Nonarchimedean globally valued fields Géométrie et théorie des modèles Paris, Nov. 2015

Ehud Hrushovski

December 6, 2015

Abstract

In a joint research project with Itaï Ben Yaacov, we study a class of fields enriched with a global structure tying together their various valuations by a product formula. This is an elementary class in the sense of continuous logic; the field of algebraic functions $\mathbb{C}(t)^{alg}$ is a prime example, and the Weil height function on projective space is a key example of a definable map into \mathbb{R} . I will describe some of the connections to algebraic geometry on the one hand, and stability theory on the other. This will also be the subject of a more extended class at IHP next semester.

1 Fields with a height function

Let F be a field. A height-type function is a function $h: F \smallsetminus (0) \to \mathbb{R}^{\geq 0}$ satisfying:

 $ht(xy) \le ht(x) + ht(y), \ ht(x^{-1}) = ht(x), \ ht(x+y) \le ht(x) + ht(y) + ht(2)$

The field may be enriched by additional functions ϕ into \mathbb{R} , satisfying $|f(x)| \leq O(1)ht(x)$.

Standard examples of height:

- On \mathbb{Q} , $ht(\frac{a}{b}) = \max(\log |a|, \log |b|)$ for reduced fractions.
- For a number field L, Weil: $ht(a) = \sum_{v} v(a)^+$ where $v(a) = -\log |a|_v$, ranges over appropriately normalized absolute values of L, $x^+ = \max(x, 0)$.
- Let $F = k(t)^{alg}$, $\alpha > 0$. Any element $f \in F$ can be viewed as a morphism $f : C \to \mathbb{P}^1$ for some curve C over k; we also have $t : C \to \mathbb{P}^1$.

 $ht(f) = \alpha \deg(f) / \deg(t)$

Let $(F_i, h_i, \phi_i : i \in I)$ be fields with height-type functions (and one additional ϕ as above), and let u be an ultrafilter on I. Assume $h_i(2)$ remains bounded. The *ultraproduct* is defined as follows. Let $(F_u, h_u, \phi_u : F_u \to \mathbb{R}_u)$ be the usual ultraproduct of fields; let \mathbb{R} be the convex hull of \mathbb{R} in \mathbb{R}_u , and $st : \mathbb{R} \to \mathbb{R}$ the standard part map; define

$$F = \{0\} \cup \{a \in F_u^* : h_u(a) \in \overline{\mathbb{R}}\}$$
$$h(a) = st(h_u(a)), \quad \phi(a) = st(\phi_u(a))$$

2 The language

The terms are polynomials over \mathbb{Z} ; equality is a $\{0, 1\}$ -valued relation as usual.

Basic relations R_t : A symbol R_t for each tropical term t= term in the language +, min, $0, \alpha \cdot x$ of divisible ordered Abelian groups. to be interpreted as functions $(F^*)^n \to \mathbb{R}$. Local interpretation of R_t Let (K, v) be a valued field, or a subfield of \mathbb{C} with $v(x) = -\alpha \log |x|$. For x with $x_i \neq 0$, interpret $R_t^{v}(x)$ as $t(vx_1, \ldots, vx_n)$.

Global intended interpretation: We think of $R_t(x)$ as the *expected value* of $R_t^{v}(x)$ with respect to an implied measure on valuations. Write a basic formula

$$R_t(f_1(x),\ldots,f_n(x)) =: \int t(vf_1x,\ldots,vf_nx)dv$$

Among them, the height: $x^+ = -\min(-x, 0)$. $ht(x) = R_t(x) = \int v(x)^+ dv$ Connectives min, max, $0, +, \alpha \cdot x$.

Quantifiers The analogue of quantifiers in real-valued logic is inf and sup operators. Let $\psi_{n,\epsilon}(t)$ be 1 on [-n,n], 0 on $|t| > n + \epsilon$, and a linear interpolation on $[n, n + \epsilon]$. Let $\phi(x, y)$ be a formula. Then so is $\sup_x \psi_{n,\epsilon}(ht(x))\phi(x, y)$.

