a substructure of a model and x1, . . . , xn are tuples from the model, then
A(x1, . . . , xn) denotes the definable closure of A, x1, . . . , xn.

When working with valued fields, the valued field itself is denoted K, the
residue field is denoted k, the valuation ring is denoted O, the maximal ideal is
denoted M, and the value group is denoted Γ. The residue map is res : O → k,
and the value map is val : K → Γ ∪ {∞}. The value group is written additively,
so that O = {x ∈ K : v(x) ≥ 0}. ACVF is the theory of non-trivially valued
algebraically closed valued fields.

1



2 EHUD HRUSHOVSKI

Let Bn denote the group of invertible upper triangular matrices. The group
of elements of Bn with entries in a given ring R is denoted Bn(R). We will also
write Bn for Bn(K). Un is the group of matrices in Bn with 1’s on the diagonal.
Dn is the group of diagonal matrices, so that Bn = DnUn.

1. Definable types

1.1. Definable types. Let LY be the set of formulas of T in variables from Y ,
up to T -equivalence. A definable type p(x) is a family of Boolean retraction Lx,Y
to LY (for any finite set of variables Y ), compatible with inclusions Y ⊂ Y ′.
It is denoted: φ 7→ (dpx)φ. Thus (dpx)φ is a formula with (at most) the same
y-variables but without the free variable x; it is analogous to quantifiers, but
simpler; one says: for generic x |= p, φ holds.

Given a definable type p and a substructure A of M |= T , we let

p|A = {φ(x, a) : a ∈ Al,M |= (dpx)φ(a)}

So we can think of a definable type as a compatible family of types, given
systematically over all base sets.

1.2. Examples, notation. While the development is at first abstract, we will
give examples from ACVF, the theory of algebraically closed valued fields. K
denotes the field, O the valuation ring, Γ the value group, val the valuation map,
res the residue map into the residue field k.

1.3. Pushforward of definable types. Let f : X → Y be an A- definable
function, and p an A- definable type on X. Define q = f∗p by:

(dqy)θ(y, u) = (dpx)θ(f(x), u)

Excercise. For any B containing A we have: (f∗p)|B = tp(f(c)/B) where
c |= p|B.

1.4. Product of definable types. If p and q are two A-definable types, then
the product p(x)⊗ q(y) is defined by

(dp⊗q(x, y))θ(x, y, u) = (dqy)(dpx)θ(x, y, u).

If B contains A, then (c1, c2) |= p⊗ q|B if and only if c2 |= q|B and c1 |= p|B(c2).

1.5. Orthogonality. A definable type q(x) is constant if (dqx)(x = y) has a
solution.

Excercise. In this case, (dqx)(x = y) has a unique solution a; and a is the
unique realization of q|B, for any B over which q is defined.

Definition 1.6. p is orthogonal to Γ if for any U-definable function f into Γ, f∗p
is constant.
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Equivalently, by considering coordinate projections, any U-definable function
f into Γn is constant. We will use this definition for the value group, which
eliminates imaginaries; otherwise we would instead consider definable functions
f into Γeq.

1.7. Stable embeddedness. A sort D is stably embedded if any U-definable
subset of Dm is D(U)-definable.

In ACVF, both Γ and k are stably embedded; this is an immediate conse-
quence of quantifier-elimination in the standard three-sorted language (See The-
orem 2.1.1 (iii) in [1], or the first paragraph of the Appendix.) It suffices to
consider atomic formulas, with some variables from Γ and some from other sorts.
Any atomic formula φ(x1, . . . , xn, y1, . . . , yn) with xi in Γ, yj ∈ V F , has the
form: θ(x1, . . . , xn, val(hν(y))). So φ(x, b) defines the same set as θ(x, d) where
d = valh(b). Similarly for k and resh, with h a rational function.

Orthogonality of p to Γ can also be stated as follows: Let B′ = B(γ) be
generated over B by some realizations of Γ. Then p|B implies p|B′.

1.8. Domination.

Lemma 1.9. Let f : X → Y be an A-definable function. Let q be an A-definable
type on Y , and let pA be a type over A on X. Assume: for any B ≥ A there
exists a unique type pB such that pB contains pA, and f∗pB = q|B. Then there
exists a unique A-definable type p such that for all B, p|B = pB.

Proof. More generally, let us say a type pU over U is definably generated over A if
it is generated by a partial type of the form ∪(φ,θ)∈SP (φ, θ), where S is a (small)
set of pairs of formulas (φ(x, y), θ(y)) over A, and P (φ, θ) = {φ(x, b) : θ(b)}.

It sufices to show that if pU is definably generated over A, then pU is definable
over A, i.e. {b : φ(x, b) ∈ pU} is A-definable for each A-formula φ(x, y).

Let φ(x, y) be any formula. From the fact that pU is definably generated it
follows easily that {b : φ(x, b) ∈ pU} is an

∨
-definable set over A, i.e. a union of A-

definable sets. Indeed, φ(x, b) ∈ pU if and only if for some (φ1, θ1), . . . , (φm, θm) ∈
S, (∃c1, · · · , cm)(θi(ci) ∧ (∀x)(

∧
i φi(x, c) =⇒ φ(x, b)). Applying this to ¬φ,

we see that the complement of {b : φ(x, b) ∈ pU} is also
∨

-definable. Hence
{b : φ(x, b) ∈ pU} is A- definable.

�

Definition 1.10. In the situation of the lemma, p is said to be dominated by q
via f

In the situation of the lemma, p is said to be dominated by q via f . More
precisely:

Definition 1.11. p is dominated by q via f if there is some A over which p, q,
and f are defined, such that for every B ≥ A, (q|B)(f(x))∪ (p|A)(x) ` (p|B)(x).
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In general, when p, q, f are A-definable, one can visualize that p is dominated
by q over some bigger set B, but not over A. When A is a model, this does not
happen, nor will it occur in our setting of stable domination (see Remark 3.10).
(Thanks to Will Johnson for this remark.)

Example 1.12. (ACVF) Let X = O, Y = k, f = res. Let q be the generic type
of k, i.e. q|B is generated by: y ∈ k, y /∈ V for any finite B-definable V . Then
x ∈ O, f(x) |= q|B generates a complete type p|B over B. This is called the
generic type of O.

Exercise 1.13. Show that p|B is complete. For any polynomial
∑
bix

i over
B, show that val(

∑
bix

i) = mini val(bi) for x realizing p|B. In particular, p is
orthogonal to Γ.

Example 1.14. Let M = {x : val(x) > 0} be the maximal ideal. Let f(x) =
val(x). Let q(x) be the type just above 0 in Γ. Then q dominates via f a definable
type pM, the generic type of M.

Example 1.15. (ACVF0,0). Let a0, a1, . . . ∈ Q. Let val(t) > 0. Let p0(x, y)
consist of all formulas (over Q(t))

val(y −
n∑
k=0

ak(xt)
k ≥ nval(t))

Then p0(x, y) + (pO|U)(x) generates a complete type p|U, provided
∑
anx

n is
transcendental.

Let X = O× O, Y = k, f(x, y) = res(x). Then p is dominated by the generic
type of k, via f .

To prove the domination, say val(t) = 1. First let M be a valued field extension
of Q(t)alg such that Z is cofinal in val(M). We prove domination over M .

Generalizing the construction, allow an ∈ OM , a =
∑
akX

k, and define pa0 to
consist of all formulas:

val(y −
n∑
k=0

ak(xt)
k) ≥ n

For a fixed, write p0 = pa0.
Let c |= pO|M . First suppose p0(c, 0) holds. Then mini≤n val(ai) + i =

val(
∑n

k=0 ak(ct)
k) ≥ n. So val(ai) ≥ n − i. Letting n → ∞ (and using ai ∈ M)

we see that ai = 0; so a = 0.
Next suppose just that p0(c, d) holds for some d ∈ M(c)alg. So F (c, d) = 0 for

some polynomial F ∈ OM [x, y]. Let a′ = F (x, a(x)) be the power series obtained
by substituting a(x) for y. Let p′0 = pa

′
0 . Then p′0(c, 0) holds. Hence by the

previous paragraph, a′ = 0, so a is algebraic.
Otherwise, p0(c, y) defines an infinite intersection b of balls over M(c), with no

algebraic point. Hence b contains no nonempty M(c)-definable subset (M(c)alg |=
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ACV F , so any nonempty M(c)-definable set does have an algebraic point.) So
p0 + tp(c/M) generates a complete type over M(c), as promised.