We view this as a quantifier over x of height up to about n.

All formulas are preserved by ultrapowers.

It will turn out that the height function suffices to generate the language, at least in the purely non-archimedean case.

3 Universal axioms

Let LVF be the set of pairs (ϕ, t) of formulas $\phi(x_1, \ldots, x_n)$ in the language of rings implying $\prod_i x_i \neq 0$, t a tropical term, such that the theory of valued fields implies t is positive on the amoeba of ϕ :

 $VF \models (\forall x)(\phi(x) \implies t(v(x_1), \dots, v(x_n)) \ge 0)$

Axioms GV for purely non-archimedean globally valued domains:

- 1. $(F, +, \cdot)$ is an integral domain.
- 2. The R_t are compatible with permutations of variables and dummy variables.
- 3. (Linearity:) $R_{t_1+t_2} = R_{t_1} + R_{t_2}$. $R_{\alpha t} = \alpha R_t$.
- 4. (Local-global positivity for amoebas) If $(\phi, t) \in LVF$ and $\phi(a_1, \ldots, a_n)$ then $\int t(v(a_1), \ldots, v(a_n))dv \ge 0$.
- 5. (Product formula) $\int v(x)dv = 0$

Remarks:

A model of GV can be shown to admit the structure of an M-field in the sense of Gubler, meaning essentially that there is a measure μ on a set of representatives for the valuations of F, validating

$$R_t(f_1(x),\ldots,f_n(x)) =: \int t(vf_1x,\ldots,vf_nx)d\mu(v)$$

One can relax the valued field axiom to $v(x + y) \ge \min v(x), v(y) - e$, so as to allows archimedean valuations; obtaining LVF_e and correspondingly VF_e . In this talk we will concentrate on the non-archimedean case.

4 Classical structures

Function fields: over a constant field k: $L_{fn} = k(t)^{alg} = \bigcup_C k(C)$ For $f_1, \ldots, f_n \in k(C)$,

$$R_t(f_1, \dots, f_n) = [k(C) : k(t)]^{-1} \sum_{c \in C(k)} t(v_c(f_1), \dots, v_c(f_n))$$

Product axiom: $\sum_{c \in C(k)} v_c(f) = 0.$ We have ht(t) = 1. For K = k(C), and X a variety over k, X(K) can be identified with the morphisms $m : C \to X$, informally with their image $\overline{C} \leq X$. Let Y be a subvariety; cut out by homogeneous g_1, \ldots, g_m say. The field language only permits asking when $\overline{C} \subset Y$ for a subvariety Y: the GVF language allows discussing whether or not \overline{C} intersects Y, or rather gives sthe intersection number: $\sum_{c \in C} \min_i v_c g_i - \min_i v_c x_i$. Indirectly, can discuss the homology class of \overline{C} . **Lemma** (Artin-Whaples). Let C be a curve of genus g over k. Let $x \in k(C) \setminus k$, and let r > 0. Then k(C) admits a unique GVF structure over k with ht(x) = r.

Proof. The nontrivial valuations of k(C) over k can be identified with the points of C(k), a discrete space. We have to show that if μ is a measure on C(k) satisfying the product formula, then μ gives equal weight to any two points $a, b \in C$. By Riemann-Roch (n + g)a - nb is effective, $(n + g)a - nb + (f) = \sum m_i d_i$ with $m_i \geq 0$; so

 $(n+g)\mu(a) \ge n\mu(b)$

Thus $(1+g/n)\mu(a) \ge \mu(b)$. Letting $n \to \infty$, $\mu(a) \ge \mu(b)$. \Box

Number fields, asymptotically in height

 (b_r) The field $\mathbb{Q}^{alg}[r]$. For $f_1, \ldots, f_n \in L, [L:\mathbb{Q}] = d$,

$$R_t(f_1,\ldots,f_n) = \alpha \sum_v t(-\log|f_1|_v,\ldots,-\log|f_n|_v)$$

where the v range over all absolute values of L, normalized so that the product formula holds, and $ht(2) = \log 2/r$.

Then $\mathbb{Q}^{alg}[r] \models GV_e$ for $e = \log 2/r$. However, let u be an ultrafilter on $\mathbb{R}^{>0}$, concentrating on $r \to \infty$.

Let $L_{\#,u}$ be an ultraproduct of $\mathbb{Q}^{alg}[r]$. Then $L_{\#,u} \models GV$.

The GVF language allows sampling \mathbb{Q}^a at one or two height scales, near 1 and near r. If r is kept bounded we need the theory with absolute values; if $r \to \infty$ the nonarchimedean theory applies.

Example of global algebraic closure

In diophantine approximations, e.g. Roth's theorem, one considers rational approximations b to $\alpha \in \mathbb{Q}_{v_0} \cap L$ at a place v_0 of \mathbb{Q} :

(1)
$$v_0(b-\alpha) \ge \kappa h(b), \quad \kappa > 2$$

Here L is a number field, Galois over \mathbb{Q} . Letting S be the lifts of v_0 to L and α_v the corresponding conjugates of α , we obtain a glueing problem viewpoint:

(2)
$$v(b - \alpha_v) \ge \kappa_v h(b), \sum_{v \in S} \kappa_v = \kappa > 2$$

But we will let b range over \mathbb{Q}^{alg} . We are interested in b of height h above a certain height threshold, h_0 so that $(\kappa - 2)h > ht(2)$.

Assume the *height* h of b is fixed. Then there are at most finitely many solutions b of (2), even in a GVF extension. All are in fact definable over a base A of definition for the data. ¹ For suppose b, b' are two solutions with the same type over A. Then and $v(b - \alpha_v), v(b' - \alpha_v) \ge \kappa_v h$ for $v \in S$, so

$$ht(b-b') \ge \sum_{v} v(b-b')^+ \ge \sum_{v \in S} \kappa_v h = \kappa h > 2h + ht(2)$$

a contradiction.

This exemplifies global algebraicty; GV qf algebraic closure is not just ACF algebraic closure.

 $^{^1 \}mathrm{additional}$ parameters of height O(h) is required to capture the $\alpha_v,\,v_i\in S,\,\kappa_ih'.$

A baby curve selection theorem

Let X be a smooth projective variety over \mathbb{Q} ; let Y, Y_1, \ldots, Y_m be subschemes.

If L is a number field and $x \in X(L)$, let $\delta(x, Y)^L = \int \delta_v(x, Y) dv$ be the weighted sum of the local distances from x to Y, over all valuations (and $-\log|\cdot|) v$ of L.

Note that $\delta(x, Y)^L$ is the *L*-value of a certain quantifierfree formula $\phi_Y(x)$ in the language of GVF's.

Proposition. Assume $a_n \in X(\mathbb{Q}^a)$, $ht(a_n) \to \infty$, with $\lim_{n\to\infty} \delta_{Y_k}(a_n)/ht(a_n) = e_k$; let $\epsilon > 0$. Then there exists a curve C on X such that for any sequence $a'_n \in C(\mathbb{Q}^a)$, $ht(a'_n) \to \infty$, we have $\lim_{n\to\infty} |\delta_{Y_k}(a'_n)/ht(a'_n) - e_k| < \epsilon$.

Proof. Choose $r_i = ht(2)/ht(a_i)$ so that $\mathbb{Q}^a[r_i]$ gives a_i height 1. Consider any non-principal ultrafilter u on the index set \mathbb{N} , and let (L, a) be the GVF ultraproduct of $(\mathbb{Q}^a[r_i], a_i)$. Then (L, a) is a purely non-archimedean GVF, and $\delta_{Y_k}(a) = \phi(a)^L = e$. There exists $a' \in K = k(t)^{alg}$ with $e' = \phi(a')^K$ satisfying $|e' - e| < \epsilon$. In fact $a' \in k(C)$ for some curve C, so a' corresponds to a morphism $g: C \to X$. We may choose a' so that g(C) avoids any given proper subvariety of X. By computing the meaning of ϕ in $k(t)^{alg}$ we see that $\overline{i}(C, Y_k) = e'$.