We can take M to be maximally complete; this suffices to show that p|M is
stably dominated.

Now if N is a valued field extension of M with res(N) = res(M), then p|M `
p|N , hence p0(x, y) + pO|M already generates p|N .

But any valued field extension of Q(t)alg can be obtained in this way (taking
such an M,N and then a subextension.) This proves the domination statement
in the example.

1.16. Density of definable types. We consider the following extension prop-
erty for a definable set D over a base set A, possibly including imaginaries.

(E(A,D)): Either D = ∅, or there exists a definable type p on D (over U) such
that p has a finite orbit under Aut(U/A).

Say T has property E if E(A,D) holds for all A,D. In Lemma 5.2 below, we
will see that ACVF has property (E).

We say that a substructureB of U is a canonical base for an object p constructed
from U if for any σ ∈ Aut(U), σ(p) = p iff σ(b) = b for all b ∈ B.

Lemma 1.17. Let T be a theory with property (E), and assume any definable
type (in the basic sorts) has a canonical base in certain imaginary sorts S1, S2, . . ..
Then T admits elimination of imaginaries to the level of finite subsets of products
of the Si.

1.18. Definable types on Γn. Let Γ be a divisible ordered Abelian group. Re-
call that the theory of divisible ordered Abelian groups has quantifier-elimination
(a result whose roots go back to Fourier.)

We will consider projections φa : Γn → Γ, φa(x) = a · x, where a ∈ Qn r (0).
We say two definable types p, q are orthogonal if there is a set A over which p

and q are defined, such that for any B ≥ A, p(x)|B∪q(y)|B generates a complete
type in the variables x, y.

A definable type p in Γn has a limit if there is some c ∈ Γn such that for every
U-definable open neighborhood U of c, the formula x ∈ U is in p|U.

Lemma 1.19. Let p be a definable type of Γn, over A. Then up to a change of
coordinates by a rational n×n matrix, p decomposes as the join of two orthogonal
definable types pf , pi, such that pf has a limit in Γm, and φa∗pi has limit point ±∞
for any a ∈ Qn r (0).

Proof. Let α1, . . . , αk be a maximal set of linearly independent vectors in Qn

such that the image of p under (x1, . . . , xn) 7→ αi · x has a limit point in Γ 1

Let β1, . . . , βl be a maximal set of vectors in Qn such that for any/every model
M and for x |= p|M , α1x, . . . , αkx, β1x, · · · , βlx are linearly independent over

1Equivalently, the image of p under x 7→ (α1x, . . . , αkx) has a limit point in Γk.
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M(α1x, . . . , αkx) If a |= p|M , let a′ = (α1a, . . . , αka), a′′ = (β1a, . . . , βka). For
α ∈ Q(α1, . . . , αk), the element αa is bounded between elements of M . On
the other hand each βa (β ∈ Q(β1, . . . , βk) r {0}) satisfies βa > M or βa <
M . For if m ≤ βa′′ ≤ m′ for some m ∈ M , since tp(βa′′/M) is definable
it must have a finite limit, contradicting the maximality of k. It follows that
tp(αa/M) ∪ tp(βa/M) extends to a complete 2-type, namely tp((αa, βa)/M);
in particular tp(αa+ βa/M) is determined; from this, by quantifier elimination,
tp(a′/M) ∪ tp(a′′/M) extends to a unique type in k + l variables. So tp(a′/M),
tp(a′′/M) are orthogonal. After some sign changes in a′′, so that each coordinate
is > M , the lemma follows. �

Lemma 1.20. (1) Let p, p′ be definable types on Γn. If φa∗p = φa∗p
′ for each

a, then p = p′.
(2) Let p be a definable type on Γn. If φa∗p is 0-definable for each a, then p is

0-definable.

Proof. (1) Any formula φ(x, y) is a Boolean combination of formulas a·x+b·y > c
(or = c). The definition of such a formula is determined by φa∗p.

(2) Let σ be an automorphism, p′ = σ(p); we have to show that p′ = p. This
follows from (1). �

Lemma 1.21. Let p be a definable type of Γn. For c ∈ Γn, let αc(x) = x+c .
Then for some c ∈ Γn, αc∗p is 0-definable.

Proof. A linear change of coordinates (with Q-coefficients) does not effect this
statement. So we may assume the conclusion of Lemma 1.19 holds. Translating
the pf part by − lim pf , we may assume pf has limit 0 ∈ Γm. It follows that for
any a ∈ Qn r (0), φa∗p has limit 0 or ±∞. There are only five definable 1-types
with this property, all 0-definable. Hence by Lemma 1.20(2), p is 0-definable. �

2. Algebraic lemmas on valued fields

The material in this section is classical, going back in part to Ostrowsky and Ka-
plansky; see the book by F.V.-Kuhlmann http://math.usask.ca/ fvk/Fvkbook.htm.

Definition 2.1. An extension L ≤ L′ of valued fields is immediate if L,L′ have
the same value group and residue field.
K is maximally complete if it has no proper immediate extensions.

Exercise 2.2. Let K be an algebraically closed valued field, L a valued field
extension, t ∈ L. Assume L = K(t) as a field. Since any element of K[t] is a
product of linear factors, the valuation on L is determined by v(t− a) for a ∈ K.
Then one of the following holds:

• v(t − a) = γ /∈ Γ(K) for some a ∈ K. Show that Γ(L) = Γ(K)(γ),
k(L) = k(K).
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• v(t− a) ∈ Γ(K) for all a ∈ K, and v(t− a) takes a maximal value v(b) at
some a ∈ K. Show that k(L) = k(K)(e) where e = res((t− a)/b).
• v(t − a) ∈ Γ(K) for all a ∈ K, and a maximum is not attained. Show

that K(t) is an immediate extension.

Lemma 2.3. Let L/K be an extension of valued fields. Then tr.deg.resKresL +
dimQ(val(L)/val(K)) ≤ tr.deg.K(L).

Proof. This reduces to the case that L/K is generated by one element. In this
case L/K is algebraic or L = K(t) is a rational function field. In the algebraic
case, resL is a finite extension of resK (of some degree e) and val(L)/val(F ) is
finite (of some order f ; in fact we have ef ≤ [L : K].) In case L = K(t), we may
assume K is algebraically closed, since passing to this case will not lower the left
hand side; and Ex. 2.2 applies. �

Lemma 2.4. Let K denote a valued field, with algebraically closed residue field
k and divisible value group A. Assume K is maximally complete,

• K is algebraically closed.
• K is spherically complete, i.e. any set of balls, linearly ordered by inclu-

sion, has nonempty intersection.

Proof. (1) This follows from Lemma 2.3: algebraic extensions are immediate since
the value group and residue field have no proper finite extensions. (2) Let bi be
a set of balls, indexed by a linear ordering I. If ∩ibi = ∅, then for any a ∈ K
we have a /∈ bi for large i, and it follows that α(a) = v(a − c) is constant for
c ∈ bi. Define a valuation on K(t) by v(t − a) = α(a). Then by Ex. 2.2 this is
an immediate extension, a contradiction. �

Any valued field K has a maximally complete immediate extension, of cardi-
nality at most 2|K|.

2.5. Valued vector spaces. A valued vector space over valued field K is a
triple (V,Γ(V ), v), with V a K-space, Γ(V ) a linearly ordered set Γ(V ) with an
action + : Γ(K)× Γ(V )→ Γ(V ), order-preserving in each variable, and v a map
v : V r (0) → Γ(V ) with v(a + b) ≥ min(v(a), v(b)) and v(cb) = v(c) + v(b) for
a, b ∈ V, c ∈ K.