Conversely, if C is a curve on X defined over \mathbb{Q}^a , then for any sequence of distinct $a_i \in C(\mathbb{Q}^a)$ of bounded degree over \mathbb{Q} , $\delta_Y(a) \to i_Y(C)$. This follows upon taking normalized ultraproducts as above, from the uniqueness of the GVF structure on k(C).

In particular, there exists such a sequence a'_i of bounded degree over \mathbb{Q} .

Value distribution theory

Let \mathcal{M} be the field of meromorphic functions. (Or a countably generated algebraically closed subfield.) Fix a function $\eta(r)$ (say $\log(r)$ or r^d), and also an ultrafilter u on $\mathbb{R}^{>0}$, avoiding finite measure sets.

Let μ_r be the measure space on $\{a : 0 < |a| \le r\}$ giving mass $\log(r/a)/\eta(r)$ to each point 0 < |a| < r, and the uniform measure of mass $1/\eta(r)$ to the circle |t| = r. Define

$$\begin{aligned} v_a(f) &= ord_a f \text{ for } |a| < r, \quad v_t(f) = -\log|f(t)| \\ ht_{\eta,u}(f) &= \lim_{r \to u} \max(v_a f, 0) d\mu_r a \\ \mathcal{M}[\eta, u] &= \{f \in \mathcal{M} : ht_{\eta,u}(f) < \infty\} \\ R_t(f_1, \dots, f_n) &:= \lim_{r \to u} \int t(v_a f_1, \dots, v_a f_n) d\mu_r a \end{aligned}$$

The product axiom is Jensen's formula:

$$\sum_{0 < |a| < r} \log \frac{r}{a} ord_a(f) + \frac{1}{2\pi} \int_0^{2\pi} -\log |f(re^{i\theta})| \, d\theta = O(1)$$

- Not a GVF for fixed r (O(1) term in Jensen's formula.)
- $\mathcal{M}[\eta, u]$ is a purely non-archimedean GVF.
- Vojta's dictionary: number theory \leftrightarrow Nevanlinna theory.
- In GVF language, M[η], has the same universal theory as the ultraproduct of the Q^a[r], and also as C(t)^{alg}[1].
- Conjecturally the same theory: a GVF isomorphism of ultrapowers.
- We will show this for the universal theory. This explains a *part* of Vojta's dictionary. But the GVF language will not permit e.g. *truncations*, *support*, *discriminants*.

5 Geometry: Divisors and curves

Let X be a smooth projective variety over $k = k^{alg}$.

${\cal H}$ will denote an irreducible hypersurface.

 $NS(X) = Pic(X)/Pic^{0}(X)$ is the group of formal combinations $\sum n_{i}H_{i}$ up to algebraic equivalence; by Lang-Néron 1951, it is finitely generated. Let $N^{1}(X) = NS(X) \otimes \mathbb{R}$. A finite dimensional vector space over \mathbb{R} . The effective cone of divisors $N_{eff}^{1}(X)$ consists of elements $\sum \alpha_{i}[H_{i}]$ with $\alpha_{i} \in \mathbb{R}^{\geq 0}$.

Duality of divisors and curves: given a (Cartier) divisor D and a curve C not lying on D, define $D \cdot C$ to be the number of intersection points, with multiplicity. If D = (f) is principal, then $D \cdot C = 0$.

Let $N_1(X) = N^1(X)^*$ be the dual space, = space of 1-cycles. Let

 $N_1^+(X) = \{ c \in N_1(X) : (\forall H)(c, H) \ge 0 \}$

6 Curves on X and qf types

Fix a constant field $k = k^{alg}$. K = k(X), X a smooth projective variety over k.

Basic objects: pairs $\mathbf{X} = (X, e), e \in N_1^+(X)$.

For each irreducible hypersurfaces H of X we have a valuation on K: $v_H(f)$ is the order of vanishing of f at H.

A *GVF structure on* X is a GVF structure on K, given by a measure concentraing on the valuations v_H .

There is a 1-1 correspondence $e \mapsto k(X, e)$ between $N_1^+(X)$ and GVF structures on X.

Given $e \in N_1^+(X)$, define a measure concentrating on $\{v_H\}$, and giving v_H mass $e \cdot H$.

Positivity: $e \in N_1^+$.

Product formula: $e \cdot (f) = 0$ for a principal divisor (f).

The GVF structures on varieties over k are dense in the space of quantifier-free types over k.

If $\pi : Y \to X$, $\pi_* e_Y = e_X$, write $\pi : \mathbf{Y} \to \mathbf{X}$. Do not expect $K_{\mathbf{X}} \leq K_{\mathbf{Y}}$! But they agree on Cartier divisors of X.

For L a GVF over k, define $\mathbf{X}(L)$ to be the set of points b of X(L) such that for $f \in L$, $(e, (f)_X^+) = ht_L(f)$. I.e. L is the limit of K_{e_i} over an inverse system (X_i, e_i) of blowups converging to the field K, with $(\pi_{ij})e_i = e_j$ for i > j.

The field $k(\mathbf{X})$ can be viewed as a "generic point" of \mathbf{X} .

Geometric description of quantifier-free types over **k**

Let K be a finitely generated field over $k = k^{alg}$. Let $N_1^+(K)$ be the inverse limit of the cones $N_1(X)^+$, K = k(X). It sits in the dual space to the direct limit $N^1(K)$ of the $N^1(X)$. Let S_K be the set of all GVF structures on K over k.

We define a map $\alpha: S_K \to N_1^+(K)$ via the pairing

$$S_K \times N^1(K) \to \mathbb{R}$$

 $(p,D) \mapsto \int v(D) d_p(v)$

Theorem. $\alpha: S_K \to N_1^+(K)$ is a homeomorphism.

Comparing the topologies:

If D is a Cartier divisor, can find a very ample. A such that D + A is also very ample Then $D + A = (f)_{\infty}$ and $A = (g)_{\infty}$. Thus $ht(f) = e \cdot (D + A)$ and $ht(g) = e \cdot A$; so $e \cdot D = ht(f) - ht(g)$.

A similar description of quantifier-free types holds over k' = k(C), C a curve.

But over a general base field, the description using 1-cycles is difficult to work with. How to amalgamate 1-cycles e, e' of X, X' over U?

7 Relative dimension one.

Representation of qf types

Let $\pi: X \to U$, $n = \dim(X) = \dim(U) + 1$.

Theorem. For all $e \in N_1^+(U)$ away from a lowerdimensional semi-algebraic set, any GVF structure on X above $\mathbf{U} = (U, e)$ is given by some $Q \in N^1(X)$, by:

$$D \mapsto e \cdot \pi_*(Q \cdot D)$$

Proof. Awkward proof using Hodge index on surfaces in X, hard Lefschetz. There should be a soft one.

But once we have this representation, the quantifier-free type over k(U) more precisely a functorial map base change map.

Extendible qf types

Let \mathbf{X}/\mathbf{U} be given by the divisor Q. Given $\mathbf{U}' \to \mathbf{U}$, pull back Q to a resolution X' of $X \times_U U'$ and use the same formula over \mathbf{U}' to obtain a candidate GVF structure \mathbf{X}'_Q . Is it positive?

At the limit, given any GVF L and $b \in \mathbf{U}(L)$, we obtain a candidate GVF structure on $L(X_b)$.