If a1, . . . , an are elements of V with v(a1), . . . , v(an) in distinct Γ(K)-orbits,
it follows that a1, . . . , an are linearly independent over K. In particular if V is
finite-dimensional, Γ(V ) can only consist of finitely many Γ(K)-orbits.

By a ball in V we mean a set of the form {b ∈ V : v(a − b) ≥ α}. V is
spherically complete if any set of balls, linearly ordered by inclusion, has nonempty
intersection.

A set a1, . . . , an of elements of V is called separated if for all c1, . . . , cn ∈ K, we
have

v
(∑

ciai

)
= min

i
(v(ci) + v(ai))
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Such a set is in particular linearly independent.
If V = Kn is a valued K-space with a separated basis, a ball for V is just a

product of balls of K, so V is spherically complete if K is.
If V is a valued K-space with a spherically complete subspace W ≤ V , and

a ∈ V , then the set {v(w − a) : w ∈ W} attains a maximum, because for each
γ ∈ Γ(V ), the set {w ∈ W : v(w − a) ≥ γ} is either empty or a ball in W .

Lemma 2.6. Let K be a spherically complete valued field, V a finite-dimensional
K-space. Then V has a separated basis.

Proof. Let a1, . . . , am be a maximal separated set, U the subspace generated by
a1, . . . , am. Then U has a separated basis, so it is spherically complete. If U = V
we are done. Otherwise, let a ∈ V r U . Consider the possible values v(u − a),
u ∈ U . Since U it is spherically complete, so there must be a maximal value
among these. Replacing a by a − u with v(a − u) maximal, we may assume
v(a) ≥ v(a − u) for all u ∈ U . In this case, a1, . . . , am, a is separated. For
given c1, . . . , cm, we have v(

∑
ciai) = mini v(ciai) = γ say. It suffices to see that

v(
∑
ciai+a) ≤ min(γ, v(a)); this follows from the strong triangle inequality when

γ 6= v(a), and from v(a) ≥ v(
∑
ciai + a) when γ = v(a). �

2.7. Induced k-spaces. Let V be a valued K-space, and α ∈ Γ(V ). Then
Λα = {a ∈ V : v(a) ≥ α} is an O-submodule, and Λo

α = a ∈ V : v(a) > α} is
an O-submodule containing MΛα. Let Vα = Λα/Λ

o
α; this is a k = O/M-space,

finite-dimensional if V is.
Let h : U → V be a homomorphism of valued K-spaces; meaning there is

also a map h : Γ(U) → Γ(V ) of Γ(K)-sets, with h(α) < h(β) when α < β, and
v(h(a)) = h(v(a)). Then h induces a homomorphism Uα → Vh(α) for each α.

2.8. Tensor products. Let U, V be valued K-spaces. Consider K-spaces
(W,Γ(W )) and maps

h : U⊗V → W, + : Γ(U)× Γ(V )→ Γ(W )

such that v(h(a⊗b)) = v(a) + v(b) and Γ(U)× Γ(V )→ Γ(W ) is order-preserving
in each variable.

Then for each α ∈ Γ(U), β ∈ Γ(V ) we have an induced homomorphism

Uα⊗Vβ → Wα+β

Lemma 2.9. Let K be spherically complete, and let U, V be valued K-spaces.
Let E be a divisible ordered Abelian group with Γ(K)-action, and assume
Γ(U),Γ(V ) ≤ E and E ∼= Γ(U) ×Γ(K) Γ(V ), i.e. if α + β = α′ + β′ then for
some γ ∈ Γ(K), γ + α = α′ and γ + β′ = β. Then there exists a unique
(W,h : W → E) (up to a unique isomorphism) such that:

(1) For any (α, β) ∈ Γ(U) × Γ(V ), the induced homomorphism Uα⊗Vβ →
Wα+β is injective.
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Proof. To prove uniqueness we have to show that h is injective, and determine
v(h(x)) for all x ∈ U⊗V . Write x =

∑n
i=1 ai⊗bi where (a1, . . . , an) are separated.

Then it suffices to show:
Claim . h(x) 6= 0, and v(h(x)) = mini v(ai) + v(bi).

By grouping the terms according to the value of v(ai) + v(bi), it suffices to
prove the claim when v(ai) + v(bi) is constant. In this case by assumption there
exists γi = v(ci), ci ∈ K with v(ai) = v(a1) + γ, v(bi) = v(b1) − γ. Replacing
ai by ai/ci and bi by bici, we may assume v(ai) = v(a1) = α, v(bi) = v(bi) = β.
So ai ∈ ΛU

α , bi ∈ ΛV
β . Since a1, . . . , an are separated, the images āi of the ai in

Uα are linearly independent. The images b̄i of the bi in Vβ are nonzero. Hence∑
āi⊗b̄i 6= 0 ∈ Uα⊗Vβ. Since h induces an injective map into Wα+β it follows

that v(h(
∑

i ai⊗bi)) = α + β.
With uniqueness proved, functoriality is clear and so it suffices to prove exis-

tence in the finite dimensional case. This is easily done by choosing a separated
basis and following the recipe implicit above. �

Proposition 2.10. Let K be a spherically complete valued field, L1, L2 valued
field extensions, within a valued field extension N generated by L1 ∪ L2. Assume
Γ(K) = Γ(L1), and k(L1) is linearly disjoint from k(L2) over k(K). Then the
structure of the valued field N is uniquely determined given L1 and L2.

Proof. It suffices to show that the natural map h : L1⊗L2 → N is injective and
that v(h(x)) is determined for x ∈ L1⊗L2, since passage to the field of fractions
is clear using v(x/y) = v(x) − v(y). Let W be the image of h. Then we are in
the setting of Lemma 2.9, (1) holds, and (2) is clear since Γ(U) = Γ(K). For
the same reason, (3) reduces to the case α = 0. Suppose val(b1) = mini val(bi),
without loss of generality. We have h(

∑
i ai⊗bi) = b1h(

∑
i ai⊗(bi/b1)), so we may

take β = 0 too. In this case (3) amounts to the linear disjointess assumption.
The corollary now follows from the lemma. �

Proposition 2.10 will imply that any definable type orthogonal to Γ is domi-
nated by its images in k. We did not use Lemma 2.9 in full generality; using it
we could deduce that any definable type is dominated by its images in Γ and in
k. We will in fact require a stronger statement, of stable domination relative to
Γ. The algebraic content consists of the lemma below.

Let L1, L2 be two valued field extensions L1, L2 of a valued field K, contained
in a valued field extension N of K, and such that L1 ∪ L2 generates N . As in
Lemma 2.10, we will say that the interaction between L1, L2 is uniquely deter-
mined (given some conditions) if whenever N ′ is another valued field extensions of
K, and ji : Li → N ′ are valued K-algebra homomorphisms (satisfying the same
conditions), then there exists a (unique) valued K-algebra embedding j : N → N ′

with j|Li = ji.
It is easy to see that condition (2) below does not depend on the choice of Z.
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Proposition 2.11. Let K be a spherically complete valued field, L1, L2 valued
field extensions, within a valued field extension N generated by L1 ∪ L2. Let
k0 = k(K), ki = k(Li), k12 = k1k2. Then the interaction of L1, L2 is uniquely
determined assuming the following conditions.

(1) Γ(L1) ⊆ Γ(L2).
(2) Let Z be a Q-basis for Γ(L1)/Γ(K); for z ∈ Z let az ∈ L1 and bz ∈ L2

have v(az) = v(bz) = z, and let cz = az/bz. Assume the elements res(cz)
form an algebraically independent set over k12.

(3) k1, k2 are linearly disjoint over k0.