Duality criterion Let $M \models GV$, and let $b \in \mathbf{U}(M)$. Let $Q \in N^1(X)$, giving a GVF structure \mathbf{X}/\mathbf{U} .

Either

the canonical lift \mathbf{X}_Q' to any \mathbf{U}' realized in M is is a GVF, or

there exists a GVF structure \mathbf{X}'' on X over \mathbf{U} realized in M, with $\mathbf{X}'(Q)$ negative.

Why not both? Diagonal on $\mathbf{X} \times \mathbf{X}''$.

Note that the duality gives an axiom of the form: if p|M is consistent, then p|A is realized.

Why is this enough? *qf stability*: every qf type p over a large M is the canonical extension of p|A for some A. :

8 G and TM

Theorem (TM). $K = k(t)^{alg}[1]$ is existentially closed. In other words if $K \leq L$ then for any qf formula $\phi(x)$ over K, for any $b \in L$ and $\epsilon > 0$ there exists $a \in K$ with $|\phi(b) - \phi(a)| < \epsilon$. In particular, all algebraically closed, nontrivial purely nonarchimedean globally valued fields share the same universal theory.

A weighted curve class in $N_1(X)$ is one of the form $\alpha[C] = (D \mapsto \alpha D \cdot C) C$ an irreducible curve on $X, \alpha > 0$.

Theorem (G). Let X be a smooth projective variety over k. Then the weighted curve classes in $N_1^+(X)$ (not contained in a prescribed hypersurface) are dense in $N_1^+(X)$.

In fact the density in (G) is already true for rational pushforwards of n-1-fold products of very ample divisors. This is a strong version of a theorem of Boucksom, Demailly, Paun, Peternell (BDPP) to the effect that the moveable curves generate a *dense convex subcone* of $N_1^+(X)$. G implies TM for ϕ over k: Assume G. The topologies are the same; so an arbitrary GVF structure on $K \supset \mathbb{Q}^a$ can be approximated by one of the form $\mathbb{Q}^a(X, e)$; and moreover by (G), one can take e to be α the class of an irreducible curve $c: C \to X$, avoiding some given subvarieties. We can also assume that ϕ involves only v(f(x)) with $f: X \to \mathbb{P}^1$ a morphism. Now view c as a k(C)-point of X, and give k(C)the GVF structure with weight α points. Check that ϕ has the same value in k(C) and in k(X, e).

TM implies G An element $0 \neq c \in N_1^+(X)$ endows k(X) with a GVF structure; extend it to $L = k(X)^{alg}$. So $X(k(X)) \leq X(L)$ has a tautological point *b* realizing the corresponding qf type. Choose $t \in L$ which is not constant (i.e. $c \cdot t^{-1}(\infty) \neq 0$.) Using (A), find $a \in K = k(t)^{alg}$. We can approximate the GVF *L* by an element X(c') with $c' \in k(C)$, *C* a curve, $t : C \to \mathbb{P}^1$. It corresponds to a morphism $f : C \to \tilde{X}, \pi : \tilde{X} \to X$ finite; composing with π we can assume $f : C \to X$. Then $\frac{\deg(f)}{\deg t|C}[fC]$ is as close as we wish to *c*.

9 Proof of theorem G

The proof follows Boucksom, Favre, Jonsson, with an additional convexity ingredient gleaned from Gromov.

Boucksom, Favre, Jonsson, Differentiability of volumes of divisors and a problem of Teissier. J. Algebraic Geom. 18 (2009), no. 2, 279-308.

Gromov, M. Convex sets and Kähler manifolds. Advances in differential geometry and topology, 1-38, World Sci. Publ., Teaneck, NJ, 1990.

Okounkov's picture

 $K = k(X), \, d = \dim(X). \text{ Fix an auxiliary valuation } w: K \twoheadrightarrow \mathbb{Z}^d \leq \mathbb{R}^d.$

Let D be a divisor in the interior of the effective cone. Let

$$K(nD) = \{f \in K^* : (f)_\infty \le nD\}$$

 $W_n = \frac{1}{n}w(K(nD))$ - a finite set of size dim K(nD). Let ω_n be the measure giving each point mass n^{-d} .