Proof. As in Lemma 2.10, it suffices to show that the natural map h : L1⊗L2 → N
is injective and that v(h(x)) is determined for x ∈ L1⊗L2. Write x =

∑n
i=1 ai⊗bi,

with (ai) separated. We claim that v(x) = mini v(ai) + v(bi) ∈ Γ(L2). As before
we may assume v(ai) + v(bi) = γ does not depend on i. Moreover since γ = v(c)
for some c ∈ L2, dividing bi by c we may assume γ = 0. The subgroup of Γ(L2)
generated by the v(ai) is finitely generated; let d1, . . . , dl be a minimal set of
generators of this group modulo Γ(K). Let a′z, b

′
z, cz be as in condition (2), so

that v(a′z) = v(b′z) = dz for z = 1, . . . , l, cz = a′z/b
′
z, and the elements res(cz) are

algebraically independent over k12. For each i, there exists m = (m1, . . . ,ml) ∈ Zl
with

∑
mzdz = v(ai). Writem(i) for thism, and (a′)m for Πz(a

′
z)
mz , and similarly

for b′ and c. Let Ai = ai/(a
′)m(i), Bi = bi(b

′)m(i). Then∑
aibi =

∑
AiBic

−m(i)

We have to show that this has valuation zero, i.e. that∑
i

res(Ai)res(Bi)res(c)−m(i) 6= 0

Since the res(cz) are algebraically independent (2), it suffices to show that for a
fixed value of m ∈ Zl, we have:

∑
m(i)=m res(Ai)res(Bi) 6= 0. But this follows

from (3) as in Lemma 2.9. �

3. Stably dominated types

.

Definition 3.1. An A-definable type p is stably dominated if for some B ≥ A,
p is dominated over B by a definable map f into V for some finite-dimensional
k-space V .

When the base A consists of elements of the valued field and Γ, it can be shown
that f can be chosen to be A-definable. The space V is isomorphic to km over
some larger B, but not necessarily over A. For instance, given α ∈ Γ, let Oα = Oc
where val(c) = α. Then Oα is a free O-module, and Oa/Ma is a one-dimensional
k-space Vα.
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Exercise 3.2. The generic type of the ball val(x) ≥ α is dominated by the map
rα : Oa → Vα. However every α-definable map on Oα into k is constant, if α is
not a root of the valuation of some element of the prime field.

This special family of definable types will be the main object we will look at.

For any definable set V , we will define V̂ to be the set of stably dominated types

on V . Later, a topology will be defined on V̂ ; V will be dense in V̂ , called the
stable completion of V .

Theorem 3.3. In ACVF, the following conditions on a definable type are equiv-
alent:

(1) p is stably dominated.
(2) For all definable q, p(x)⊗q(y) = q(y)⊗p(x)
(3) p is symmetric: p(x)⊗p(y) = p(y)⊗p(x).
(4) p is orthogonal to Γ.

Proof. (1) implies (2): by domination it suffices to prove that p(x)⊗q(y) =
q(y)⊗p(x) for p on kn. By stable embeddedness one reduces to the case that
q too is on kn.

(2) implies (3) is trivial.
(3) implies (4): Let f be a definable function into Γ. Then q = f∗p is symmetric.

But by considering the q(u)-definition of u < v one sees that q must be constant.
(4) implies (1). Let M be a maximally complete valued field, with p definable

over M . Let a |= p|M , N = M(a). Then Γ(N) = Γ(M) by orthogonality. By
Proposition 3.5, a unique M -definable type extends p|M , and this type is stably
dominated; this type must be p. �

Exercise 3.4. Let k be an algebraically closed field, V a finite-dimensional vector
space over k, definable in some theory over a base A. We assume that the definable
subsets of km are the constructible subsets. Let pA be a type of elements of V ,
over A. Then there exists at most one A-definable type p such that p|A = pA.

(Proof: p is the generic type of a unique Zariski-closed subset W of V ; W must
be A-definable; we must have W ∈ pA but no smaller subvariety is in pA; this
characterizes W and hence p.)

Proposition 3.5. Let M be a maximally complete algebraically closed valued
field, N = M(a) a valued field extension. Let γ = (γ1, . . . , γn) be a basis
for Γ(N)/Γ(M). Then there exists a unique M(γ)-definable type extending
tp(a/M(γ)). This type is stably dominated.

Proof. We have γi = val(ci) for some ci ∈ N . Let ei = rγi(ci) ∈ Vαi
(see notation

above.) Let α1, . . . , αm be a transcendence basis for k(N) over k(M). We have
εi = gi(a), αj = hj(a) for some M(γ)-definable functions gi, hj. Let V = ΠiVαi

×
km, g = (g1, . . . , hm). Let q = q(v1, . . . , vn, t1, . . . , tm) be the generic type of
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the k-space V ; equivalently, letting Vi+n = k, q = q1⊗ . . .⊗qn+m where qi is
the unique non-constant definable type on the 1-dimensional k-vector space Vi.
Note that for any structure B ≥ M(γ), for i ≤ n, if e′i ∈ Vi(B), e′i 6= 0 and
ei |= qi|B then ei/e

′
i is a well-defined element, realizing the generic type of k over

B; hence if (e1, . . . , en, α1, . . . , αm) |= q|B, then (e1/e
′
1, . . . , en/e

′
n, α1, . . . , αm) are

algebraically independent over B. Note also in this situation that if if γi = val(bi)
with bi ∈ B, then ei/e

′
i = res(ci/bi). By Proposition 2.11, there exists a unique

type pB extending tp(a/M(γ)) and with g∗pB = q|B. By Lemma 1.9 there exists
a unique M(γ)-definable type p with p|B = pB for all B.

By definition, p is dominated by g and hence stably dominated. If p is another
M(γ)-definable type extending tp(a/M(γ)), let q′ = g∗p

′. Then q′ is an M(γ)-
definable type extending tp(e1, . . . , αm)/M(γ). By Excercise 3.4 we have q′ = q,
and hence by the domination, p′ = p. This proves the uniqueness of p. �

Discussion 3.6. Let V be an M -definable set, with a ∈ V . We will see below

that V̂ can be viewed as a pro-definable set; i.e. an inverse limit of definable

sets. In more detail: we will describe certain definable sets V̂d for d ∈ N, and

definable maps V̂d+1 → V̂d. (These maps can be taken to be surjective, but we

will not use this fact here. The V̂d will be subsets of Km × Sn for appropriate

m,n, where Sn is the sort of lattices in Kn, described below.) Let lim
←− d∈NV̂d be

the set of sequences c = (cd : d ∈ N) such that cd+1 7→ cd. Say c ∈ dcl(A) iff each

cd ∈ dcl(A). A definable map f : X → lim
←− d∈NV̂d means: a compatible system of

definable maps fd : Γn → V̂d.

For each c ∈ lim
←− d∈NV̂d we will describe (canonically) a stably dominated type

pc. We will show that any stably dominated type on V equals pc for a unique

c ∈ V̂ . It follows that c ∈ dcl(A) iff pc is A-definable. We define V̂ = lim
←− d∈NV̂d.

In this language, Proposition 3.5 states that there exists a pro-definable partial

map f : Γn → V̂ (over M) and γ ∈ Γn such that with c = f(γ), we have γ ∈M(a)
and a |= pc|M(γ).

Thus tp(a/M) can be understood in terms of (i) tp(γ/M) and (ii) an M -

definable function Γn → V̂ .

Exercise 3.7. Let r be an A-definable type, and let f be an A-pro-definable

function into V̂ , with dom(f) ∈ r|A. For any B with A ≤ B, let a |= r|B,
p = pf(a), c |= p|B(a). Show that pB = tp(c/B) does not depend on the choices,
and that there exists a unique A-definable type p with p|B = pB. We will refer
to this type as

∫
r
f .

In particular, Proposition 3.5 and the discussion below it yield:

Exercise 3.8. AnyM -definable type on V has the form
∫
r
f for someM -definable

type r on Γn, and some M -definable partial map f : Γn → V̂ .
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We will later improve this to decomposition theorem over other bases: Every
definable type on V can be decomposed into a definable type over Γn, and a germ

of a definable function into V̂ .

Exercise 3.9. Let M be a maximally complete model, and γ ∈ Γn. Then
M(γ) = dcl(M ∪ {γ}) is algebraically closed.

Hint: Let N be a model containing M(γ), and with Γ(N) generated by γ over
Γ(M). For any a ∈ N , by Proposition 3.5, tp(a/M(γ)) extends to an M(γ)-
definable type. In general if e ∈ acl(B) and tp(e/B) extends to a B-definable
type, show that e ∈ dcl(B).

Remark 3.10. Even over a base A consisting of imaginaries, if p is a stably dom-
inated A-definable type and, then it is dominated by some A-definable function
f into a finite-dimensional k-vector space. This follows from a general descent
principle for stably dominated types and the elimination of imaginaries we will
prove later.

3.11. Definable modules. We consider definable K-vector spaces V ∼= Kn.
When working over a base A we will always assume V has a basis of A-definable
points; this can be taken as the definition, but in fact is automatic, at least over
nontrivially valued subfields, by the following version of Hilbert 90:

Lemma 3.12. Let F be a nontrivially valued field. If V is an F -definable K-space
then V has a basis of F -definable points.

Proof. We may assume F = dcl(F ) ∩ K. In this case, F alg is a model, so V
has a basis of points of V (F alg). This basis lies in V (F ′) for some finite Galois
extension F ′ of F . Now the automorphism group of F ′/F in the sense of ACVF
and of ACF coincide, by Lemma 3.13. Hence the usual Hilbert 90 applies. �

Lemma 3.13. Let T be any expansion of the theory of fields, F a subfield of a
model M of T with dcl(F ) = F . Let F ′ ≤ M be a finite normal extension of F .
Then every field-theoretic automorphism of F ′/F is elementary.

Proof. Let G be the set of automorphisms of F ′/F that are elementary, i.e.
preserve all formulas. Then Fix(G) = dcl(F ) = F . By Galois theory, G =
Aut(F ′/F ) in the field theoretic sense. �

Let ModV be the set of definable O-submodules of V . Λ ∈ ModV is g-closed
if Λ intersects any 1-dimensional K-subspace U ≤ V in a submodule of the form
Oc or U or (0). Λ is a semi-lattice if it is g-closed and generates V as a K-space.
Λ is a lattice if it is M -isomorphic to OdimV .

Let V ∗ be the dual space to V ; we identify V ∗∗ with V , and write (u, v) for the
pairing V × V ∗ → K. For Λ ∈ ModV , let Λ∗ = {v ∈ V ∗ : (∀a ∈ Λ)(a, v) ∈ M}.
In class we considered a different notion, namely Λ∗c = {v ∈ V ∗ : (∀a ∈ Λ)(a, v) ∈
O}.
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Exercise 3.14. Let dim(V ) = 1, and Λ ∈ ModV . Then Λ = Oc or Λ = V or
Λ = (0) or Λ = Mc for some c ∈M .

Exercise 3.15. (1) ∗ and ∗
c are weakly inclusion-reversing maps ModV →

Mod(V ∗). We have Λ∗∗ = Λ, and if Λ is closed also (Λ∗c)
∗
c = Λ.

(2) Let M |= ACV F . If Λ ∈ ModV (M) then Λ is M -isomorphic to K l ×
Om ×Mn for some l,m, n.

(3) If Λ is closed, then Λ ∼= K l × Om for some l,m.
(4) Λ∗c is always closed.
(5) Define Λc = (Λ∗c)

∗
c . Then Λ is the smallest closed O-module containing Λ.

Λ contains MΛ.

It follows from Example 3.15 (3) that the elements of ModV are uniformly
definable.

Exercise 3.16. Let A be a valued field and let e1, . . . , en be (imaginary) codes for
modules, Γ(A(e, . . . , en) = dcl(A∪{e1, . . . , en})∩Γ. Then there exists a maximally
complete field N with A ≤ N , e1, . . . ∈ dcl(A) and Γ(N) = Γ(A(e, . . . , en)).

Hint: This reduces to the case n = 1, so e = e1 codes a submodule Λ of Kn. We
may assume Λ generates Kn, and the dual module generates the dual space; so Λ
contains no nonzero subspace of Kn. Let Λc be the smallest lattice containing Λ.
By adding to A a generic basis for Λc, we may assume Λc = On. By Example 3.15
(5), Mn ⊆ Λ. So to define Λ over A it suffices to define Λ/Mn, a subspace of kn.
This can be done with parameters from k. If α ∈ K, and a is a generic element
of res−1(α), show that Γ(A(a)) = Γ(A).

Exercise 3.17. Let Λ be a semi-lattice in V . For a ∈ V , show that {−val(c) :
ca ∈ Λ} has a unique maximal element vΛ(a) ∈ Γ, unless a ⊆ Λ; in the latter
case write vΛ(a) = ∞. Show that v = vΛ satisfies v(a + b) ≥ min v(a), v(b) and
v(cb) = v(c) + v(b) for a, b ∈ V, c ∈ K. If Λ is a lattice, then (V, vΛ) is a valued
vector space. Conversely, given v with the above properties, Λv = {a : v(a) ≥ 0}
is a semi-lattice, and alattice of v(V r (0)) ⊆ Γ.

3.18. Pro-definable structure on V̂ . Let V be an affine variety, V ⊆ An.
Let Hd be the space of polynomials in n variables of total degree ≤ d. Let LHd

be set of semi-lattices in HD.
Let V̂ denote the stably dominated types on V . We define Jd : V̂ → LHd by

Jd(p) = {f ∈ Hd : (dpv)(f(v) ∈ O)}

J = (J1, J2, . . .) : V̂ → ΠdLHd

Proposition 3.19. (1) J is 1-1.
(2) The image of J is a pro-definable set.
(3) In fact, the image of Jd is a definable set.
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(4) Let f(v, u) be a polynomial in variables (v, u) = (v1, . . . , vn, u1, . . . , um),
of v-degree ≤ d. There exists a definable function h : LHd × Am → Γ

such that for any p ∈ V̂ and b ∈ Am, if fb(v) = f(v, b) then valfb(v) =
h(Jd(p), b) is in p|U. In other words, valfb(v) takes a constant value on
generic realizations of p, this value as a function of p factors through
Jd(p), and it is uniformly definable over LHd.

Proof. It suffices to prove this for V = An. Let Λ̄ = (Λd)d∈N ∈ ΠdLHd.
Define P (Λ̄) = {val(f(x)) = vΛd

(x)} : d ∈ N, f ∈ Hd}, where vΛd
is as in

Exercise 3.17.
Now check that D = {Λ̄ : P (Λ̄ is consistent } is a countable intersection of

definable sets. If P (Λ̄) is consistent, it generates a complete type over U (denoted

the same way); type is always in V̂ . Thus J(V̂ ) = D; this gives (2). Since P (J(p))
generates p, we have (1). With this definition of J , (4) is clear: h(Λ, b) = vΛ(fb).

(3) is Theorem 3.1.1 in [3]; see a more explicit proof in the Appendix. �

4. Γ-internal subsets of V̂

Definition 4.1. A definable set D (possibly in imaginary sorts) is Γ-internal
if (possibly over additional parameters) there exists a definable Y ⊂ Γn and a
surjective definable map Y → D. Equivalently, there exists an injective definable
map D → Γn.

The equivalence in the definition uses elimination of imaginaries for Γ (an
easy result.) In fact over one parameter from Γ, there even exist definable sets
of representatives for any definable equivalence relation. Let f : Y → D be
surjective. Let W be a definable set of representatives for the relation f(y) =
f(y′). Then g : D → W defined by f(g(d)) = d is a definable injective map.

We can call D almost Γ-internal if there exists a finite-to-one definable map
D → Γn. In fact by Example 3.9, almost Γ-internal definable sets are Γ-internal.
For sets of lattices this can also be seen by noting that the proof of Proposi-
tion 4.6 goes through for almost Γ-internal sets, and that the conclusion implies
Γ-internality.