Ok(D) is the closed convex hull of $\cup_n W_n$. The ω_n converge to Lebesgue measure;

$$\operatorname{vol}(D) := d! \operatorname{vol}(Ok(D))$$

So the volume measures the growth of the dimension of the space of sections of nD.

From Brunn-Minkowski we obtain a fundamental hyperbolicity:

 $\operatorname{vol}^{1/d}$ is concave on the interior of the effective cone.

Restricted to the ample cone when d = 2, this is equivalent to the Hodge index theorem; the intersection pairing has signature $(1, -1, \ldots, -1)$. (Weil, Hodge, ... Khovanskii, Tessier,... Lazarsfeld, Mustata...)

There is also Okounkov's finiteness principle:

A compact $C \subset Ok(D)^{\circ}$ is contained in image of a finitely generated subalgebra.

From this it is easy to deduce Fujita's approximation theorem.

Let D be an effective divisor on X, and let $\epsilon > 0$. Then there exists a birational morphism $\phi : X' \to X$, $D' = \phi^* D$, with $D' \ge A/m$ for some divisor A generated by global sections, with $\operatorname{vol}(A/m) > (1 - \epsilon)\operatorname{vol}(D)$. Also A is ϵ -close to an ample divisor.

$$Fuj(X,D) = \{(f,A) : f : X' \to X \text{ birational }, A \text{ ample on } X', A \le f^*(D)\}$$

Fujita's theorem expresses the volume as a *positive intersection product (BFJ)*:

$$\operatorname{vol}(D) = \sup\{A^a : (f, A) \in Fuj(X, D)\}$$

Let U be the interior of the effective cone of divisors.

Theorem (BFJ). vol is differentiable on U, continuous on cl(U) and vanishes on the boundary. On U we have

$$dvol(x)/d = \psi(x) := \sup\{f_*y^{d-1} : (f,y) \in Fuj(X,x)\}$$

Proposition. The interior of the moveable cone of curves lies in the image of ψ .

Let $\phi = \operatorname{vol}^{1/d}$, so ϕ is concave and $d\phi$ is proportional to ψ . The differential l of $\phi =$ at a point u defines a linear function l on U; by concavity of ϕ , l lies above the graph of ϕ on U. Conversely if a linear function l lies above ϕ on U, we can tilt to γl ($0 < \gamma \leq 1$) it until it first meets the graph of ϕ ; then γl is in the image of $d\phi$. It follows that $Im(\psi) = \mathbb{R}^{>0}Im(d\phi) \supset (U^*)^o = N_1^+(X)^o$.

Theorem (G) follows at once from this Yau-type result: approximate the amples in Fuj(X, D) by rational multiples of very ample Cartier divisors; Bertini.

10 Beyond the universal theory

13/01/2016, at 10am, IHP room 314, and subsequent Wednesdays.

Working goals

GV has a model companion \widetilde{GVF} .

 $G\overline{V}F$ admits quantifier-elimination to the level of algebraically closed sets (model theoretically).

Stability: basic geometric types; qf types (blowing ups); bounded quantifiers.

global relative modularity

Proposition. Assume (a_i) forms an indiscernible sequence over K, in L. Assume it is a Morley sequence locally almost everywhere. Also assume it is pairwise independent. Then it is independent. A Morley sequence locally almost everywhere: for almost all choices of nontrivial valuations v of K (if any) and v_i of $K(a_i)$ over v, the measure μ_L relative to (v_i) concentrates on the independent amalgam

Abelian varieties

Let A be an Abelian variety, and let M be the group of points of height 0. There is a natural Hilbert space structure on A/M. On the other hand the structure on M can be conjectured to be stable of finite U-rank, when the variety has no isotrivial components over the constants. (related to Bogomolov conjecture.)