If D is A-definable, it will turn out that the implicit parameters in the definition
of Γ-internality can be taken to be in acl(A).

Lemma 4.2. Let D be a Γ-internal subset of Kn. Then D is finite.

Proof. It suffices to show that every projection of D to K is finite; so we may
assume n = 1. If D is infinite, it contains an infinite closed ball; over additional
parameters there is therefore a definable surjective map D → k. However if
Y ⊆ Γn there can be no surjective map Y → k, by the orthogonality of k,Γ. This
contradiction shows that D is finite. �
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Lemma 4.3. Let D be a Γ-internal set of closed balls of equal radius in O, i.e.
D ⊆ K/cO. Then D is finite.

Proof. Let D′ = ∪D. If D is infinite then D′ contains a closed ball dO + e with
val(d) < val(c). Now x 7→ res(d−1(x−e)) maps dO+e onto k, and factors through
D. We obtain a contradiction as in Lemma 4.3. �

Lemma 4.4. Let M be a model, γ ∈ ΓN . Then any M(γ)-definable closed ball
has a point in M .

Proof. An M(γ)-definable closed ball b lies in some Γ-internal set D of closed
balls. By Lemma 4.4, we may take D to be linearly ordered by inclusion. The
intersection of all elements of D is a ball b′ defined over M , closed or open, but
nonempty; as M is a model, we can choose a point of b′ over M . �

Lemma 4.5. Any Γ-internal set D of balls is the union of a finite number of
definable subsets, each linearly ordered by inclusion.

Proof. Here we refer to Prop. 2.4.4 of [1]. �

We call a lattice Λ diagonal for a basis (b1, . . . , bn) if there exist c1, . . . , cn ∈ K
with Λ =

∑
Ocibi. In other words, Λ = ⊕iΛ ∩Kbi

Proposition 4.6. Let M be a model. Let Λ be an M(γ)-definable lattice in
V = Kn. Then Λ has an M-definable diagonalizing basis. Moreover if e1, . . . , en
is the standard basis, we can choose a diagonalizing basis of the form Ue, where
strictly lower triangular matrix over M 2

Proof. The case n = 1 is trivial. Let V1 be a one-dimensional subspace of V ,
V = V/V1, g : V → V the canonical homomorphism. Choose b1 such that
V1 ∩ Λ = Ob1. Let Λ̄ = gΛ. By induction, there exists an M -definable basis
b̄2, . . . , b̄n diagonalizing Λ̄; so Λ̄ =

∑
ciOb̄i for some ci, with ciO defined over

M(γ). Now g−1(cib̄i) 6= ∅, and g−1(b̄i) is a coset of V1, so c−1
i Λ ∩ g−1(b̄i) is a

closed ball in V1. By Lemma 4.4 it has an M -definable point bi. Any element
of Λ may be written as v1 + a2c2b2 + . . . + ancnbn, with v1 ∈ V1, ai ∈ O. So
v1 ∈ V1 ∩ Λ. Thus Λ = ⊕iΛObi. �

We may write Λ = ⊕ni=1OγiUei = U ⊕ni=1 Oγiei = USγO
n, where Sγ is the

diagonal matrix (γ1, . . . , γn).
Given Λ, the matrix USγ is determined up to multiplication on the right

by an element of Bn(O); and Sγ is determined by USγ; the image of Sγ in
Dn/Dn(O) = Γn depends on Λ alone, and we denote it G(Λ). (This corresponds
to the composed homomorphism γ : Bn → Γn, composition of Bn → Bn/Un = Dn

with the natural map Dn → Γn.)

2’strict’ here means: 1’s on the diagonal.
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Corollary 4.7. let D be a Γ-internal set of lattices. Then there exist a finite
partition D = ∪ri=1Di and bases b1, . . . , br such that each Λ ∈ Di is diagonal
in bi. The bases bi are strictly upper triangular. The function G defined in the
paragraph above is injective on each Di.

Proof. As the matrix U in the conclusion of Proposition 4.6 is defined over M ,
while Λ varies over a definable set, compactness assures the existence of finitely
many matrices U1, . . . , Ur over M , such that each Λ ∈ D has the form UiSγO

n

for some i ≤ r and for γ = G(Λ). Let Di = UiDnO
n.

�

5. Definable types in ACVF

Let M be a model. We say that tp(a/M) is definable if there exists a (neces-
sarily unique) M -definable type p with tp(a/M) = p|M .

Lemma 5.1. If tp(a/M) is definable, and c ∈ acl(Ma), then tp(ac/M) is defin-
able.

Proof. Let φ(xy) ∈ tp(ac/M) be a formula such that φ(a, y) has m solutions,
with m least possible. Then p(x)|N ∪ φ(x, y) generates a complete type over any
elementary extension N . By Lemma 1.9, this is a definable type. �

Lemma 5.2. Let A be any subset of Ueq, i.e. any set consisting possibly of
imaginary elements. Let V ⊆ Kn be an A-definable set. Then there exists a
definable type on V , over U, with finite orbit under Aut(U/A).

This comes as close as possible to saying that p is A-definable; one cannot
do better since V might be finite, or may have a finite but nontrivial definable
quotient.

Proof. By induction on n. If n = 1, V contains finitely many balls, each with
some finite union of sub-balls missing. The generic type of one of these balls
will do. For n > 1, let π : Kn → Kn−1 be the projection, and let p′ be a
definable type on V ′ = π(V ) with finite orbit. Let M be a model containing A,
and let a |= p′|M . Let p′′ be a definable type on π−1(a) with finite orbit under
Aut(U/A(a)). So p′′ is A(a′) definable, with a′ ∈ acl(A(a)). Let a′′ |= p′′|M(a, a′).
By Lemma 5.1, tp(aa′/M) is definable, and hence tp(aa′a′′/M) is definable, so
tp(aa′′/M) is definable, i.e. equals p|M for some definable type p. The number
of conjugates of p is at most the number of conjugates of a′/A(a). �

Let r be an A-definable type on Γn. By a pro-definable function on r into V̂ we
mean a pro-definable function f represented by a sequence of definable functions
fi, such that dom(fi) ∈ r|A for each i.

Let f be an pro-definable function on r into V̂ with dom(f) ∈ r|A, whose
p-germ is defined over A. Recall the definition of

∫
r
f (Example 3.7). It depends

on f only through the p-germ of f , so that
∫
r
f is an A-definable type.
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Theorem 5.3. Let p be an A-definable type on a variety V . Then there exist a

definable type r on Γn and a definable r-germ f of pro-definable maps into V̂ ,
with p =

∫
r
f .

Proof. Let M be a maximally complete model, containing A.
Let c |= p|M . Let γ = g′(c) be a basis for Γ(M(c)) over Γ(M); let r′ = g′∗p.

Now tp(c/M(γ)) is stably dominated, so it equals q|M(γ) for some q ∈ V̂ ;

we can write q = f ′(γ), with f ′ an M -definable function into V̂ . By definition,
p =

∫
r′
f ′.

�

The proof showed that r = g∗p, where g = αc ◦ g′. In particular, the r-germ of
g ◦ f is the r-germ of the identity, i.e. f is genericallly injective. (We could also
arrange this a posteriori.)

How canonical is the pair (r, f)?

Definition 5.4. Consider pairs (r, h) with r a definable type and h a definable
function. We say two such pairs (r, h), (r′, h′) are equivalent up to generic repa-
rameterization, (r, h) ∼ (r′, h′), iff there exist definable functions φ, φ′ such that
φ∗r = φ′∗r

′, and for some definable h′′, h = h′′ ◦ φ and h′ = h′′ ◦ φ′.
When h′ is generically injective, this is equivalent to the existence of a a defin-

able φ such that r′ = φ∗r and h = h′ ◦ φ as an r-germ.
If h is pro-definable, with target X = lim

←−
Xk and πk : X → Xk the defining

maps, we say (r, h) ∼ (r′, h′) if (r, πk ◦ h) ∼ (r′, πk ◦ h′) for each k.

Lemma 5.5. The pair (r, f) is determined by p =
∫
r
f , up to generic reparame-

terization.

Proof. Suppose p =
∫
r
f =

∫
r′
f ′, with r, r′, f ′, f ′ defined over some N . Let

γmodelsr|N , c |= f(γ)|N(γ). So c |= p|N . Since also p =
∫
r′
f ′, we may find

γ′ |= r′|N such that c |= f ′(γ′)|N(γ′). By stable domination of p, we have
Γ(N(c)) ⊂ N(γ). We claim that γ ∈ Γ(N(c)). Let γ′′ be a basis for Γ(N(c))
over N . Then tp(c/N(γ′′)) extends to a stably dominated type p′′ defined over
N(γ′′). By orthogonality to Γ again, p′′ implies a complete type over N(γ),
namely tp(c/N(γ)) = p. It follows that p = p′′ is based on N(γ′′), and so by
generic injectivity of f we have γ′ ∈ dcl(N(γ′′)). Thus N(Γ(N(c))) = N(γ)
and similarly N(Γ(N(c))) = N(γ′). So N(γ) = N(γ′). Moreover h(γ), h′(γ′) are
stably dominated types based on N(γ) and with the same restriction to this base,
namely tp(c/N(γ)); so h(γ) = h′(γ′). Let φ be an invertible N -definable function
such that γ′ = φ(γ); then r′ = φ∗r and as h′(γ′) = h(φ−1(γ′)), h′ = h ◦ φ−1. �

We will study this notion in the ACVF setting in the next section, but we
indicate now how it will go. We will see in Lemma 6.2 that after a possible

reparametrization, one can find an A-definable function G on V̂ such that G ◦
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f is the identity germ on r. (Basically this is the 0-definable function G of
Corollary 4.7; we need A only in order to find an affine patch V ′ of V and identify

V̂ ′ with a sequence of lattices.) This implies that r = G∗p is A-definable, and
also rigidifies f so that reparameterization is no longer possible, and the r-germ
of f is uniquely determined. Hence with these choices we find an A-definable r
and a function f with A-pro-definable germ. We can even use Lemma 1.21 to
make r, if we wish, 0-definable; this requires an additional reparamterization by
a certain A-definable translation.

Remark 5.6. Though the r-germ of f can be chosen to be A-pro-definable, it
is not always possible to find an A-(pro)definable f . For instance for the generic
type of an A-definable open ball without an A-definable sub-ball, this is the case.
This phenomenon is responsible for much of the subtlety in the stability-theoretic
study of ACVF.

The function G described above, inverting the germ f on the left, cannot in
general be take of the form p 7→ g∗p for any A-definable g.

6. Imaginaries in ACVF

Recall Bn denote the group of invertible upper triangular matrices. Un is the
group of matrices in Bn with 1’s on the diagonal. Dn is the group of diagonal
matrices, so that Bn = DnUn.

If G is any algebraic subgroup of the group GLn of invertible n× n - matrices,
G(O) denotes the elements M ∈ G such that M,M−1 have entries in O.

Let Sn be the coset space Bn/Bn(O). We will see below that any lattice in
Kn has a triangular basis. Hence Bn acts transitively on the set of lattices; and
Bn(O) is the stabilizer of the standard lattice On. It follows that Bn/Bn(O)
can be identified with the set of lattices in Kn. (By a similar argument, so can
GLn(K)/GLn(O).)

Let G̃Ln(O) be the pullback of the stabilizer of a vector, under the natural

homomorphism GLn(O)→ GLn(k). Let Tn be the coset space GLn/G̃Ln(O) We
have a natural map Tn → Sn. Given b ∈ Sn, viewed as a lattice Λ, naming an
element of Tn is equivalent to choosing a point of Λ/MΛ. Let GG consist of the
valued field sort K, along with the sorts Sn, Tn.

Certain related imaginary sorts can be directly shown to be coded in the sorts
Sn, Tn.

Lemma 6.1. (1) Any definable O-submodule of Kn, as well any coset of such
a submodule of Kn, can be coded in GG.

(2) Any finite subset of Sn ∪ Tn ∪Km is coded in GG.
(3) Let H be a subgroup of Un defined by a conjunction

H = {a ∈ Un :
∧

i≤j≤n

val(aij) �ij αij}
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where αij ∈ Γ∞ and � denotes ≥ or >. Let A be a base structure contain-
ing αij, i, j ≤ n. Then any coset of H is coded in GGA (i.e. for any coset
C of H there exists g ∈ GGm such that g is a canonical code for C over
A.)

Proof. We will not repeat the proofs of (1,2) from [1]; (1) is rather straightforward,
see 2.6.6; (2) is Prop. 3.4.1 there. .

For (3), let An be the O-algebra of strict 3 upper triangular matrices. Let J
be the subalgebra defined by:

∧
i≤j≤n val(aij) �ij αij. Then H = 1 + J . We have

aH = bH iff a = b(1 + j) for some j ∈ J iff aJ = bJ =: J ′ and a + J ′ = b + J ′.
As J ′ is an O-module and a+ J ′ a coset, (3) follows from (1). �

Lemma 6.2. Let r be a definable type on a definable D ⊂ Γn, V = KN , and
h : D → LV be an injective definable map. Then (r, h)/ ∼ has a canonical base
in GG.

Proof. Let U(Λ) be the maximal K-subspace contained in Λ ∈ L. Say
dimU(h(t)) = d. U(h(t)) can be viewed as an element of a Grassmanian variety
Grd(V ). By Lemma 4.2, the image of U(h(t)) is finite. Since p is complete, the
image is a single element U , i.e. U(h(t)) = Ud for all t |= r. Now U is clearly an
invariant of (r, h)/ ∼. We may work over a base where all U are defined, and
view h as a function r → L(V/U). We may thus assume h(t) is a lattice for
t |= r.

By Corollary 4.7 there exists a triangular basis b for V such that h(t) is diagonal
in b = (b1, . . . , bn), for t |= r. So h(t) =

∑
Oγi(t)bi for certain definable functions

γi : r → Γ. Let γ = (γ1, . . . , γn). (Recall Oγ denotes {x : val(x) ≥ γ}. ) We
can replace r by γ∗r and h by the function hb((s1, . . . , sn)) =

∑
Osibi, without

changing the ∼-class. So from now on we will consider only h = hb of this form.
Thus we need to code pairs (r, b) up to ∼, where (r, b) ∼ (r′, b′) iff (r, hb) ∼
(r′, hb′). Note that hb is injective on Γn.

By Lemma 1.21 there exists c ∈ Γn such that αc∗(r) is 0-definable; where αc

is translation by c. Say c = (c1, . . . , cn), ci = −val(ei). Let e be the diagonal
matrix (e1, . . . , en). Then (r, b) ∼ (αc∗(r), eb). Replacing (r, b) by (αc∗(r), eb), we
may assume r is 0-definable.

Since r is 0-definable, (r, b)/ ∼ is equi-definable with b/ ∼, so we will now fix
r and consider the equivalence relation: b ∼ b′ iff (r, b) ∼ (r, b′)

We view b = (b1, . . . , bn) as a matrix, with bi the i’th column. Note that b, b′

generate the same O-lattice iff b′i =
∑
cijbj for some cij ∈ O and conversely,

iff b′ = bN for some N ∈ GLn(O). Also, we have (t1b1, . . . , tnbn), bDt generate
the same O-module, where Dt denotes any triangular matrix (e1, . . . , en) with
val(ei) = ti.

3’strict’ here means: 0’s on the diagonal
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Suppose b ∼ b′. So r′ = φ∗r for some definable function φ and hb = hb′ ◦ φ.
Let N = N(b, b′) be the change of basis matrix, bN(b, b′) = b′. Then N(b, b′)
is upper triangular. Write s = φ(t). Then bDt and b′Ds = bNDs generate
the same O-module, so bDt = bNDsN

′ for some N ′ ∈ GLn(O), or D−1
s NDt ∈

GLn(O). Equivalently D−1
s NDt ∈ Bn(O). But N is upper triangular, N(b, b′) =

D(b, b′)U(b, b′), with D(b, b′) diagonal and U(b, b′) strictly upper triangular. It
follows that D(b, b′) = Dt−s mod D(O). This holds for t |= r; so t−s is constant,
i.e. φ(t) = t + c0, where c0 ∈ S(r) = {c ∈ Γn : αc∗r = r}. Note that S(r) is a
definable subgroup of Γn (of the form E(Γl×(0)) for some l ≤ n and some matrix
E with Q-coefficients.) Let S ′(r) be the pullback of S(r) to the group Dn(K)
of diagonal matrices. Then D(b, b′) ∈ S ′(r). Moreover, since D−1

s NDt ∈ Bn(O),
we have U(b, b′) ∈ DtBn(O)D−1

t , or U(b, b′) ∈ DtUn(O)D−1
t .. Conversely, the

argument reverses to show that if D(b, b′) ∈ S ′(r) and U(b, b′) ∈ DtUn(O)D−1
t for

generic t |= r, then b ∼ b′. Let Dν = {g ∈ Un : (drt)(g ∈ DtUn(O)D−1
t )}. It is

easy to see that this is one of the groups in Lemma 6.1 (3), and hence coded in
GG.

�

Theorem 6.3. In the sorts GG, ACVF admits elimination of imaginaries.

Proof. By Lemma 5.2, Lemma 1.17 and Lemma 6.1 (2), it suffices to show that
any definable type q on V = An has a canonical base in the sorts GG. Now q has

the form
∫
r
h where r is a definable type on Γm and h : Γm → V̂ is a definable

map. q is equi-definable with the pair (r, h) up to generic reparameterization.
We have h = (hd), hd : r → LHd, where Hd is the space of polynomials in n

variables of degree ≤ d. Define ∼d as ∼ above. For large enough d, hd is injective
on a definable neighborhood of r. 4 Clearly if σ fixes q then it fixes (r, hd)/ ∼d
for each d; conversely if σ fixes (r, hd)/ ∼d for large enough d, then it fixes the
q-definition of any given formula, so it fixes q. Thus it suffices to code (r, hd)/ ∼d
for each d. This was proved in Lemma 6.2. �

7. Appendix

We give here an effective description of the image of V̂ in the space of semi-
lattices. This description came out of a conversation with Bernd Sturmfels.

Let F be a valued field. We will use Robinson’s quantifier-elimination theorem
in a two-sorted version, i.e. some variables range over K and some range over the
residue field k. This follows easily from the one-sorted version: if φ(x1, . . . , xn) is
quantifier-free formula on On, which is invariant under translation by Mn, then
the solution set of φ can be viewed as a subset of kn; and it is easy to see that
this subset is constructible (a Boolean combination of varieties.) Note that if

4alternatively, for any d, we can factor out the kernel of hd and work with the pushforward
rd of r.
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φ(x1, . . . , xn, y1, . . . , ym) is Mn-translation invariant in the x-variables, with the
y-variables fixed, then so is (∃y1)(∃y2)φ, or any other sequence of quantifiers over
the y-variables.

7.1. Let us take an affine variety V = Spec(k[X1, . . . , Xm]/I). Let V̂ be the
stable completion. Let Hd be the vector space of polynomials of degree ≤ d,
Id = Hd ∩ I, Ud = Hd/Id, and let S(Ud) be the space of semi-lattices in Ud.

There is a natural map rd,n : V̂ → S(Ud). Namely if p is viewed as a semi-norm,
rd,n(p) = {f + Id : p(f) ≥ 0}.

Given Λ ∈ S(Ud), let T = T (Λ) be the maximal K-space contained in Λ, and
let (f1, . . . , fn) be an O-basis for Λ/T . Let

R(Λ) = {(resf1(c), . . . , resfn(c)) : c ∈ V (K), v(f(c)) ≥ 0 for f ∈ Λ}

By Robinson’s theorem, this is a constructible subset of kn. If we change the
O-basis, R(Λ) changes by a linear transformation.

Lemma 7.2. Λ ∈ rd,n(V̂ ) iff R(Λ) is not contained in a finite union of proper
subspaces of kn.

Proof. First suppose Λ ∈ rd,n(V̂ ); say Λ = rd,n(p). Suppose R(Λ) is contained in
a finite union of proper subspaces of kn; these subspaces and all data are defined
over some model M . Let c |= p|M ; let f1, . . . , fn be an O-basis for Λ; then
(resf1(c), . . . , resfn(c)) ∈ R(Λ), so it must lie in one of the M -definable proper
subspaces mentioned above; i.e.

∑
αiresfi(c) = 0, αi ∈ k(M), not all 0. Extend

(α1, . . . , αn), viewed as an element χ1 of (kn)∗, to a basis χ̄1, . . . , χ̄n of (kn)∗, and
lift to a basis χ1, . . . , χn of dual lattice Λ∗ of Λ. Let g1, . . . , gn be the dual basis of
Λ. Then whenever a |= p, g1(a) has positive valuation; say α = val(c); it follows
that c−1g1 ∈ Λ, but c−1 /∈ O, a contradiction.

Conversely, assume R(Λ) is not contained in a finite union of proper subspaces
of kn. Let M be a maximally complete model over which V,Λ are defined, let
f = (f1, . . . , fn) be a basis for Λ over M . Find c ∈ V be such that f(c) = 0 for
f ∈ T , valfi(c) ≥ 0 for i ≤ n and (resf1(c), . . . , resfn(c)) does not lie in any proper
M -definable subspace of kn. Let α be a basis for Γ(M(c)) over Γ(M); so there
exists a stably dominated type p over M(α) with c |= p|M(α). It is clear that
T ⊆ I(p)∩Hd (where I(p) is the kernel of the semi-valuation p) and Λ ⊂ rd,n(p).
We claim that in fact, rd,n(p) = Λ. For suppose (e.g.) that Id = I(p) ∩ Hd but
rd,n(p) is a bigger lattice Λ′. The lattice Λ′ is defined over M(α) and so lies in
a Γ-parameterized family of lattices over M , so there exists a basis g1, . . . , gn of
Hd/T such that Λ′ is diagonal in this basis, i.e. Q is generated by c1g1, . . . , cngn
for some c1, . . . , cn. The change-of-basis matrix Q from c1g1, . . . , cngn to f1, . . . , fn
lies in Mn(O); if it is in GLn(O), then the lattices are equal; if not, then some
element e of Λ(M) lies in MΛ′ but not in MΛ. As e /∈MΛ, we have rese(c) 6= 0,
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otherwise (resf1(cm), . . . , resfn(cm)) would lie in a proper subspace. It follows
that vale(c) = 0, and so p(e) = 0, contradicting e ∈MΛ′.

�

Now one can algorithmically decompose the constructible set R(Λ) into irre-
ducible, relatively closed sets and find their linear span; the condition of the
lemma is that one of these spans should have dimension n. This gives an effective

description of the image of V̂ .

7.3. We have in general dim(R(Λ)) ≤ dim(V ). An important subset of the
stable completion (denoted V #) consists of the strongly stably dominated points
(see [3]). In the present setting, a stably dominated type on a variety V is
strongly stably dominated iff the residue field extension it induces has the same
transcendence degree as the field extension it induces.

Now if Λ is a lattice with dim(R(Λ)) = dim(V ), then Λ is the image of at most

a finite number n(Λ) of elements p of V̂ , such that for g1, . . . , gn a basis of Λ,
M a model over which the data is defined, and c |= p|M , resg1(c), . . . , resgn(c)
are linearly independent over k(M). These points p all lie in V #; and an upper
bound on their number is easily given. This raises the hope of describing elements
of V # via a single tropical approximation. But we have:

Problem 7.4. Let Λ be given, and assume dim(R(Λ)) = dim(V ). Determine
n(Λ) (or just whether n(Λ) = 1) effectively.
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